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What does it mean that an encoding is fully abstract? What does it not mean? In this

position paper, we want to help the reader to evaluate the real benefits of using such a

notion when studying the expressiveness of programming languages. Several examples and

counterexamples are given. In some cases, we work at a very abstract level; in other cases,

we give concrete samples taken from the field of process calculi, where the theory of

expressiveness has been mostly developed in the last years.

1. Introduction

The notion of full abstraction came into existence as an attempt to answer the question

‘What is the meaning of a program (part)?’, which also drove the development of the field

of denotational semantics. A denotation is a mathematical object that should capture the

‘abstract’ meaning of programs. A denotation function is a mapping from one world (the

one of programs) into another world (the one of denotations). The ‘concrete’ meaning of

programs is typically formalized via an operational semantics of the language. However,

as the operational semantics is usually too concrete in that it distinguishes programs

that may abstractly mean the same (e.g. they produce the same outputs for the same

inputs), it is common practice to associate with it an observational equivalence that

relates two programs whenever they operationally behave the same in every execution

context. The aim of full abstraction was to reconcile the two views (Plotkin 1977):

it requires that two programs (or program parts) have the same denotations precisely

when they are observationally equivalent. The denotational semantics is then called fully

abstract for the respective observational equivalence. In summary, the notion of full

abstraction, originally, was conceived to achieve a quite specific goal in programming

language semantics: precisely characterizing denotational models. It was not meant to be

used as a tool to analyse the relative expressive power of programming languages.

The need to compare programming formalisms w.r.t. their expressive power dates back to

the very origins of computer science, e.g., with the formal comparison of Turing machines,

λ-calculi and partially recursive functions. Such a need has become more dramatic with the
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proliferation of programming languages and primitives for synchronization. Indeed, the

community soon realized that Turing completeness was not enough, since almost every

formalism could encode Turing machines and proposed alternative ways to compare

different formalisms; some pioneering works are Chandra and Manna (1976), Landin

(1966), Lipton (1975), Lipton et al. (1974), Paterson and Hewitt (1970), Reynolds (1970),

Reynolds (1981) and Steele and Sussman (1976). In essence, however, most comparisons

were carried out by just mutually encoding the formalisms into each other.

Maybe simply triggered by the idea of using mappings between formalisms, some

years later a number of researchers started to use the notion of full abstraction to study

the expressive power of programming languages (Mitchell 1993). Indeed, encodings are

another way of moving from one world (made up by terms of the source language)

into another (made up by terms of the target language) (Riecke 1991; Shapiro 1991;

de Boer and Palamidessi 1994). See also Ph.D. thesis of Perez (2009), which contains

a comprehensive overview on many of these and the above-mentioned works. Then, by

mimicking the approach of classical semantics, the notion of full abstraction was put

forward as a – if not the – criterion for the correctness of encodings. Probably, this

was also justified by the fact that programming languages, unlike arbitrary computational

formalisms, are syntactic formalisms that are usually equipped with notions of equivalence.

With this view, a correct encoding has to map equivalent source terms into equivalent

target terms and, conversely, equivalent images of this mapping must have originated

from equivalent source terms. One of the benefits of this approach relies in the possibility

of transferring equations back and forth; for example, this allows one to use tools of the

target language to prove equivalences in the source language.

In concurrency theory, examples of contributions that refer to full abstraction as a

decisive criterion to measure the relative expressive power of languages are by Amadio

(2000), Boreale (1998), Fournet and Gonthier (1996), Merro (1998), Sangiorgi (1993),Victor

and Parrow (1996) and others. For example, Fournet and Gonthier (1996) state ‘we assess

the relative expressive powers of miscellaneous calculi from the existence of fully-abstract

encodings between them ’. Depending on the individual case at hand, though, the respective

authors more or less implicitly suggest that full abstraction shall be accompanied by some

property like compositionality as a requirement on the encoding, or by other results like

operational correspondence.

In comparison to the original denotational approach, the role of denotations in the

context of encodings between programming languages is played by equivalence classes in

the target. While in the original setting the domain of denotations was meant to yield

more abstract representations of the meaning of programs, this is no more true in the

encoding setting: here, the target of the encoding is a language itself, so an additional

equivalence relation is generally required to abstract away from the superfluous details.

Differently from the denotational approach, where the target model is to capture

source-equivalent programs within just one mathematical object, the encoding approach

resembles compilers mapping higher-level programs into lower-level (assembly) code.

Not surprisingly, such an encoding typically imposes a protocol among the translated

components. As a matter of fact, it often occurs that the target model allows for observers

(i.e., contexts) of the translated programs that do not respect the expected protocol.
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Consequently, these observers can easily interfere with and thereby break equivalences

between encoded terms (see Section 5 for an extensive example). As a result, it is usually

very difficult to develop encodings that enjoy full abstraction w.r.t. reference equivalences

without constraining their contextual properties; instead, full abstraction is then only

stated w.r.t. translated contexts, which respect the protocol by definition.

Not being explicit about further requirements on encodings, like syntactic or structural

criteria, it may at first be surprising to see the number of immediate – but useless –

full abstraction results that one then gets trivially for free (cf. Section 4). It is also

possible to construct less trivial, though still useless, results by involving actual encoding

constructions. The problem that can be identified behind these examples is that the choice

of admitted equivalences in the source and target language is not properly constrained.

In fact, it seems that it can hardly be: no proper principle has yet been identified to

characterize equivalences that are admitted or intended in full abstraction results. Finally,

it may be surprising that full abstraction results between two languages cannot be formally

compared, for example, by stating that one result is stronger than another one (cf. Section

5.3).

In the light of the above-mentioned problems, we come to the conclusion (like others,

notably Beauxis et al. (2008)) that full abstraction as the criterion to study and measure

the relative expressive power of programming languages is largely debatable. In this

paper, we provide a variety of examples that may convince the reader that – from the

expressiveness point of view – full abstraction alone is not informative enough concerning

the actual quality of an encoding. It is nice to have, when it can be proved for some

equivalences, but it is not the ultimate measure.

The problem of expressiveness has been identified as an increasingly important topic in

concurrency theory (Nestmann 2006; Parrow 2008). In recent years, new approaches for

the evaluation of the quality of encodings from the expressiveness perspective have been

proposed (Palamidessi 2003; Carbone and Maffeis 2003; Gorla 2008; Haagensen et al.

2008; Gorla 2010a,b; Peters and Nestmann 2012; van Glabbeek 2012; Fu and Lu 2010).

This paper can also be seen as an a posteriori justification for such works.

2. Technical preliminaries

2.1. Basic notions

We consider the relative expressiveness of models, for which we regard triples composed

of: a language L, often generated via a BNF-grammar inducing an algebraic signature;

the operational semantics �−→ ⊆ L × L, specified via reductions (e.g., β-reductions in λ-

calculus, synchronizations in CCS, communications in π-calculus, . . . ); and an equivalence

relation � ⊆ L × L. As full abstraction focuses on the equivalences, from now on we

shall mostly ignore the reduction relation and consider models just as pairs of the form

M = (L,�).

An encoding [[ · ]] of model S = (LS,�S) into model T = (LT,�T) is a (total) function

[[ · ]] : LS −→ LT mapping elements of LS into elements of LT; by overloading, we also
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write [[ · ]] : S −→ T. We sometimes abbreviate LS and LT by S and T . We let S and T

range over terms of the source language (S) and target language (T ), respectively.

Definition 1. An encoding [[ · ]] : S → T is fully abstract iff, for every S1, S2 ∈ LS:

(S1 �S S2) ⇐⇒ ([[ S1 ]] �T [[ S2 ]]).

The encoding [[ · ]] : LS −→ LT is then called fully abstract w.r.t. (�S,�T).

Usually, the ‘⇒’ implication is called equivalence preservation or completeness (as all

equivalent terms are captured via the endoing by the target equivalence), whereas the ‘⇐’

implication is called equivalence reflection or soundness (as all of the terms captured by

the target equivalence are actually intended to be equivalent in the source).

If the language S is generated by some grammar, then the induced algebraic structure

may be used to define the encoding inductively. Likewise, one may then formulate specific

criteria like compositionality. Note that, in general, the induced algebraic signatures of S
and T (if both are generated in a structured way) are different. Thus, we cannot easily

refer to the standard algebraic terminology of homomorphisms in order to establish

criteria on encodings. This is, however, sometimes done for individual operators that are

present in both S and T ; for process calculus models, the homomorphism requirement

applied to the parallel operator is a prominent example and constitutes an important,

although not universally agreed, building block for many separation results (Palamidessi

2003; Peters and Nestmann 2012; Peters et al. 2013). Note that full abstraction itself does

not at all refer to structural requirements on encodings.

2.2. Process calculi in a nutshell

As several of our examples involve process calculi, we provide some very basic and

intuitive notions on them. More precisely, we focus on variants of the π-calculus; for

full details, we refer the interested reader to the standard textbooks on the subject, e.g.,

Milner (1999) and Sangiorgi and Walker (2001). The syntax of π-calculus is specified by

the following BNF:

P ::= 0
∣
∣ P |P

∣
∣ (ν a)P

∣
∣ !P

∣
∣ τ.P

∣
∣ a(x).P

∣
∣ a〈b〉.P

∣
∣ P + P . (1)

Intuitively, the intended semantics is as follows:

— 0 is the dead process.

— P1 |P2 is the parallel composition of processes P1 and P2; the components P1 and P2

may behave independently, but they may also synchronize via a binary handshake,

called communication (see below).

— (ν a)P defines name a to be local for P , i.e., name a is different from any other name

occurring outside P .

— !P is the replication operator, providing as many parallel copies of P as desired.

— τ.P , a(x).P and a〈b〉.P are action prefixed processes, with a〈b〉 being the complementary

action of a(x). Process τ.P evolves in isolation, without engaging in a communication,

leading to P . By contrast, a(x).P and a〈b〉.P cannot evolve alone, but only when

put in parallel: in such a case, a(x).P1 | a〈b〉.P2 generates a reduction that consumes
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both prefixes, leading to P1{b/x} |P2. Thus, π-calculus’s communication is binary and

nominal, i.e., fully defined by the top-level occurrence of unstructured names.

— P1 + P2 is the non-deterministic choice between P1 and P2; the choice is mutually

exclusive, in the sense that, if P1 is selected for execution, then P2 is lost for ever.

In this paper, we also sometimes use the polyadic and the asynchronous versions of the

π-calculus (see Milner (1993); Boudol (1992); Honda and Tokoro (1991)). The former has

the same syntax as in (1), with the only difference that in the polyadic version actions

have multiple arguments, i.e., a(x1, . . . , xn) and a〈b1, . . . , bn〉, for some n � 0. The latter has

the following syntax:

P ::= 0
∣
∣ P |P

∣
∣ (ν a)P

∣
∣ !P

∣
∣ τ.P

∣
∣ a(x).P

∣
∣ a〈b〉. (2)

There are two essential aspects of the asynchronous π-calculus: (1) The absence of

continuations after outputs: a process that sends a message has no built-in possibility

to have a continuation behaviour directly depend on the successful reception of this

message; such a behaviour would have to be realized with an explicit communication

protocol, using acknowledgement messages. (2) The absence of choice: as the asynchronous

interpretation of the output particle a〈b〉 represents the instantaneous emission of datum b

along channel a, processes like a〈b〉 + P would counter the interpretation of (guarded)

choice. Thus, in the asynchronous π-calculus, choices are usually omitted (like in our case)

or limited to only input-guarded processes.

2.3. Equivalences and congruence properties

A common practice in the formal study of programming languages is the specification

of when two programs are equivalent, in the sense that they behave in the same way.

Among all the possible behavioural equivalences, the most interesting ones exhibit

congruence properties, i.e., equivalences that are preserved by (execution) contexts that

can be formulated within the language.

More formally, a context C[ ] is a term with a single occurrence of a hole, denoted as ‘ ’,

which acts as a placeholder for an arbitrary other term. If we replace the hole in context

C[ ] with term P , we obtain the term C[P ]. An equivalence � is a congruence w.r.t. a set

of contexts, if P � Q implies C[P ] � C[Q] for every considered context C[ ].

In concurrency theory, as well as in programming languages, one of the main concerns is

to define ‘canonical’ notions of congruence on top of the so-called reduction bisimulation

(which we do not recall here, as it is not needed for the understanding of the paper). This

is usually done by fixing an obvious observation predicate (sometimes called ‘barb’) and

requiring that two terms must exhibit the same observables along all reductions and in

any context. Such a canonical construction yields the notion of barbed congruence (Milner

and Sangiorgi 1992), of which we assume the weak version (weak reductions, weak barbs)

as the reference equivalence ∼= for the process models in this paper.

Deviating from barbed congruence, which requires that equivalent terms still remain

equivalent in any context, it sometimes suffices to use a limited form of congruence

obtained by reducing the set of considered contexts. For example, in process calculi, one is

also interested in congruences w.r.t. just parallel contexts, i.e., in equivalences that are just
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preserved by contexts of the form ‘ | P ’; such contexts suffice to model the execution

environment of a process. Because of the reduced observational power, the resulting

congruence is of course weaker than the general full congruence.

3. Informative full abstraction results

Representative for the literature on full abstraction results, we explain just some examples

in more detail in order to exhibit the variety of possible observations. What we are

going to present are some of the true positives of our study, i.e., encodings where full

abstraction holds (‘positives’) and where it should be so because they convey informative

expressiveness results, which are expected or ‘intuitively agreed-upon’ (‘true’).

One of the pioneering full abstraction results is Mitchell (1993). There, the notion of full

abstraction w.r.t. an equivalence (very similar in spirit to barbed congruence) is introduced

as the reference criterion for the correctness of encodings and is applied to study some

variants of functional languages. For example, it is proved that a let construct can be

encoded in a fully abstract way in the untyped λ-calculus, or that recursive types can be

encoded in non-recursive ones in the setting of the λ-calculus. Again, concerning fully

abstract encodings of different λ-calculi, (Riecke 1991) proves that the call-by-name and

the lazy version can be encoded in the call-by-value one, that in turn can be encoded in

the lazy one. By using different criteria (mostly adapted from the work on the comparison

of formal systems done by Kleene (1952)), Felleisen (1991) proves that call-by-name and

call-by-value are incomparable, i.e., none can be expressed in the other.

In the field of process calculi, an interesting full abstraction result is found in Nestmann

and Pierce (2000). There, input-guarded choices in the asynchronous π-calculus are

rendered in the choice-free calculus with an encoding that allows to directly equate –

w.r.t. the asynchronous barbed congruence (Amadio et al. 1998), usually considered the

reference equivalence for such calculi – terms and their translations. As a by-product,

full abstraction comes for free in this case. However, this encoding introduces divergence:

it may turn a terminating term into a non-terminating one. This can be seen as a

further argument to support the claim that full abstraction cannot be the only criterion

for assessing the quality of an encoding. Indeed, it is widely accepted in the field of

distributed computing that divergence may well matter when trying to simulate one

construct in another. A notable example is Herlihy (1991), where it is proved that the

atomic effect of the test-and-set primitive cannot be simulated by any sequence of read

and write in a concurrent system with shared variables without introducing divergence.

In the field of concurrency theory, divergence is sometimes neglected: e.g., weak barbed

congruence ignores it (for example, !τ ∼= 0 in π-calculus). For this reason, an encoding that

is fully abstract w.r.t. weak barbed congruence is often well accepted, even if it introduces

divergence. For example, Fournet and Gonthier (1996) define a process calculus, called

Join, that can encode π-calculus and can be encoded in it in a fully abstract way w.r.t.

their reference equivalences; in doing this, divergence is totally ignored and the encoding

is in fact not divergence-free. By contrast, Nestmann and Pierce (2000) do not take

this position: they also provide a divergence-free encoding between the asynchronous

π-calculus with input-guarded choices and the choice-free calculus; however, the encoding
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is fully abstract only w.r.t. coupled simulation, an equivalence that is strictly coarser than

weak barbed congruence.

Further, full abstraction results in process calculi are found in Merro and Sangiorgi

(2004), in which the expressive power of a dialect of the asynchronous π-calculus, called

Lπ, is studied. Mainly, Lπ differs from the asynchronous π-calculus by imposing that

received names cannot be used by the receiver for performing inputs. There are several

interesting results. (1) Lπ allows to encode polyadic communications into monadic ones

in a fully abstract way (Merro 2000), by a straightforward adaptation of the (nonfully

abstract) encoding by Milner presented in Section 5. (2) The benefits of full abstraction are

exploited for establishing a characterization of barbed congruence, which would otherwise

be much more difficult to prove, via a labelled bisimilarity. In particular, Lπ is encoded

into its subcalculus with only restricted outputs (i.e., output particles that emit restricted

names), called LπI , by adapting the encoding from Boreale (1998). Then, it is proved that

the encoding is fully abstract w.r.t. barbed congruence for Lπ and a bisimulation-based

equivalence for LπI . Thus, to prove equivalences in the first language, it is enough to work

in the target, where an easier-to-handle equivalence is developed. A similar approach

is taken in the higher-order π-calculus, a variant of the π-calculus where also processes

(and not only names) can be passed in a communication. Sangiorgi (1993) proved that

higher-order communications can be encoded into first-order ones in a fully abstract

way; this fact can be used to simplify the way in which equivalences are proved in the

higher-order setting.

4. Useless full abstraction results

We now show that there are ‘bad’ encodings that nevertheless satisfy full abstraction;

these play the role of the false positives of our study and are used to show that such a

property is not that demanding as it is sometimes believed.

We start our discussion with an example taken from Beauxis et al. (2008), where the

expressive power of two well-known models, viz. Turing machines and finite automata,

are compared.

Fact 1. Let TM and FA denote the sets of Turing machines and of finite automata. Let

TM = (TM,�TM) and FA = (FA,�FA) be the models defined with their standard language

equivalences. Then, there exists a fully abstract encoding [[ · ]] : TM → FA.

Proof. Consider an enumeration of Turing machines, {Tn}n, and an enumeration of

minimal finite automata, {An}n. Consider the following encoding of Turing machines into

(minimal) finite automata:

[[Tm ]] = [[Tk ]] if k < m and Tk �TM Tm

[[Tm ]] = An otherwise

where n is the minimum number such that An has not been used to encode any Tk ,

with k < m. By definition, we have that, for every m and n, Tm �TM Tn if and only if

[[Tm ]] �FA [[Tn ]].
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Of course, even if the encoding provided in Fact 1 enjoys full abstraction, this certainly

does not prove that finite automata are as powerful as Turing machines. Obviously, the

encoding is non-effective. This is fine for our purpose, which is simply to show that full

abstraction alone, i.e., without extra conditions on the encoding, is not a very meaningful

notion. It would be even more interesting to exhibit an effective and fully abstract encoding

between some S and T for which most people would agree that T is strictly less powerful

than S.

The following observation highlights that also the trivial encoding – mapping every

source term to the same target term – can be considered fully abstract.

Fact 2. Let S and T be arbitrary. Let [[ · ]] : S → T with [[ S ]] = T , for all S ∈ S and

some T ∈ T . Let S = (S ,S × S) and T = (T ,�T), for arbitrary �T. Then, [[ · ]] : S → T is

fully abstract.

Proof. (Case ‘⇒’): for every S1 �S S2, it holds that [[ S ]]1 �T [[ S2 ]]: indeed, [[ S1 ]] =

T = [[ S2 ]] and the implication holds because of reflexivity of �T. (Case ‘⇐’): for every

S1 and S2 such that [[ S1 ]] �T [[ S2 ]], it holds that S1 �S S2: indeed, �S is the total relation

on S and hence it relates every pair of source terms.

It is easy to rule out the above trivially collapsing encoding by some syntactic or

structural condition on encodings. However, even then, any encoding can enjoy a full

abstraction property. To this aim, let Ker(f), for some function f, be the relation pairing

elements with the same image under f.

Fact 3. Let [[ · ]] : S → T be arbitrary. Let S = (S ,Ker([[ · ]])) and T = (T , Id). Then,

[[ · ]] : S → T is fully abstract.

Proof. By definition, (S1, S2) ∈ Ker([[ · ]]) iff [[ S1 ]]=[[ S2 ]], i.e., ([[ S1 ]], [[ S2 ]]) ∈ Id.

The previous results are all an instance of a more general result by Parrow (2014),

stating that a fully abstract encoding [[ · ]] : S → T exists if and only if the cardinality of

the �T-quotient is greater than or equal to the cardinality of the �S-quotient, in the sense

that there exists an injective mapping from the latter to the former.

5. On changing equivalences and weak full abstraction

Since full abstraction deeply relies on (source/target) equivalences, it is natural to analyse

the effect of changing them. In this section, we first show that moving from a sub-model

to its super-model does not generally let the naive embedding be fully abstract, because

of the richer power arising from the richer set of contexts in the target language. Then,

we show that more complex encodings (and also more interesting than naive embeddings)

may suffer from the same problems. In this case, it can be worthwhile to consider weaker

forms of full abstraction to accept such encodings. This can be achieved by changing the

target equivalence to require weaker congruence properties via smaller sets of considered

contexts, as we have already hinted at in earlier sections. Finally, we show that changing

equivalences in a largely unconstrained way may easily lead to meaningless results.
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5.1. On the power of contexts: naive embeddings

We consider an example in the setting of the π-calculus. It is very easy to render the

asynchronous π-calculus into the synchronous one by placing a ‘.0’ after every output

particle. Similarly, it is widely accepted that the natural equivalences for such models

are the asynchronous weak barbed congruence†, ∼=a, and the standard weak barbed

congruence, ∼=, respectively. Nevertheless, we have the following:

Fact 4. Consider the encoding of the asynchronous π-calculus with ∼=a into the synchronous

π-calculus with ∼= such that

[[ a〈b〉 ]] = a〈b〉.0
and that acts homomorphically on all the other operators. This embedding does not preserve

the reference equivalences.

Proof. Consider P = 0 and Q = a(x).a〈x〉; it is well known (Amadio et al. 1998) that

P ∼=a Q, but [[P ]] 
∼= [[Q ]].

Remark. The classical non-congruence property of weak bisimilarity in CCS (Milner 1989)

also pops up in a naive-embedding setting. Consider the original CCS (Milner 1989) and

its sub-language with guarded choice CCSgc (Milner 1999). It is well known (Milner 1989)

that weak bisimilarity ≈ is not a full congruence in CCS; in particular, it is not closed

under general non-deterministic choice. Instead, ≈◦, the largest congruence contained in

≈, is our reference equivalence in CCS. By contrast, ≈ is a full congruence in CCSgc and

it is also our reference equivalence for this subcalculus.

Let us consider M1 = (CCSgc ,≈) and M2 = (CCS,≈◦). Then, the identity language

embedding of M1 into M2 does not preserve equivalences, as a.0 ≈ a.τ.0, but a.0 
≈◦ a.τ.0

due to the distinguishing general-choice context ( + b.0).

The above examples highlight the fact that it is indeed naive to expect of an embedding

that keeps source terms (almost) identical will automatically result in a positive full

abstraction result. The chosen equivalences are crucial and even the choice of the reference

equivalence for a calculus can be harmful for naive encodings. So, the above results

are ‘false negatives’, when naively just focusing on language translation and they are

‘true negatives’ when taking the contextual differences of the two calculi – via different

availability of contexts and induced different granularity of the equivalences – into account.

5.2. On the power of contexts: weak full abstraction

We have just discussed the impact of the target contexts to establish full abstraction results.

In this section, we use a well-known encoding example to emphasize this phenomenon

and point out a wide-spread problem of encodings, which are only correct w.r.t. notions

† As longly discussed in Amadio et al. (1998), the two notions differ in two facts: (1) in the asynchronous

version, one is only allowed to observe outputs; and (2) in the asynchronous version, only contexts of the

asynchronous π-calculus are considered.
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of congruence that severely limit the set of observing target contexts. As we will see, the

limitation on the set of contexts is defined by means of the encoding itself.

Consider the encoding by Milner (1993) that shows how to render the transmission of

two names along a channel by multiple single-name exchanges:

[[ a〈b, c〉.P ]] = (ν d)a〈d〉.d〈b〉.d〈c〉.[[P ]]

[[ a(x, y).Q ]] = a(z).z(x).z(y).[[Q ]].

The idea is that a〈d〉 sends the new (secret) channel d along channel a; then, a(z) retrieves

such a message from a and uses it to replace z in the continuation. Then, the simultaneous

transmission of the two names (b and c) is rendered via two single-name transmissions

along the new channel d (we have used just two names for simplicity; the case for n > 2

names is straightforward).

This looks like a rather natural encoding; however, it does not enjoy full abstraction

w.r.t. the most widely-used equivalences for process calculi. For example, we have that

a〈b, c〉.a〈b, c〉 is equivalent to a〈b, c〉 | a〈b, c〉, w.r.t. almost every equivalence (actually, in all

the ones that ignore causality). However, their encodings, placed in the context ‘ − | a(z)’
behave differently. Indeed, [[ a〈b, c〉.a〈b, c〉 ]] | a(z) reduces to (ν d)d〈b〉.d〈c〉.[[ a〈b, c〉 ]] and the

latter term is usually equivalent to a dead process. On the contrary, [[ a〈b, c〉 | a〈b, c〉 ]] | a(z)
reduces to (ν d)d〈b〉.d〈c〉 | [[ a〈b, c〉 ]] and the latter term is usually equivalent to [[ a〈b, c〉 ]],

that is not dead. Here the problem is that the context ‘ − | a(z)’ does not respect

the protocol put forward by the encoding; in particular, it does not retrieve the two

names coming along the received channel d. This fact blocks [[ a〈b, c〉.a〈b, c〉 ]] before its

completion.

Thus, the polyadic π-calculus can be encoded in the monadic one, but this encoding

is not fully abstract. Does this mean that the monadic π-calculus is less expressive than

the polyadic one, or that the encoding just shown is not ‘good’? In the concurrency

community, it is very well accepted that the two formalisms have the same expressive

power and that Milner’s encoding is the most natural and ‘good’ way to pass from one to

the other. A similar situation occurs in the setting of the asynchronous π-calculus: it can

encode the synchronous one (Boudol 1992; Honda and Tokoro 1991) but such encodings

are not fully abstract (Quaglia and Walker 2000) and it can be proved (Cacciagrano et al.

2007) that no fully abstract encoding can exist, if the reference equivalence is must testing

(De Nicola and Hennessy 1984). So, these look like examples of ‘false negatives’ for full

abstraction.

There are two possible ways to solve this kind of problems: declare the encoding fully

abstract either w.r.t. encoded contexts (i.e., the target equivalence is closed only under

context that arise from the translation of a source context) or w.r.t. some suitable typed

equivalence (that only considers contexts that respect the protocol put forward by the

encoding). Parrow (2008) introduced the term weak full abstraction to describe such kinds

of relaxation. The two solutions are similar in spirit; the first one has been adopted, e.g.,

in Boreale (1998) and Palamidessi et al. (2006), whereas the second one in Quaglia and

Walker (2005) and Yoshida (1996). The second case might be considered more informative

than the first, as it does not directly depend on the encoding itself, but might refer to
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some independently useful type system. In both cases, however, the target equivalences

are quite weak and the use of target tools is hardly applicable. At the end, these encodings

can now be considered examples of ‘true positives’ for weak full abstraction.

5.3. On changing equivalences, abstractly

We have just seen that a ‘false negative’ result can be turned to a ‘true positive’ one

by changing the target equivalence. In this section, we consider the effect of varying the

involved equivalences, both at the source and at the target level and show that this can

easily lead to unsatisfying results.

The common understanding of full abstraction is that it exactly preserves and reflects

equivalences of the source and of the target model. So, it states an exact correspondence

of the equivalences of the source and the target. For this reason, it should be expected

that, by changing only one of the equivalences involved, the full abstraction result will be

broken. Actually, this is the case only in some circumstances.

5.4. Source only

First of all, for a fully abstract encoding, one cannot change only the source equivalence

without breaking full abstraction, be it by weakening or strengthening the equivalence.

Fact 5. Let S = (S ,�S), T = (T ,�T) and [[ · ]] : S → T fully abstract w.r.t. (�S,�T). Then,

[[ · ]] is not fully abstract w.r.t. (�′
S,�T), for every �′

S ⊂ �S and �′
S ⊃ �S.

Proof. If �′
S ⊂ �S, then at least one �S-equivalence class has been split; this breaks

equivalence reflection. If �′
S ⊃ �S, then at least two different �S-equivalence classes have

been merged; this breaks equivalence preservation.

5.5. Target only

By contrast, it is possible to change just the target equivalence without breaking full

abstraction only if the encoding is not surjective (as it is usually the case). For surjective

encodings, a situation similar to Fact 5 holds.

Fact 6. Let S = (S ,�S), T = (T ,�T) and [[ · ]] : S → T fully abstract w.r.t. (�S,�T) and

not surjective. Then, there exists a �′
T different from �T such that [[ · ]] is fully abstract w.r.t.

(�S,�′
T).

Proof. Let T 
∈ Im([[ · ]]), let CT the �T-equivalence class of T and C another �T-

equivalence class (at least another one exists). Then, �′
T is obtained by moving T from

CT into C .

5.6. Both source and target

If we are ready to change both the source and the target, it is possible to move from one

equivalence to a stricter/coarser one (both in the source and in the target) without affecting
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full abstraction. Notice that different source terms usually have different encodings ([[ · ]] :

L1 → L2 is injective); so the hypothesis in Fact 7 is satisfied in practice.

Fact 7. Let S = (S ,�S), T = (T ,�T) and [[ · ]] : S → T fully abstract w.r.t. (�S,�T) and

injective. Then, for every �′
S ⊂ �S, there exists �′

T ⊂ �T such that [[ · ]] is fully abstract

w.r.t. (�′
S,�′

T).

Proof. If �′
S ⊂ �S, then at least one �S-equivalence class has been split into several

�′
S-classes. We obtain �′

T by splitting the corresponding classes accordingly. This can

always be done except if we have two different (but �S-equivalent) source terms with the

same encoding and we try to separate them. But this is ruled out by the injectivity of the

encoding function.

Fact 8. Let S = (S ,�S), T = (T ,�T) and [[ · ]] : S → T fully abstract w.r.t. (�S,�T). Then,

for every �′
S ⊃ �S, there exists �′

T ⊃ �T such that [[ · ]] is fully abstract w.r.t. (�′
S,�′

T).

Proof. If �′
S ⊃ �S, then at least two �S-equivalence classes have been merged together

into one �′
S-class. We obtain �′

T by merging the corresponding classes accordingly.

Two similar results hold even if we first change the target equivalence and then try

to find a proper source equivalence that still ensures full abstraction. In this case, the

injectivity hypothesis needed in Fact 7 is not needed anymore.

To conclude, it is worth remarking that, if we only admit standard equivalences (for

process calculi, consider, e.g., those in van Glabbeek (1990, 1993)), the above proofs do

no longer necessarily apply. For example, take Fact 8 and an encoding fully abstract

w.r.t. bisimilarities (i.e., �S and �T are the bisimilarities for S and T). If we move to

trace equivalence (i.e., �′
S is trace equivalence for S, that usually is strictly coarser than

bisimilarity), it is not necessarily the case that, by mimicking the construction shown in

the proof, we obtain a �′
T that is also a well-known equivalence (in particular, the trace

equivalence for T).

5.7. Theory?

In summary, it seems that nothing systematic can yet be said for full abstraction results

obtained by weakening or strengthening the involved equivalences. It would be interesting

to understand whether this is a general problem, or whether there are particular settings

in which some derivation of full abstraction results becomes possible. Likewise, we also

have no formal criterion at hand to state that one full abstraction result for an encoding

should be considered preferable over another for the same models.

6. Conclusions

In this paper, we have collected evidence to support the claim that full abstraction is not

the right – at least: not a sufficient – criterion for assessing the quality of an encoding.

This position contrasts with a common trend in the community, where this criterion has

been the reference for around two decades.
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To support our position, we have shown that obviously ‘bad’ encodings may enjoy

some form of full abstraction, whereas some obviously ‘good’ ones do not. We have also

made the case that additional requirements like, e.g., effectiveness of the encoding, may

be desirable for obtaining more informative results. Moreover, full abstraction behaves

strangely w.r.t. the reference equivalences: on the one hand, as expected, changing the

equivalences can break full abstraction results; on the other hand, it is also possible

to properly change them without affecting the property at all. In the light of these

observations, the notion of full abstraction seems rather fragile and should be used

carefully.

Another important argument in the discussion on full abstraction for expressiveness

arises from the confusion of the notions of encodability and implementability†. Here, two

fields with different interests come to different conclusions. If one is only interested in

(1) the possibility of transferring equations (as implied by the usual reference equivalences)

between source and target languages, or one is interested in (2) the implementability of

one language into the other (preserving distributability or not introducing divergence),

then the criteria for assessing the quality of an encoding are clearly judged differently.

In case (1), an informative full abstraction result is needed, but then it had better not

be a weak full abstraction result, that only holds for translated contexts. In case (2), full

abstraction is simply not needed, as other criteria may take their place.

To conclude, this paper aims at highlighting a problem, not at providing a solution.

Some first attempts have appeared in the literature, but a final solution is still missing.
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