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In this paper, we consider the generation of the Tollmien–Schlichting waves in the
boundary layer on the surface of a wing exposed to entropy waves. It is well known
that the free-stream turbulence is composed of two perturbation modes: the vorticity
waves and the entropy waves. The receptivity of the boundary layer to the vorticity waves
has been studied extensively by various authors. The entropy waves have not attracted
such attention. We show that, in high speed subsonic flows, the entropy waves are as
important for the receptivity as the vorticity waves. Methodologically, our work relies
on the asymptotic analysis of the Navier–Stokes equations at large values of the Reynolds
number, which results in the formulation of a suitably modified triple-deck theory. The
entropy waves produce oscillations of the gas temperature and density, but the velocity and
the pressure remain unperturbed to the leading order. This precludes the entropy waves
from penetrating the boundary layer, as happens, for example, with the acoustic waves.
Our analysis reveals that the entropy waves decay rapidly in the transition layer that forms
near the outer edge of the boundary layer. We find that an entropy wave alone cannot
generate the Tollmien–Schlichting waves. However, when the boundary layer encounters
a wall roughness, the flow near the roughness appears to be perturbed not only inside
the boundary layer but also in the inviscid region outside the boundary layer. The latter
comes into the interaction with the density perturbations in the entropy wave. As a result,
a localised ‘forcing’ is created that produces the Tollmien–Schlichting waves. In this
paper we present the results of a linear and nonlinear receptivity analysis. We find that
the nonlinearity enhances the receptivity significantly, especially when a local separation
region forms on the roughness.

Key words: high-speed flow, boundary layer receptivity

1. Introduction

For a passenger airplane in a cruise flight, the flow past the wing represents a
classical example of what is referred to as weak turbulence flow. In such flows, the
laminar–turbulent transition follows the so-called classical scenario, where the transition
is caused by production and amplification of the instability modes. In the flow past an
aircraft wing two instability modes are observed, the Tollmien–Schlichting waves and the
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cross-flow vortices. In addition to the wings, the transition on the nacelles has recently
attracted significant attention. This is because modern jet engines have a rather large
diameter with the combined circumference of two nacelles being comparable to a wing
span. Possible reduction of the viscous drag of a nacelle depends on the success in
suppression of the Tollmien–Schlichting waves.

In this presentation we shall assume for simplicity that the boundary layer
is two-dimensional with the transition caused by the Tollmien–Schlichting waves.
The transition starts with the transformation of the free-stream noise into the
Tollmien–Schlichting waves. The receptivity theory serves to describe this process; the
main objective being to find the initial amplitude of the Tollmien–Schlichting waves.
In the case of low free-stream turbulence, the generated Tollmien–Schlichting waves are
weak and cannot lead to immediate transition to turbulence. They have to amplify in the
boundary layer before triggering the nonlinear effects, characteristic of the turbulent flow.

The receptivity theory is in a well-advanced stage now, and has been reviewed by a
number of authors. Here, we shall give a short account of the results of the theory that are
directly related to the analysis in the present paper. For more details, the reader is referred
to Ruban, Bernots & Pryce (2013). Our analysis is performed in the framework of the
triple-deck theory. When presenting this theory, four papers are usually mentioned as the
works where this theory was put forward. Two of these, by Neiland (1969) and Stewartson
& Williams (1969), dealt with the boundary-layer separation in a steady supersonic flow,
and the other two, by Stewartson (1969) and Messiter (1970), were concerned with the
incompressible flow near the trailing edge of a flat plate. However, the fact is that it was
Lin (1946) who first discovered the triple-deck model in his analysis of the linear instability
of the boundary-layer flow. Lin’s conclusion that the triple-deck theory describes the
Tollmien–Schlichting waves was later confirmed by Smith (1979).

The first paper, where the triple-deck theory was used to study the receptivity of the
boundary layer was published by Terent’ev (1981). In this study, Terent’ev considered an
incompressible fluid flow past a flat plate with the steady unperturbed flow given by the
Blasius solution. The perturbations were introduced by a short section of the plate surface
performing periodic vibrations in the direction perpendicular to the wall. Terent’ev’s
formulation represented a simplified mathematical model of the classical experiments by
Schubauer & Skramstad (1948) where the Tollmien–Schlichting waves were generated by a
vibrating ribbon installed inside the boundary layer a small distance from the plate surface.
Terent’ev was able to determine the amplitude of the generated Tollmien–Schlichting wave
as a function of the amplitude and shape of the vibrating part of the wall.

Experimental studies have shown that some disturbances easily penetrate into the
boundary layer and turn into instability modes of the boundary layer, others do not. In
the former category are acoustic waves, free-stream turbulence, local and distributed wall
roughness, etc. Still, even these perturbations have to satisfy rather restrictive resonance
conditions which were first formulated by Kachanov, Kozlov & Levchenko (1982). Unlike
in a simple mechanical system, say, a pendulum, where the resonance is observed provided
that the frequency of the external forcing is close to the natural frequency of the pendulum
oscillations, in fluid flows an effective transformation of external disturbances into
instability modes of the boundary layer is only possible if in addition to the frequency, the
wavenumber of the external perturbations is in tune with the natural internal oscillations
of the boundary layer.

Ruban (1984) and Goldstein (1985) were the first to demonstrate how this
double-resonance principle can be used in the receptivity theory. In the ‘vibrating
ribbon’ problem considered by Terent’ev (1981), the two resonance conditions are
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On boundary-layer receptivity

satisfied by simply choosing the frequency and the length of the vibrating part of the
wall appropriately. The situation is more complex in the case of the boundary-layer
receptivity to acoustic noise, which was the subject of the analysis performed by Ruban
(1984) and Goldstein (1985). To satisfy the first resonance condition, they assumed the
Reynolds number Re to be large and chose the frequency of the acoustic wave to be an
O(Re1/4) quantity, but since the speed of propagation of acoustic waves is finite, their
wavelength appears to be O(Re−1/4) long, which is much longer than the wavelength
of the Tollmien–Schlichting wave. Hence, the acoustic wave alone is insufficient for the
Tollmien–Schlichting wave generation. To satisfy the resonance condition with respect to
the wavenumber, the acoustic wave has to come into interaction with a wall roughness,
which are, of course, plentiful on a real aircraft wing. Ruban (1984) and Goldstein (1985)
demonstrated that the interaction of an acoustic wave with a roughness of O(Re−3/8)
length does produce Tollmien–Schlichting waves in the boundary layer. An explicit
formula for the amplitude of the Tollmien–Schlichting waves was obtained.

Later, Duck, Ruban & Zhikharev (1996) extended the theory to describe the generation
of the Tollmien–Schlichting waves by the free-stream turbulence. In incompressible flows,
the free-stream turbulence may be modelled as a superposition of vorticity waves. Duck
et al. (1996) noticed that there is a significant difference in the way the boundary layer
interacts with acoustic waves and vorticity waves. The acoustic waves carry pressure
perturbations which easily penetrate into the boundary layer and lead to a formation of
the Stokes layer near the body surface; this is due to the Stokes layer interaction with
steady perturbations near the wall roughness that the Tollmien–Schlichting waves form
in the boundary layer. The situation with the vorticity waves is different. They do not
carry pressure perturbations and therefore are unable to penetrate the boundary layer.
However, a wall roughness produces perturbations not only inside the boundary layer but
also in the upper tier of the triple-deck structure that lies outside the boundary layer. The
interaction of the steady perturbations in the upper tier with vorticity waves creates the
forcing necessary for the Tollmien–Schlichting wave production.

In compressible flows, in addition to vorticity waves the free-stream turbulence also
includes the entropy waves. In this paper, we present an asymptotic theory of the
boundary-layer receptivity to entropy waves for subsonic flows.

2. Problem formulation

Let us consider a perfect gas flow past a flat plate that is aligned with the mean velocity
vector in the free stream; see figure 1. We shall assume that small-amplitude entropy
waves are present in the oncoming flow. We shall further assume that there is a small
roughness on the plate surface at distance L from the leading edge. In what follows we
shall assume that the flow is two-dimensional. To study the flow we use the Cartesian
coordinates (x̂, ŷ), with x̂ measured along the flat plate surface from its leading edge O, and
ŷ in the perpendicular direction. The velocity components in these coordinates are denoted
by (û, v̂). As usual, we denote the time by t̂, the gas density by ρ̂, pressure by p̂, enthalpy by
ĥ and dynamic viscosity coefficient by μ̂. The ‘hat’ is used here for dimensional variables.
The non-dimensional variables are introduced as follows:

t̂ = L
V∞

t, x̂ = Lx, ŷ = Ly,

û = V∞u, v̂ = V∞v, ρ̂ = ρ∞ρ,

p̂ = p∞ + ρ∞V2
∞p, ĥ = V2

∞h, μ̂ = μ∞μ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.1)
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V∞
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ŷ

Figure 1. Flow layout.

with V∞, p∞, ρ∞ and μ∞ being the dimensional free-stream velocity, pressure, density
and viscosity, respectively.

In the non-dimensional variables, the Navier–Stokes equations are written as

ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)
= −∂p

∂x
+ 1

Re

{
∂

∂x

[
μ

(
4
3

∂u
∂x

− 2
3

∂v

∂y

)]

+ ∂

∂y

[
μ

(
∂u
∂y

+ ∂v

∂x

)]}
, (2.2a)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ 1

Re

{
∂

∂y

[
μ

(
4
3

∂v

∂y
− 2

3
∂u
∂x

)]

+ ∂

∂x

[
μ

(
∂u
∂y

+ ∂v

∂x

)]}
, (2.2b)

ρ

(
∂h
∂t

+ u
∂h
∂x

+ v
∂h
∂y

)
= ∂p

∂t
+ u

∂p
∂x

+ v
∂p
∂y

+ 1
Re

{
1

Pr

[
∂

∂x

(
μ

∂h
∂x

)
+ ∂

∂y

(
μ

∂h
∂y

)]

+μ

(
4
3

∂u
∂x

− 2
3

∂v

∂y

)
∂u
∂x

+ μ

(
4
3

∂v

∂y
− 2

3
∂u
∂x

)
∂v

∂y
+ μ

(
∂u
∂y

+ ∂v

∂x

)2
}

, (2.2c)

∂ρ

∂t
+ ∂ρu

∂x
+ ∂ρv

∂y
= 0, (2.2d)

h = 1
(γ − 1)M2∞

1
ρ

+ γ

γ − 1
p
ρ

. (2.2e)

Here, Pr is the Prandtl number and γ is the specific heat ratio; for air Pr ≈ 0.713, γ = 7/5.
The Reynolds number Re is calculated as

Re = ρ∞V∞L
μ∞

. (2.3)

In this study, we shall assume that Re is large, while the free-stream Mach number, M∞ =
V∞/a∞, remains finite. In fact, we shall restrict our attention to the subsonic flows where
M∞ < 1.

3. Unperturbed flow

Our first task is to describe the steady unperturbed flow. At large values of the Reynolds
number, the boundary-layer theory of Prandtl (1904) can be used for this purpose.
According to this theory, the flow field should be divided into two regions: the inviscid
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On boundary-layer receptivity

region occupying the majority of the flow and the thin boundary layer that forms on
the surface of the plate. In the inviscid region, the flow remains unperturbed in the
leading-order approximation with the fluid-dynamic functions preserving their values in
the oncoming flow before the plate

u = 1, v = 0, p = 0, ρ = 1, h = 1
(γ − 1)M2∞

. (3.1a–e)

When dealing with the boundary layer we assume that

x = O(1), Y = Re1/2y = O(1), Re → ∞, (3.2a–c)

and represent the corresponding solution of the Navier–Stokes equations (2.2) in the form

u(t, x, y; Re) = U0(x, Y) + · · · , v(t, x, y; Re) = Re−1/2V0(x, Y) + · · · ,

ρ(t, x, y; Re) = ρ0(x, Y) + · · · , p(t, x, y; Re) = Re−1/2P0(x, Y) + · · · ,

h(t, x, y; Re) = h0(x, Y) + · · · , μ(t, x, y; Re) = μ0(x, Y) + · · · .

⎫⎪⎪⎬
⎪⎪⎭ (3.3)

Substitution of (3.3) into the Navier–Stokes equations (2.2) leads to classical
boundary-layer equations for compressible flow. A detailed discussion of these equations
together with corresponding boundary conditions may be found in § 1.10 in the book by
Ruban (2018). We shall assume here that the plate surface is thermally isolated, in which
case the boundary-layer equations admit a self-similar solution in the form

U0(x, Y) = Ũ(η), V0(x, Y) = 1√
x

Ṽ(η), ρ0(x, Y) = ρ̃(η),

h0(x, Y) = h̃(η), μ0(x, Y) = μ̃(η),

⎫⎪⎬
⎪⎭ (3.4)

where

η = Y√
x
. (3.5)

Functions Ũ, Ṽ , h̃ and ρ̃ are to be found by solving the following set of ordinary differential
equations:

−1
2
ηρ̃Ũ

dŨ
dη

+ ρ̃Ṽ
dŨ
dη

= d
dη

(
μ̃

dŨ
dη

)
, (3.6a)

−1
2
ηρ̃Ũ

dh̃
dη

+ ρ̃Ṽ
dh̃
dη

= 1
Pr

d
dη

(
μ̃

dh̃
dη

)
+ μ̃

(
dŨ
dη

)2

, (3.6b)

−1
2
η

d
dη

(ρ̃Ũ) + d
dη

(ρ̃Ṽ) = 0, (3.6c)

h̃ = 1
(γ − 1)M2∞

1
ρ̃

, (3.6d)

subject to the boundary conditions

Ũ = 1, h̃ = 1
(γ − 1)M2∞

at η = ∞, (3.6e)

Ũ = Ṽ = 0,
dh̃
dη

= 0, at η = 0. (3.6f )
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To perform the receptivity analysis of the boundary layer, we need to know the behaviour
of the solution to (3.6) near the plate surface (η → 0) and at the outer edge of the boundary
layer (η → ∞). In view of (3.6f ) the Taylor expansions of Ũ and h̃ near the plate surface
may be written as

Ũ = λη + · · · , h̃ = hw + O(η2), as η → 0, (3.7)

where constants λ and hw are found through a numerical solution of the boundary value
problem (3.6).

To describe the behaviour of the solution near the outer edge of the boundary layer we
use the procedure suggested in problem 2 in exercises 1 in Ruban (2018). We find that

Ũ = 1 − C
2(η − B)

e−(η−B)2/4 + · · · , as η → ∞. (3.8)

Constants C and B are found through numerical solution of (3.6) as a whole.

4. Entropy waves

The flow upstream of the leading edge of the plate and in the inviscid region above the
plate is given in the leading-order approximation by (3.1a–e). We shall now perturb this
flow

u = 1 + εu′(t, x, y), v = εv′(t, x, y), ρ = 1 + ερ′(t, x, y),

p = εp′(t, x, y), h = 1
(γ − 1)M2∞

+ εh′(t, x, y),

⎫⎪⎬
⎪⎭ (4.1)

where ε is a small parameter representing the amplitude of the perturbations.
Substituting (4.1) into the Navier–Stokes equations (2.2) and working with the O(ε)

terms we arrive at the linearised Euler equations

∂u′

∂t
+ ∂u′

∂x
= −∂p′

∂x
,

∂v′

∂t
+ ∂v′

∂x
= −∂p′

∂y
,

∂h′

∂t
+ ∂h′

∂x
= ∂p′

∂t
+ ∂p′

∂x
,

∂ρ′

∂t
+ ∂ρ′

∂x
+ ∂u′

∂x
+ ∂v′

∂y
= 0,

h′ = γ

γ − 1
p′ − 1

(γ − 1)M2∞
ρ′.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)

According to Kovasznay (1953), an arbitrary small perturbation to uniform compressible
flow can be represented as a superposition of acoustic noise, vorticity waves and entropy
waves. If the amplitude of these modes is small, then they may be considered independent
of one another. As was already mentioned, the generation of the Tollmien–Schlichting
waves by acoustic noise and by vorticity waves were studied by Ruban (1984) and
Goldstein (1985) and by Duck et al. (1996), respectively. In this paper, we are concerned
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with the entropy waves, where

u′ = v′ = p′ = 0, (4.3)

and (4.2) reduce to

∂h′

∂t
+ ∂h′

∂x
= 0, (4.4a)

∂ρ′

∂t
+ ∂ρ′

∂x
= 0, (4.4b)

h′ = − 1
(γ − 1)M2∞

ρ′. (4.4c)

The general solutions to (4.4a), (4.4b) are written as

h′ = f (x − t, y), ρ′ = g(x − t, y), (4.5a,b)

which shows that the entropy waves propagate downstream with the mean free-stream
velocity. We shall assume that the free-stream turbulence is uniform, in which case h′ and
ρ′ can be represented as a superposition of the Fourier harmonics

h′ =
∑
i,j

hi,j exp
(
i[αi(x − t) + βjy]

)+ (c.c.),

ρ′ =
∑
i,j

ρi,j exp
(
i[αi(x − t) + βjy]

)+ (c.c.), (4.6a,b)

where the longitudinal and lateral wavenumbers, αi and βj, are real, and (c.c.) denotes
the complex conjugate of the quantity in front of it. For efficient receptivity, only the
harmonics that are in resonance with the Tollmien–Schlichting waves are important,
namely, have an O(Re1/4) frequency. Keeping this in mind, we introduce the ‘fast’ time
and coordinates

t̄ = Re1/4t, x̄ = Re1/4x, ȳ = Re1/4y, (4.7a–c)

and consider a harmonic from (4.6a,b). We can express it in the form

h′ = ha exp (iαξ + β ȳ) + (c.c.), ρ′ = ρa exp (iαξ + β ȳ) + (c.c.), (4.8a,b)

where

ξ = x̄ − t̄. (4.9)

It follows from (4.4c) that ha and ρa are related to one another as

ρa = −(γ − 1)M2
∞ha. (4.10)

Through appropriate adjustment of the amplitude parameter ε in (4.1) we can always make
ρa = 1, and then we will have

h′ = − 1
(γ − 1)M2∞

exp (iαξ + β ȳ) + (c.c.), ρ′ = exp (iαξ + β ȳ) + (c.c.). (4.11a,b)
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5. Transition layer

Since the entropy waves do not produce the pressure perturbations, they cannot penetrate
the boundary layer. To smooth out the corresponding jump in the entropy and density one
needs to introduce a transition layer. The situation is similar to the one encountered in the
case of vorticity waves; see Gulyaev et al. (1989).

We seek the solution in the transition layer in the form

u = U0(x, Y) + o(ε),

v = Re−1/2V0(x, Y) + σv1(ξ, Ȳ; x) + · · · ,

p = Re−1/2P0(x, Y) + o(ε),

h = h0(x, Y) + εh1(ξ, Ȳ; x) + · · · ,

ρ = ρ0(x, Y) + ερ1(ξ, Ȳ; x) + · · · ,

μ = μ0(x, Y) + εμ1(ξ, Ȳ; x) + · · · .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.1)

Here, it is assumed that the perturbations of the longitudinal velocity u and of the pressure
p are small compared with ε, and can be disregarded. The perturbations of the enthalpy
h and density ρ are of the same order, O(ε), as those outside the boundary layer. The
parameter σ in the asymptotic expansion of the lateral velocity v is not known in advance
but we expect to find it when analysing the continuity equation (2.2b). The perturbation
terms in (5.1) are assumed to be functions of the phase variable ξ and a new transverse
coordinate Ȳ . We will see that they also depend on x as a parameter. Using (4.7a–c) in
(4.9) we can express the phase variable as ξ = Re1/4(x − t). The transverse coordinate Ȳ
is defined by the equation

y = Re−1/2 [Δ(Re)
√

x + B
√

x + δ(Re)Ȳ
]
. (5.2)

Here, Δ(Re) is assumed large, and δ(Re) small, that is

Δ(Re) → ∞, δ(Re) → 0 as Re → ∞. (5.3)

We now need to substitute (5.1) into the Navier–Stokes equations. Since this procedure
is rather delicate, we shall give here some details of our calculations. We start with the
continuity equation (2.2b). We have

∂ρ

∂t
= −εRe1/4 ∂ρ1

∂ξ
+ · · · , (5.4)

u
∂ρ

∂x
= U0

∂ρ0

∂x
+ εRe1/4U0

∂ρ1

∂ξ
− εΔ

δ

1
2
√

x
∂ρ1

∂Ȳ
+ · · · , (5.5)

ρ
∂u
∂x

= ρ0
∂U0

∂x
+ ε

∂U0

∂x
ρ1 + · · · , (5.6)

v
∂ρ

∂y
= V0

∂ρ0

∂Y
+ ε

δ
V0

∂ρ1

∂Ȳ
+ σRe1/2 ∂ρ0

∂Y
v1 + · · · , (5.7)

ρ
∂v

∂y
= ρ0

∂V0

∂Y
+ σRe1/2

δ
ρ0

∂v1

∂Ȳ
+ ε

∂V0

∂Y
ρ1 + · · · . (5.8)
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We substitute these into (2.2b) and work with the perturbations terms

−εRe1/4(1 − U0)
∂ρ1

∂ξ
− εΔ

δ

1
2
√

x
∂ρ1

∂Ȳ︸ ︷︷ ︸
1

+ ε
∂U0

∂x
ρ1︸ ︷︷ ︸

2

+ ε

δ
V0

∂ρ1

∂Ȳ︸ ︷︷ ︸
3

+ σRe1/2 ∂ρ0

∂Y
v1︸ ︷︷ ︸

4

+ σRe1/2

δ
ρ0

∂v1

∂Ȳ︸ ︷︷ ︸
5

+ ε
∂V0

∂Y
ρ1︸ ︷︷ ︸

6

= 0. (5.9)

Keeping in mind that Δ is large and δ is small, we can see that terms 2, 3 and 6 are small
compared with term 1. We can also see that term 4 is small compared with term 5. This
simplifies the continuity equation to

−εRe1/4(1 − U0)
∂ρ1

∂ξ
− εΔ

δ

1
2
√

x
∂ρ1

∂Ȳ
+ σRe1/2

δ
ρ0

∂v1

∂Ȳ
= 0. (5.10)

Similarly, the energy equation (2.2c) yields

−εRe1/4(1 − U0)
∂h1

∂ξ
− εΔ

δ

1
2
√

x
∂h1

∂Ȳ
+ σRe1/2 ∂h0

∂Y
v1 = ε

δ2
μ0

ρ0

∂2h1

∂Ȳ2
. (5.11)

The boundary conditions for equations (5.10) and (5.11) are written as

h1 = − eiαξ

(γ − 1)M2∞
+ (c.c.) at Ȳ = ∞, (5.12a)

h1 = v1 = 0 at Ȳ = −∞. (5.12b)

Condition (5.12a) is obtained by matching with the solution (4.11a,b) outside the boundary
layer. Condition (5.12b) signifies that the perturbations do not penetrate the boundary layer.

To progress further, we need to know the behaviour of 1 − U0 in the transition layer
where Ȳ is finite. Using (5.2) in (3.8) we find that

1 − U0 = C
2Δ

e−Δ2/4e−ΔδȲ/2
√

x. (5.13)

Considering (5.10) and (5.11), we notice that if the coefficients in these equations were
constant, then the periodic in ξ solution would be a superposition of the exponential
functions,

∑
AieλiȲ . This would make it impossible to satisfy boundary conditions (5.12).

In order to prevent this, we set

Δδ = 2, (5.14)

which turns (5.13) into

1 − U0 = C
2Δ

e−Δ2/4e−Ȳ/
√

x. (5.15)

It is easily seen that, with (5.14), the second term on the left-hand side of (5.11) appears
to be the same order as the term on the right-hand side. We know that for The boundary
(5.11) to have the required properties, it should retain the first term on left-hand side as
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this is the only term with a non-constant coefficient (5.15). To satisfy this requirement, we
set

Re1/4 C
2Δ

e−Δ2/4 = 1
δ2 . (5.16)

With (5.14) and (5.16), (5.10) and (5.11) assume the form

− ε

δ2 e−Ȳ/
√

x ∂ρ1

∂ξ
− εΔ

δ

1
2
√

x
∂ρ1

∂Ȳ
+ σRe1/2

δ
ρ0

∂v1

∂Ȳ
= 0, (5.17)

− ε

δ2 e−Ȳ/
√

x ∂h1

∂ξ
− εΔ

δ

1
2
√

x
∂h1

∂Ȳ
+ σRe1/2 ∂h0

∂Y
v1 = ε

δ2
μ0

ρ0

∂2h1

∂Ȳ2
. (5.18)

Parameters Δ and δ are defined by (5.14) and (5.16) uniquely, and it may be shown that
they satisfy conditions (5.3). Now we need to determine parameter σ . If we assume that

σRe1/2

δ
� ε

δ2 , (5.19)

then the third term in the continuity equation (5.17) would be dominant, and we would
have

∂v1

∂Ȳ
= 0. (5.20)

However, integration of (5.20) with condition on v1 in (5.12b) leads to a conclusion that v1
is identically zero in the transition layer. This means that assumption (5.19) overestimates
σ and should be rejected.

If, on the other hand
σRe1/2

δ
= ε

δ2 , (5.21)

or
σRe1/2

δ
� ε

δ2 , (5.22)

then the third term on the left-hand side of the energy equation (5.18) can be disregarded,
and we can conclude that h1 satisfies the equation

−e−Ȳ/
√

x ∂h1

∂ξ
− 1√

x
∂h1

∂Ȳ
= ∂2h1

∂Ȳ2
. (5.23)

Here, it is taken into account that the transition layer lies at the outer edge of the boundary
layer, where μ0 = ρ0 = 1.

We seek the solution to (5.23) in the form

h1(x, ξ, Ȳ) = eiαξ h̆1(x, Ȳ) + (c.c.). (5.24)

Substitution of (5.24) into (5.23) and into the boundary conditions for h1 in (5.12) yields
the following boundary-value problem for h̆1:

∂2h̆1

∂Ȳ2
+ 1√

x
∂ h̆1

∂Ȳ
+ iαe−Ȳ/

√
xh̆1 = 0, (5.25a)

h̆1

∣∣∣
Ȳ=∞

= − 1
(γ − 1)M2∞

, h̆1

∣∣∣
Ȳ=−∞

= 0. (5.25b)
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–2

M∞ = 0.5
M∞ = 0.9

h̆1

Re (h̆1)

Im (h̆1)

12

8

4

−10 −8 −6

−4

−4

0

0 2

Ȳ

Figure 2. The real (bold line) and imaginary (dashed line) parts of function h̆1 calculated for x = 1, α = 1
and two values of the Mach number, M∞ = 0.5 and 0.9.

The change of variables

h̆1 = zw(z), z = 2(iαx)1/2e−Ȳ/(2
√

x) (5.26)

turns (5.25a) into the Bessel equation

z2 d2w
dz2 + z

dw
dz

+
(

z2 − 1
)

w = 0. (5.27a)

The boundary conditions (5.25b) are written in these variables as

w = − 1
(γ − 1)M2∞

z−1 + · · · as z → 0, (5.27b)

w → 0 as z → ∞. (5.27c)

In (5.27c), z should tend to infinity along the ray where argz = π/4.
The solution of the boundary-value problem (5.27) is given by

w(z) = − πi
2(γ − 1)M2∞

H(1)
1 (z), (5.28)

where H(1)
1 (z) is the Hankel function of the first kind. It remains to substitute (5.28) back

into (5.26) and then into (5.24), and we can conclude that in the transition layer

h1 = − πi
2(γ − 1)M2∞

eiαξ zH(1)
1 (z). (5.29)

The graphic illustration of this solution is presented in figure 2.
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Re−3/8

Re−5/8

Re
−

1
/2

Re
−

3
/8

3

2

1

Figure 3. The flow in the vicinity of the wall roughness.

With known h1 we can use the state (2.2c) to find the density perturbations in the
transition layer. We have

ρ1 = −(γ − 1)M2
∞h1 = πi

2
eiαξ zH(1)

1 (z) + (c.c.). (5.30)

Now we can return to the continuity equation (5.17). To avoid a degeneration in this
equation, we need to choose σ according to (5.21), that is

σ = Re−1/2 ε

δ
, (5.31)

and then the continuity equation assumes the form
∂v1

∂Ȳ
= e−Ȳ/

√
x ∂ρ1

∂ξ
+ 1√

x
∂ρ1

∂Ȳ
. (5.32)

It has to be integrated with the disturbance attenuation condition (5.12b)

v1 = 0 at Ȳ = −∞. (5.33)

We shall leave this task for others to perform.

6. Triple-deck region

The generation of Tollmien–Schlichting waves takes place as a result of the interaction of
the entropy waves with steady flow perturbations caused by a wall roughness. We have
chosen the frequency of the entropy waves to be ω = O(Re1/4). This is to satisfy the
resonance condition. The second resonance condition requires the roughness size �x to be
comparable to the wavelength of the Tollmien–Schlichting wave, that is �x = O(Re−3/8).
It is well known that the flow past a roughness of this size is described by the triple-deck
theory. According to this theory, when analysing the flow in the vicinity of the roughness
one has to consider three regions: the viscous sublayer (region 3 in figure 3), the main part
of the boundary layer (region 2) and in the upper region 1 that lies in the inviscid flow
outside the boundary layer.

In this section our task is to derive the equations that describe the flow in the three layers.
When performing this task we shall assume the roughness shape can be represented by the
equation

y = Re−5/8F
(

x − 1
Re−3/8

)
. (6.1)
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6.1. Upper tier
In order to predict the form of asymptotic expansions of fluid-dynamic functions in the
upper tier of the triple-deck region, we return to the solution (4.11a,b) for the inviscid flow
upstream of the roughness. Substituting (4.7a–c) into (4.9) and then into (4.11a,b), we see
that near the roughness, the solution for the entropy wave may be written in the form

u = 1 + ε · 0, v = ε · 0, p = ε · 0,

ρ = 1 + ερ′
0(t̄ ), h = 1

(γ − 1)M2∞
+ εh′

0(t̄ ),

⎫⎪⎬
⎪⎭ (6.2)

where
ρ′

0(t̄ ) = ραeiωt̄ + (c.c.), h′
0(t̄ ) = hαeiωt̄ + (c.c.). (6.3a,b)

The frequency of oscillations ω coincides with the wavenumber α of the entropy wave,
and the amplitude is given by

ρα = e−iαx̄0, hα = − e−iαx̄0

(γ − 1)M2∞
, (6.4a,b)

where x̄0 denoting the value of x̄ at the position of the roughness.
Keeping further in mind that the wall roughness (6.1) produces O(Re−1/4) steady

perturbations in the flow, we represent the fluid-dynamic functions in the upper tier in
the form

u = 1 + Re−1/4u∗
1(x∗, y∗) + εRe−1/4u∗

2(t̄, x∗, y∗) + · · · ,

v = Re−1/4v∗
1(x∗, y∗) + εRe−1/4v∗

2(t̄, x∗, y∗) + · · · ,

p = Re−1/4p∗
1(x∗, y∗) + εRe−1/4p∗

2(t̄, x∗, y∗) + · · · ,

ρ = 1 + ερ′
0(t̄ ) + Re−1/4ρ∗

1 (x∗, y∗) + εRe−1/4ρ∗
2 (t̄, x∗, y∗) + · · · ,

h = 1
(γ − 1)M2∞

+ εh′
0(t̄ ) + Re−1/4h∗

1(x∗, y∗) + εRe−1/4h∗
2(t̄, x∗, y∗) + · · · ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.5)

with the independent variables being

t̄ = t
Re−1/4 , x∗ = x − 1

Re−3/8 , y∗ = y
Re−3/8 . (6.6a–c)

The O(εRe−1/4) terms in (6.5) represent the perturbations produced by the interaction
of the unsteady perturbations in the entropy wave with the steady caused by the wall
roughness.

The equations for the O(Re−1/4) and O(εRe−1/4) terms are obtained by substituting
(6.5), (6.6a–c) into the Navier–Stokes equations (2.2). The perturbations produced by the
wall roughness are governed by the linearised Euler equations

∂u∗
1

∂x∗
= −∂p∗

1
∂x∗

,
∂v∗

1
∂x∗

= −∂p∗
1

∂y∗
,

∂h∗
1

∂x∗
= ∂p∗

1
∂x∗

,

∂u∗
1

∂x∗
+ ∂ρ∗

1
∂x∗

+ ∂v∗
1

∂y∗
= 0, h∗

1 = γ

γ − 1
p∗

1 − 1
(γ − 1)M2∞

ρ∗
1 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (6.7)

These equations were encountered on numerous occasions before in the context of the
triple-deck theory; see § 4.2.3 in Ruban (2018). They may be reduced, by means of
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elimination, to a single equation for the pressure p∗
1

(1 − M2
∞)

∂p∗
1

∂x2∗
+ ∂p∗

1
∂y2∗

= 0. (6.8)

With known p∗
1 the enthalpy h∗

1, longitudinal velocity u∗
1 and density ρ∗

1 are calculated as

h∗
1 = p∗

1, u∗
1 = −p∗

1, ρ∗
1 = M2

∞p∗
1. (6.9a–c)

The equations for the O(εRe−1/4) terms are found to be

∂u∗
2

∂x∗
+ ∂p∗

2
∂x∗

= −ρ′
0(t̄ )

∂u∗
1

∂x∗
, (6.10a)

∂v∗
2

∂x∗
+ ∂p∗

2
∂y∗

= −ρ′
0(t̄ )

∂v∗
1

∂x∗
, (6.10b)

∂h∗
2

∂x∗
− ∂p∗

2
∂x∗

= −ρ′
0(t̄ )

∂h∗
1

∂x∗
, (6.10c)

∂u∗
2

∂x∗
+ ∂ρ∗

2
∂x∗

+ ∂v∗
2

∂y∗
= −ρ′

0(t̄ )
(

∂u∗
1

∂x∗
+ ∂v∗

1
∂y∗

)
, (6.10d)

h∗
2 = γ

γ − 1
p∗

2 − 1
(γ − 1)M2∞

ρ∗
2 + 2 − γ

γ − 1
ρ′

0(t̄ )p
∗
1. (6.10e)

Performing the elimination routine again we find that the pressure p∗
2 satisfies the following

equation:

(1 − M2
∞)

∂2p∗
2

∂x2∗
+ ∂2p∗

2
∂y2∗

= ρ′
0(t̄ )M

2
∞

∂2p∗
1

∂x2∗
. (6.11)

Before formulating the boundary conditions for (6.8) and (6.11) we need to consider the
lower and middle tiers in the triple-deck structure (see figure 3).

6.2. Lower tier
Since the pressure does not change across the boundary layer, its asymptotic representation
in the lower tier should be the same as in the upper tier; see the expansion for p in (6.5).
Correspondingly, we shall seek the solution of the Navier–Stokes equations (2.2) in the
lower tier in the form

u = Re−1/8U∗
1(x∗, Y∗) + εRe−1/8U∗

2(t̄, x∗, Y∗) + · · · ,

v = Re−3/8V∗
1 (x∗, Y∗) + εRe−3/8V∗

2 (t̄, x∗, Y∗) + · · · ,

p = Re−1/4P∗
1(x∗, Y∗) + εRe−1/4P∗

2(t̄, x∗, Y∗) + · · · ,

ρ = ρw + · · · , h = hw + · · · , μ = μw + · · · .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.12)

Here, the scaled time t̄ and longitudinal coordinate x∗ are the same (6.6a–c) as in the upper
tier, while the lateral coordinate Y∗ is introduced as

Y∗ = y
Re−5/8 . (6.13)

Since the flow in the lower tier is slow, it may be treated as incompressible with the
density, enthalpy and viscosity coefficient being constant. We denote their values as ρw, hw

929 A17-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

86
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.865


On boundary-layer receptivity

and μw, respectively. These are obtained from the solution of the boundary-layer equations
at the position of the roughness

ρw = ρ0(1, 0), hw = h0(1, 0), μw = μ0(1, 0). (6.14a–c)

Substitution of (6.12) into the Navier–Stokes equations (2.2) yields in the leading-order
approximation

ρw

(
U∗

1
∂U∗

1
∂x∗

+ V∗
1
∂U∗

1
∂Y∗

)
= −∂P∗

1
∂x∗

+ μw
∂2U∗

1
∂Y2∗

, (6.15a)

∂P∗
1

∂Y∗
= 0, (6.15b)

∂U∗
1

∂x∗
+ ∂V∗

1
∂Y∗

= 0. (6.15c)

These are conventional incompressible steady flow boundary-layer equations. They have
to be solved with the no-slip conditions on the surface of the roughness (6.1)

U∗
1 = V∗

1 = 0 at Y∗ = F(x∗), (6.16)

and the following condition of matching with the solution in the boundary layer upstream
of the roughness:

U∗
1 = λY∗ at x∗ = −∞, (6.17)

where λ is dimensionless skin friction given by

λ = ∂U0

∂Y

∣∣∣∣
x=1, Y=0

. (6.18)

It may be shown (see § 2.2.4 in Ruban 2018) that the solution to (6.15) satisfying condition
(6.17) exhibits the following behaviour at the outer edge of the lower tier:

U∗
1 = λY∗ + A∗

1(x∗) + · · · , V∗
1 = −dA∗

1
dx∗

Y∗ + · · · as Y∗ → ∞, (6.19)

where A∗
1(x∗) is termed the displacement function.

Now, turning to the second-order terms in (6.12), we have to consider the equations

ρw

(
∂U∗

2
∂ t̄

+ U∗
1
∂U∗

2
∂x∗

+ U∗
2
∂U∗

1
∂x∗

+ V∗
1
∂U∗

2
∂Y∗

+ V∗
2
∂U∗

1
∂Y∗

)
= −∂P∗

2
∂x∗

+ μw
∂2U∗

2
∂Y2∗

, (6.20a)

∂P∗
2

∂Y∗
= 0, (6.20b)

∂U∗
2

∂x∗
+ ∂V∗

2
∂Y∗

= 0. (6.20c)

They have to be solved subject of the no-slip conditions on the surface of the roughness

U∗
2 = V∗

2 = 0 at Y∗ = F(x∗), (6.21)

and the matching condition with the solution in the boundary layer upstream of the
roughness

U∗
2 → 0 as x∗ → −∞. (6.22)

Again, it may be shown that at the outer edge of the lower tier

U∗
2 = A∗

2(t̄, x∗) + · · · , V∗
2 = −∂A∗

2
∂x∗

Y∗ + · · · as Y∗ → ∞. (6.23)
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6.3. Middle tier
Region 2, the middle tier (see figure 3), represents a continuation of the conventional
boundary layer into the triple-deck region. The thickness of region 2 is estimated as y ∼
Re−1/2. Consequently, the asymptotic analysis of the Navier–Stokes equations (2.2) in
region 2 has to be performed based on the limit

t̄ = t
Re−1/4 , x∗ = x − 1

Re−3/8 = O(1), Y = y
Re−1/2 = O(1), Re → ∞. (6.24a–d)

The form of the asymptotic expansions of the fluid-dynamic functions in region 2 may
be predicted by analysing the solution in the overlap region that lies between regions 3
and 2. Let us examine the velocity components. In region 3, they are represented in the
form of asymptotic expansions (6.12). At the outer edge of region 3, the coefficients in
these expansions behave as described by (6.19) and (6.23). If we substitute (6.19), (6.23)
into (6.12) and express the resulting equations in terms of variables of region 2, that is,
perform the substitution Y∗ = Re1/8Y , then we will find that at the ‘bottom’ of region 2

u = λY + Re−1/8A∗
1(x∗) + εRe−1/8A∗

2(t̄, x∗) + · · · ,

v = Re−1/4
(

−dA∗
1

dx∗
Y
)

+ εRe−1/4
(

−∂A∗
2

∂x∗
Y
)

+ · · · .

⎫⎪⎬
⎪⎭ (6.25)

This suggests that the solution in region 2 should be sought in the form

u = U00(Y) + Re−1/8Ũ1(x∗, Y) + εRe−1/8Ũ2(t̄, x∗, Y) + · · · ,

v = Re−1/4Ṽ1(x∗, Y) + εRe−1/4Ṽ2(t̄, x∗, Y) + · · · .

}
(6.26)

The leading-order term U00(Y) in the expansion for u coincides with the velocity profile
in the boundary layer immediately before the triple-deck region. According to (3.7)

U00 = λY + · · · as Y → 0. (6.27)

It further follows from (6.25) that the perturbation terms Ũ1(x∗, Y), Ũ2(t̄, x∗, Y), Ṽ1(x∗, Y)

and Ṽ2(t̄, x∗, Y) in (6.26) should exhibit the following behaviour at the ‘bottom’ of
region 2:

Ũ1 = A∗
1(x∗) + · · · , Ṽ1 = −dA∗

1
dx∗

Y + · · · as Y → 0, (6.28)

and

Ũ2 = A∗
2(t̄, x∗) + · · · , Ṽ2 = −∂A∗

2
∂x∗

Y + · · · as Y → 0. (6.29)

By analogy with the longitudinal velocity component u in (6.26), we shall seek the
enthalpy h, the density ρ and the viscosity μ in region 2 in the form of the asymptotic
expansions

h = h00(Y) + Re−1/8h̃1(x∗, Y) + εRe−1/8h̃2(t̄, x∗, Y) + · · · ,

ρ = ρ00(Y) + Re−1/8ρ̃1(x∗, Y) + εRe−1/8ρ̃2(t̄, x∗, Y) + · · · ,

μ = μ00(Y) + Re−1/8μ̃1(x∗, Y) + εRe−1/8μ̃2(t̄, x∗, Y) + · · · .

⎫⎪⎪⎬
⎪⎪⎭ (6.30)

Finally, we expect the pressure p to remain unchanged across the boundary layer.
Consequently, the asymptotic representation of p in region 2 should have the same form

p = Re−1/4P̃1(x∗, Y) + εRe−1/4P̃2(t̄, x∗, Y) + · · · (6.31)

as that in region 3; see (6.12).
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On boundary-layer receptivity

The substitution of (6.26), (6.30) and (6.31) into the Navier–Stokes equations (2.2)
results in

U00(Y)
∂Ũ1

∂x∗
+ Ṽ1

dU00

dY
= 0,

∂P̃1

∂Y
= 0,

U00(Y)
∂ h̃1

∂x∗
+ Ṽ1

dh00

dY
= 0,

ρ00(Y)
∂Ũ1

∂x∗
+ U00(Y)

∂ρ̃1

∂x∗
+ ρ00(Y)

∂Ṽ1

∂Y
+ Ṽ1

dρ00

dY
= 0,

h00 = 1
(γ − 1)M2∞

1
ρ00

, h̃1 = − 1
(γ − 1)M2∞

ρ̃1

ρ2
00

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.32)

The solution to (6.32) satisfying boundary conditions (6.28) is

Ũ1 = 1
λ

A∗
1(x∗)U′

00(Y), Ṽ1 = −1
λ

dA∗
1

dx∗
U00(Y). (6.33a,b)

The unsteady perturbation terms are analysed in the same way, leading to a conclusion
that in the middle tier

Ũ2 = 1
λ

A∗
2(t̄, x∗)U′

00(Y), Ṽ2 = −1
λ

∂A∗
2

∂x∗
U00(Y). (6.34a,b)

7. Viscous–inviscid interaction problem

We are now ready to formulate the boundary conditions for (6.8) and (6.11) in the upper
tier. For this purpose we shall perform the matching of the streamline slope angle ϑ in
regions 2 and 1. Using (6.26) we can calculate ϑ in region 2 (the middle tier) as

ϑ = arctan
v

u
= Re−1/4 Ṽ1

U00
+ εRe−1/4 Ṽ2

U00
+ · · · . (7.1)

It then follows from (6.33a,b), (6.34a,b) that

ϑ = Re−1/4
(

−1
λ

dA∗
1

dx∗

)
+ εRe−1/4

(
−1
λ

∂A∗
2

∂x∗

)
+ · · · . (7.2)

To calculate ϑ in the upper tier, we have to use the asymptotic expansions of u and v

given by (6.5). We have

ϑ = arctan
v

u
= Re−1/4v∗

1(x∗, y∗) + εRe−1/4v∗
2(t̄, x∗, y∗) + · · · . (7.3)

We now need to set y∗ → 0 in (7.3) and compare (7.3) with (7.2). We see that

v∗
1
∣∣
y∗=0 = −1

λ

dA∗
1

dx∗
, v∗

2
∣∣
y∗=0 = −1

λ

∂A∗
2

∂x∗
. (7.4a,b)

Conditions (7.4a,b) are easily converted into conditions for the pressure. This is done by
setting y∗ = 0 in the second equation in (6.7) and in (6.10b). We have

∂p∗
1

∂y∗

∣∣∣∣
y∗=0

= 1
λ

d2A∗
1

dx2∗
,

∂p∗
2

∂y∗

∣∣∣∣
y∗=0

= 1
λ

∂2A∗
2

∂x2∗
+ 1
λ
ρ′

0(t̄)
d2A∗

1
dx2∗

. (7.5a,b)
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A.I. Ruban, S.K. Keshari and M.A. Kravtsova

To complete the formulation of the boundary-value problem in the upper tier one needs
to supplement (7.5a,b) with perturbation attenuation conditions

p∗
1 → 0, p∗

2 → 0 as x2
∗ + y2

∗ → ∞. (7.6)

7.1. Steady flow
To describe the steady perturbations produced in the flow by the wall roughness we need
to analyse the flow in the lower tier simultaneously with the flow in the upper tier as
these are in mutual interaction with one another. In the lower tier we have to solve (6.15)
subject to the boundary conditions (6.16)–(6.19). In the upper tier the flow is governed by
equation (6.8) which should be solved with the boundary conditions on p∗

1 in (7.5a,b)
and (7.6). Considered together these equations and boundary conditions constitute the
steady viscous–inviscid interaction problem. This problem involves four parameters: the
dimensionless skin friction immediately before the interaction region λ, the fluid density
ρw and viscosity coefficient μw on the body surface and the ‘compressibility’ parameter
β = √

1 − M2∞. We perform the substitution of variables

x∗ = μ
−1/4
w ρ

−1/2
w

λ5/4β3/4 X̄, Y∗ = μ
1/4
w ρ

−1/2
w

λ3/4β1/4 Ȳ + F(x∗),

U∗
1 = μ

1/4
w ρ

−1/2
w

λ−1/4β1/4 Ū1, V∗
1 = μ

3/4
w ρ

−1/2
w

λ−3/4β−1/4 V̄1 + U∗
1

dF
dx∗

,

P∗
1 = μ

1/2
w

λ−1/2β1/2 P̄1, A∗
1 = μ

1/4
w ρ

−1/2
w

λ−1/4β1/4 Ā1 − λF(x∗),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.7)

that combines standard affine transformations of the triple-deck theory with Prandtl’s
transposition. The latter introduces the body-fitted coordinates (X̄, Ȳ) with X̄ measured
along the roughness contour and Ȳ in the normal direction. Here, it is assumed that the
roughness shape function can be expressed in the form

F = μ
1/4
w ρ

−1/2
w

λ3/4β1/4 F̄, (7.8)

where F̄(X̄) is independent of λ, ρw, μw and β.
As a result of transformations (7.7) equations (6.15) and boundary conditions

(6.16)–(6.19) assume that form

Ū1
∂Ū1

∂X̄
+ V̄1

∂Ū1

∂Ȳ
= −dP̄1

dX̄
+ ∂2Ū1

∂Ȳ2
,

∂Ū1

∂X̄
+ ∂V̄1

∂Ȳ
= 0,

Ū1 = V̄1 = 0 at Ȳ = 0,

Ū1 = Ȳ + · · · as X̄ → −∞,

Ū1 = Ȳ + Ā1(X̄) + · · · as Ȳ → ∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.9)

Corresponding to (7.7) the upper tier variables are transformed as

y∗ = μ
−1/4
w ρ

−1/2
w

λ5/4β7/4 ȳ, p∗
1 = μ

1/2
w

λ−1/2β1/2 p̄1. (7.10a,b)
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On boundary-layer receptivity

This turns equation (6.8) and boundary conditions for p∗
1 in (7.5a,b) and (7.6) into

∂2p̄1

∂X̄2
+ ∂2p̄1

∂ ȳ2 = 0,

∂ p̄1

∂ ȳ

∣∣∣∣
ȳ=0

= d2Ā1

dX̄2
− d2F̄

dX̄2
,

p̄1 → 0 as X̄2 + ȳ2 → ∞.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(7.11)

7.2. Unsteady perturbations
To study the unsteady perturbations we need to consider (6.20) in the lower tier. These
should be solved subject to boundary conditions (6.21)–(6.23). The transformations

t̄ = μ
−1/2
w

λ3/2β1/2 T, ω = μ
1/2
w

λ−3/2β−1/2 ω̄,

U∗
2 = μ

1/4
w ρ

−1/2
w

λ−1/4β1/4 Ū2, V∗
2 = μ

3/4
w ρ

−1/2
w

λ−3/4β−1/4 V̄2 + U∗
2

dF
dx∗

,

P∗
2 = μ

1/2
w

λ−1/2β1/2 P̄2, A∗
2 = μ

1/4
w ρ

−1/2
w

λ−1/4β1/4 Ā2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.12)

turn (6.20)–(6.23) into

∂Ū2

∂T
+ Ū1

∂Ū2

∂X̄
+ Ū2

∂Ū1

∂X̄
+ V̄1

∂Ū2

∂Ȳ
+ V̄2

∂Ū1

∂Ȳ
= −∂P̄2

∂X̄
+ ∂2Ū2

∂Ȳ2
,

∂Ū2

∂X̄
+ ∂V̄2

∂Ȳ
= 0,

Ū2 = V̄2 = 0 at Ȳ = 0,

Ū2 = 0 at X̄ = −∞,

Ū2 = Ā2(T, X̄) + · · · as Ȳ → ∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.13)

In the upper tier the unsteady perturbations are governed by (6.11). It should be solved
subject to boundary conditions on p∗

2 in (7.5a,b) and (7.6). The affine transformations

y∗ = μ
−1/4
w ρ

−1/2
w

λ5/4β7/4 ȳ, p∗
2 = μ

1/2
w

λ−1/2β1/2 p̄2 (7.14a,b)

turn the upper tier problem into

∂2p̄2

∂X̄2
+ ∂2p̄2

∂ ȳ2 = ρ′
0(T)

M2∞
1 − M2∞

∂2p̄1

∂X̄2
,

∂ p̄2

∂ ȳ

∣∣∣∣
ȳ=0

= ∂2Ā2

∂X̄2
+ ρ′

0(T)

(
d2Ā1

dX̄2
− d2F̄

dX̄2

)
,

p̄2 → 0 as X̄2 + ȳ2 → ∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(7.15)

Here, we write ρ′
0(T) as

ρ′
0(T) = ραeiω̄T . (7.16)
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8. Linear receptivity

Modern requirements on the quality of the surface of a passenger aircraft make typical
roughness rather shallow, which allows us to write

F̄ = hf (X̄), (8.1)

where h is a small parameter and f (X̄) is an order-one function.
We start with the steady flow past the roughness. In the lower tier it is described by (7.9).

In the case of shallow roughness (8.1) the solution to (7.9) is sought in the form

Ū1 = Ȳ + hU1(X̄, Ȳ) + · · · , V̄1 = hV1(X̄, Ȳ) + · · · ,

P̄1 = hP1(X̄) + · · · , Ā1 = hA1(X̄) + · · · .

}
(8.2)

Functions U1, V1, P1 and A1 are found by making use of a standard routine first used by
Stewartson (1970), see also § 5.1 in Ruban et al. (2013). The solution is expressed in the
form

Ă1(k) = (ik)1/3|k|
(ik)1/3|k| − 3Ai′(0)

f̆ (k). (8.3)

Here, Ă1(k) is the Fourier transform of the displacement function A1(X̄) defined as

Ă1(k) =
∫ ∞

−∞
A1(X̄)e−ikX̄ dX̄, (8.4)

where Ai′(0) is the derivative of the Airy function at zero value of the argument, and f̆ (k) is
the Fourier transform of the roughness shape function f (X̄). The solution for the pressure
p1 in the upper tier is expressed in terms of the Fourier transforms as

p̆1(k, ȳ) = 3Ai′(0)

(ik)1/3|k| − 3Ai′(0)
|k|f̆ (k) e−|k|ȳ. (8.5)

Now we turn to the unsteady perturbations that are governed by (7.13) and (7.15).
Keeping in mind that the forcing caused by the entropy waves is periodic in time, we
represent the solution in the lower tier in the form

Ū2 = hραeiω̄TU2(X̄, Ȳ) + (c.c.), V̄2 = hραeiω̄TV2(X̄, Ȳ) + (c.c.),

P̄2 = hραeiω̄TP2(X̄) + (c.c.), Ā2 = hραeiω̄TA2(X̄) + (c.c.).

}
(8.6)

This turns (7.13) into

iω̄U2 + Ȳ
∂U2

∂X̄
+ V2 = −dP2

dX̄
+ ∂2U2

∂Ȳ2
,

∂U2

∂X̄
+ ∂V2

∂Ȳ
= 0,

U2 = V2 = 0 at Ȳ = 0,

U2 → 0 as X̄ → −∞,

U2 = A2(X̄) at Ȳ = ∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.7)

Correspondingly, in the upper tier the solution is sought in the form

p̄2 = hραeiω̄Tp2(X̄, ȳ) + (c.c.), (8.8)
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On boundary-layer receptivity

which turns (7.15) into

∂2p2

∂X̄2
+ ∂2p2

∂ ȳ2 = M2∞
1 − M2∞

∂2p1

∂X̄2
,

∂p2

∂ ȳ

∣∣∣∣
ȳ=0

= ∂2A2

∂X̄2
+ d2A1

dX̄2
− d2f

dX̄2
,

p2 → 0 as X̄2 + ȳ2 → ∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(8.9)

The solutions in the upper and lower tiers are linked to one another through the
requirement that

P2 = p2|ȳ=0 . (8.10)

The boundary-value problem for the upper tier (8.9) is expressed in terms of Fourier
transforms as

d2p̆2

dȳ2 − k2p̆2 = Λf̆ (k) e−|k|ȳ, (8.11a)

dp̆2

dȳ

∣∣∣∣
ȳ=0

= −k2(Ă2 + Ă1 − f̆ ), (8.11b)

p̆2 → 0 as ȳ → ∞. (8.11c)

The forcing term on the right-hand side of (8.11a) is obtained using the solution (8.5) for
p̆1. It is found that the constant Λ is given by

Λ = − M2∞
1 − M2∞

3k2|k|Ai′(0)

(ik)1/3|k| − 3Ai′(0)
. (8.12)

The solution to the boundary-value problem (8.11) is written as

p̆2 =
[
|k|(Ă2 + Ă1 − f̆ ) − Λ

2k2 f̆ (k)
]

e−|k|ȳ − Λ

2|k| f̆ (k)ȳe−|k|ȳ. (8.13)

It remains to set ȳ = 0 and we will find that the Fourier transform of the pressure P2 in the
lower tier is given by

P̆2 = |k|(Ă2 + Ă1) −
(

|k| + Λ

2k2

)
f̆ (k). (8.14)

The equations for the lower tier (8.7) are written in terms of the Fourier transforms as

iω̄Ŭ2 + ikȲŬ2 + V̆2 = −ikP̆2 + d2Ŭ2

dȲ2
, (8.15a)

ikŬ2 + dV̆2

dȲ
= 0, (8.15b)

Ŭ2 = V̆2 = 0 at Ȳ = 0, (8.15c)

Ŭ2 = Ă2(X̄) at Ȳ = ∞. (8.15d)

We start the solution of the boundary-value problem (8.15) by eliminating V̆2 from
(8.15a) and (8.15b). For this purpose, we differentiate the momentum equation (8.15a)
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with respect to Ȳ and then, using the continuity equation (8.15b), we find that Ŭ2 satisfies
the equation

i(ω̄ + kȲ)
dŬ2

dȲ
= d3Ŭ2

dȲ3
. (8.16)

Since this is a third-order differential equation, it requires an additional boundary
condition. The latter may be obtained by setting Ȳ = 0 in (8.15a). We have

d2Ŭ2

dȲ2

∣∣∣∣∣
Ȳ=0

= ikP̆2. (8.17)

If we now introduce a new independent variable

z = z0 + θ Ȳ, (8.18)

with

z0 = ω̄

k
θ, θ = (ik)1/3, (8.19)

then (8.16) turns into the Airy equation for the derivative dŬ2/dz

d3Ŭ2

dz3 − z
dŬ2

dz
= 0. (8.20a)

The boundary conditions (8.15c), (8.15d) and (8.17) are written in the new variables as

Ŭ2 = 0 at z = z0, (8.20b)

d2Ŭ2

dz2 = (ik)1/3P̆2 at z = z0, (8.20c)

Ŭ2 = Ă2 at z = ∞. (8.20d)

The general solution of (8.20a) is

dŬ2

dz
= C1Ai(z) + C2Bi(z), (8.21)

where Ai(z) is the Airy function that decays exponentially as z → ∞, while Bi(z) is
exponentially growing for all k in the complex plane, provided that the branch cut in this
plane is made along the positive imaginary semi-axis (see figure 8). It follows from (8.20d)
that Ŭ2 should remain bounded. Therefore, we have to set C2 = 0, and we can conclude
that

dŬ2

dz
= C1Ai(z). (8.22)

Substitution of (8.22) into (8.20c) results in

C1Ai′(z0) = (ik)1/3P̆2. (8.23)

Let us now integrate (8.22) with initial condition (8.20b). We have

Ŭ2 = C1

∫ z

z0

Ai(ζ ) dζ. (8.24)
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Setting z = ∞ in the above equation, and using condition (8.20d) we find that

C1

∫ ∞

z0

Ai(z) dz = Ă2. (8.25)

It remains to eliminate C1 from (8.25) and (8.23), and we will have

Ă2 = (ik)1/3P̆2

Ai′(z0)

∫ ∞

z0

Ai(z) dz. (8.26)

This is the second equation relating Ă2 and P̆2. The first one is given by the solution (8.14)
for the upper tier. Elimination of Ă2 from (8.14) and (8.26) results in

P̆2 = Ai′(z0)

Q(ω̄, k)

{
|k|[Ă1 − f̆ (k)] − �

2k2 f̆ (k)
}

, (8.27)

where

Q(ω̄, k) = Ai′(z0) − (ik)1/3|k|
∫ ∞

z0

Ai(z) dz. (8.28)

It remains to substitute (8.3) and (8.12) into (8.27) and we arrive at a conclusion that the
Fourier transform of the pressure in the lower tier is

P̆2 = Ai′(z0)

Q(ω̄, k)

[
3(1 + D)Ai′(0)|k|

(ik)1/3|k| − 3Ai′(0)

]
f̆ (k), (8.29)

where

D = M2∞
2(1 − M2∞)

. (8.30)

To return to physical variables we need to apply the inverse Fourier transform to (8.29).
Substituting the result into the equation for P̄2 in (8.6) we have

P̄2(T, X̄) = hρα

eiω̄T

2π

∫ ∞

−∞
Ai′(z0)

Q(ω̄, k)

[
3(1 + D)Ai′(0)|k|

(ik)1/3|k| − 3Ai′(0)

]
f̆ (k)eikX̄ dk + (c.c.). (8.31)

In the receptivity theory, our main interest is in the behaviour of the solution behind the
wall roughness. The analysis presented in Appendix A shows that

P̄2(T, X̄) = hραK(ω̄)f̆ (k1) exp
(
i(k1X̄ + ω̄T)

)
+hρα

1 + D
π

f̆ (0)
eiω̄T

X̄2
+ · · · + (c.c.) as X̄ → ∞. (8.32)

The Tollmien–Schlichting wave generated through the interaction of the entropy wave with
a wall roughness is represented by the first term on the right-hand side of (8.32). The
amplitude of the Tollmien–Schlichting wave is proportional to the receptivity coefficient
K(ω̄) and the Fourier transform f̆ (k1) of the roughness shape function f (X̄) calculated for
the wavenumber k1 which is the wavenumber of the Tollmien–Schlichting wave for a given
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Figure 4. The receptivity coefficient K = |K|eiφ as a function of the frequency ω̄ for various values of the
Mach number M∞. (a) Modulus of the receptivity coefficient. (b) Argument of the receptivity coefficient.

frequency ω̄ of the entropy wave. The receptivity coefficient is calculated as

K(ω̄) =
[

Ai′(z0)

∂Q/∂k
3i(1 + D)Ai′(0)k
(ik)1/3k + 3Ai′(0)

]
k=k1

, (8.33)

with ∂Q/∂k given by (A10) and D by (8.30). Notice that K is a function of the frequency
ω̄ and the Mach number M∞ only.

The numerical calculations of K(ω̄) were performed in the following way. Firstly, a
real value of the frequency ω̄ is chosen. The corresponding values of k and z0 are given
by the first root k1 of the dispersion equation (A5) which was solved with the help of
Newtonian iterations. When performing the iterations, the values of the Airy function, its
derivative and the integral at the point z0 in the complex z-plane were found by solving the
initial-value problem for the Airy equation along a straight line connecting the origin z = 0
and z = z0 with the Airy function Ai(0) and its derivative Ai′(0) assigned the well-known
values at z = 0. The results of the calculations are displayed in figure 4. Notice that the
argument φ of the receptivity coefficient is independent of the Mach number.

9. Nonlinear receptivity

The linear receptivity analysis presented in the previous section relies on the assumption
that the wall roughness is shallow, that is, the roughness shape function F̄(X̄) may be
expressed in the form (8.1) with the height parameter h assumed small. Under this
assumption, the steady flow past the roughness is only slightly perturbed which preclude
the situations when the flow involves a separation.

We shall now lift this restriction and extend the theory to the case when F̄(X̄) is an
order-one quantity. In this case both the steady flow problem (7.9), (7.11) and the problem
(7.13), (7.15) for unsteady perturbations require numerical solution. We used for this
purpose numerical technique developed by Kravtsova, Zametaev & Ruban (2005). Some
of the computation results are shown in figure 5. We chose the shape of the roughness
to be F̄ = he−2X̄2

. Figure 5 displays the streamlines in the viscous sublayer for different
values of the height parameter h. We found that the separation region formed when h was
close to h = 2.5. The separation region increases in size as h is growing.
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Figure 5. Streamlines for the steady separated flow around a roughness; (a) h = 2.5, (b) h = 3.5, (c) h = 4.5.

When dealing with unsteady perturbations, we modified the numerical technique of
Kravtsova et al. (2005) as follows. We note that the forcing terms in (7.15), both in the
equation for p̄2 and in the boundary condition at ȳ = 0, are periodic functions of time with
frequency ω̄. We therefore represent the solution to (7.13) in the form

Ū2 = ρα [U21 sin(ω̄T) + U22 cos(ω̄T)] ,

V̄2 = ρα [V21 sin(ω̄T) + V22 cos(ω̄T)] ,

P̄2 = ρα [P21 sin(ω̄T) + P22 cos(ω̄T)] ,

Ā2 = ρα [A21 sin(ω̄T) + A22 cos(ω̄T)] .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(9.1)

The substitution of (9.1) into (7.13) results in the following set of linear equations:

−ω̄U22 + Ū1
∂U21

∂X̄
+ U21

∂Ū1

∂X̄
+ V̄1

∂U21

∂Ȳ
+ V21

∂Ū1

∂Ȳ
= −∂P21

∂X̄
+ ∂2U21

∂Ȳ2
,

ω̄U21 + Ū1
∂U22

∂X̄
+ U22

∂Ū1

∂X̄
+ V̄1

∂U22

∂Ȳ
+ V22

∂Ū1

∂Ȳ
= −∂P22

∂X̄
+ ∂2U22

∂Ȳ2
,

∂U21

∂X̄
+ ∂V21

∂Ȳ
= 0,

∂U22

∂X̄
+ ∂V22

∂Ȳ
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(9.2)
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These have to be solved subject to the boundary conditions

U21 = U22 = V21 = V22 = 0 at Ȳ = 0,

U21 = A21(X̄), U22 = A22(X̄) at Ȳ = ∞,

U21 = U22 = 0 at X̄ = −∞.

⎫⎪⎪⎬
⎪⎪⎭ (9.3)

To perform the calculations, we introduce a discrete mesh {X̄i}, where i = 1, 2, . . . , N,
and denote the vector composed of the values of the displacement function A(X̄) at the
mesh points by A, namely,

A = {
A21(X̄1), A21(X̄2), . . . , A21(X̄N), A22(X̄1), A22(X̄2), . . . , A22(X̄N)

}
. (9.4)

We also consider the pressure gradient vector dP/dx whose elements are calculated in the
same way. For given displacement function A, equations (9.2), (9.3) allow us to calculate
the velocity field and the pressure gradient in the viscous sublayer, leading to the matrix
equation

dP
dx

∣∣∣∣
visc

= MA, (9.5)

where M is 2N × 2N matrix.
The finite-difference representation of inviscid equations (7.15) can be expressed in the

form
dP
dx

∣∣∣∣
inv

= NA + R, (9.6)

with the vector R representing the forcing terms in (7.15).
The requirement that the pressure gradient should be the same in the viscous sublayer

and at the bottom of the upper deck leads to the following set of linear equations:

(M − N)A = R. (9.7)

An interested reader is referred to the original paper by Kravtsova et al. (2005) for the
details of numerical calculation of matrices M and N .

The results of unsteady flow calculations at different values of the free-stream Mach
number M∞ are shown in figure 6 in the form of the pressure gradient oscillations
along the body surface. Upstream of the wall roughness the perturbations decay very
fast, but they persist behind the roughness assuming the form of a Tollmien–Schlichting
wave. According to the linear theory, the neutral frequency of the Tollmien–Schlichting
wave is ω̄ = 2.3. Since for all values of h, the steady flow downstream of the roughness
returns to its unperturbed state Ū1 = Ȳ , the neutral frequency ω̄ should not change with
h, and figure 6 does confirm this expectation. Indeed, we see that for this frequency, the
oscillations neither grow nor decay downstream of the roughness.

As far as the amplitude of the oscillations is concerned, it increases rather rapidly
with h, as figures 6(a)–6(c) clearly show. In figure 7 we show the effect of nonlinearity
on the receptivity coefficient |K|. The latter is calculated as the ratio of the amplitude of
the generated Tollmien–Schlichting wave and the roughness height h. We see that |K|
increases with h first slowly but then, when the separation develops in the flow (see
figure 5), much faster. We also see that the receptivity coefficient increases with the
Mach number, which tells us that the generation of the Tollmien–Schlichting waves by
the entropy waves should not be ignored when predicting the laminar–turbulent transition
on a passenger aircraft wing in cruise flight.
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Figure 6. Perturbations of pressure gradient for (a) h = 0.1; (b) h = 3.5; (c) h = 4.5. In all three cases, the
neutral frequency, ω̄ = 2.3, is taken.
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Figure 7. Receptivity coefficient, |K|, as a function of the roughness height, h, for various values of the Mach
number, M∞; dashed lines correspond to the linear receptivity predictions.

10. Concluding remarks

In this paper we consider the generation of the Tollmien–Schlichting waves in the
boundary layer due to the presence of the entropy waves in the oncoming free-stream
flow. It is well known that in compressible flows, small perturbations to a uniform
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free-stream flow can be decomposed into acoustic waves and the free-stream turbulence.
The latter consists of two perturbation modes: the vorticity waves and the entropy waves.
The receptivity of the boundary layer to acoustic noise and to the vorticity waves has
been studied extensively by various authors. The entropy waves did not attract such
attention, except for hypersonic flows. In the present paper our attention is with the
receptivity of the boundary layer to entropy waves in subsonic flows. Since in aerodynamic
applications, the Tollmien–Schlichting waves are observed at relatively large values of
the Reynolds number, Re, the asymptotic solution of the Navier–Stokes equations was
used for a theoretical description of the receptivity process. We assumed that in the
spectrum of the entropy waves there are harmonics which come in resonance with the
Tollmien–Schlichting wave on the lower branch of the stability curve; this happens when
the frequency, ω, is an order Re1/4 quantity, but since the speed of propagation of
the entropy wave coincides with the free-stream velocity, the wavelength appears to be
O(Re1/4) long, which is much longer than the wavelength of the Tollmien–Schlichting
wave. Hence, to satisfy the resonance condition with respect to the wavenumber, the
entropy wave has to come into interaction with the wall roughness, which are, of course,
plentiful on a real aircraft wing.

We first analysed the interaction of the entropy wave with the boundary layer before
the roughness. The entropy waves produce oscillations of the gas temperature and density,
but the velocity and pressure remain unperturbed to the leading order. This precludes the
entropy waves from penetrating the boundary layer. Instead, they decay very rapidly in
the transition layer situated near the outer edge of the conventional boundary layer. As
a result of this, there is a significant difference in the way the boundary layer interacts
with entropy waves compared with the acoustic waves. The acoustic waves carry pressure
perturbations which easily penetrate into the boundary layer and lead to a formation of the
Stokes layer near the body surface; this is due to the Stokes layer interaction with steady
perturbations near the wall roughness that the Tollmien–Schlichting waves form in the
boundary layer. The situation with the entropy waves is different. They do not create the
Stokes layer on the wing surface. However, a wall roughness produces perturbations not
only inside the boundary layer but also in the inviscid flow outside the boundary layer. The
interaction of these perturbations with the entropy waves creates the forcing necessary for
the Tollmien–Schlichting wave production.

To perform the analysis of the receptivity process, the triple-deck theory has been
modified appropriately. The equations of the triple-deck theory were then solved
analytically for the case of linear receptivity when the roughness height is relatively small.
We also performed nonlinear receptivity analysis in the case when the roughness height
is not small. For this case, the full numerical solution of the triple-deck equations is
required. We found that the nonlinearity enhances the receptivity process significantly.
The receptivity coefficient K was found to increase with the roughness height h first
slowly but then, when the separation develops in the flow, K grows much faster. We
also see that K increases with the Mach number. This means that the generation of the
Tollmien–Schlichting waves by the entropy waves should be taken into account when
predicting the laminar turbulent transition on a passenger aircraft wing in cruise flight.

As was demonstrated by Wu (2001), the predictions of the receptivity theory are in
good agreement with the experimental observations. There is now also clear evidence
that the asymptotic triple-deck theory is as accurate as numerical simulations based on
the Navier–Stokes equations (see, for example, De Tullio & Ruban 2015). Compared
with numerical methods, the theoretical predictions have obvious advantages. Firstly, the
triple-deck theory allows us to deduce an explicit formula (8.32) for the amplitude of the
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Figure 8. Integration contours.

generated Tollmien–Schlichting wave, which may be used, for example, if the receptivity
process is to be suppressed in the flow near various technological dents or humps on
an aircraft wing through passive or active flow control as in Brennan, Gajjar & Hewitt
(2021). Secondly, the asymptotic theory represents an ideal tool for uncovering the physical
processes leading to the generation of the instability modes in the boundary layer. Thirdly,
the asymptotic theory proved to be instrumental in identifying possible mechanisms of
the boundary-layer receptivity. These include the generation of Görtler vortices by wall
roughness (see Denier, Hall & Seddougui 1991) as well as by the free-stream longitudinal
vortices (see Wu, Zhao & Luo 2011). In the latter case, the instability modes form in
the boundary layer without the aid of a wall roughness. Another example of this type
of receptivity is presented in the paper by Wu (1999) devoted to the generation of the
Tollmien–Schlichting waves due to the interaction of the free-stream turbulence with
acoustic waves. In this paper, the concept of distributed receptivity was put forward,
which was further developed in Wu (2001); see also Kerimbekov & Ruban (2005). The
asymptotic receptivity theory can be adjusted to different flow speed regimes. In particular,
Ruban, Bernots & Kravtsova (2016) studied with its help the receptivity of the boundary
layer to acoustic waves in transonic flows and Dong, Liu & Wu (2020) performed the
corresponding analysis for supersonic flows. The present paper is the first study where
the triple-deck theory is applied to the receptivity of the boundary layer with respect to
entropy waves.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
A.I. Ruban https://orcid.org/0000-0001-8853-8160.

Appendix A. Amplitude of the Tollmien–Schlichting wave

The integration in (8.31) is meant to be performed along the real axis in the complex
k-plane. However, since our interest is in the behaviour of the solution downstream of the
roughness, we shall consider an analytical extension of the integrand into the upper half
of the complex k-plane, and change the contour of integration as shown in figure 8. When
performing this task one needs to identify the poles in the region swept by the deforming
contour.

We start with the real negative semi-axis, shown as C− in figure 8. To make the integrand
in (8.31) an analytic function we have to substitute |k| by −k. It is easily shown that the
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denominator of the expression in the square brackets in (8.31) cannot become zero in the
second quadrant in the complex k-plane. Indeed, let us examine the equation

(ik)1/3|k| + a = 0, (A1)

where a = −3Ai′(0) > 0. Setting |k| = −k and expressing k in the form k = |k|eiϑ , where
ϑ belongs to the interval

ϑ ∈
(

−3
2
π,

1
2
π

)
, (A2)

we can write (A1) as

(eiπ/2|k|eiϑ)4/3 = ia. (A3)

It follows from (A3) that

ϑ = −1
8
π + 3

2
πn, n = 0, ±1, ±2, . . . . (A4)

We see that the only solution satisfying restriction (A2) is given by n = 0 for which ϑ =
−π/8. Clearly it does not belong to the second quadrant in the k-plane.

Similarly, (A1) can be analysed for the positive real semi-axis in the k-plane, where
|k| = k. Again, no solution that belongs to the first quadrant is found.

Thus, the only singularities that have to be taken into account are those located points
where Q(ω̄, k) is zero. This leads to the following dispersion equation:

Ai′(z0) − (ik)1/3|k|
∫ ∞

z0

Ai(z) dz = 0, z0 = ω̄

k
(ik)1/3. (A5)

This equation was studied by various authors (see, for example, Zhuk & Ryzhov 1980),
and it is known that it has an infinite (countable) number of roots. The position of each
root in the complex k-plane depends on the frequency ω̄. The trajectories of the first five
roots, as ω̄ changes from zero to infinity, are shown in figure 9. All the roots originate at
ω̄ = 0 from the coordinate origin (k = 0), and all of them, except the first one, remain in
the second quadrant for all ω̄ ∈ (0, ∞), indicating that the corresponding perturbations in
the boundary layer decay with x. The behaviour of the first root is different. It stays in the
second quadrant until the frequency reaches its critical value, ω∗ = 2.29797, and then it
crosses the real axis at the point k∗ = −1.00049 and remains in the third quadrant for all
ω̄ ∈ (ω∗, ∞). This root represents the Tollmien–Schlichting wave; our task is to determine
its amplitude.

Let us consider the frequency ω̄ which is smaller than the critical frequency, ω∗. Then all
the roots of (A5) are represented by points that lie in the second quadrant of the complex
k-plane, as shown in figure 9. Remember that when introducing an analytical branch of
the function (ik)1/3 we had to make a branch cut along the positive imaginary axis in the
k-plane. Also, the analytical extension of |k| in the integrand in (8.31) requires the branch
cut to be extended to the entire imaginary axis. Therefore, we shall split the integration
interval in (8.31) into two parts, the negative real semi-axis and the positive real semi-axis,
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Figure 9. The first five roots of (A5) in the complex k-plane.

shown in figure 8 as C− and C+, respectively,

P̄2(T, X̄) = hρα

eiω̄T

2π

{∫ 0

−∞
M(k; ω̄, X̄) dk +

∫ ∞

0
N (k; ω̄, X̄) dk

}
+ (c.c.). (A6)

Here

M = Ai′(z0)

Ai′(z0) − i(ik)4/3
∫∞

z0
Ai(z) dz

[
3(1 + D)Ai′(0)k

(ik)1/3k + 3Ai′(0)

]
f̆ (k)eikX̄, (A7)

and

N = Ai′(z0)

Ai′(z0) + i(ik)4/3
∫∞

z0
Ai(z) dz

[
3(1 + D)Ai′(0)k

(ik)1/3k − 3Ai′(0)

]
f̆ (k)eikX̄. (A8)

When calculating the first integral in (A6) we close the contour of integration by adding
to C− a ray C′− and a circular arc C−

R of a large radius R; see figure 8. If we choose the ray
C′− such that only the first root k1 finds itself inside the combined contour then, using the
Residue theorem, we will find that∫

C−
M dk = 2πi

[
Ai′(z0)

∂Q/∂k
3(1 + D)Ai′(0)k

(ik)1/3k + 3Ai′(0)

]
k=k1

f̆ (k1)eik1X̄

−
∫

C′−
M dk −

∫
C−

R

M dk, (A9)

where the derivative ∂Q/∂k of (8.28) is given by
∂Q
∂k

= 4
3
(ik)1/3

∫ ∞

z0

Ai(z) dz − 2
3

z0

k
[z0 + i(ik)4/3]Ai(z0). (A10)

Since z0 → 0 as k → ∞, it is easily seen from (A7) that

M ∼ f̆ (k)
k5/3 eikX̄ as k → ∞, (A11)

which means that Jordan’s lemma is applicable to the integral along the arc C−
R in (A9).

According to this lemma, this integral tends to zero as the arc’s radius R tends to infinity.
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The behaviour of the integral along the ray C′− may be evaluated using Watson’s lemma.
We find that ∫

C′−
M dk = −(1 + D)f̆ (0)

1
X̄2

+ · · · as X̄ → ∞. (A12)

The second integral in (A6) is calculated in a similar way. We close the integration
contour C+ with a circular arc C+

R and a ray C′+ that lies along the right-hand side of the
branch cut; see figure 8. The integral along C+

R may be disregarded in view of Jordan’s
lemma. Taking further into account that there are no roots of the dispersion equation (A5)
in the first quadrant of the k-plane, we can write∫

C+
N dk = −

∫
C′+

N dk. (A13)

The integral on the right-hand side of (A13) is a Laplace type integral. It may be evaluated
using Watson’s lemma. We find that∫

C′+
N dk = −(1 + D)f̆ (0)

1
X̄2

+ · · · as X̄ → ∞. (A14)

It remains to substitute (A12) and (A14) into (A9) and (A13), respectively, and then into
(A6). We find that downstream of the roughness, the pressure P̄2(T, X̄) is given by (8.32).
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