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Weight–Body Length relationships (WLR) of 45 fish species (37 Actinopterygii and eight Elasmobranchii) were investigated.
A total of 31,167 individuals were caught and their biological parameters measured during the four quarters from 2013 to
2015, on five scientific surveys sampling the North-eastern Atlantic Ocean from the North Sea to the Bay of Biscay (ICES
Divisions IVb, IVc, VIId, VIIe, VIIg, VIIh, VIIj, VIIIa and VIIIb). Among 45 tested species, all showed a significant correlation
between total length (L) and total weight (W). The influence of sex on WLR was estimated for 39 species and presented a
significant sexual dimorphism for 18 species. Condition factor (K) of females was always higher than for males. Moreover,
a spatial effect on the WLR according to five ecoregions (the Bay of Biscay, the Celtic Sea, the Western English Channel,
the Eastern English Channel and the North Sea), was significant for 18 species among 38 tested species. The temporal
effect was tested according to components (year and quarter/season). The seasonality effect on WLR is more frequently sig-
nificant than the year especially for the Elasmobranchii species, and can be related to the spawning season. Finally, depressi-
form species (skates, sharks and flatfish) are characterized by positive allometric growth, whereas there is no such clear pattern
regarding roundfishes growth, whatever their body shape is.

Keywords: weight-length relationship, condition factor, Bay of Biscay, Celtic Sea, English Channel, North Sea, sexual dimorphism,
seasonality
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I N T R O D U C T I O N

Biological information, such as body length and weight, con-
stitute necessary data for assessing population structure, par-
ticularly to estimate the biomass from the length frequency
distribution and to convert length-at-age to weight-at-age
(Froese, 2006). However, conversely to length measurement
it is difficult to obtain the weight with good accuracy during
sampling at sea or from an underwater stereo-video system.
Consequently, the characterization of the Weight-Length
Relationship (WLR) allows for establishing the value of the
unknown variable from the known variable. Moreover, this
relationship is a sustainable proxy for the ‘fatness’ and
‘general well-being’ as the condition factor (Le Cren, 1951;
Tesch, 1968; Weatherley & Gill, 1987). In fish species, WLR
is often defined by an exponential function under conditions
of isometric growth (regression follows the cube law; Ricker,
1975). However, in nature, this relationship depends on the
environmental conditions – the physiological state of the
fish also has to be considered (Le Cren, 1951; Froese, 2006;

Pauly, 2010; Mozsar et al., 2015) – and the exponent or
growth coefficient (b) can vary between 2.5 and 4 (Hile,
1936; Martin, 1949; Pauly & Gayanilo, 1997; Froese, 1998,
2006). In this study, the influence of factors such as sampling
year and quarter, geographic area and sex were evaluated
through the WLR which were estimated for 45 species,
sampled during five scientific surveys operating from the
North Sea to the Bay of Biscay and covering the entire
length range from juveniles to adults.

M A T E R I A L S A N D M E T H O D S

Sampling was conducted on the research vessels ‘Thalassa’
and ‘Gwen-Drez’ each year from 2013 to 2015, totalling five
bottom-trawl surveys (Figure 1):

† IBTS survey (International Bottom Trawl Survey), North
Sea and Eastern English Channel, January–February
(Vérin, 1992).

† CGFS survey (Channel GroundFish Survey), Eastern
English Channel, October (Coppin & Travers-Trolet, 1989).

† CAMANOC survey (CAmpagne MANche Occidentale),
Eastern and Western English Channel, September–
October (Travers-Trolet & Vérin, 2014).
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† EVHOE survey (ÉValuation Halieutique de l’Ouest de
l’Europe), the Celtic Sea and the Bay of Biscay, October-
November (Mahé, 1987).

† LANGOLF (LANgoustine GOLFe de Gascogne), the Bay of
Biscay, May (Garren & Martin, 2013).

For this study, 31,167 marine individuals were individually
weighed (total weight, W to the nearest gram) and measured
(Total length, L to the nearest centimetre below) on
board from all daylight hauls. When possible, the sex of
Actinopterygii and Elasmobranchii was determined by macro-
scopic observation of the gonads (ICES, 2014). A total of 45
species were determined: Actinopterygii (N ¼ 29,083) repre-
sented by 37 species (28 roundfishes and nine flatfishes).

Elasmobranchii (N ¼ 2084) represented by eight species
(Table 1; Anonymous, 2016).

Before characterization of the WLR took place, all pairs of
data for each species were plotted in order to identify and
delete obvious outliers. In order to estimate the parameters
of the allometric WLR (equation (1)), its base-10 logarithm
(equation (2)) was fitted for each species to data using a
least squared linear model:

W = a Lb. (1)

log W = log a + b log L (2)

where ‘a’ is the intercept or initial growth coefficient and ‘b’ is
the slope i.e. the growth coefficient (Le Cren, 1951; Ricker,
1975; Froese, 2006).

To investigate variations of the relationship between body
length and weight for each species a completed Generalized

Linear Model was performed according to the following
explanatory variables:

† Geographic area (A): North Sea (ICES divisions IVb &
IVc); Eastern English Channel (ICES division VIId),
Western English Channel (ICES division VIIe), Celtic Sea
(ICES divisions VIIg, VIIh & VIIj) and the Bay of Biscay
(ICES divisions VIIIa & VIIIb).

† Sex (S): Female and Male.
† Sampling year (Y): 2013, 2014 and 2015.
† Sampling quarter (Q): 1, 2, 3 and 4.

For each species, data were deleted when the data number
from explanatory variables was lower than 10. The individual
weight of each species was modelled on body length as a con-
tinuous effect and geographic area, sex, sampling year and
quarter as factors (equation (3)):

log W � log L + A + S + Y + Q + log L × A + log L × S

+ log L × Y + log L × Q

(3)

with the separate influence of factors A (log L × A), S (log L ×
S), Y (log L × Y ) and Q (log L × Q) on the relationship
between body length and weight. For each species, the nor-
mality of the dataset was tested by a Quantile-Quantile Plot
of the residuals (Zuur et al., 2007).

To characterize the difference in the WLR for each species
of fish, the condition factor, K, has been employed (Le Cren,
1951, equation (4)):

K = 1000.W/L3 (4)

Fig. 1. Location of trawling stations from the Bay of Biscay to the North Sea sampled by the five scientific surveys (EVHOE, LANGOLF, CAMANOC, CGFS,
IBTS), where the 31,167 individuals used in this study have been sampled.
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Fish with a high value of K are heavy for their length, while
fish with a low value are light for their length.

All statistical analyses were carried out using the ‘CAR’
package (Fox & Weisberg, 2011) in the statistical environment
R (R Core Team, 2016).

R E S U L T S

Data relative to each species are presented in Table 1 with the
number of measured specimens and the minimum, maximum

and mean + SD of length and weight. For Actinopterygii,
measured length (29.0 + 13.4 cm) and weight (401.3 +
925.6 g) ranged respectively from 3 cm (Chelidonichthys
lucerna) to 220 cm (Conger conger) and from 1 g (several
species) to 45,000 g (Conger conger) and for Elasmobranchii,
measured length (69.6 + 21.4 cm) and weight (2173.8 +
1967.8 g) ranged respectively from 3 cm (Raja clavata) to
150 cm (Galeorhinus galeus) and from 1 g (Raja clavata) to
19,000 g (Mustelus asterias) (Table 1). The samples were dis-
tributed by sex, sampling year, sampling quarter and by geo-
graphic area (Supplementary Table 1). Among the 45 tested

Table 1. Characteristics of the 45 fish species caught from the Bay of Biscay to the North Sea during 2013, 2014 and 2015: number of sampled individuals
(N), mean length + SD (cm), length range (cm), mean weight + SD (g) and weight range (g).

Order Family Species N Mean
length +++++ SD

Length
range (cm)

Mean
weight +++++ SD

Weight
range (g)

Actinopterygii
Roundfishes Ammodytidae Hyperoplus immaculatus 139 23.28 + 3.30 13/36 34.2 + 12.9 6/90

Carangidae Trachurus trachurus 244 19.11 + 8.13 7/39 99.7 + 101.3 4/540
Clupea harengus 1342 20.93 + 5.21 9/34 70.2 + 51.0 5/292

Clupeidae Sardina pilchardus 111 18.30 + 3.31 9/26 53.3 + 29.7 7/138
Sprattus sprattus 627 10.81 + 2.16 5/15 12.4 + 55.8 1/1400

Congridae Conger conger 94 90.50 + 38.80 32/220 3 279.3 + 6 185.3 46/45,000
Engraulidae Engraulis encrasicolus 289 13.62 + 2.26 8/20 17.6 + 10.9 1/66

Gadus morhua 1452 45.80 + 18.43 11/126 1 567.4 + 2 172.2 15/24,020
Melanogrammus aeglefinus 1476 36.50 + 12.66 12/77 698.0 + 753.7 17/4900
Merlangius merlangus 6820 27.28 + 8.13 8/62 220.0 + 211.6 1/2348

Gadidae Micromesistius poutassou 52 15.77 + 2.94 13/27 30.2 + 25.5 15/149
Pollachius pollachius 50 54.36 + 14.16 15/82 1 815.2 + 1 156.5 38/3894
Trisopterus esmarkii 121 14.02 + 3.60 9/25 3 756.1 + 7 301.3 5/40,000
Trisopterus luscus 506 24.79 + 6.23 9/41 230.1 + 156.4 8/900
Trisopterus minutus 164 14.73 + 3.25 7/20 38.4 + 19.8 4/88

Lophiidae Lophius budegassa 489 29.94 + 14.95 5/82 726.4 + 1 054.8 2/7800
Lophius piscatorius 375 41.61 + 22.53 9/115 2 007.9 + 2 878.3 10/19,720

Merlucciidae Merluccius merluccius 2038 39.37 + 19.79 6/121 799.4 + 1 283.4 1/11,100
Moronidae Dicentrarchus labrax 417 46.11 + 11.35 16/83 1 221.8 + 969.1 43/7140
Mullidae Mullus surmuletus 904 19.34 + 5.99 8/39 122.9 + 111.8 6/880
Phycidae Phycis blennoides 579 31.43 + 10.25 13/60 323.7 + 308.5 14/1870
Scombridae Scomber scombrus 43 31.33 + 4.77 19/43 301.0 + 174.9 56/830
Sparidae Spondyliosoma cantharus 209 21.62 + 10.06 5/48 294.4 + 353.6 4/2190
Trachinidae Trachinus draco 62 33.66 + 6.74 12/47 291.8 + 145.6 10/682
Triglidae Eutrigla gurnardus 266 24.04 + 6.47 8/38 147.8 + 109.5 5/480

Chelidonichthys cuculus 1343 25.5 + 5.9 7/42 186.1 + 124.5 10/796
Chelidonichthys lucerna 176 31.18 + 8.30 3/64 380.5 + 422.2 1/3080

Flatfishes Zeidae Zeus faber 251 32.55 + 13.24 4/67 773.3 + 727.3 3/4900
Scophthalmidae Lepidorhombus whiffiagonis 977 29.85 + 10.11 7/58 271.9 + 277.6 5/1450

Scophthalmus maximus 74 39.92 + 10.99 17/63 1 613.1 + 1 332.0 92/6070
Scophthalmus rhombus 61 36.07 + 7.23 21/57 741.8 + 523.2 175/2750

Soleidae Solea solea 945 26.14 + 7.35 9/49 206.5 + 184.6 4/1300
Pleuronectidae Glyptocephalus cynoglossus 117 32.42 + 5.62 18/43 257.1 + 135.1 30/592

Limanda limanda 985 20.85 + 5.10 5/37 114.4 + 85.2 2/620
Microstomus kitt 503 25.98 + 5.27 10/45 238.9 + 152.3 10/1175
Platichthys flesus 98 28.15 + 5.15 15/39 280.2 + 175.8 35/960
Pleuronectes platessa 4684 28.08 + 7.09 10/57 257.0 + 209.1 5/1945

Elasmobranchii
Arhynchobatidae Raja brachyurops 45 60.98 + 20.93 30/103 2 075.6 + 2 235.1 142/10,650

Raja clavata 608 62.25 + 17.69 3/112 2 082.7 + 1 597.0 50/7340
Rajidae Raja montagui 82 47.94 + 15.23 12/74 943.2 + 733.3 5/2700

Raja undulata 144 68.08 + 20.51 27/100 2 892.9 + 2 206.7 200/7860
Scyliorhinidae Scyliorhinus canicula 176 50.93 + 11.12 10/67 504.0 + 377.1 18/3900

Scyliorhinus stellaris 250 70.76 + 23.84 17/113 2 095.8 + 1 746.8 48/6660
Trakidae Galeorhinus galeus 87 93.14 + 20.32 48/150 4 116.8 + 3 163.7 514/17,040

Mustelus asterias 692 80.78 + 16.68 33/127 2 328.8 + 1 552.5 116/8660

Within each class, species are listed in alphabetical order of their family.
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species, all showed a significant correlation (P , 0.05)
between body length and weight. The parameters of the
WLR are given in Supplementary Table 2. The initial growth
coefficient ‘a’ varied from 4.2 × 1024 + 1.0 × 1025 in
Conger conger to 6.6 × 1022 + 4.8 × 1022 in Scophthalmus
maximus, while the growth coefficient ‘b’ ranged from 2.7 +
1.2 × 1022 in Hyperoplus immaculatus to 3.5 + 8.2 × 1023

in Conger conger. The coefficients of the WLR are significantly
correlated (Figure 2). Among the 45 tested species, the value of
b was under 3 for 14 species (31.1%) with 12 roundfishes and
two flatfishes (Supplementary Table 2). All Elasmobranchii
species presented positive allometric growth (coefficient b
higher than 3) (Supplementary Table 2; Figure 2).

The four explanatory variables presented a significant effect
on the WLR (Table 2), but only for whiting (Merlangius mer-
langus) and striped red mullet (Mullus surmuletus), were all
four effectively significant at the same time. The influence of
sex was estimated on the 39 species for which macroscopic
observation was sufficient to determine sex identification.
Slopes of WLR were significantly different between males
and females for only 18 species (46.1%) of which 14 were
Actinopterygii (Family Pleuronectidae: Pleuronectes platessa,
Limanda limanda, Microstomus kitt, Platichthys flesus;
Family Soleidae: Solea solea; Family Scophthalmidae:
Scophthalmus maximus; Family Moronidae: Dicentrarchus
labrax; Family Merlucciidae: Merluccius merluccius; Family
Gadidae: Merlangius merlangus, Trisopterus esmarkii;
Family Mullidae: Mullus surmuletus, Family Trachinidae:
Trachinus draco; Family Phycidae: Phycis blennoides; Family
Triglidae: Chelidonichthys cuculus) and four were
Elasmobranchii (Family Trakidae: Mustelus asterias; Family
Scyliorhinidae: Scyliorhinus canicula; Family Rajidae: Raja
clavata, Raja montagui) (Table 1). The effect of the sex
factor is more often observed in Elasmobranchii (50%) than
in Actinopterygii (35.1%). Nevertheless, in Actinopterygii,
this result fluctuated according to the fish shape (66.6% of flat-
fishes vs 21.9% of roundfishes). The geographic factor of div-
iding the results into five sampling ecoregions from the Bay of
Biscay to the North Sea, was significant on WLR of only 18
species among 38 tested species (where species occur in

sufficient number in these areas) (47.4%). These species
were composed of 17 Actinopterygii (Hyperoplus imma-
culatus, Limanda limanda, Merlangius merlangus,
Chelidonichthys cuculus, Lophius piscatorius, Sardina pilchar-
dus, Gadus morhua, Lophius budegassa, Microstomus kitt,
Phycis blennoides, Merluccius merluccius, Melanogrammus
aeglefinus, Dicentrarchus labrax, Solea solea, Mullus surmule-
tus, Pollachius pollachius, Pleuronectes platessa) and only one
Elasmobranchii (Raja undulata) (Table 2). Contrary to the
sexual dimorphism, the spatial effect on the WLR was mea-
sured essentially for the Actinopterygii. The temporal effect
on the WLR must be divided at two observation scales with
the variations inter-years and intra-year (seasonality effect
represented by the quarters). Among the 29 tested species
with both temporal effects, only five (17.2%, Gadus morhua,
Merlangius merlangus, Lophius piscatorius, Mullus surmule-
tus, Mustelus asterias) presented both significant variations
inter-years and intra-year. Additionally, the year effect and
the seasonality effect were significant at the level of 32.4 and
35.3% respectively. In Elasmobranchii the seasonality effect
(42.8%) was more significant than between years (11.1%;
Table 2).

To compare the fatness of each fish species according to
geographic area, sex, sampling year and quarter, the condition
factor (K) was estimated (Table 3). In the event of significant
sexual dimorphism, all condition factors (K) of females were
higher than those of males (Table 3). For the other tested
factors, the highest values of K were distributed between all
sampled years, areas and quarters; there was no observable
trend (Table 3).

D I S C U S S I O N

The large sample data (N ¼ 31,167) used in this study allows
exploration of the possible effects of factors influencing the
allometric WLR. According to Hile (1936); Martin (1949);
Pauly & Gayanilo (1997) and Froese (1998, 2006), ‘b’ values
may range from 2.5 to 4 for fish, which is the case for the
values estimated in our study. Moreover, the study showed

Fig. 2. Relationship between the WLR parameters showed by a scatter plot of mean log a over mean b for 45 fish species by distinguishing the Actinopterygii
(roundfishes and flatfishes) and the Elasmobranchii (sharks and skates) with body shape information. The regression line was realized from 45 fish species.
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that the coefficients of the WLR were significantly correlated.
The growth coefficient (b) reflected firstly the shape and the
fatness of the fish species. Consequently, the Elasmobranchii
(sharks and skates) and the flatfishes presented only one
body shape, known as depressiform, and consequently the
weight growth was higher than the length growth (b . 3;
Figure 2). This result corroborated the results obtained for
Elasmobranchii (Pallaoro et al., 2005; Yeldan & Avsar, 2007;
Yığın & Ismen, 2009) and for Soleidae (Torres et al., 2012).
Among 28 roundfish species, the b values were within the
range of 2.5–3.5 and there was no observed trend in body
shape due to its large range of shapes as fusiform (i.e. Gadus

morhua), arrow-like (i.e. Hyperoplus immaculatus), ribbon-
like (Conger conger) or laterally flattened (i.e. Trachurus tra-
churus). The difference of shapes could be characterized by
the ‘form factor’ equation of the log a–b relationship
(Froese, 2006; Verreycken et al., 2011).

For all 45 species, the body length-weight relationship was
significant. Our analyses confirmed those observed in the
North-eastern Atlantic Ocean (Dorel, 1986; Coull et al.,
1989; Silva et al., 2013; Wilhelms, 2013), in Greek waters
(Petrakis & Stergiou, 1995), in the Persian Gulf (Naderi
et al., 2013) and in the Aegean Sea (Moutopoulos &
Stergiou, 2002). Consequently, it is possible for these marine

Table 2. P-value for the relationship between weight and body length (W-L) and for the influence of sex.

Order Family Species W-L Area Year Quarter Sex

Actinopterygii
Roundfishes Ammodytidae Hyperoplus immaculatus ,0.001 ,0.001 – 0.646 –

Carangidae Trachurus trachurus ,0.001 0.602 – 0.186 –
Clupea harengus ,0.001 0.139 ,0.001 – 0.918

Clupeidae Sardina pilchardus ,0.001 ,0.001 0.026 – 0.621
Sprattus sprattus ,0.001 0.562 0.174 – 0.099

Congridae Conger conger ,0.001 0.092 0.097 0.745 –
Engraulidae Engraulis encrasicolus ,0.001 0.322 0.725 0.002 0.778
Gadidae Gadus morhua ,0.001 ,0.001 0.092 ,0.001 0.729

Melanogrammus aeglefinus ,0.001 0.004 0.191 ,0.001 0.585
Merlangius merlangus ,0.001 ,0.001 0.018 ,0.001 0.008
Micromesistius poutassou ,0.001 – – – –
Pollachius pollachius ,0.001 0.045 0.120 0.443 0.413
Trisopterus esmarkii ,0.001 – ,0.001 – 0.049
Trisopterus luscus ,0.001 0.745 ,0.001 0.934 0.225
Trisopterus minutus ,0.001 0.616 – 0.053 –

Lophiidae Lophius budegassa ,0.001 ,0.001 0.289 0.438 0.764
Lophius piscatorius ,0.001 ,0.001 ,0.001 0.039 0.562

Merlucciidae Merluccius merluccius ,0.001 0.002 0.392 0.003 0.008
Moronidae Dicentrarchus labrax ,0.001 0.005 0.403 0.162 0.002
Mullidae Mullus surmuletus ,0.001 0.020 ,0.001 ,0.001 0.047
Phycidae Phycis blennoides ,0.001 0.001 0.731 – 0.040
Scombridae Scomber scombrus ,0.001 – – – –
Sparidae Spondyliosoma cantharus ,0.001 0.123 – 0.586 0.225
Trachinidae Trachinus draco ,0.001 – – – 0.016
Triglidae Eutrigla gurnardus ,0.001 0.600 0.611 0.629 0.233

Chelidonichthys cuculus ,0.001 ,0.001 0.001 0.583 0.047
Chelidonichthys lucerna ,0.001 0.544 0.327 0.850 0.498

Zeidae Zeus faber ,0.001 0.944 0.565 ,0.001 0.585
Flatfishes Lepidorhombus whiffiagonis ,0.001 0.971 ,0.001 0.909 0.867

Scophthalmidae Scophthalmus maximus ,0.001 0.808 0.322 0.446 0.016
Scophthalmus rhombus ,0.001 0.280 0.137 0.279 0.288

Soleidae Solea solea ,0.001 0.007 0.274 0.119 0.016
Glyptocephalus cynoglossus ,0.001 – 0.650 – 0.542

Pleuronectidae Limanda limanda ,0.001 ,0.001 0.041 0.188 ,0.001
Microstomus kitt ,0.001 0.001 ,0.001 0.222 0.001
Platichthys flesus ,0.001 0.882 – – 0.009
Pleuronectes platessa ,0.001 0.045 0.127 ,0.001 ,0.001

Elasmobranchii
Arhynchobatidae Raja brachyurops ,0.001 – 0.077 – 0.404

Raja clavata ,0.001 0.366 0.078 0.584 0.005
Rajidae Raja montagui ,0.001 0.334 0.667 0.171 0.009

Raja undulata ,0.001 0.019 0.181 0.020 0.428
Scyliorhinidae Scyliorhinus canicula ,0.001 0.180 0.139 ,0.001 ,0.001

Scyliorhinus stellaris ,0.001 0.564 0.669 0.592 0.237
Trakidae Galeorhinus galeus ,0.001 – 0.406 0.686 0.382

Mustelus asterias ,0.001 0.643 0.000 0.011 0.000

Geographic area, Sampling year and Quarter on the WLR (P , 0.05 in grey cell) of the 45 fish species caught from the Bay of Biscay to the North Sea
during 2013, 2014 and 2015. No value in the cell (–) indicates that the factor was not tested because there was only one modality.
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Table 3. Mean value of condition factor (K) of the 45 fish species according to each modality of the explanatory factors (Geographic area, Sex, Sampling year and Quarter) on the WLR. Grey cells indicate that a factor
appears to have a significant effect (P ,0.05) on the WLR (see Table 2 for P-values).

Order Family Species Areas Sex Year Quarter

VIIIa, b VIIg, h, j VIIe VIId 4 F M 21 2013 2014 2015 1 2 3 4

Actinopterygii
Roundfishes Ammodytidae Hyperoplus immaculatus 0.25 0.21 0.27 0.27 0.25 0.27

Carangidae Trachurus trachurus 0.94 0.92 0.93 0.93 0.94 0.91
Clupea harengus 0.68 0.61 0.63 0.62 0.64 0.64 0.63 0.61 0.62 0.63 0.61

Clupeidae Sardina pilchardus 0.77 0.88 0.79 0.75 0.78 0.79 0.77 0.85 0.87 0.78
Sprattus sprattus 0.72 0.70 0.73 0.72 0.74 0.74 0.70 0.69 0.71 0.82 0.87

Congridae Conger conger 0.21 0.24 0.22 0.25 0.22 0.22 0.22 0.22 0.23 0.23 0.22
Engraulidae Engraulis encrasicolus 0.61 0.63 0.62 0.62 0.62 0.63 0.61 0.63 0.65 0.64 0.62

Gadus morhua 1.05 1.10 1.03 1.02 1.04 1.03 1.01 1.04 1.02 1.04 1.03 1.01 1.04
Melanogrammus aeglefinus 1.02 1.03 1.09 1.09 0.90 1.02 1.00 1.03 0.99 1.03 0.98 0.90 1.09 1.03
Merlangius merlangus 0.79 0.85 0.80 0.83 0.83 0.84 0.82 0.82 0.85 0.83 0.83 0.84 0.80 0.83

Gadidae Micromesistius poutassou 0.69 0.69 0.69 0.69
Pollachius pollachius 0.93 0.97 0.96 0.94 1.02 0.97 0.94 0.97 0.94 0.97
Trisopterus esmarkii 0.71 0.75 0.69 0.70 0.75 0.70 0.71
Trisopterus luscus 1.26 1.27 1.29 1.27 1.31 1.31 1.31 1.23 1.27 1.30
Trisopterus minutus 1.12 1.06 1.08 1.08 1.09 1.05

Lophiidae Lophius budegassa 1.57 1.46 1.55 1.49 1.59 1.52 1.61 1.55 1.53
Lophius piscatorius 1.28 1.45 1.31 1.31 1.48 1.46 1.02 1.51 1.31

Merlucciidae Merluccius merluccius 0.71 0.71 0.77 0.71 0.69 0.78 0.73 0.70 0.77 0.71
Moronidae Dicentrarchus labrax 1.02 1.09 0.90 1.08 0.99 1.08 1.04 1.05 1.07 1.05 1.07 1.04 1.06 1.06
Mullidae Mullus surmuletus 1.28 1.30 1.32 1.09 1.08 1.31 1.28 1.25 1.29 1.31 1.26 1.11 1.22 1.31 1.33
Phycidae Phycis blennoides 0.76 0.79 0.80 0.73 0.73 0.75 0.79 0.77 0.77
Scombridae Scomber scombrus 0.89 0.89 0.89 0.89 0.87
Sparidae Spondyliosoma cantharus 1.76 1.80 1.75 1.76 1.78 1.80 1.76 1.79 1.77 1.80
Trachinidae Trachinus draco 0.66 0.68 0.64 0.65 0.64 0.66 0.64 0.65 0.68
Triglidae Eutrigla gurnardus 0.83 0.84 0.87 0.88 0.88 0.88 0.86 0.85 0.87 0.88 0.88 0.85

Chelidonichthys cuculus 0.98 0.92 0.93 0.97 0.97 0.92 0.97 0.97 0.94 0.98 0.95 0.95 0.96
Chelidonichthys lucerna 0.99 0.99 1.00 0.97 0.96 1.09 0.97 1.00 1.00 0.94 1.00 1.00

Zeidae Zeus faber 1.82 1.89 1.89 1.94 1.78 1.72 1.83 1.72 1.63 1.75 1.51 1.94
Flatfishes Scophthalmidae Lepidorhombus whiffiagonis 0.72 0.73 0.78 0.73 0.70 0.85 0.72 0.77 0.73 0.74 0.73

Scophthalmus maximus 1.86 1.85 1.89 1.92 1.93 2.00 1.91 2.04 2.00 2.00 1.89 1.99 2.01 1.93 1.99
Scophthalmus rhombus 1.46 1.43 1.41 1.43 1.36 1.41 1.33 1.41 1.34 1.41 1.40 1.46

Soleidae Solea solea 0.87 0.99 1.03 0.93 0.94 0.92 0.88 0.91 0.92 0.95 0.97 0.93 0.87 0.88 0.91
Glyptocephalus cynoglossus 0.67 0.68 0.67 0.68 0.70 0.68 0.67 0.67

Pleuronectidae Limanda limanda 1.14 1.11 1.02 1.07 0.98 1.19 1.06 1.04 1.07 1.04 1.11 1.12
Microstomus kitt 1.11 1.15 1.23 1.29 1.24 1.16 1.20 1.12 1.21 1.29 1.22 1.20
Platichthys flesus 1.13 1.09 1.18 1.06 1.14 1.11 1.14 1.06 1.10 1.15
Pleuronectes platessa 1.08 1.00 0.98 0.91 0.97 0.93 1.00 0.96 0.94 0.97 0.92 1.00 1.04
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species to use WLR to estimate weight from length or vice
versa. For each species, significant differences could neverthe-
less be observed according to sex, sampled year, seasonality
and geographic area. The first tested factor is the sex. The
sexual dimorphism influenced significantly the WLR of a
few species as observed in the Azores Islands (Morato et al.,
2001). The difference observed between males and females
for striped red mullet (Mullus surmuletus) corroborated the
previous study on this species during 2004 in the Eastern
English Channel (Mahé et al., 2013). The results of sexual
dimorphism effect on the WLR were similar in the Eastern
Adriatic Sea, except for Mustelus asterias, but the low
number of data in the Mediterranean Sea for one species
could be one explanation (Pallaoro et al., 2005). According
to the value of K, sexual dimorphism manifests as females
being heavier than the males at the same length. This trend
was observed both in the Actinopterygii and Elasmobranchii.
The current study was realized using five surveys covering
all ecoregions, from the Bay of Biscay to the North Sea.
Consequently, significant differences in their WLR were
observed for many widely distributed species across their dis-
tribution area. These differences were a result of many mor-
photypes within a species or a family. For striped red mullet
(Mullus surmuletus), there were two morphotypes according
to the head shape between South and North populations
(Bay of Biscay/Eastern English Channel; Mahé et al., 2014),
which could explain the observed difference of condition
factors. The head morphological variation, for one species
between two geographic areas or habitats, is influenced by
feeding behaviour (Hyndes et al., 1997; Janhunen et al.,
2009). Within a family, values or the trend of condition
factors between two similar species could be opposite. This
has been observed between Lophius budegassa and Lophius
piscastorius and between Scophthalmus maximus and
Scophthalmus rhombus during the same sampling years and
quarters. Seasonal or annual differences in WLR and therefore
in condition factor may be generally related to reproduction
(gonad development and spawning period) or feeding activ-
ities (food availability and feeding rate) (Bagenal & Tesch,
1978; Weatherley & Gill, 1987; Wootton, 1990) but also attrib-
uted to differences in sampling, particularly length ranges.
Throughout a year, significant difference of the condition
factor according to the spawning period for each species
(Supplementary Table 3), showed that the specimens were
heaviest just before and during the spawning period. This sea-
sonal oscillation of the WLR and the condition factor could be
explained by environmental factors such as temperature but
also by the availability of food and the physiological state of
the fish (i.e. degree of gonad development) (Le Cren, 1951;
Froese, 2006; Pauly, 2010; Mozsar et al., 2015).
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Mahé K., Coppin F., Vaz S. and Carpentier A. (2013) Striped red mullet
(Mullus surmuletus, Linnaeus, 1758) in the eastern English Channel
and southern North Sea: growth and reproductive biology. Journal
of Applied Ichthyology 29, 1067–1072.
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