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Limit Cycles of a Perturbation of a
Polynomial Hamiltonian Systems of Degree
4 Symmetric with Respect to the Origin

Jaume Llibre, Paulina Martinez, and Claudio Vidal

Abstract. We study the number of limit cycles bifurcating from the origin of a Hamiltonian system of
degree 4. We prove, using the averaging theory of order 7, that there are quartic polynomial systems
close these Hamiltonian systems having 3 limit cycles.

1 Introduction and Statement of the Main Result

One of the main open problems in the qualitative theory of planar differential sys-
tems is the determination of limit cycles. Closely related to Hilbert’s 16th problem
is the study of the limit cycles from planar differential systems when we vary the pa-
rameters bifurcating from a center, or from its periodic solutions, and which has been
exhaustively studied in the last century. However there is no general method to solve
this problem completely, the averaging theory having been largely studied in recent
years in order to analyze the problem of the bifurcation of limit cycles (see for instance
(2, 4,7-10,13-15,17,18, 22]). For details about the averaging theory, see the book by
Sanders, Verhults and Murdock [21].
In this work we deal with polynomial differential systems in R? of the form

(11) ¥=P(x,y), 7=Q(x,y),

where the dot denotes the derivative with respect to an independent real variable ¢,
usually called the time. Assume that the origin O is an equilibrium point of system
(1.1). When all the orbits of system (1.1) in a punctured neighborhood of the equilib-
rium point O are periodic, we say that the origin is a center. The study of the centers
remain open at present and was started by Poincaré [20] and Dulac [6].

We focus on a polynomial differential system (1.1) having a center at the origin of
linear type, i.e., after a linear change of variables and a scaling of the time variable. It
can be written in the form

X=-y+P(x,y), y=x+Qx,y),
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where P,(x, y) and Q,(x, y) are polynomials without constant and linear terms.

This paper is a natural continuation of [16], where we consider the Hamiltonian
systems

(1.2) % =—y—-x*=3bx*y* —5cy*,  j=x+4x>y+2bxy’,

of degree 4 with Hamiltonian function

1
H(x,y)= E(XZ + ) +xty + bx*y + ¢y,

and classify all the phase portraits of these Hamiltonian systems in the Poincaré disk,
see Figure 1.

In this work we perturb the Hamiltonian systems (1.2). Thus we consider these
classes of all polynomial differential systems of degree 4, i.e.,

7
(1.3) x=-y-x*=3bx’y* —5cy* + > &' pi(x, y),
i=1

7 .
y=x+4x’y+2bxy’ + > €'qi(x,y),

i=1
where
pi(x,y) = aix + aby + ajx* + alxy + aly® + alx® + alx’y
+agxy® +ayy’ +ajox* +ah Xy + aLx*yt + alxy’ +aj,yt,
gi(x,y) =bix +bly+ ngz +bixy+ b};yz + béx3 + béxzy
+ béxy2 + b;y3 + b{OxA‘ + bf1x3y + b{2x2y2 + hli3xy3 + bf4y4.
Our objective is to study the number of limit cycles bifurcating from the origin of

system (1.3) using the averaging theory up to order 7. Our main result is the following
one.

Theorem 1  For ¢ > 0 sufficiently small the maximum number of small limit cycles of
the differential system (1.3) bifurcating from the center (0,0) obtained using the aver-
aging theory of order

(a) omneand two is 0;

(b) three and four is 1;

(c) five and six is 2;

(d) sevenis3.

Theorem 1 is proved in Section 3. All the computations of this paper have been
revised with the help of the algebraic manipulator Mathematica.

Thus the two main objectives of this paper are first to illustrate how to use the
averaging theory up to order 7 to compute periodic solutions, and second how to use
the averaging theory for studying the periodic solutions which are born in a Hopf
bifurcation. We note that if the objective of this paper was to estimate the bound of
the maximum number of periodic solutions of the differential system (4), this can be
done using the techniques of the papers [11,12].
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In Section 2 we provide the notations, basic definitions and results which will allow
us to do this study.

2 Preliminary Results

We consider the center at the origin of system (1.2). The global phase portraits of
this system were studied in detail and the results are summarized in the next theorem
proved in [16].

Theorem 2 The phase portrait in the Poincaré disk of a linear type center of a polyno-
mial Hamiltonian system with nonlinearities of degree 4 symmetric with respect to the
y-axis is topologically equivalent to one of the 30 phase portraits of Figure 1.

The averaging theory is fundamental to our study, so we introduce the main result
for applying it; see [17]. Consider the system

(2.1) %= e'Fi(tx) + R(t, x, €),
i=1

where F;:Rx I~ R"fori=1,2,...,kand R:R x I x (—¢&g, &) ~ R" are continuous
functions and T-periodic in the first variable, I being an open subset of R".
For i =1,..., k we define the averaging function f;: I = R" of order i as

fie) = 212,

where y;:RxI~R",i=1,...,k—1aredefined recurrently by the following integral
equation

yi(t,z):i!/t[Fi(S,‘P(S’Z))

d 1 ! b
> byl by! 212 - 10 aLFi*l(S"P(S’Z)) jl:[l)’j(s)z) ’] ds

=1 §

where 0¥ G (u, v) denote the derivative of order L of a function G with respect to the
variable u, and S; is the set of all I-tuples of non-negative integers (b, bs,...,b;)
satisfying by + 2b, +---+Ib; = ,and L = by + by + - -- + b;. The explicit expressions
of the average functions for i = 1,...,7 are given in Appendix A.

Now we can enunciate the following result, proved in [17, Section 3].

Theorem 3  For the functions of (2.1) we assume the following conditions.

(a) Foreacht e R, Fi(t,-) € C* fori =1,...,k, 0¥ 'F; is locally Lipschitz in the
second variable for i =1,..., k and R is a continuous function locally Lipschitz in
the second variable.

(b) Assumethat f; =0,i=1,...,r—1land f, # 0,r € {1,..., k}. Moreover, suppose
that for some a € I with f,(a) = 0 there exists a neighborhood V c I of a such that
fi(z) #0,Vz e VN aand dg( f,(2),V,0) # 0 (here dg( f,(2), V,0) denotes
the Brouwer degree of f, at a).
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Then for sufficiently small |¢| > 0, there exists a T-periodic solution x (-, €) of (2.1) such
that x(0,¢) - a when ¢ — 0.

We note that when f, is C' then the Brouwer degree of f, at a is non-zero if the
determinant of the Jacobian matrix Df,(a) is non-zero. For more details see [3,19].

A useful result was obtained by the authors of [11,12] and can be summarized in
the following theorem.

Theorem 4  Suppose that the differential system (2.1) is smooth enough, say, C' or
analytic. If the averaged functions of system (2.1) satisfy that fi =0fori=1,...,r -1,
fr # 0 and f, has at most k zeros on some interval I, multiplicity taken into account,
then for any compact set Iy c I there is a constant € > 0 such that (2.1) has at most k
periodic solutions whose ranges are contained in I for 0 < € < g.

Another important tool is Descartes’ Theorem about the number of zeros of a real
polynomial (see [1]).

Theorem 5 (Descartes’ Theorem) Consider the real polynomial p(x) = a;x; +
A, Xi, + 0+ a;x;, with0 < iy < iy < --- < i, and a;; # 0 real constants for j €
{L2,...,r}. When a;;a;,, <0, wesay that a;, and a; ,, have a variation of sign. If the
number of variations of signs is m, then p(x) has at most m positive real roots. More-
over it is always possible to choose the coefficients of p(x) in such a way that p(x) has
exactly r — 1 positive real roots.

Gauss showed later on that the number of allowable positive roots is m, m —2, m —
4,..., given that the sign changes m times.

3 Proof of Theorem 1

We will use the averaging theory up to order 7 to study the number of small limit
cycles of system (1.3), which can bifurcate from the origin of system (1.3) with e = 0
when this system is perturbed with € # 0 and small. First we do the rescaling of the
variables (x, y) — (X, Y) with x = X, y = €Y; then the initial differential system (4)
becomes a differential system of the form

(3.1) X=-Y+ isiri(X.Y) +0(e%), Y=X+ ieisi(X.Y) +0(%).

i=1 i=1
After we pass to polar coordinates (X,Y) — (r,0) givenby X = rcos 6, Y = rsin 0,
and the previous differential system writes

(3.2) 27:8 Ri(r,0) + O(%), 9:1+Z7:ei5i(r,0)+0(88).
i=1 i=1

Finally we take as independent variable the variable 8 and the differential system be-
comes the differential equation

dr & 8
(3.3) — = &'Ti(r,0) + O(&%).
do 5
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This differential equation is in the normal form for applying the averaging theory
described in [13], which is summarized in Section 2.

Thus we apply the averaging theory from orders 1to 7 in € and we will obtain the
number of periodic solutions indicated in Theorem 1 for the different orders. More
precisely, let

r(0,¢e) =r"+ O(e),
be a periodic solution of the differential equation (3.3) obtained from the averaging
theory of order k, being r* a simple zero of the averaged function of order k. Then
this periodic solution provides the periodic solution

(r(t,s), G(t,s)) =(r*,t) + O(e),

of the differential system (3.2). And this last periodic solution gives place to the peri-
odic solution
(X(t,€),Y(t,€)) = (r* cost,r*sint) + O(e)
of the differential system (3.1). Finally, we get the periodic solution
(x(t,), y(t,€)) = (er* cost,er* sint) + O(&?)

of system (1.1).

In summary, all the periodic solutions r(6, ¢) obtained applying the averaging the-
ory to the differential equation (2.1) provide periodic solutions ( x(t,¢), y(t,¢)) of
the differential system (1.1) which tends to the origin (i.e., to the center localized at
the origin of coordinates) when ¢ — 0. Therefore there are periodic solutions bifur-
cating from the origin in a Hopf bifurcation.

By doing a Taylor expansion truncated at the seventh order in &, we obtain an
expression in the form (2.1) for dr/d6 with k = 7. The explicit expansion is

ﬂ = Kie + Kye? + Kze® + Kye* + Kse® + Kge® + K¢/ + -+,

do

where, letting C = cos § and S = sin 0, the first three coefficients are

Ki =r(a}C?+ (a} + b})CS + b3 S?),

K, = r( alC* +aiC3r + a3CS + biCS + a4 C*rS + by C*rS + b3S* + at CrS?* + b, CrS?

+BYrS? + (~bIC? + $(alC - BLC + a}$)) (alC? + S((a} + B})C + 11S)) ),

and

K; = r( a;C*+a3C%r + alC*r* = C°r* + a3CS + b; CS + a C?*rS + b3C*rS + as C*r2S
+bLC3r S + b3S* + a2CrS? + bACrS* + ayC*r2S? + by C?r2S? + 4C3 13 §?
+3bC*rS? + b2rS® + ab Cr*S® + by Cr*S? + byr?S* + 2bCr3S* + 5¢Cr’S*
+(=bIC? + (b})2C* - bYC?r + a}CS - b3CS + a3 C*rS — b}, C?rS + a3S?
+(al)2C?8?-2alb}C*S? +(b})*C2S? +al CrS? ~ bl CrS*+2alal CS* - 24 b CS?
+airS® + (a})?S* - 2b]C*S(alC - biC + a}8)) (a]C* + S(abC + b]C + b3S))
+(-b}C?+S(alC-b}C+ayS)) (afC*+a}C?r+S(a3C+biC+a}C*r+byC?r
+ b3S + alCrS + byCrS + birS?)) )

The other coefficients are too long and we do not provide them here.
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In this work we consider the center at the origin. Our system (1.3) is a polyno-
mial differential system so the functions F; and R; are analytic, and the variable 0 is
2m-periodic because it appears through sinus and cosinus. Therefore we can apply
Theorem 3 setting the interval I = {r: 0 < 7}, for some 7 > 0.

Applying Theorem 3, we obtain the average function of first order

A(r) = n(ay + by)r.
Clearly f(r) has no solution in I. Therefore the averaging method of first order does
not provide any small limit cycle bifurcating from the origin.
We set by = —a] and obtain f;(r) = 0. So we can apply the averaging theory of
second order and we obtain the averaging function of order 2:

fo(r) = n(ai + b3)r.

This averaging function does not have a solution in I. Thus, the statement (a) of The-

orem 1 is proved.

Doing b3 = —a? we have f,(r) = 0 and we can apply the averaging method of thirst
order. The averaging function of order 3 is

f3(1’) = V(Al + A37’2),

where A; = n(aj + b3), A3 = (3ag + ay + b} + 3bs) /4.

Thus f3(r) has one positive real root r* = \/-=A; /A3 in 1if 0 < —A; /A3, and in this
case it holds that (df;/dr)(r*) # 0. Hence, applying the averaging theory of order 3
we can detect one limit cycle bifurcating from the center at the origin of system (1.3)
with & = 0.

In order to apply the averaging method of fourth order we set b3 = —a; and b}, =
—al — a}/3 - b} /3. So the averaging function of fourth order is

fa(r) = r(By + B3r?),

where B, = n(af + b3) and Bs = (—a}al — a}al + 3a}al — 3a% - 2aja} - ai + 3alb] +

2a3b} + bibl — 2albt + bibl + albl + bib} — b2 — 2a,1by — 3b3 ) /4. Thus f4(r) has

one positive real zero in I if 0 < —B;/B;. Hence, applying the averaging theory of

order 4 we know that one small limit cycle bifurcates from the origin of system (1.3)

with € = 0. So statement (b) of Theorem 1 is proved.

To apply the averaging method of fifth order, we first set b5 = —af and b3 =
(—aial — ayal + 3aba} — 3a; — 2aja’ — ai + 3agb] + 2a3b} + bib} — 2albl + bybi +
asbl + bibl — b2 —2albl)/3 and then f,(r) = 0. We continue applying the averaging
method of fifth order where the averaging function is

f5(r) = r(Cy + Cs3r* + Cs1*),

where

C = (a7 +b3)m,

Cs = (2a{(a})? + a2a} + al(al)? + alal + 2alalal + abalal + alal + ala? - 3ala}
-3alal+3al+2atal+2ala?+a3—alalbl+3abal b} —3a2b; —2alalb) +3al(b})?
—3alb} +2a\alb} - 2a%b} — alalb} + 4aibib} - 2a}b3 — ajalb) + alalb)
+aybiby +2b1bib - b3b} —al(b})? - bib] +alalbl +2a)albt +2a2bl —2aibi bt
+ bibybl — b2bl - 2ai(b})? + 2atb? - bib2 — a3b} + albibl + (b))} - bib}

— abb? - blb? + b3 + 2a7b} - 2alblb} + 2a}b} + 3b3) /4,
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and
Cs = (—ajj + ajb — 4bb} — 2bt — 10bb} + 5a}c + 10bic) /8.

The averaging function fs(r) can have at most 2 positive real zeros in I because
Cy, C3 and Cs are linearly independent since C; depends only on a; and b3, Cs only
depends on a}, b} and b}, and C; depends on these coefficients and on others. For ex-
ample, only C; presents the coefficient a2, and by Descartes’ Theorem 5 the averaging
function f5 can present two changes of sign so there are almost two positive simple
roots for f;. We prove through the averaging method of fifth order and Theorem 4
that at most 2-limit cycles can bifurcate from the origin of system (1.3) with ¢ = 0
using this averaging theory.

At this moment we separate the study into three cases: b # 0, b = 0 and ¢ # 1/5, or
b=0andc=1/5.

3.1 Caseb=+0

Setting b3 = —aj, b} = (—2b%(1+5b - 5c) + as1(~1+ b +5¢) ) /(4b) (here we use that
b # 0) and solving C; for b3, we can apply the averaging method of sixth order. The
sixth averaging function is

fé(r) = T'(Dl + D37’2 + D51’4),

where
= (af + bS)m,

D3 = n1(2(a})?alal - 2a3a}al - 2a}alal + 2a3a} + a}(a})? + alalal + 8ai (a})?b
+16aja} §b+10(a1)2a3a4b+2a§a§a}lb+2a§a§a}lb+2a3a4b+3af(a4)2
+4a1a2(a4)2b+4a§ 2b +7alalalb + 4aladb + 8a?alalb + 8alalalalb
+8alalalb + 4(al) a4a5b+4(a2)2aia§b+4u§aia§b+4a§aﬁaéb+4a4a5b
+8a1a3a5b+4a2a4a5b+4a4a§b+4a aib-12a3alb —12a3a2b - 12aalb
+12a6b+8a1a7b+8a12 2b+8ajasb+4agb+4aalalb] —4a3alb] - 2ai(a})?b}
~16a;(a})*bb} - 4a§a§a}lbb1 2ai(al)?bbl - 4613a4bb1 8a}a§aébb1+12a2a6bbl
+12a5azbb] — 12a}bb] — 8aialbb; — 8ajazbb; + 6ajay(by)* — 2a3alb(b})?
~12alalb(b})? +12a6b(b1)2+8a1a7b(b1)2 lzaéh(bl)z’ 4a3a4b2+12a2a6bb2
- 12(/1%19?)12 —8ajalbb} + 24a6bb1b2 —12aLbb} + 8alalbbs — 8a3bb? - 4a1a4bb2
+16aibbib3 - 8a3bb3+(a1)2 by —alalbl —4atalbb) - 4a1a3bb1 (a})*albb}
+asalbbl + 4a’ asbbl +4a}a£a§bb1 +4ajaZbb) +2alabib} 4—861161317171171
- 2aalbbib} - 1asbblbl+3a4(bl)2b1 3alb(b))*b) - 2a4b2b1+2a4bb2b1
+4albb2bL + 8bbIb2bL — 4bb3D. — 4a’b(bL)2 +8a bbl(b1)? — alalb? — 4alal bb2
+a2a4bb2+4a1a5bb2 2a4b1h2+2a4bb1b2 4bb3b3 - Scllbb1 b2+a4b3—a4bb3
+4(aj)*aibl —4a%albl - 4alalbl +4a3bl +4a1 a4b1 +2ala3bl +20(aj)*albbl
—20a2a3bb1 20a§a§bbl +20a3bb} + 12ajal bb} +4a}a£a}lbb1 + 14a1aibb1
+8(aj)*al bb1 +8(a2)2 tbbl + 8asaibbl + 8abalbbl + 8albbi + 8a)aibib:
-8alblbl -8 b1b1+40a2a3bb1b1 40a3bblbl - 20ala4bblb1+12a3(b1)2b1
+60aib(b} )2b1 8aibibl — 40albbibl — 8albbibl + 2(al)?blbl - 2a2b} bl
—2(a})?bbybl —10a3bb}bl + 4abibybl + 20a3bbib}bL + 6(b{)2bib§
+26b(b})*b bl — 4b7 b, bl — 16bbI b} bL — 24} b3bL —10abbibl — 4b}b3bL
—16bb}bﬁbé+2bibl+6bb3b1+4a1(b1)2+12a1b(b1)2 8ajasb(bl)*- 8albl(bl)2
—32aibb;(bl)* +2aja}b? +2aialbb? + 8ajalbb? + 8aibb? + 4bbi b} b% — 4bb b2
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+4a;bib? + 4ajbbib? + 8aibbl — 4bbyb3 — 4a3bb} + 4a3bblb} — 4ab(b))*bh
—4b(b1)7bY + 4aLbb bY + 8bbIBPbY — 4bbIbL  4a3bb2 + 4aLbblb2 + 4b(b1)?b2
— 4bbib3 — 4a3bb3 — 4bbib3 + 4bb] + 8a; bby — 8aibbiby + 8a;b(b;)*by
—8ajbbib} + 8aibb} — 8ajbblb? + 8albb; + 12bbgy — 10(aj )*alalc + 10a%alalc
+10ala?alc —10aialc - 5a%(a))?c - 5alalaic — 20alalalbic + 20a3albic
+10a}(a})?blc — 30aial (b})*c + 20a%albic - 5(al)?albic + 5a%alb)c
—10a}albib}c — 15a} (b1)*blc + 10a.biblc + 5abalbic +10a}bibic — 5a)bic
—20(ay)*aibic +20a5aibic +20aba3bic — 20a3bic — 20aiaybic — 10ajaibic
—40atalblblc + 40a2biblc + 40alalblblc — 60al (b1)*bic + 40alb?bic
—10(al)?blblc +10a2bibic — 20albiblblc — 30(b1)*blbic + 20b2bL bl c
+10alb2blc +20bib3bkc —10b3blc — 20a? (bt )?c + 40aibl(bl)?c — 10a}albic
—20a}blbic) /(16D),

and

Ds = n(20a}yal + 2a},a} —120a}aib + 36a},a}b + 28a},a’b — 40aj,a}b + 2al,a}b
+12aj,ayb — 12a3b + 12a},aib + 20al;aib + 12alalb + 8abagb — 36aLayb
+312alalb? + 12alalb? + 12a3b* + 240alalb® - 24albbl, + 12ab*b! + 54l b},
~13a.bbl, +16aLbbl, +8albbl, +3al b}, —3al bbl, +88albbl, +80albbl, —48b* b3
- 60ajbb), + 8al,bb — 60alb*b} — 12bb} b} — 4bb}, b} + 20bbi, b}, + 40a],b}
+4aj,bl + 112al,bbl + 4al,bbl + 24al,bbl —120a5b*bL — 120b2b}bL + 10b;, b}
+22bb}, bt + 6b1; bl — 6bbi; bl — 24bb% — 120b%bZ — 36a;bbl — 4a}bb} - 12a4bb}
— 12bbib} +12akbby + 8agbby — 4bblby —100ay,alc — 10a},a}c + 120a;a3bc
+120aalbc +60a2bc+120albblc—25al bl c —15al bl c + 60albb c —200al,bic
- 20al,blc +240abblc + 240bbiblc — 50b1,blc — 30bl,bLc +120bb2c)/(96D).

Therefore fs(r) can have two positive real zeros in I following the arguments used
for fs. Note that D;, D3 and Ds are linearly independent functions. In fact D; only
presents the coefficients a? and b$, only Dj has the coefficients a3, a3, a3 and b7, and
Ds is the only one with the coefficients b},, bj; and b},. So applying the averaging
theory of order 6 we can detect that at most two small limit cycles bifurcating from
the center at the origin of system (1.3) with ¢ = 0 and this number can be reached.
Thus, the statement (c) of Theorem 1 is proved in the case b # 0.

We set b$ = —a$, and solving D; for bg and Ds for b we can apply the averaging
theory of order 7.

The averaging function of order 7 is

f7(r) = T(E1 + E37’2 + E51’4 + E71’6),

where

E1 = (a{ + bg)ﬂ,

E; = (~15ai, — 3a}; —180a}b + 9a},b + 13a};b + 36a]b* — 12bb}, — 10b}, — 6bb}, —12b},

- 8bb}, + 15a;,¢ + 35a}5¢ + 420a;be + 10b}, ¢ + 140b},¢) /64,

and we have not provided the explicit expressions of E; and E5 because they are huge.
The averaging function f7(r) can have at most 3 positive real zeros in I. This is be-

cause Ej, E3, Es and E; are linearly independent, since E; depends on a] and bj, only

E; has the coefficients (for example) a3, b3 and b}, the coefficient aZ only appears in

Es, and E; depends on a3, aj;, a3, b}y, b}, and bj,. Using Descartes’ Theorem 5, we

can affirm that f; can has three changes of sign so the averaging function of order 7
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can have three different positive real zeros. Therefore we can detect through the av-
eraging method of order 7 that at most 3 limit cycles can bifurcate from the origin of
system (1.3) with & = 0. Hence, statement (d) of Theorem 1 is proved for the averaging
function of order 7 in the case b # 0.

3.2 Caseb=0and c+1/5

Under these conditions, system (1.3) becomes

7 7
(3.4) x=-y-x*=5cyt + Y e'pi(x,y), y=x+4ax’y+ ) e'qi(x, ).
i=1 i=1

The averaging function up to order 4 are the same as before. So following the
previous elections of coeflicients, we continue applying the averaging method of fifth
order where the averaging function is

fs(r) =r(Cy + Csr* + Csr?),
where C; and C; are the same that before and
CS = C5|b:0 = (a}l + Zbé)(—l + 5C)7T/8

Since Cy, C3 and Cs are linearly independent because C; only depends on a; and b3,
Cs only depends on a) and b}, and C; only depends on these coefficients and others
(for example, only C; presents the coefficients b3, b and a?), by using Descartes’
Theorem 5 we have that the averaging function fs(r) can have at most 2 positive real
zeros in I. We can detect through the averaging method of fifth order that at most 2
limit cycles can bifurcate from the origin of (1.2).

Note that if ¢ = 1/5, the coefficient Cs vanishes; in this case the averaging func-
tion f5(r) can have at most one positive real root in I. This situation will be studied
in detail in the next case.

Setting b3 = —a;, bt = a}/2, and solving C; for b3, we can apply the averaging
method of sixth order. The averaging function of order 6 when b = 0 is

fé(?’) = V(Dl + D37’2 + D5T’4),

where

D; = (4a}(a})*+8aja}a3 +6(a})*alal +2a3a} +2a3a3 +3ajaa} +2a}a] +4alalal
+4ajalalal + 4ajajay + 2ayaial + 2ajal + 4ajalal + 2ajal — 6azal — 6asa;
- 6aial +6ag +4a;jal + 4ata? + 4ala + 2ag — 8aj(a})?b} - 2a%alb} - 2alalb]
—4alalalbl + 6a3aLbl + 6abalbl — 6alb] — 4atalb} — 4ala2b] + 2alal (b})?
—6abal(b})? +6a%(bl)? + 4ajak(b})* - 6al(b})® - 2alalb} + 6asalb} — 6alb?
—4ajalb? + 12a.bjb? — 6alb; — 4(a})*aib} + 4a%alb} + 4alalb) - 4a3b}
—2ajajbl — 8ayalbib} + 8a3bib} — 12a}(b1)*b} + 8aibib} + 4abaib; — 4a3b3
+8aibib3 — 4aib3 - 2atalb) - 2a}a3b) +3(a})?alb) + 2afalb} + 2alalalb)
+2alalbl +4alalblbl —2alalblb) +al (b))} —alb?bl —2(a})?bib) +2a2bib)
—4aibibiby — 6(b})*bib) + 4bFbLbY + 2a}b3D) + 4bib3D) - 2030} — 24} (b))?
+4ayb}(bh)*—2ajalb] +2ajatbi—albib} +2a5bi b} +4b bl bi —2b3b% —4a; b b}
+ayby —2b3b; +6ajalb: +4ayaibl +4a2bi — 4ajbib: +2b1by b2 — 2b5b2 + 4aib?
—2byb2 —2a3b} +2a5b1b} — 2a5 (b1)*b} — 2(b}) bl + 2a5 b bl + 4b1 b7 b} — 2b3 b}
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—2a3b% +2a}bib? +2(b})*b2 — 2b}b2 — 2a5b3 — 2b1b3 + 2b5 + 4a} by, — 4albiby
+4a}(b})?by — 4alb}by + 4a7b} — 4alblb} + 4alb} + 6b3) /8,

and

Ds = (—60aja} + 18aj,a} + 14alya} +12a}ya} + 6al,a} — 6a3 + 6aj,al +10a};al
+6agal +4atag —18agay —12ai b, +3ay by, +8aiby, + 4aibi, + 9albi; + 44a}bi,
+40albi, — 40a},b} - 4al,b} — 10b},b} - 6b},b} — 30a}b), + 4a};b} - 6b},b)
- 2b},b} + 106}, b} — 12b2 — 18aLbl — 2albl — 6albl — 6bLbY + 6albl + 4alb}
- 2bLbL + 60alalc + 30a3c +30alblc + 60b2c)m/48.

As before (in the case b # 0), fs(r) can have two positive real zeros in I, because
the coefficients of the averaging function of order 6, D;, D3 and Ds, are linearly in-
dependent functions, and then we can apply Descartes’ Theorem 5. So applying the
averaging theory of order 6, we can detect at most two small limit cycles bifurcating
from the center at the origin and this number can be reached.

Solving D, for bS, Ds for b3, and Ds for b2, we can apply the averaging theory of
seventh order and the averaging function of order seven is

fo(r) = r(Ey + Esr? + Esr* + E;r®),

where

E; = (-15ay, - 3aj; — 10by, — 12by, + 15a],¢ + 35ay5¢ + 10y, ¢ + 140by,c) 7r/64.
Again we do not provide the explicit expressions of E; and Es because they are very
big. Under the hypothesis b = 0 and ¢ # 1/5, the averaging function of order 7 asso-
ciated with system (3.4) has at most three positive real zeros, because the coefficients
of f;(r) are linearly independent and we can apply Descartes’ Theorem.

Thus we can detect through the averaging method of order 7 that at most 3 limit

cycles can bifurcate from the origin of (1.3) with ¢ = 0. So the statement (d) is proved
when b =0 and ¢ # 1/5.

3.3 Caseb=0, c=1/5

In this case the averaging function of fifth order f5(r) is
fs(r) = 7(Cy + C37%).

The averaging function f5(r) can have only at most 1 positive real zero in I. We de-
tect through the averaging method of fifth order that at most 11limit cycle can bifurcate
from the origin of system (1.2) with ¢ = 0.

Solving C, for b3 and C; for b3, we can apply the averaging method of sixth order.
The averaging function of order 6 is

fo(r) = r(Dy + Dsr? + Dsr*),
where D3 = D5 + (a} +2b})(2(a})?al + 2a3a} + 2ala2 + 2a2 + (a})?(2a} - 3b}) -
(b})*b, + b + blb% - b3 +2af (a) - by - bl) + a}(2a}al + a3 — 2a} b} + 4b} b} — 203 -
2a3bY + 2b}bL — 4b2)) /8
and
Ds = —(24a}a} - 9aj,a} — 7ai;a} + 5al,a} — aj,al — 3ai,a} — 6a\al — 3a},al - 5a};ai
—3aga} - 2alay + 9agay + 6a3b], — 6ayb; + 2ay b}, — 4aibl, — 2aib;, — 22a3b;,
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—20aib}, +20al,b} +2a},b} +5b}, b} + 3b1; b} +12a} b, — 2al; b}y + 3b], b} + b, b}
—5bi, bl +22a], bt + 4ai,bl — 6a1,bL —12a} b —12b}bL + 7b}, bl + 9b}, bt + 9al bl
+aybl +3ayby + 3bi bl — 3alby — 2agby + byby)m/24.

As for the previous cases (b # 0, and b = 0 with ¢ # 1/5) the averaging function
of sixth order f¢(r) can have two real positive zeros in I, because D, D3 and Ds are
linearly independent functions and we can apply Descartes’ Theorem 5. Therefore,
through the averaging theory of order 6 we can detect that at most two small limit
cycles bifurcate from the center at the origin and this number can be reached. So
statement (c) is proved in the case b = 0 and ¢ = 1/5.

Solving D, for b$, D for b3, and Ds for b2, we can apply the averaging theory of
order 7 and the averaging function is

fo(r) = r(Ey + Esr? + Esr* + E;r°),
where
Ey = (a] + b))m, E; = —(1/16)(3a}, - aj; + 2b}, — 4b}, ).

We do not provide the explicit expressions of E3 and Es, because they are very long.
Thus f,(r) can have three positive real roots in I since the coefficients of f(r) are lin-
early independent and we can apply Descartes’ Theorem. So, applying the averaging
theory of order 7, we can detect that at most three small limit cycles can bifurcate from
the center at the origin and this number can be reached. This proves the statement (d)
in Theorem 1.

In summary, for the averaging theory of orders 1 and 2 we cannot detect the exis-
tence of small limit cycles bifurcating from the center at the origin. For the averaging
theory of orders 3 and 4 we can detect that at most one small limit cycle bifurcates
from the origin of system (1.3) with & = 0. For the averaging theory of orders 5 and 6
we can detect that at most two small limit cycles bifurcate from the center at the ori-

gin and this number can be reached. Finally for order seven we detect through the
averaging theory at most three limit cycles. This completes the proof of Theorem 1.

Acknowledgements This paper is part of Y. Paulina Martinez’s Ph.D. thesis in the
Program Doctorado en Matematica Aplicada, Universidad del Bio-Bio (Chile). m

A Averaging Functions

We present explicitly the averaging function up to order 7.

n(tz) = fOtF1(s,<p(s,z)) ds,
ya(t,2) = /Ot(ZFz(S,(p(S,Z)) +28F1(s,g0(5,z))y1(5,z)) ds,

y3(t,z) = fot(6F3(s,(p(s,z)) +68F2(s,<p(s,z))y1(s,z)
+ 382F1(s, (p(s,z))yl(s,z)2 + 38F1(s, q)(s,z))yz(s,z)) ds,

ya(t,z) = At(24F4(s,¢(s,z)) +240F3(s, 9(5,2)) y1(s,2)
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+120°Fy (s, 9(s,2)) y1(s,2)* +120F; (5, 9(5,2) ) y2 (s, 2)
+120°Fy( s, 9(s5,2)) y1(5,2) y2 (5, 2)
+ 483F1( s, (s, z)) (s, 2)* + 48F1( s, (s, z)) ¥3(s, z)) ds,

ys(t,z) = fot( 120F5 (s, ¢(s,2)) +1200F4(s, ¢(s,2)) y1(s, 2)
+600°F5 (s, 9(s5,2)) y1(5,2)* + 600F;( 5, 9(s,2) ) 2(s,2)
+600°F, (s, 9(5,2)) y1(5,2) y2(5,2) + 200°Fy (5, 9(s,2) ) y1 (s, 2)°
+200F:(s, 9(s,2)) y3(s,2) + 200°Fi (s, 9(s,2) ) y1(5,2) y3(5, 2)
+159°Fi( 5, 9(s,2)) y2(s,2)* + 300°Fi (s, 9(5,2) ) y1(5,2)* y2 (5, 2)
+50*Fi(s, 9(s,2)) y1(s,2)* + 50 (s, 9(s,2)) ya(s, z)) ds,

v6(t,2) = /Ot(720F6(s, 9(s,2)) +7200Fs(s,9(s,2)) yi(s,2)
+3600°F4('s, ¢(5,2)) y1(s,2)* +3600F4 (s, 9(5,2)) y2(5,2)
+1200°F5( s, 9(s,2)) y1(s,2)* +3600°F5 (s, 9(s,2) ) y1(s,2) y2(s, 2)
+1200F3(s, ¢(s5,2)) y3(s5,2) +300*Fx (s, 9(s,2) ) (s, 2)*
+1800°F> (s, ¢(s,2)) y1(s.2)%y2(s5, 2)
+1200°F> (5, 9(s,2)) y1(s,2) y3(s, 2)
+900°F,( s, 9(s,2)) y2(s,2)* + 300F, (s, 9(5,2) ) ya(s,2)
+600*F, y1(s,2)*y2(s, 2)
+600°Fy(s,9(s,2)) y1(s,2)*y3(s, 2)
+900°F (s, 9(5,2)) y1(s,2) y2(s,2)* +300*Fi( s, 9(5,2) ) y1(5,2) ya(s, 2)
+600°Fy(s,9(5,2)) y2(5,2) y3(5,2) + 69°Fi( 5, 9(s,2) ) y1(s,2)°

+ 68F1( s, (s, z)) ys(s, z)) ds,

y7(t,2) = fot(5040F7(s,go(s,z)) +50400F;( s, 9(s,2)) y1(s,2)
+ 252082F5(s, 9(s,2)) yi(s,2)* + 25208F5(s, 9(s,2)) y2(s,2)
+ 252082F4( s, (s, z)) y1(5,2)y2(s,2) + 8409 Fy (s, ¢ (s, z)) (s, z)’
+ 840E)F4( s, (s, z)) y3(s,2) + 84062F3( s, (s, z)) 1(s,2)y3(s,2)
+ 63082F3(s, q)(s,z))yz(s z)*+ 126083F3(s o(s, z))yl(s 2)%y1(s, 2)
+2109*F5( s, 9(s,2)) yi(s,2)* + 2108F3(s o(s, z))y4(s z)
+ 21082F2(s,go(s,z))y1(s z)y4(s,2)
+ 42083F2(s, 9(5,2)) y1(s,2)*y3(s,2)
+4200°F, (s, 9(5,2)) y1(5,2)’ 2(s, 2)

5 9(s,2)

—_— — — —
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+ 63083F2( s, q)(s,z)) ya(s, z)zyl(s, z)

+420°F> (s, 9(s5,2)) y1(s,2)° + 4200°F, (5, 9(5,2) ) y2(5,2) y3(5, 2)
+420F:(s, 9(s,2)) ys(s,2) + 63083F2( s, (s, z)) y2(s,2)*y1(s, 2)

+ 786F1(s, 9(5,2)) n1(s,2)° + 10585F1( s, (s, z)) 1(s5,2)*y2(s, 2)
+1400*Fi( s, 9(5,2)) y1(5,2)’ y3(s, 2)

+6300"Fy (s, (s, z))yl(s, 2)*y1(s,2)*

+1059°F (s, ¢ (s, z)) 11(5,2)y4(s, 2) + 420°F, (s, go(s,z)) 1(s,2)ys(s,2)
+ 42083F1( s, (s, z)) y1(s,2)y2(s,2) y3(s, 2)

+ 10583F1(s, o(s, z))yz (s,2)> +1050°Fy (s, ¢ (s, z))yz (s,2)ya(s, 2)

+700°Fi (s, 9(s,2)) y3(s,2)*> + 70F (s, 9(5,2) ) ys (s, z)) ds.
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