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In this paper, a new sufficient condition for comparing linear combinations of indepen-
dent gamma random variables according to star ordering is given. This unifies some
of the newly proved results on this problem. Equivalent characterizations between
various stochastic orders are established by utilizing the new condition. The main
results in this paper generalize and unify several results in the literature including
those of Amiri, Khaledi, and Samaniego [2], Zhao [18], and Kochar and Xu [9].

1. INTRODUCTION

Let X be a gamma random variable �(a, λ) with shape parameter a ∈ R+ and scale
parameter λ ∈ R+. The density function of X is

f (x) = λa

�(a)
xa−1 exp{−λx}, x ∈ R+.

In the literature, linear combinations of independent gamma random variables have
attracted considerable attention due to their typical applications in statistics, engi-
neering, insurance, and reliability. Bock et al. [4] and Diaconis and Perlman [5] first
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studied the tail probabilities of linear combinations of independent gamma random
variables. This topic has been followed up by many researchers; see, for example,
Korwar [10], Khaledi and Kochar [7], Yu [17], Amiri, Khaledi, and Samaniego [2],
Zhao [18], Kochar and Xu [9], and references therein.

Recently, Kochar and Xu [9] studied the problem of comparing the skewness
of linear combinations of independent gamma random variables. Let X1 and X2 be
independent and identically distributed gamma random variables �(a, λ). They proved
that for (βi, β ′

i ) ∈ R
2+, i = 1, 2, if either

(β1, β2)
m� (β ′

1, β ′
2) (1.1)

or (
1

β1
,

1

β2

)
m�

(
1

β ′
1

,
1

β ′
2

)
, (1.2)

then

β1X1 + β2X2 ≥� β ′
1X1 + β ′

2X2, (1.3)

where ≥� denotes the star order, which is a well-known skewness order in statistics

(see Definition 2.1), and
m� denotes the majorization order (see Definition 2.6). Amiri

et al. [2] also independently proved the above results when a ≥ 1. These results are
closely related to the result in Yu [17], who proved that, for βi ∈ R+,

n∑
i=1

βiXi ≥�

n∑
i=1

Xi, (1.4)

where Xi’s are gamma random variables �(ai, λ) for i = 1, . . . , n, respectively. These
results reveal that if the coefficients are more dispersed, then the linear combinations
are more skewed as compared by star ordering. Conditions like (1.1) and (1.2) are very
useful in comparing the the dispersion of linear combinations of gamma random vari-
ables. For example, Kochar and Xu [9] showed that for βi, β ′

i ∈ R+ for i = 1, . . . , n,
and a ≥ 1,

(β1, · · · , βn)�w(β ′
1, · · · , β ′

n) =⇒
n∑

i=1

βiXi ≥RS

n∑
i=1

β ′
i Xi, (1.5)

where �w denotes the weak submajorization (see Definition 2.6), and ≥RS denotes
the right spread order (see Definition 2.5), which is a dispersion order having wide
applications in economics, insurance, reliability and engineering (Kochar and Xu [8]).

Mi, Shi, and Zhou [13] studied linear combinations of independent gamma ran-
dom variables with different integer shape parameters (i.e., Erlang random variables).
They established likelihood ratio ordering between two linear combinations of Erlang
random variables under some restrictions on the coefficients and shape parameters.
This topic is further pursued by Zhao and Balakrishnan [19] and Zhao [18]. Zhao [18]
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extended the results of Eqs. (1.1)–(1.3) to the case of independent gamma random vari-
ables with different shape parameters. More precisely, let X1 and X2 be independent
gamma random variables �(a1, λ) and �(a2, λ). Zhao [18] proved that, for β1 ≤ β2

and β ′
1 ≤ β ′

2,

(β1, β2)
m� (β ′

1, β ′
2) =⇒ β1X1 + β2X2 ≥� β ′

1X1 + β ′
2X2, (1.6)

and if β1 ≤ β2, β ′
1 ≤ β ′

2, and a1 ≤ a2, then

(
1

β1
,

1

β2

)
m�

(
1

β ′
1

,
1

β ′
2

)
=⇒ β1X1 + β2X2 ≥� β ′

1X1 + β ′
2X2. (1.7)

It is interesting to note that Yu [17] proved that

n∑
i=1

βiXi ≥st

n∑
i=1

βXi ⇐⇒
n∏

i=1

β
ai
i ≥

n∏
i=1

βai , (1.8)

where β, βi ∈ R+, and Xi’s are gamma random variables �(ai, λ) for i = 1, . . . , n,
respectively.

In this paper, we will give a simple sufficient condition for comparing the skewness
of linear combinations of two independent gamma random variables which unifies the
existing results on this problem. It is shown that

β(2)

β(1)

≥ β ′
(2)

β ′
(1)

=⇒ β(1)X1 + β(2)X2 ≥� β ′
(1)X1 + β ′

(2)X2,

where {β(1), β(2)} denotes the increasing arrangement of the components of the vector
(β1, β2) ∈ R

2+. As consequences, results (1.6) and (1.7) in Zhao [18] follow imme-
diately from this. It is worth pointing out that the restriction (a1 ≤ a2) in (1.7) is
unnecessary and hence can be dropped.As further consequences, equivalent character-
izations for comparing linear combinations of independent gamma random variables
in the sense of dispersive order and right spread order are developed.

The rest of the paper is organized as follows. In Section 2, we first recall some
stochastic orders and majorization orders that are pertinent to the present discussion.
In Section 3, sufficient conditions for comparing linear combinations of independent
gamma random variables according to usual stochastic order and dispersive order are
established. In the last section, we give some sufficient conditions for comparison
according to right spread order.

2. PRELIMINARIES

In this section, we will review some notions of stochastic orders and majorization
orders, which will be used in the sequel.
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Assume random variables X and Y have distribution functions F and G, and
survival functions F̄ = 1 − F and Ḡ = 1 − G, respectively.

Definition 2.1: X is said to be less skewed than Y according to star ordering, denoted
by X ≤� Y if G−1F(x)/x is increasing in x on the support of X, where G−1 denotes
the right continuous inverse.

The star order is also called more IFRA (increasing failure rate in average) order
in reliability theory (see Kochar and Xu [9] for details). It is known in the literature
(Marshall and Olkin [ [12], p. 69]) that

X ≤� Y =⇒ cv(X) ≤ cv(Y),

where cv(X) = √
Var(X)/E(X) denote the coefficient of variation of X.

Dispersive ordering as defined below is a basic notion for comparing the
variabilities of two random variables.

Definition 2.2: X is said to be less dispersed than Y (denoted by X ≤disp Y) if

F−1(β) − F−1(α) ≤ G−1(β) − G−1(α)

for all 0 < α ≤ β < 1, where F−1 and G−1 denote their corresponding right
continuous inverses.

The dispersive order is closely related to the hazard rate order.

Definition 2.3: X is said to be smaller than Y according to the hazard rate order
(denoted by X ≤hr Y) if Ḡ(x)/F̄(x) is increasing.

Bagai and Kochar [3] showed that if X ≤disp Y and F or G is IFR (increasing
failure rate), then X ≤hr Y .

Definition 2.4: X is said to be smaller than Y in the usual stochastic order (denoted
by X ≤st Y), if F̄(x) ≤ Ḡ(x) for all x.

A weaker variability order called the right spread order in Fernández-Ponce,
Kochar, and Muñoz-Perez [6], or excess wealth order in Shaked and Shanthikumar [15]
has also been proposed to compare the variabilities of two distributions.

Definition 2.5: X is said to be less right spread than Y (denoted by X ≤RS Y) if∫ ∞

F−1(p)

F̄(x) dx ≤
∫ ∞

G−1(p)

Ḡ(x) dx, for all 0 ≤ p ≤ 1.

It is known that

X ≤disp Y =⇒ X ≤RS Y =⇒ Var(X) ≤ Var(Y).
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For more discussion on the these stochastic orders, please refer to Shaked and
Shanthikumar (2007) and references therein.

We shall also be using the concept of majorization in our discussion. Let x(1) ≤
x(2) ≤ · · · ≤ x(n) be the increasing arrangement of the components of the vector x =
(x1, x2, . . . , xn).

Definition 2.6: For vectors x, y, x is said to be

• majorized by y (denoted by x
m� y) if

j∑
i=1

x(i) ≥
j∑

i=1

y(i)

for j = 1, . . . , n − 1 and
∑n

i=1 x(i) = ∑n
i=1 y(i).

• weakly submajorized by y (denoted by x �w y) if

n∑
i=j

x(i) ≤
n∑

i=j

y(i)

for j = 1, . . . , n

For extensive and comprehensive details on the theory of majorization orders and
their applications, please refer to the excellent book of Marshall and Olkin [11].

3. STAR ORDER AND DISPERSIVE ORDER

The following result gives a new sufficient condition for comparing the skewness of
linear combinations of two independent gamma random variables with arbitrary shape
parameters.

Proposition 3.1: Let X1 and X2 be independent gamma random variables �(a1, λ)

and �(a2, λ), respectively. Then

β(2)

β(1)

≥ β ′
(2)

β ′
(1)

=⇒ β(1)X1 + β(2)X2 ≥� β ′
(1)X1 + β ′

(2)X2,

where {β(1), β(2)} denotes the increasing arrangement of the components of the vector
(β1, β2) ∈ R

2+.

Proof: Case 1: β1 + β2 = β ′
1 + β ′

2. Without loss of generality, let λ = 1 and

β1 + β2 = β ′
1 + β ′

2 = 1.
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Note that the assumption in this case implies

(β1, β2)
m� (β ′

1, β ′
2).

Now, let β(2) = β and β ′
(2) = β ′. Then,

(β1, β2)
m� (β ′

1, β ′
2) ⇐⇒ β ≥ β ′.

Note that, the distribution function of (1 − β)X1 + βX2 is

Fβ(t) =
∫∫

A

xa1−1
1 e−x1

�(a1)

xa2−1
2 e−x2

�(a2)
dx2 dx1,

where A = {(x1, x2) ∈ R
2+ : (1 − β)x1 + βx2 ≤ t}. The rest of the proof can be com-

pleted by mimicking the proof of Theorem 3.6 of Kochar and Xu [9]; see also Theorem
4.3 of Zhao [18]. �

Case 2: β1 + β2 �= β ′
1 + β ′

2. Without loss of generality, assume

β1 + β2 = c(β ′
1 + β ′

2),

where c ∈ R+ is a scalar. Now

(β1, β2)
m� (cβ ′

1, cβ ′
2).

Thus,

β(1)X1 + β(2)X2 ≥� cβ ′
(1)X1 + cβ ′

(2)X2,

Since the star order is scale invariant, it follows that,

β(1)X1 + β(2)X2 ≥� β ′
(1)X1 + β ′

(2)X2.

Hence, the required result follows. �

Remark 1: The condition given in the Proposition 3.1 is very general. It is weaker
than any of the following conditions, which are commonly used in the literature:

(a) (β1, β2)
m� (β ′

1, β ′
2);

(b) (log(β1), log(β2))
m� (log(β ′

1), log(β ′
2));

(c) (1/β1, 1/β2)
m� (1/β ′

1, 1/β ′
2).

Remark 2: Conditions (a) and (c) have been used to prove Theorems 4.2 and 4.3 in
Zhao [18] (see also Eqs. (1.6) and (1.7)). The proof of Theorem 4.2 of Zhao [18] is
quite involved. However, it follows immediately from Remark 1.
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The following lemma gives conditions under which star ordering implies
stochastic ordering and dispersive ordering.

Lemma 3.2: If X ≤� Y, then the following statements are equivalent:

(a) X ≤disp Y;

(b) X ≤st Y;

(c) limx→0+ F(x)/G(x) ≥ 1.

Proof: Under star ordering, the equivalence of (a) and (b) follows from Theorem 3 in
Ahmed et al. [1]. Hence, it is enough to prove that (b) and (c) are equivalent. Note that
X ≤� Y implies that F(x) − G(x) crosses zero at most once, and if the crossing occurs,
the sign change would be from negative to positive. Hence, limx→0+ F(x)/G(x) ≥ 1
implies there is no crossing for F(x) − G(x), and F(x) ≥ G(x) for x ≥ 0. �

Remark: Yu [17] established the following equivalent characterization of stochastic
order: if l(x) = log(f (x)/g(x)) is continuous and concave. Then,

X ≤st Y ⇐⇒ lim
x→0+

l(x) ≥ 0.

Lemma 3.2 provides a new characterization for stochastic order under a weak
condition.

The following result gives an equivalent characterization of stochastic ordering
between two linear combinations of independent gamma random variables.

Lemma 3.3: Let X1 and X2 be independent gamma random variables �(a1, λ) and
�(a2, λ), respectively. If β(2)/β(1) ≥ β ′

(2)/β
′
(1), then the following statements are

equivalent:

(a) β
a1
(1)β

a2
(2) ≥ β ′a1

(1)β
′a2
(2);

(b) β(1)X1 + β(2)X2 ≥st β ′
(1)X1 + β ′

(2)X2.

Proof: From Sim [16], the distribution function of β(1)X1 + β(2)X2 can be expressed
as

F(x) = 1

�(a1 + a2)

(
1

β(1)

)a1
(

1

β(2)

)a2

×
∞∑

r=0

(a1)r

(a2)rr!
(

1

β(2)

− 1

β(1)

)r

β
r+a1+a2
(2) γ (r + a1 + a2, x/β(2)),

where (a)n = �(a + n)/�(a), and

γ (s, z) =
∫ z

0
ts−1e−t dt
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is the lower gamma function. Note that the distribution function can be further
represented as

F(x) = 1

�(a1 + a2)

(
1

β(1)

)a1
(

1

β(2)

)a2

×
∞∑

r=0

(a1)r

(a2)rr!
(

1

β(2)

− 1

β(1)

)r ∞∑
k=0

(−1)k

k!βk
(2)

xr+a1+a2+k

r + k + a1 + a2
.

For x → 0+, one may rewrite it as

F(x) = xa1+a2

�(a1 + a2)

(
1

β(1)

)a1
(

1

β(2)

)a2 1

a1 + a2
+ o(xa1+a2).

Hence, the required result follows from Lemma 3.2 and Proposition 3.1. �

Combing Proposition 3.1 with Lemmas 3.2 and 3.3, one may immediately have
the following result.

Proposition 3.4: Let X1 and X2 be independent gamma random variables �(a1, λ)

and �(a2, λ), respectively. If β(2)/β(1) ≥ β ′
(2)/β

′
(1), then

β
a1
(1)β

a2
(2) ≥ β ′a1

(1)β
′a2
(2) ⇐⇒ β(1)X1 + β(2)X2 ≥disp β ′

(1)X1 + β ′
(2)X2.

Remark: Theorem 3.2 in Zhao [18] proves that under the condition 1 ≤ a1 ≤ a2,

(log(β1), log(β2))�w(log(β ′
1), log(β ′

2)) =⇒ β(1)X1 + β(2)X2 ≥disp β ′
(1)X1 + β ′

(2)X2.

Our result here removes the restriction on the shape parameters.

As a direct consequence, we have the following result.

Corollary 3.5: Let X1 and X2 be independent gamma random variables �(a1, λ)

and �(a2, λ), respectively. If a1 ≤ a2, then

(log(β1), log(β2))
m� (log(β ′

1), log(β ′
2)) =⇒ β(1)X1 + β(2)X2 ≥disp β ′

(1)X1 + β ′
(2)X2.

The following result is a natural extension of Corollary 3.5, which recovers
Theorem 3.3 in Zhao [18].

Proposition 3.6: Let X1, . . . , Xn be independent gamma random variables
�(a1, λ), . . . , �(an, λ), respectively. If 1 ≤ a1 ≤ a2 ≤ · · · ≤ an, then

(log(β1), . . . , log(βn))�w(log(β ′
1), . . . , log(β ′

n)) =⇒
n∑

i=1

β(i)Xi ≥disp

n∑
i=1

β ′
(i)Xi.
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Proof: According to Proposition 5.A.9 in Marshall and Olkin [11], if

(log(β1), . . . , log(βn))�w(log(β ′
1), . . . , log(β ′

n)),

then there exists a real vector (u1, . . . , un) such that

(log(β1), . . . , log(βn))
m� (log(u(1)), . . . , log(u(n))) ≥ (log(β ′

(1)), . . . , log(β ′
(n))).

Since, for c ≥ c′ > 0,

cXi ≥disp c′Xi

and a gamma random variable with shape parameter greater or equal to 1 has a log-
concave density, using Theorem 3.B.9 of Shaked and Shanthikumar (2007), it holds
that

n∑
i=1

u(i)Xi ≥disp

n∑
i=1

β ′
(i)Xi.

Hence, it is enough to prove that

(log(β1), . . . , log(βn))
m� (log(u1), . . . , log(un)) =⇒

n∑
i=1

β(i)Xi ≥disp

n∑
i=1

uiXi.

By the nature of majorization order, it is enough to prove the case for n = 2, which
follows from Corollary 3.5. �

4. RIGHT SPREAD ORDER

In this section, we will discuss stochastic comparisons of linear combinations of
gamma random variables. The first result presents an equivalent characterization of
right spread order for linear combinations of two gamma random variables.

Lemma 4.1: Let X1 and X2 be independent gamma random variables �(a1, λ) and
�(a2, λ), respectively. If β(2)/β(1) ≥ β ′

(2)/β
′
(1), then the following statements are

equivalent:

(a) β(1)a1 + β(2)a2 ≥ β ′
(1)a1 + β ′

(2)a2;

(b) β(1)X1 + β(2)X2 ≥RS β ′
(1)X1 + β ′

(2)X2.
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Proof: It follows from Theorem 4.3 in Fernández-Ponce et al. [6] that for two
nonnegative random variables X and Y , if X ≤� Y , then

EX ≤ EY ⇐⇒ X ≤RS Y .

From Proposition 3.1, it holds that

β(1)X1 + β(2)X2 ≥� β ′
(1)X1 + β ′

(2)X2.

Hence,

β(1)X1 + β(2)X2 ≥RS β ′
(1)X1 + β ′

(2)X2

is equivalent to

E(β(1)X1 + β(2)X2) ≥ E(β ′
(1)X1 + β ′

(2)X2).

So, the required result follows. �

Remark: Theorem 4.5 in Zhao [18] proved that if 1 ≤ a1 ≤ a2, then

(β1, β2)�w(β ′
1, β ′

2) =⇒ β(1)X1 + β(2)X2 ≥RS β ′
(1)X1 + β ′

(2)X2.

Lemma 4.1 removes the restriction on the shape parameters.

As a direct consequence, we have the following result.

Corollary 4.2: Let X1 and X2 be independent gamma random variables �(a1, λ)

and �(a2, λ), respectively. Then

(β1, β2)
m� (β ′

1, β ′
2) =⇒ β(1)X1 + β(2)X2 ≥RS β ′

(1)X1 + β ′
(2)X2.

The following result of Zhao [18] immediately follows from Corollary 4.2,
Theorem 3.C.7 of Shaked and Shanthikumar (2007), and the similar argument to
Proposition 3.6.

Corollary 4.3: Let X1, . . . , Xn be independent gamma random variables �(a1,
λ), . . . , �(an, λ), respectively. If 1 ≤ a1 ≤ a2 ≤ . . . ≤ an, then

(β1, . . . , βn)�w(β ′
1, . . . , β ′

n) =⇒
n∑

i=1

β(i)Xi ≥RS

n∑
i=1

β ′
(i)Xi.

Yu [17] gave necessary and sufficient conditions for stochastically comparing
linear combinations of heterogeneous and homogeneous gamma random variables.
The following result gives necessary and sufficient conditions for comparing linear
combinations of gamma random variables according to right spread order.
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Proposition 4.4: Let X1, . . . , Xn be independent gamma random variables
�(a1, λ), . . . , �(an, λ), respectively. Then

n∑
i=1

βiXi ≥RS β

n∑
i=1

Xi ⇐⇒ β ≤
∑n

i=1 βiai∑n
i=1 ai

.

Proof: It follows from Yu [17] (see also (1.4)) that

n∑
i=1

βiXi ≥� β

n∑
i=1

Xi.

Using Theorem 4.3 in Fernández-Ponce et al. [6] again, we have

n∑
i=1

βiXi ≥RS β

n∑
i=1

Xi ⇐⇒ E

(
n∑

i=1

βiXi

)
≤ E

(
n∑

i=1

βXi

)
.

Hence, the required result follows. �

Remark: Compared to Corollary 4.3, there is no restriction on the shape parameters.
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