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In this paper we study the self-propulsion of a dumbbell micro-robot submerged in a
viscous fluid. The micro-robot consists of two rigid spherical beads connected by a rod
or a spring; the rod/spring length changes periodically. The constant density of each
sphere differs from the density of the fluid, while the whole micro-robot has neutral
buoyancy. An effective oscillating gravity field is created via rigid-body oscillations of
the fluid. Our calculations show that the micro-robot undertakes both translational and
rotational motion. Using an asymptotic procedure containing a two-time method and
a distinguished limit, we obtain analytic expressions for the averaged self-propulsion
velocity and averaged angular velocity. The important special case of zero angular
velocity represents rectilinear self-propulsion with constant velocity. In particular, we
have shown that: (a) no unidirectional oscillations of a fluid result in self-propulsion;
and (b) for the oscillations of a fluid in two directions rectilinear motion of a micro-
robot can be achieved.
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1. Introduction

The study of self-propelling micro-robots is a flourishing current research topic,
striving to create a fundamental base for modern applications in medicine and
technology, see e.g. Purcell (1977), Becker, Koelher & Stone (2003), Najafi &
Golestanian (2004), Dreyfus et al. (2005), Felderhof (2006), Chang et al. (2007),
Earl et al. (2007), Alouges, DeSimone & Lefebvre (2008), Golestanian & Ajdari
(2008), Alexander, Pooley & Yeomans (2009), Belovs & Cërbers (2009), Leoni et al.
(2009), Gilbert et al. (2010), Lauga (2011) and Romanczuk et al. (2012). We define
self-propulsion as the motion of a micro-robot which is subjected to zero external total
force. The simplicity of the micro-robot geometry represents a major advantage in
contrast to the extreme complexity of self-swimming micro-organisms. This advantage
allows us to describe the motion of micro-robots in greater depth. The major problem
in the designing of a micro-robot is the need for an external source of energy to
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FIGURE 1. Two spheres, linked by a rod of periodically changing length.

provide its oscillatory behaviour. Proposed sources include an oscillating (or rotating)
magnetic field (see Dreyfus et al. 2005; Belovs & Cërbers 2009; Gilbert et al. 2010),
an electric field (see Chang et al. 2007), and even molecular Brownian forces (see
Romanczuk et al. 2012). At the same time, the major oscillatory forces available
in fluid have not been exploited; these are the forces caused by fluid oscillations
which are imposed by periodically varying boundary conditions, waves, or turbulence.
The ratio of characteristic spatial scales (several microns for a micro-robot versus
millimetres, centimetres, or greater scales for flow oscillations) makes it clear that the
first problem to study is the behaviour of a micro-robot in a fluid that oscillates as a
rigid body.

In this paper, we consider the self-propulsion of a two-sphere buoyancy-
driven dumbbell micro-robot (which we call a BD-robot), see figure 1. The whole
micro-robot is neutrally buoyant (in order to avoid sedimentation); one of its spherical
beads is positively buoyant and the other is negatively buoyant. We study two versions
of BD-robots. In the first one the beads are connected by a rod of prescribed
oscillating length, in the second one the beads are linked by an elastic spring. First,
we study the case of a rod and, next, we consider the changes that appear after
replacing the rod with a spring. A mathematical formulation of the problem leads
us to the study of creeping motion with time-periodic forces. The problem is solved
by employing a version of the two-time method and distinguished limit arguments,
developed in Vladimirov (2005, 2008, 2012a). The approach allows any motion of
the BD-robot to be described analytically. Our calculations show that, generally, the
BD-robot undergoes both translational and rotational motion. Rectilinear translational
self-propulsion with constant velocity represents a special case of this solution. We
have calculated the velocity of rectilinear self-propulsion and the ranges of governing
parameters that correspond to translational motion.

2. Problem formulation

The BD-robot represents a dumbbell configuration, which consists of two
homogeneous rigid spherical beads of different radii Rν , ν = 1, 2 connected by a
rod of length l, see figure 1. We study two-dimensional motion of a three-dimensional

717 R8-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

30
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.30


Dumbbell micro-robot driven by flow oscillations

dumbbell in Cartesian coordinates (x, y). The centres of the spheres x(ν) are described
by

x(1) = X + a, x(2) = X + b, R1a+ R2b= 0, (2.1a)
a= aσ = r1lσ , b= bσ =−r2lσ ; r1 ≡ R2/(R1 + R2), r2 ≡ R1/(R1 + R2), (2.1b)

where X = (X,Y) is the radius-vector of a centre of reaction. The axis of symmetry of
a dumbbell is given by the vector l ≡ x(1) − x(2), l ≡ |l|. The unit vectors σ ,n and the
angle ϕ are given by

σ ≡

(
cosϕ
sinϕ

)
, n≡

(
− sinϕ
cosϕ

)
, n= σ ϕ, σ =−nϕ, σ ·n= 0, (2.2)

where the subscript ϕ stands for d/dϕ. The length l is changing periodically

l= L+ ε̃l(τ ); τ ≡ ωt; ω = const, ε = const (2.3)

where L is a constant averaged value and l̃ is a 2π-periodic function of τ with zero
average value (throughout the paper a ‘tilde’ above a function of time denotes that
this function is oscillating and has zero mean value). The spheres experience external
friction forces F(ν) = (F(ν)

1 ,F(ν)
2 ) while the rod is so thin (in comparison with either Rν)

that its interaction with the fluid can be considered negligible.
We consider the motion of a BD-robot in a viscous incompressible fluid which,

in the absence of the BD-robot, oscillates as a rigid body. These rigid-body
oscillations are prescribed as a two-dimensional translational spatial displacement
ξ̃(τ ) = (ξ1(τ ), ξ2(τ )) of fluid particles (at infinity in space); the related acceleration
is ξ̃ tt = ω

2ξ̃ ττ , where the subscripts stand for related derivatives. The problem can be
studied in an oscillating (non-inertial) system of reference, in which a fluid at infinity
is in a state of rest. In this frame, according to Einstein’s principle of equivalence, or
according to a related transformation of a Lagrangian function, the equations of fluid
motion are standard; however, they contain an additional oscillating gravity force

g̃=−ω2ξ̃ ττ (2.4)

which causes buoyancy forces −M(ν)g̃, where the coefficient M(ν) is equal to the
difference in the mass of a sphere and the mass of displaced fluid; M(ν) can be either
positive or negative. The potential energy of a sphere is Π (ν)

=M(ν)g̃·x(ν). We consider
a BD-robot of neutral total buoyancy, with total potential energy

Π =Π (1)
+Π (2)

=Mg̃ · l, M ≡M(1)
=−M(2) > 0. (2.5)

The problem formulation contains three characteristic lengths: the length of the rod L,
the radius of the spheres R, and the amplitude of the rod oscillation a. In addition we
have the characteristic time scale T , excess mass M, gravity g, and viscous force F.
We have chosen these scales as

R≡ (R1 + R2)/2, T ≡ 1/ω, a≡ εL, F ≡ 6πηRL/T, g≡max |g̃(τ )|, (2.6)

where η is the fluid viscosity. The dimensionless variables (marked with asterisks) are
x= Lx∗, t = T t∗, Fi = F F∗i . Three independent small parameters of the problem are

ε ≡ a/L, δ ≡ 3R/(4L), m≡Mg/F. (2.7)

Below we use only dimensionless variables, but omit the asterisks. Note that in the
chosen dimensionless units, R1 + R2 = 2.
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We choose the generalized coordinates of the BD-robot to be q = (q1, q2, q3, q4) ≡
(X,Y, l, ϕ). The motion of the BD-robot, with a given l(τ ) (2.3), is described by
the Lagrangian function L = L (q, qt), which includes the constraint (2.3) with
Lagrangian multiplier (reaction of constraint) N

L (q, qt)=K −Π + N(l− L− ε̃l ), (2.8)

where K and Π are the kinetic energy and potential energy (2.5) of the BD-robot; N
represents an additional unknown function of time. The Lagrange equations are

d
dt

∂L

∂qnt
−
∂L

∂qn
= Qn, Qn =

2∑
ν=1

2∑
k=1

F(ν)
k

∂x(ν)k

∂qn
, (2.9)

where Q = (Q1,Q2,Q3,Q4) is the generalized external viscous force exerted by the
fluid on the BD-robot. As one can see, we use subscripts i, k = 1, 2 for Cartesian
components of vectors and tensors, subscript n = 1, 2, 3, 4 for generalized coordinates,
and subscripts (or superscripts) µ, ν = 1, 2 to identify the spheres. We assume that
the fluid flow past a BD-robot is described by the Stokes equations, where all inertial
terms are neglected. Correspondingly, the masses of the rod and the spheres are
negligible, hence K ≡ 0. Therefore (2.8), (2.9), (2.1) give rise to the following system
of equations:

F(1) + F(2) = 0, (2.10)
εαg ·n= F− ·n, 2F− ≡ R2F(1) − R1F(2), (2.11)

εαg · σ − N = F− · σ , (2.12)

which is supplemented by constraint (2.3). The great advantage of a Lagrangian
formalism is its self-sufficiency. In particular, the conditions of zero force (2.10) and
the balance of torques (2.11) appear automatically, while (2.12) allows us to find the
reaction of constraint N. In (2.11), (2.12) we have assumed that

m= εα, α = const= O(1). (2.13)

This is our physical assumption, which states that two small parameters ε and m (2.7)
are of the same order. Physically, it means that the difference between the densities (of
each sphere and the fluid) or the amplitude of oscillations of the fluid is small (or both
these parameters are small). The explicit expressions for F(ν) are

F(1) '−R1x(1)t + δR12S x(2)t , F(2) '−R2x(2)t + δR12S x(1)t , (2.14a)

l3S= l3Sik ≡ l2δik + lilk, R12 ≡ R1R2. (2.14b)

Each force F(ν) represents the first approximation for the Stokes friction force exerted
on a sphere moving in a flow field generated by another sphere. To construct (2.14)
we use a classical explicit formula for the fluid velocity past a moving sphere, see
Lamb (1932), Landau & Lifshitz (1959) and Moffatt (1996). Equations (2.10)–(2.12)
and (2.14) represent a system of four equations for four unknown functions of
time: X,Y, ϕ, and N. For the prescribed l (2.3), equation (2.12) need not to be
considered if we are interested only in the motion of the micro-robot and are not
calculating reaction force N. For future use, we rewrite (2.10), (2.11) as

Xt − δR12S[Xt − R̂ lt/4] = 0, (2.15)

n · [lt + δS(R̂Xt + R12lt)] = −2εαn · g̃/R12, (2.16)

where R̂≡ R1 − R2.
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Dumbbell micro-robot driven by flow oscillations

3. Two-time method and asymptotic procedure

3.1. Functions and notation
The following dimensionless notation and definitions are used:

(i) s and τ denote slow and fast times; subscripts τ and s stand for related partial
derivatives.

(ii) A dimensionless function, say h= h(s, τ ), belongs to the class I if h= O(1) and
all partial s- and τ -derivatives of h (required for our consideration) are also O(1).
In this paper all functions belong to class I , while all small parameters appear as
explicit multipliers.

(iii) We consider only functions periodic in τ {h ∈P : h(s, τ ) = h(s, τ + 2π)},
where s-dependence is not specified. Hence, all functions considered below belong
to P

⋂
I .

(iv) For arbitrary h ∈P the averaging operation is

〈h 〉 ≡
1

2π

∫ τ0+2π

τ0

h(s, τ ) dτ ≡ h(s), ∀ τ0. (3.1)

(v) The oscillating part of an integral is:

h̃τ ≡
∫ τ

0
h̃(x, s, ν) dν −

1
2π

∫ 2π

0

(∫ µ

0
h̃(x, s, ν) dν

)
dµ. (3.2)

(vi) The tilde-function (or purely oscillating function) represents a special case
of the P-function with zero average 〈h̃ 〉 = 0. The bar-function (or mean-
function) h = h(s) does not depend on τ . For any periodic function h a unique
decomposition h= h+ h̃ is valid.

3.2. Asymptotic procedure and successive approximations
The introduction of a fast time variable τ and a slow time variable s represents a
crucial step in our asymptotic procedure. We choose τ = t and s = ε2t. This choice
can be justified by the same distinguished limit arguments as in Vladimirov (2012a).
Here we present this choice without proof; however, its most important aspect (that
this choice leads to a valid asymptotic procedure) is exposed and exploited below. We
use the chain rule

d/dt = ∂/∂τ + ε2∂/∂s (3.3)

and then assume (temporarily) that τ and s represent two independent variables.
Furthermore we consider series expansions in the small parameter ε and restrict
our attention to terms which are at most O(ε2). Simultaneously, we keep at most
linear-in-δ terms. It does not mean that in our setting δ ∼ ε2, since in all expressions
δ appears not separately but as a product with various degrees of ε. Hence, we do
not specify the dependence of unknown functions on δ; such dependence reveals itself
naturally during the calculations. The unknown functions are taken as regular series in
ε

X(τ, s)= X0(τ, s)+ εX1(τ, s)+ ε2X2(τ, s)+ · · · , (3.4)

with a similar expression for ϕ(τ, s). We are looking for solutions with

X̃0(s, τ )≡ 0 and ϕ̃0(s, τ )≡ 0 while X0(s) 6= 0 and ϕ0(s) 6= 0, (3.5)

717 R8-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

30
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.30


V. A. Vladimirov

which express the target property: long distances of self-swimming and large angles of
rotation are caused by small oscillations. The application of (3.3) to (3.4) gives

Xt = εX̃1τ + ε
2(X̃2τ + X0s)+ O(ε2) (3.6)

and a similar expression for ϕt. In the calculations below all bar-functions belong
to the zero approximation, while all tilde-functions belong to the first approximation;
therefore we omit the related subscripts, e.g. X̃1 and n0 are replaced with X̃ , n. The
successive approximations of (2.15), (2.16) yield:
terms O(ε0) give the identities 0= 0; terms O(ε1) lead to

X̃τ = δR12S(X̃τ − R̂ l̃τ/4), l̃τ ·n=−2αg̃ ·n/R12. (3.7)

The use of (2.2) transforms the second equation to the form ϕ̃τ = −2αg̃ · n/R12. Then
integration of (3.7) in the class of periodic functions yields

X̃ = δR12S(X̃ − R̂ l̃/4), ϕ̃ =−2αg̃τ ·n/R12 (3.8)

where the notation (3.2) is used. Terms O(ε2) of (2.15) with the use of (3.8) (and with
linear in δ→ 0 precision) give

X s =
1
4δR12R̂〈S̃τ l̃〉, (3.9)

where have used integration by parts in the average operation (3.1). The use of the
definition of matrix S (2.14) and (2.2) yield 〈S̃τ l̃〉 = 2〈̃lϕ̃τ 〉n. Then (3.9), (3.8) takes
the form

X s =−δαR̂〈̃lg̃ ·n〉n. (3.10)

Similarly, from (2.16), we can derive the equation for ϕ and obtain the system of
equations

X s′ =−δµUn/γ, ϕs′ = U − γG; (3.11)

s′ ≡ γ s, µ≡ αR̂, γ ≡ 2α/R12, G≡ 〈g̃τ1 g̃2〉, (3.12)

U ≡ 〈̃l( g̃ ·n)〉 = −G1 sinϕ + G2 cosϕ, G1 ≡ 〈̃l g̃1〉, G2 ≡ 〈̃l g̃2〉, (3.13)

where we have used the equality 〈( g̃τ ·σ )( g̃ ·n)〉 = G, which is valid by virtue of (2.1),
(3.1), and g̃ = (g̃1, g̃2). One can see that the dynamics of a dumbbell is determined by
the values of three parameters δ, µ, γ and by three correlations G, G1, and G2.

The slow time scale s ≡ ε2t implies that in order to obtain physical dimensionless
velocities we have to multiply X s′ and ϕs′ (3.11) by γ ε2. Accordingly, the mean
translational velocity V and the mean angular velocity Ω are

V = O(ε2δ), Ω = O(ε2), (3.14)

hence the self-rotation is ‘much faster’ than the translational motion. We also can draw
a general conclusion, based on (3.11), that V is always directed along the normal
vector n.
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Dumbbell micro-robot driven by flow oscillations

4. Prescribed oscillations of the BD-robot

4.1. Unidirectional oscillations of a fluid do not cause rectilinear propulsion
The simplest motion takes place when G ≡ 0. Physically, it means that fluid
oscillations are unidirectional, see (2.4). In this case (3.11) produce the integral

X − C =−
δµ

γ
σ or (X − C)

2
= δ2µ2/γ 2 (4.1)

with a vectorial constant of integration C. This equality shows that X(s′) changes
along a circular path (or along an arc of a circle) of small radius δµ/γ = δR12R̂/2.
The equation for ϕ (3.11) can be integrated exactly. For unidirectional oscillations
along the y-axis, when g̃ = (0, g̃2) (2.4), the second equation (3.11) takes the form
ϕs′ = G2 cosϕ. It can be integrated, having an initial value ϕ(0)=Φ, as

sinϕ =
(1+ sinΦ)e2G2s′

− (1− sinΦ)
(1+ sinΦ)e2G2s′ + (1− sinΦ)

(4.2)

which shows that for s→∞ we have ϕ→±π/2; it means that the axis of symmetry
of a dumbbell is turning monotonically towards the direction of oscillations. Equation
(4.1) describes the simultaneous change of X along the arc of a small circle. It is clear
that in the general case of unidirectional oscillations along any direction (different
from y), the result is the same: the axis of the dumbbell asymptotically approaches
the direction parallel to the oscillations, and X changes along the arc of a small circle.
Therefore, we can conclude that no unidirectional oscillations of the fluid result in the
self-propulsion of the BD-robot.

4.2. Rectilinear self-propulsion without rotation
For G 6= 0 we first consider motion without rotation ϕs′ = 0. In this case the angular
part of (3.11) gives −G1 sinϕ + G2 cosϕ = γG, which immediately leads to

ϕ =Φ =− arctan(G1/G2)+ arccos
(
γG

/√
G1

2
+ G2

2

)
= const (4.3)

when

|γG|6
√

G1
2
+ G2

2. (4.4)

Physically, the restriction (4.4) means that the BD-robot can move without rotation if
the oscillations l̃ are ‘strong enough’. In this case the first equation in (3.11) gives
X s′ = −δµGn = const, which shows that the BD-robot moves with constant speed
|δµG| in the fixed direction n, which is given by the angle Φ ± π/2 (4.3), where the
sign is determined by the correlation G. Seeking more general results, one can show
that the system (3.11) can be integrated analytically in the general case ϕs′ 6= 0, with
the conclusion that if the parameters satisfy (4.4) then a trajectory with any initial
data ϕ(0) asymptotically (when s→∞) approaches the same straight paths (4.3) as
described above. Exact integration outside of the range of parameters (4.4) is also
accessible analytically; it produces motion with rotation |ϕs|> const, which we do not
consider in this paper.

Let us consider a particular example

g̃1 =−ĝ1 sin τ, g̃2 = ĝ2 cos τ, l̃= l̂ sin τ ; (4.5)
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G1 =−ĝ1̂l/2, G2 = 0, G= ĝ1ĝ2/2, Φ =
π

2
+ arccos(γ ĝ2/̂l ), (4.6)

with constants ĝ1 > 0, ĝ2 > 0, and l̂ > 0. For |γ ĝ2/̂l | 6 1 the BD-robot propels
itself with constant speed |X s′ | = δµĝ1ĝ2/2 along a straight path ϕ = Φ ± π/2. It
is remarkable that this self-propulsion speed does not depend on the amplitude l̂.
However, one should keep in mind that such solutions are available only for ‘strong’
oscillations, when |̂l | > |γ ĝ2|; for ‘very strong’ oscillations, when |̂l/ĝ2| → ∞, we
have Φ→ π.

5. Elastic BD-robot

The above results correspond to the prescribed periodic function l̃(τ ) (2.3), which
can be chosen arbitrarily and represents a given time-dependent constraint. However,
in practice, the oscillations l̃ produced by the forces exerted by an oscillating fluid on
the beads are more interesting. A simple way to consider such oscillations is to replace
the rod with a spring of stiffness k = const. In this case the dimensionless Lagrangian
function (2.8) and potential energy (2.5) become

L (q, qt)=K −Π, Π = εαg̃ · l + k (l− 1)2 /2. (5.1)

One can check that for this Lagrangian function the equations for total force and
torque (2.10), (2.11) remain the same, while the equation for the reaction of constraint
(2.12) must be replaced with

εαg · σ + kl=−R12lt · σ + O(εδ). (5.2)

The relation between the problem for an elastic BD-robot and the previous problem
for a BD-robot with arbitrary oscillation of a rod is evident: in the latter all possible
solutions are considered, while the former corresponds to a special subclass of l̃(τ )
only, that appears as the result of spring oscillations. Hence the ability for self-
propulsion can only worsen after the introduction of a spring. The O(ε) equation (5.2)
produces a linear equation for l̃

l̃τ + Kl̃=−γ g̃ · σ , K ≡ 2k/R12. (5.3)

It gives us l̃(τ ) which must be substituted into G1 and G2 in (3.11) instead of an
arbitrarily chosen function l̃. The rest of the problem remains unchanged. The general
solution of (5.3) can be obtained analytically in an integral form, or in the form of a
Fourier series. Both forms are rather cumbersome and are not considered in this paper.
Instead, we present an example for a gravity field g̃1 = −ĝ1 sin τ , g̃2 = ĝ2 cos τ that
coincides with (4.5). The related solution of (5.3) is

l̃=
1

1+ K2
[(P2 + KP1) sin τ + (KP2 − P1) cos τ ];

P1 ≡ γ ĝ1 cosϕ, P2 ≡−γ ĝ2 sinϕ,

 (5.4)

where an exponentially decreasing complementary solution has been dropped. It leads
to an explicit formula for U (3.13)

U =
γ

2(1+ K2)

[
1
2

K(ĝ2
1 − ĝ2

2) sin(2ϕ)− ĝ1ĝ2

]
(5.5)
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Dumbbell micro-robot driven by flow oscillations

which determines the system of equations (3.11). In this case we obtain the following
equations for the motion without rotation: (ϕs ≡ 0)

X s′ =−
1
2
µĝ1ĝ2 n, ϕ =Φ =

1
2

arcsin κ = const, κ ≡
2ĝ1ĝ2

ĝ2
1 − ĝ2

2

(
2
K
+ K

)
. (5.6)

One can see that any direction of rectilinear self-propulsion can be arranged by an
appropriate choice of ĝ1 and ĝ2. It is also interesting that the speed of self-propulsion,
µĝ1ĝ2/2, does not depend on the spring stiffness k; however, the required condition
|κ| 6 1 shows that neither a small nor large stiffness leads to rectilinear motion.
Another interesting conclusion is that for rectilinear motion to exist, the values of
vibrational amplitudes a and b cannot be chosen close to each other. It means that
imposed vibrations (2.4) must be anisotropic (the circular vibrations with ĝ1 = ĝ2 and
close to them are excluded). Again, for ϕs′ 6= 0, |κ| 6 1 the system of equations
(3.11), (5.5) can be integrated analytically. The integration shows that any trajectory
asymptotically (for s→∞) approaches (5.6). In the case κ > 1 the full system
(3.11), (5.5) also allows explicit analytical integration; it leads to motion with rotation
|ϕs|> const, which we do not consider in this paper.

6. Discussion

(i) Our choice of slow time s = ε2t (3.3) agrees with classical studies of self-
propulsion for low Reynolds numbers, see Taylor (1951), Blake (1971) and Childress
(1981), as well as the geometric studies of Shapere & Wilczek (1989).

(ii) It is remarkable that the magnitude O(ε2) of the averaged angular velocity is
1/δ times higher than the magnitude of translational velocity (3.14). It means that
a BD-robot rotates much faster than propagates. This result shows that self-rotation
exists without taking into account hydrodynamic interactions between the spheres; it is
caused only by the standard Stokes drag force (in an infinite fluid) and the reactions
of constraints. Such a high angular velocity was first obtained in Dreyfus, Baudry &
Stone (2005) for a different micro-robot; the authors have suggested that this rotation
is similar to that in the ‘falling cat problem’.

(iii) We have constructed an asymptotic procedure with two small parameters: ε→ 0
and δ→ 0. Such a setting usually requires the consideration of different asymptotic
paths on the plane (ε, δ) when, say, δ = δ(ε). In our case we can avoid this additional
analysis, since δ does not appear separately, but only in combinations like ε2δ.

(iv) In this paper we consider only plane motion of a three-dimensional dumbbell.
This class of motion corresponds to two-dimensional oscillations/gravity (2.4). At
the same time, for experimental realization, it could be necessary to solve a full
three-dimensional problem.

(v) It is well known that an oscillating dumbbell is able to self-swim when an
oscillating external torque, exerted on the dumbbell, is present; the related discussion
can be found in Felderhof (2006, 2007) and Friedman (2007). The self-swimming of a
magnetically driven oscillating dumbbell has been studied by Gilbert et al. (2010).

(vi) The form of the two-time method (TTM) used is more elaborate than its
traditional form, see e.g. Kevorkian & Cole (1991). In particular, we systematically
use the explicit separation between the oscillatory and mean parts of motion,
which has been introduced in § 3.1. This upgraded form of TTM works well
in the complex situation considered, with different leading orders of angular and
translational velocities. It also allows justification of the chosen slow-time scale, which
can be obtained from distinguish limit arguments, similar to Vladimirov (2012a).
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Studies of different micro-robots by the same method can be found in Vladimirov
(2012b,c, 2013). In Vladimirov (2012a,d) the same form of TTM resulted in a new
asymptotic model and a new equation for the averaged flows generated by acoustic
waves and for MHD-flows. A form of TTM has been used for the description of
micro-rotors by Leoni & Liverpoole (2010); however these authors have not exposed
their asymptotic procedure explicitly.

(vii) A mathematical justification of the results presented can be performed by the
estimation of an error in the original equation, as in Vladimirov (2010, 2011). It
is also possible to derive higher approximations of V and Ω , as has been done by
Vladimirov (2010, 2011) for different cases. These approximations can be useful to
study the cases when self-propulsion in the main order vanishes.

(viii) For the first experimental studies of self-propulsion of the BD-robot one
could consider: rigid-body oscillations of a fluid enclosed within a vibrating container;
viscous flows, caused by oscillatory boundary conditions; or oscillations of a fluid due
to an external acoustic wave. The experimental velocities of self-propulsion can be
smaller than flow oscillations and can be even smaller than some secondary flows (like
acoustic streaming). To identify the relative motion of a micro-robot one could seed
the ambient fluid with passive tracers.
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ROMANCZUK, P., BÄR, M., EBELING, W., LINDNER, B & SCHIMANSKY-GEIER, L. 2012 Active

Brownian particles. Eur. Phys. J. Special Topics 202, 1–162.
SHAPERE, A. & WILCZEK, F. 1989 Efficiencies of self-propulsion at low Reynolds number. J. Fluid

Mech. 198, 587–599.
TAYLOR, G. I. 1951 Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. A

209, 447–461.
VLADIMIROV, V. A. 2005 Vibrodynamics of pendulum and submerged solid. J. Math. Fluid Mech.

7, S397–412.
VLADIMIROV, V. A. 2008 Viscous flows in a half-space caused by tangential vibrations on its

boundary. Stud. Appl. Maths 121 (4), 337–367.
VLADIMIROV, V. A. 2010 Admixture and drift in oscillating fluid flows. arXiv:1009.4085v1.
VLADIMIROV, V. A. 2011 Theory of non-degenerate oscillatory flows. arXiv:1110.3633v2.
VLADIMIROV, V. A. 2012a Magnetohydrodynamic drift equations: from Langmuir circulations to

magnetohydrodynamic dynamo? J. Fluid Mech. 698, 51–61.
VLADIMIROV, V. A. 2013 On self-propulsion velocity of N-sphere micro-robot. J. Fluid Mech.

716, R1.
VLADIMIROV, V. A. 2012b Self-propulsion of V-shape micro-robot. arXiv:1209.2835v1.
VLADIMIROV, V. A. 2012c Theory of a triangular micro-robot. J. Fluid Mech., (submitted),

arXiv:1210.0747v1.
VLADIMIROV, V. A. 2012d Acoustic-drift equation. J. Acoust. Soc. Am., (submitted),

arXiv:1206.1297v1.

717 R8-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

30
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

http://arxiv.org/abs/1009.4085v1
http://arxiv.org/abs/1009.4085v1
http://arxiv.org/abs/1009.4085v1
http://arxiv.org/abs/1009.4085v1
http://arxiv.org/abs/1009.4085v1
http://arxiv.org/abs/1009.4085v1
http://arxiv.org/abs/1009.4085v1
http://arxiv.org/abs/1009.4085v1
http://arxiv.org/abs/1009.4085v1
http://arxiv.org/abs/1009.4085v1
http://arxiv.org/abs/1009.4085v1
http://arxiv.org/abs/1009.4085v1
http://arxiv.org/abs/1009.4085v1
http://arxiv.org/abs/1009.4085v1
http://arxiv.org/abs/1009.4085v1
http://arxiv.org/abs/1009.4085v1
http://arxiv.org/abs/1009.4085v1
http://arxiv.org/abs/1110.3633v2
http://arxiv.org/abs/1110.3633v2
http://arxiv.org/abs/1110.3633v2
http://arxiv.org/abs/1110.3633v2
http://arxiv.org/abs/1110.3633v2
http://arxiv.org/abs/1110.3633v2
http://arxiv.org/abs/1110.3633v2
http://arxiv.org/abs/1110.3633v2
http://arxiv.org/abs/1110.3633v2
http://arxiv.org/abs/1110.3633v2
http://arxiv.org/abs/1110.3633v2
http://arxiv.org/abs/1110.3633v2
http://arxiv.org/abs/1110.3633v2
http://arxiv.org/abs/1110.3633v2
http://arxiv.org/abs/1110.3633v2
http://arxiv.org/abs/1110.3633v2
http://arxiv.org/abs/1110.3633v2
http://arxiv.org/abs/1209.2835v1
http://arxiv.org/abs/1209.2835v1
http://arxiv.org/abs/1209.2835v1
http://arxiv.org/abs/1209.2835v1
http://arxiv.org/abs/1209.2835v1
http://arxiv.org/abs/1209.2835v1
http://arxiv.org/abs/1209.2835v1
http://arxiv.org/abs/1209.2835v1
http://arxiv.org/abs/1209.2835v1
http://arxiv.org/abs/1209.2835v1
http://arxiv.org/abs/1209.2835v1
http://arxiv.org/abs/1209.2835v1
http://arxiv.org/abs/1209.2835v1
http://arxiv.org/abs/1209.2835v1
http://arxiv.org/abs/1209.2835v1
http://arxiv.org/abs/1209.2835v1
http://arxiv.org/abs/1209.2835v1
http://arxiv.org/abs/1210.0747v1
http://arxiv.org/abs/1210.0747v1
http://arxiv.org/abs/1210.0747v1
http://arxiv.org/abs/1210.0747v1
http://arxiv.org/abs/1210.0747v1
http://arxiv.org/abs/1210.0747v1
http://arxiv.org/abs/1210.0747v1
http://arxiv.org/abs/1210.0747v1
http://arxiv.org/abs/1210.0747v1
http://arxiv.org/abs/1210.0747v1
http://arxiv.org/abs/1210.0747v1
http://arxiv.org/abs/1210.0747v1
http://arxiv.org/abs/1210.0747v1
http://arxiv.org/abs/1210.0747v1
http://arxiv.org/abs/1210.0747v1
http://arxiv.org/abs/1210.0747v1
http://arxiv.org/abs/1210.0747v1
http://arxiv.org/abs/1206.1297v1
http://arxiv.org/abs/1206.1297v1
http://arxiv.org/abs/1206.1297v1
http://arxiv.org/abs/1206.1297v1
http://arxiv.org/abs/1206.1297v1
http://arxiv.org/abs/1206.1297v1
http://arxiv.org/abs/1206.1297v1
http://arxiv.org/abs/1206.1297v1
http://arxiv.org/abs/1206.1297v1
http://arxiv.org/abs/1206.1297v1
http://arxiv.org/abs/1206.1297v1
http://arxiv.org/abs/1206.1297v1
http://arxiv.org/abs/1206.1297v1
http://arxiv.org/abs/1206.1297v1
http://arxiv.org/abs/1206.1297v1
http://arxiv.org/abs/1206.1297v1
http://arxiv.org/abs/1206.1297v1
https://doi.org/10.1017/jfm.2013.30

	Dumbbell micro-robot driven by flow oscillations
	Introduction
	Problem formulation
	Two-time method and asymptotic procedure
	Functions and notation
	Asymptotic procedure and successive approximations

	Prescribed oscillations of the BD-robot
	Unidirectional oscillations of a fluid do not cause rectilinear propulsion
	Rectilinear self-propulsion without rotation

	Elastic BD-robot
	Discussion
	Acknowledgements
	References




