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Application of map-matching techniques to GPS positions can provide accurate vehicle
location information in challenging situations. The Hidden Markov Model (HMM) is a
statistical model that is well known for providing solutions to temporal recognition appli-

cations such as text and speech recognition. This paper introduces a novel map-matching
algorithm based on HMM for GPS-based wheelchair navigation. Given GPS positions, a
hidden Markov chain model is established by using both geometric data and the topology of

sidewalk segments. The map-matching algorithm employs the Viterbi algorithm to estimate
correct sidewalk segments as hidden states in a HMM in order to match GPS trajectory on
the corresponding segment sequence. The HMM-based map-matching algorithm was vali-
dated on a campus sidewalk network for wheelchair navigation. The results show an im-

provement in tracking a wheelchair in dense urban conditions both in accuracy and in
computational time.
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1. INTRODUCTION. GPS-based wheelchair navigation systems use geo-
positioning and map-matching to compute the location of a wheelchair on a side-
walk (Ming and Karimi 2008). Wheelchair navigation systems deal with more
challenging problems than do those for car navigation. Since wheelchair users out-
doors usually take sidewalks that are close to buildings, their navigation systems are
more susceptible to GPS signal loss or degradation than navigation systems used in
cars. A further characteristic of wheelchair navigation, unlike car navigation, is that
typically there are no other sensors to help replace or augment GPS data.

Two main error sources make this work challenging. First, the accuracy of GPS is
always an issue in dense urban areas, where high buildings, among other obstacles,
block satellite signals. Second, wheelchair navigation takes place on a sidewalk net-
work instead of the road network used for car navigation, and this brings more
difficulties in map-matching. The quality of a sidewalk network map database is
affected by data collection techniques and the operating skill of a map maker. In
addition, since most roads have sidewalks on both sides, a sidewalk network is much
denser than its corresponding road network, so a challenge in wheelchair navigation
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using GPS-based geo-positioning technique is determining on which side of the road
the wheelchair is moving. This also makes a simple map-matching algorithm, like
nearest road matching, unlikely to succeed. Additionally, wheelchair users sometimes
move on a random path rather than follow the sidewalk. This further compounds the
map-matching algorithm for wheelchair navigation. Examples of these cases are
illustrated in Figure 1. Figure 1a shows how inaccurate the GPS signal is in some
places where there are high buildings. Figure 1b shows the trajectory of a user who
travelled along a route for which there was no corresponding sidewalk in the area’s
map database. Figure 1c provides a comparison of the density of a sidewalk network
with that of its corresponding road network.

In general, map-matching algorithms integrate estimated locations from any kind
of positioning sensors, not only GPS but also other positioning and orientation data,
with spatial network data on a digital map to identify the correct link on which a
vehicle is travelling and to determine the location of a vehicle on that link (Karimi et al
2006; Quddus 2006; Ochieng et al 2004). In this paper, we present an HMM-based
map-matching algorithm for wheelchair navigation that will determine the sidewalk
segment on which a wheelchair is located based on available GPS data projected onto
an identified sidewalk segment. Although we concentrate only on GPS data in this
paper, our algorithm is applicable to other positioning sensors, including odometer,
compass readings, triangulation from Wi-Fi base stations or cell towers, and all such
combinations.

1a. Poor GPS signal. 1b. No path in map database. 

1c. Sidewalk network (left) versus road network (right) in the same area.

Figure 1. Sources of inaccuracy in wheelchair navigation.
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The paper is organized as follows. Section 2 briefly overviews current methods for
map-matching. Section 3 describes the proposed HMM-based map-matching algor-
ithm. Section 4 presents the results of evaluating the HMM-based map-matching
algorithm using the University of Pittsburgh campus sidewalk network. Conclusions
and plans for future research are given in Section 5.

2. BACKGROUND. Main approaches to map-matching include point-to-
point, point-to-curve, curve-to-curve and topological map-matching (Karimi et al.,
2006; Quddus 2006; Ochieng et al., 2004). The simplest way to match GPS data is
to find the nearest point on the map based on point-to-point distances. Another
technique to match GPS data to sidewalk segments is simply to select the nearest
segment by computing perpendicular distance from each GPS point to all candidate
segments on a map. Curve-to-curve map-matching algorithms use the similarity be-
tween the vehicle’s trajectory and the curves as matching criteria. The most similar
curve is selected as the correct segment. Topological map-matching (Meng et al.,
2006; Quddus et al., 2003) considers both geometrical data and topological re-
lationships of GPS positioning trajectory and candidate segments as the decision
factors for map-matching. The candidate which earns the highest score from topo-
logical and geometric based calculations is considered as the vehicle’s true location.
In order to further enhance the matching accuracy, many advanced mathematical
methods have been introduced in this field, such as a fuzzy logic approach and
Kalman filters. Results show that these advanced approaches perform better
than basic map-matching algorithms (Quddus et al 2007). However, all these map-
matching techniques are developed and tested for car navigation where centreline
road networks are used. The only map-matching algorithm for wheelchair navi-
gation is the chain-code-based map-matching algorithm developed by Ming and
Karimi (2008).

3. HIDDEN MARKOV MODEL MAP-MATCHING. The Hidden
Markov Model is a statistical model in which the system being modelled is
assumed to be a Markov process with unknown parameters, and the challenge is
to determine the hidden (unknown) parameters from the observable parameters
(Wikipedia, Ephraim and Merhav 2002). The HMM has been used in temporal
recognition applications such as text and speech recognition. We argue that map-
matching is also a temporal recognition application susceptible to a Markov pro-
cess where the aim is to find actual paths and actual locations, i.e., the hidden
information, using GPS data as observed measurements. Map-matching, as a time-
series problem, resembles temporal pattern recognition applications, such as speech,
handwriting, gesture recognition and bioinformatics, where the hidden Markov
model is applied. With these characteristics, a map-matching algorithm based on
HMM, where finding the correct sidewalk segment amongst all candidate sidewalk
segments given a GPS trajectory, is set forth in this research.

The Viterbi Algorithm (Forney 1973) is a recursive optimal solution to the problem
of estimating the state sequence of a discrete-time finite-state Markov process. Many
problems can be cast in this form. We applied the Viterbi algorithm to estimate
the sidewalk segments based on observed GPS positions. The key innovation using
HMM in this algorithm for wheelchair navigation is matching sidewalk segments
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based not only on the geometry of the location readings, but additionally on the
topology of the segments.

3.1. Hidden Markov Model. The HMM is represented by a finite set of states,
each of which is associated with a probability distribution. Transitions among the
states are governed by a set of probabilities called transition probabilities. In a par-
ticular state an outcome or observation can be generated according to the associated
probability distribution. It is only the outcome, not the state, that is visible to an
external observer and therefore states are ‘hidden’ to the outside; hence the name
Hidden Markov Model (Rabiner 1989). The general architecture of a hiddenMarkov
model is shown as Figure 2.

The architecture has two layers : {ot} represents the observable layer and ot corre-
sponds to an observation value at time t. {qt} represents the hidden layer, and qt, at
time t, comes from one state in a state space. In order to model a hidden Markov
process, the following elements are needed:

’ The number of states in the model, n.
’ The number of observations, m. If the observations are continuous then m is

infinite.
’ A set of state transition probabilities. A={aij}

aij=pr{qt+1=jjqt=i}, 1fi, jfn (1)

where qt denotes the state at time t.

’ An observation probability distribution in each of the states, B={bj(k)}.

bj(k)=pr{ot=okjqt=j}, 1f jfn, 1fkfm (2)

where ot is the observation at time t and ok denotes the kth observation.

’ The initial state distribution, p={pi}, where,

p=pr{q1=i}, 1fifn (3)

With these, l=(p, A, B) can be used to denote an HMM with probability distri-
butions.

3.2. A Hidden Markov Model for Map-Matching. In a hidden Markov model,
the state is not directly visible, but variables influenced by the state are visible. Each
state has a probability distribution over the possible observations. Therefore, the
sequence of observations provides some information about the sequence of states by
means of a HMM (Cappé et al., 2005). Given the parameters of the model, the Viterbi

Figure 2. Architecture of an HMM.
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algorithm can solve the problem of how to find the most likely sequence of hidden
states that could have been generated by using a given observed sequence. The Viterbi
algorithm is a dynamic programming algorithm for finding the most likely sequence
of hidden states, called the Viterbi path. In map-matching for wheelchair navigation,
observed GPS points are the visible observation layer and correct sidewalk segments
are the invisible state layer.

Let Pts{p1, p2, …, pm} denote the observation (i.e., a GPS data point) obtained
every second t for 1ftfm.

Let Rts{r1, r2, …, rn} denote the actual location (i.e., the correct sidewalk seg-
ment) at time t.

Suppose we obtain a series of GPS observations within the time period m, so we
could obtain m GPS points as an observation sequence from time t1 to time tm. In the
state space, there are n states, which represent n candidate segments. The transition
probability from any time i to the next time j represents the probability of a user
moving from one segment to another segment. The model could be structured
as shown in Figure 3. The goal is to find the sidewalk segment sequence that has
maximum probability given the observations. That is, finding a sequence of actual
locations, R1…Rt, such that Pr(R1R2 … Rt|P1P2 … Pt) is maximized.

Based on conditional probabilities from basic probability theory, for any sequence
R1...Rt of actual locations we have:

Pr (R1R2 . . .RtjP1P2 . . .Pt)=
Pr (R1R2_RtP1P2_Pt)

Pr (P1P2_Pt)
(4)

Given the observations, the denominator of this expression is determined (the
exact value is unknown, but that value only depends on the observations, not on
the path R1 … Rt.). So the problem is equivalent to finding R1 … Rt such that
Pr(R1R2 … RtP1P2 … Pt) is maximized.

Figure 3. The hidden Markov model for map-matching.
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From the basic identities of probability theory, for any events A, B, C we have,
Pr(ABC)=Pr(A)Pr(B|A)Pr(C|AB). We use this to decompose the complicated event:

R1R2 . . .RtP1P2 . . .Pt as a product ABC: We define A=R1 . . .Rtx1P1 . . .Ptx1,

B=Rt,C=Pt,

By applying the above formula, we obtain:

Pr(R1R2 . . .RtP1P2 . . .Pt)=Pr(R1R2 . . .Rtx1P1P2 . . .Ptx1)

rPr(RtjR1 . . .Rtx1P1 . . .Ptx1)

rPr(PtjR1 . . .Rtx1P1 . . .Ptx1Rt):

Furthermore, we obtain:

Pr(R1 . . .RtP1 . . .Pt)=Pr(R1 . . .Rtx1P1 . . .Ptx1)Pr(Rtx1!Rt) Pr (Rt!Pt)

=Pr(R0)
YT

t=0
Pr (RtjRtx1)

YT

t=0
Pr (PtjRt): (5)

We assume each probability in the state transition matrix and in the observation
probability matrix in the HMM is time independent. Therefore, given prior prob-
ability Pr(R0), observation probability Pr(Pt|Rt) and state transition probability
Pr(Rt|Rtx1), we can use the Viterbi algorithm to find the path through the states that
maximizes the probability of a sequence of sidewalk segments. The Viterbi algorithm
uses dynamic programming methods to efficiently accomplish this, so that the actual
path consisting of a sequence of sidewalk segments can be identified.

In Equation (5), in order to apply the Viterbi algorithm, we need to know prior
probability, observation probability and state transition probability in the HMM.
Prior probability Pr(R0) is Pr(rj), when j=1, …, n, which is simply computed by 1/n
as a uniform distribution reflecting the fact that we have no known bias about which
is the correct sidewalk segment. Hence, how to compute observation probability and
state transition probability becomes the key point.

First, we compute the observation probability, which is the probability of the
measured location pi given rj. We can compute this with the Bayesian rule :

Pr(pijrj)=
Pr(rjjpi) Pr (pi)Pn

k=1 Pr(rkjpi) Pr (pi)
i=1, 2 . . . ,m; j=1, 2 . . . n (6)

We presume that Pr(pi), a prior probability in Equation (6), follows a uniform dis-
tribution. Therefore, Equation (6) could be further simplified as:

Pr(pijrj)=
Pr(rjjpi)Pn

k=1 pr(rkjpi)
i=1, 2 . . . ,m; j=1, 2 . . . , n (7)

Pr(rj|pi) is the probability that rj is the correct sidewalk segment out of the candidate
sidewalk segments given that measured location is Pi. We computed this by assuming
that, for most of the GPS points, the closer a sidewalk segment is to the observed
point, the higher the probabilities that it is the correct segment. This is borne out by
our informal observations of nearest segment matching. Considering the relationship
of distance and observation probability as an inverse proportion, we first compute
the probability of the perpendicular distance from GPS point pi to the segment rj over
the summation of the distances from pi to all the candidate segments, and then use
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reciprocal relation of the probability based on distances to approximate observation
probability. This leads to:

Pr(rjjpi)=
Expected {number of time in segment rjjGPS measured location pi}

Expected {all the times in all possible segments r1 . . . rnjGPS measured location pi}

=1=
Distance from pi to rjPn

k=1 Distance from pi to rk
(8)

In wheelchair navigation, wheelchair users either move on the same segment, or they
make a turn at a junction such as an intersection, exit, or entrance. Therefore, we
need to compute the transition probability aij, which represents the probability of the
wheelchair user moving from one sidewalk segment corresponding to a measured
point to another sidewalk segment corresponding to another measured point. For
this, in this algorithm we use topological relationship to compute the transition
probability. We only consider three topological relationships: same segment, con-
nected segment and unconnected segment. It is impossible for a wheelchair user to
move from a segment to an unconnected segment in consecutive time windows.
Therefore, the transition probability from time i to the next time j=i+1, aij would be
zero where the two segments are not connected. If two sidewalk segments are con-
nected, this transition probability should be higher than if two sidewalk segments are
unconnected, since wheelchair users would travel on the same segment most of the
time except at an intersection or junction. Thus, the transition probability of moving
on the same segment has the highest value. By setting aij=exrij , we create an ex-
ponential curve for this probability distribution, where rij corresponds to the topo-
logical relationship between two segments. By normalization, aij changes between
0 and 1. The next important step is to build a transition matrix {rij} and set the value
for each element in this matrix. The following set of rules must be followed

(1) If two segments are connected, rij is set to 1;

(2) If they are unconnected, then rij is set to ‘.

(3) Otherwise, rij is 0, when two segments are the same, that is i=j.

Take our measured GPS points on campus as an example, shown in Figure 4. First,
we model sidewalk segments as a set {r1,r2, …, r12} as Figure 5 shows. Next, we build a
matrix {rij}, based on the topology of the segments in Figure 6. Figure 7 shows the

Figure 4. An example of GPS points overlaid on sidewalks on campus.
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map matching results by applying the Viterbi algorithm to the entire sequence of
location measurements shown in Figure 4.

3.3. HMM-based Map-matching Process. For a hidden Markov model, two
parameters, n and m, have to be initialized, where m is the size of an observation
sequence and n is the state number in a state space. For map-matching, the size of the
observation sequence is the number of measured GPS points and the state number is

Figure 5. An abstracted sidewalk network model.

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12

r1 0 1 1 1 1 1 1
r2 1 0 1 1 1 1 1
r3 1 0 1 1 1 1 1 
r4 1 1 0 1 1 1 1
r5 1 1 0 1
r6 1 1 0 1
r7 1 1 1 0
r8 1 1 0       1
r9 1 1 1       0
r10 1 1 0 1        
r11 1 1 1 0        
r12 1 1 1           0 

Figure 6. State transition matrix.

Figure 7. Map-matching locations versus GPS positions.
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the number of candidate sidewalk segments close to the observed GPS points. In this
algorithm, after setting these two values, we take several steps to complete the
matching process.

First, a set of nearby candidate sidewalk segments is chosen based on the first GPS
data observed in each sequence. Second, the transition matrix on the selected set of
nearby candidate sidewalk segments is built (see Figure 6). This matrix not only
shows the topology of segments but implies two moving modes, which are changing
mode and continuing on same segment mode. In the case of continuing on same
segment mode, where rij is equal to 0, current and previous positions should be
matched on the same segment. Conversely, if rij is 1, then the wheelchair is moving in
a changing mode, where current and previous positions are on two connected seg-
ments. Consequently, we could compute transition probabilities based on the tran-
sition matrix. Third, the perpendicular distance from each GPS point to each segment
in the set of candidate sidewalk segments is computed, so that observation prob-
abilities for each measured location are calculated. Last, the Viterbi algorithm to the
observation probabilities and transition probabilities to compute the maximum
probability sequence of sidewalk segments are applied. Once the most likely sidewalk
segment is obtained, GPS points are projected to the segments and the map-matching
result is shown on the map. The flowchart of the process is shown in Figure 8.

4. VALIDATION. To validate the HMM-based map-matching algorithm de-
veloped in this work for wheelchair navigation, the sidewalk data along with as-
sociated parameters on the University of Pittsburgh campus area were digitized
and utilized. The sidewalk database, consisting of the sidewalk network, buildings,

Figure 8. Flowchart of HMM-based map-matching process.
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landmarks, and accessibility information, are built for wheelchair navigation in
order to assist wheelchair users travelling outdoors (Kasemsuppakorn and Karimi
2008). For the testing, GPS points were collected by walking and using a stand-
alone GPS receiver, and map-matched to the established sidewalk network. The
computing platform used was a PC machine with Intel Core 2 1.4G HZ CPU. The
software for the HMM-based map-matching algorithm was written in JAVA in an
open source GIS tool called Geotools (Geotools 2008).

4.1. Analysis of Results. Three groups of data sets, collected on main campus of
University of Pittsburgh by GPS receiver, were processed to validate the presented
algorithm. Route 1 covered the most main sidewalks on campus; Route 2 included
the sidewalks around high buildings; Route 3 included a loop and some small paths.
Fully considering the various types of sidewalks on the different areas, we used the
three selected routes to test theHMM-basedmap-matching algorithm. In comparison,
three-route GPS raw data with map-matching results were overlapped on campus
sidewalk map, shown in Figures 9, 10, and 11.

Model parameters n and m were specified through experiments. Based on the
topology extracted from the campus sidewalk data, the size of the state space, i.e., the

9a. GPS raw data overlapped on campus sidewalk map.

9b. Projected result data to the matched sidewalk segments on campus sidewalk map.

Figure 9. Route 1 comparing map-matching result with GPS raw data on campus sidewalk map.
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number of segment candidates in one map-matching process, notated by n, was set as
twelve. Experiments using 3- to 8-point sequence were conducted to determine the
suitable number of points in one sequence. It was realized that for the real-time
requirement of map-matching a 4-point sequence is appropriate for this HMM-based
map-matching algorithm. The map-matching performances are presented in Table 1.
The average time per four points represents the average time taken for one sequence
matching computation. In the offline matching, the total computation time shows the
total time to complete the matches of all GPS points in one route. Since correct link
identification after applying a map-matching algorithm and average computation
time are the most important performance parameters for evaluation, we use statistical
data to show that this algorithm performs well and satisfies the requirements of real-
time map matching in wheelchair navigation.

As with all map-matching algorithms, there are mismatched points due to errors in
geo-positioning systems and the digital map quality, and both affect the performance
of the map-matching algorithm. We observe that most mismatched points in Route 3
occur when the data collector moved on paths with no corresponding segments on the
digital map. Meanwhile, in the case of Routes 1 and 2, we realize that many mis-
matched points occur on sidewalks of narrow roads due to GPS errors.

10a. GPS raw data overlapped on campus sidewalk map.

10b. Projected result data to the matched sidewalk segments on campus sidewalk map. 

Figure 10. Route 2 comparing map-matching result with GPS raw data on campus sidewalk map.
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5. CONCLUSIONS AND FUTURE RESEARCH. In this paper, we
presented a novel map-matching algorithm to estimate wheelchair location in
sidewalk networks. The HMM-based map-matching algorithm matches with high
accuracy GPS data to segments based on finding an optimal compromise between
GPS data and topological structure, implicitly accounting for the topology of the
sidewalk network. This trade-off is accomplished with a hidden Markov model. The

Table 1. Performance results.

Route

Total Number

of GPS Points

Number of

Mismatched

Points

Correct Link

Identification After

HMM Correction(%)

Total

Computation

Time (s)

Average Time/4

Points (ms)

1 682 52 92.4% 0.625 3.666

2 1516 70 96% 1.406 3.709

3 933 68 92.7% 0.859 3.682

11a. GPS raw data overlapped on campus sidewalk map.

11b. Projected result data to the matched sidewalk segments on campus sidewalk map.

Figure 11. Route 3 comparing map-matching result with GPS raw data on campus sidewalk map.
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algorithm was tested in many situations where it successfully ignored complex dis-
tractions to find the correct path. However, some GPS points were still mismatched
due to failure in differentiating between the two sides of narrow roads. Future work
on this algorithm should include a more careful characterization of topological
data. Map-matching results may be more accurate if we could account for the fact
that transition probability between two candidate sidewalk segments changes with a
wheelchair moving. In addition, applying this algorithm to other navigation en-
vironments, such as car navigation, will further validate its appropriateness for all
navigation applications.
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