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SUMMARY
Sophisticated robotic applications require systems to be
reconfigurable at the system level. Aiming at this require-
ment, this paper presents the design and implementation of
a software architecture for a reconfigurable real-time multi-
processing system for multi-robot control. The system is
partitioned into loosely coupled function units and the data
modules manipulated by the function units. Modularized and
unified structures of the sub-controllers and controller pro-
cesses are designed and constructed. All the controller
processes run autonomously and intra-sub-controller infor-
mation exchange is realized by shared data modules that
serve as a data repository in the sub-controller. The dynamic
data-management processes are responsible for data ex-
change among sub-controllers and across the computer net-
work. Among sub-controllers there is no explicit temporal
synchronization and the data dependencies are maintained
by using datum-based synchronization. The hardware driver
is constructed as a two-layered system to facilitate adaptation
to various robotic hardware systems. A series of effective
schemes for software fault detection, fault anticipation and
fault termination are accomplished to improve run-time
safety. The system is implemented cost-effectively on a QNX
real-time operating system (RTOS) based system with a
complete PC architecture, and experimentally validated suc-
cessfully on an experimental dual-arm test-bed. The results
indicate that the architectural design and implementation are
well suited for advanced application tasks.

KEYWORDS: Real-time processing; Multi-robot control;
Fault detection; Reconfigurable processing; Home-care
system.

1. INTRODUCTION
One of the driving forces behind incorporating robotic
systems into a complex application is that the robots can be
programmed for various tasks. Such programmability, or
reconfigurability at the task level, is made possible by a
proper design of the robot control system. Traditionally,
when a robot system is delivered, the structure of its control
system is fixed. Although in a multi-robot system, robots
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can be re-arranged to do different cooperative tasks based
on the programmability of the individual robot, the control
system itself is not designed for reconfiguring the structure
in the scope of a multi-robot system as a whole.

A traditional approach for building robot control systems
is to develop a controller for a specific type of robotic
system. Fiorini et al.1 described a PC-based motion controller
using the Configuration Control algorithm for the RRC
manipulator. Central to the controller is an interrupt handler
design (serving as a system scheduler) by combining features
of the iRMX real-time operating system (RTOS) and one
of the programmable counters of the PC. Several controller
processes run at different frequencies. The system was previ-
ously implemented on a VME-bus/VxWorks RTOS for high-
level control and a Multibus-based system for joint-level
control2,3 and was re-implemented on a PC and Multibus-
based system. The two sub-systems were connected via a
VME-to-Multibus or PC-to-Multibus extender. A similar
system structure (a VME-bus and PC-based system with
a bus extender) was adopted to develop and implement a
control system for a dual-arm redundant robot system.4

As for multi-robot control systems, an attractive approach
for architecture design is using multi-agent systems with
distributed artificial intelligence theory. Fraile et al.5 pre-
sented a distributed planning and control architecture for
autonomous multi-manipulator systems using a multi-agent
paradigm. The framework was aimed at flexible robotic
assembly tasks. Issues of flexibility, scalability, recon-
figurability, and fault-tolerance were addressed by deploying
a team of distributed and autonomous agents negotiating,
collaborating and cooperating to achieve the goals. A desi-
gnated communication format and protocol was used by the
agents to exchange information. All system components were
modeled and constructed in a uniform and homogeneous
manner. The agent-based control system was implemented
in a distributed fashion on four PCs, each of which was
connected to one of the low-level manipulator controllers
over a serial RS-232 line. All four PCs were further linked
through a local Ethernet network. Issues related to real-time
performance were not reported.

Being aware that developing robust real-time software can
consume the major resources of a project, Roberts et al.6

conceived a type of software architecture for robotics and
automation that addresses modularity and re-usability of the
system components. The issues of safety, off-line testing and
realistic simulation were addressed. Two-level concurrency
of the components was used: coarse grain with operating
system processes and fine grain using threads. Remote
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procedure calls and message queues were used for inter-
process communication. System safety and reliability were
achieved using combined hardware and software features.
The architecture was implemented on a VME-bus based sys-
tem for a large mining machine – a 3500 tons dragline. All the
components ran at frequencies ranging from 1 Hz to 10 Hz.
Issues concerning system scalability and reconfigurability
were not reported. Traub and Schraft7 presented a real-time
framework for distributed control systems that is aimed at
increasing software modularity, portability, and reusability.
It provides an interface to operating system dependent I/O
operations for TCP/IP, serial communication and CAN field-
bus, which are based on the client-server structure. The client-
server communication connects not only different hardware
units but also processes and threads running on the same
machine. Applications based on this framework are shielded
from any operating system dependence. Design patterns are
developed in order to express and document common struc-
tures on a micro-architectural level between different applica-
tions. This real-time framework was designed with UML and
implemented in C++ on Windows NT and Windows CE. The
paper also describes the use of the framework as a basis for
the control software of a mobile home-care system Care-O-
bot.8

Recently, increasingly sophisticated applications, such
as multiple cooperative robots, macro-micro manipulators,
autonomous mobile robot colonies, and flexible manufactur-
ing and assembly systems, are attracting the attention of many
researchers and organizations. The nature of these new
systems challenges the traditional control system in that the
system structure needs to be more flexible and, if recon-
figured, the system should be able to maintain a reliable
real-time performance. The system should be reconfigurable
and scalable in both control hardware and software when a
requirement of functionality changes. The new incorporated
components may run at a different frequency, share run-
time information, and contribute to the enhanced system
functionality, while the existing components should stay
intact if so required. A more advanced and powerful control
system is needed to accommodate such applications.

This paper describes the work on design and implementa-
tion of a software architecture for a reconfigurable distributed
real-time multi-processing system for multi-robot control.
Several essential points such as modularity, reusability and
mobility of the system components have been addressed.
Much effort has been made to construct a robust and flexible
yet cost-effective control system. The system is implemented
on a QNX RTOS-based system9,10 with a PC architecture,
and has been successfully validated experimentally on the
REDIESTRO dual-arm test-bed. The results indicate that the
architectural design and implementation are well suited for
advanced application tasks.

This paper consists of seven sections. Section 2 elaborates
on the motivations and requirements. Section 3 presents the
analysis and modeling of the multi-robot control system.
Section 4 describes the system architectural design. Section 5
discusses the key issues of a QNX-based implementation.
Section 6 presents the results of the experimental tasks
performed by the implemented system on the REDIESTRO
dual-arm system. The paper draws conclusions in Section 7.

2. MOTIVATIONS AND DESIGN REQUIREMENTS
This paper deals with a software architecture design of a
complex control system for multiple robots in a research
environment. In addition to meeting basic functional requi-
rements, the system architecture should ensure that the
special requirements, such as scalability and adaptability,
schedulability and predictability, safety and reliability, and
cost-effectiveness, are realizable.

2.1. Scalability and adaptability
The scalability requirement arises from the need to use
the same system structure for different robot applications
(e.g. dual arm systems and macro-micro manipulators). The
control system should have the capability to be reconfigured
at the robot level, and/or at the joint (or sensor and actuator)
level. They should also adapt to various numbers of robots
(homogeneous and/or heterogeneous) incorporated in the
system. When the scale of the system increases, it may
come to a situation where running all the system components
on the originally designed hardware platform will result in
unsatisfactory performance. This is the adaptability requi-
rement that needs the control system to be hosted on different
topologies of computer systems, from a single computer to a
distributed computer network.

In order to meet the scalability and adaptability requi-
rements, the whole system functionality should be partitioned
and modularized. The information exchange scheme among
the system components should be efficient yet flexible, so
that all the components can work in an autonomous or
loosely coupled way. Modularity is also helpful for system
development and maintenance.

2.2. Schedulability and predictability
A robot system usually characterizes itself as a hard real-time
system, when used in industrial and research environments.
The effectiveness of its performance is characterized by the
logical correctness of its behavior and the physical timing of
the desired behavior as well. In other words, late sensing data
or control responses mean a system failure. The consequence
may bring the robot into unstable states, which may result in
a catastrophe at the cost of the robot system, its environment,
and even the human operators.

In order to meet the hard real-time requirement, different
activities of the application should be schedulable and system
behaviors should be predictable.11 The system should be
logically partitioned not only for accomplishing the overall
functional requirement but also for good scheduling. Proper
prioritizing of the system sub-modules is essential for
supporting correct synchronization.

2.3. Reliability and safety
Besides being a time-critical system, a robot system is also
a safety-critical system. As robot systems become more
complex, reliability and safety issues become increasingly
important in the system design. The system should be robust
enough with reliable performance and fail safe operation.
It should work well in an environment with reasonable
disturbances and gracefully degrade in the presence of a
partial system failure. In addition to being deterministic in
the time domain, the system should be deterministic in its
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behavior and the consequences of its behavior. Particularly,
the energy transferred from the system to the environment
should be bounded. This includes momentum and forces
executed by the robots.

In order to meet the reliability and safety requirement,
the system should ideally have fault-tolerance and fault-
recovering features. This may need cooperation between the
software and the hardware. From the viewpoint of software
architecture design, the system should have the capabilities
of fault detection, fault anticipation and fault termination.
For a pilot prototyping robot system, it is very important to
have fail-safe features.

2.4. Cost-effectiveness
A sophisticated robot control system is usually implemented
with a high-performance computer system. Some control
systems for research robots have adopted a multiprocessor
VME-based computing platform.2 Others, although using
PCs for hosting high-level control applications, have still
kept a VME-based system4 or a Multi-bus system1 for low-
level control such as data acquisition and joint motor control.
Control systems for commercially-available robots, on the
other hand, usually are not constructed to have an open
architecture, and only offer very limited system expand-
ability. Expanding such systems requires a lot of effort in
reverse engineering even with the close cooperation with the
original robot manufacturer.12

Although cost-effectiveness requirement is an issue related
to implementation, it should be addressed from the very
beginning of the system design. The system architecture
should ensure high portability of the final implementation.
In other words, it should be easily realizable on different
computer platforms, including the PC ISA/PCI architecture.
Another issue related to cost-effectiveness is that the system
architecture should be easily developed, debugged, tested
and maintained.

3. ANALYSIS AND MODELING
This section describes the analysis and modeling of the multi-
robot control system. The modularized modeling serves as
the basis and the rationale for the architectural design and
the detailed implementation to achieve system scalability
and adaptability.

3.1. Function analysis
A robot control system can be modeled with function groups,
or sub-controllers, in three stages: the Decision Stage, the
Strategy Stage and the Execution Stage. The function model
of a typical robotic application in the control perspective is
shown in the Figure 3.1. The arrows show the information
flows among the subsystems.

3.1.1. Decision-stage controller. The basic function units
in the Decision-Stage Controller are Recognition, System
Configuration and Task Management. The task goal is inter-
preted by the Recognition unit and transferred to the System
Configuration unit. The Recognition unit also translates
the environment information into an environment model.
With the knowledge of the capabilities of all the sub-systems,
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Fig. 3.1. Function model of a robot control system.

the environment model and the goal, the System Configur-
ation unit re-arranges the robot system and the work-cell
in order to accommodate the new task. This kind of re-
arrangement, or reconfiguration, can be performed mechan-
ically, electrically and/or on the computer network. This re-
quires the relevant system components, i.e., hardware and/or
software, to be mobile and re-configurable. The Task Man-
agement unit generates the task information and sends it to the
Strategy-Stage Controller. When a task is being executed, the
Task Management monitors the system status. The Decision-
Stage Controller also sends the System-On command directly
to the Execution-Stage Controller to start the system, and the
System-Off command to stop the system when the task is
finished, or if there is an emergency stop situation.

It should be noted that in this paper, the description of
the Decision-Stage Controller is only given for the sake of
completeness in the context of the robot control system.
No further work on the Decision-Stage Controller will be
described. Nevertheless, one of the goals of our work was to
design an architecture that makes it possible to reconfigure
the system structure using the Decision-Stage Controller.

3.1.2. Strategy-stage controller. The basic function units
in the Strategy-Stage Controller are Task Planning, Control
Law, Robot Coordination and Data Logger. The Task Plan-
ning unit translates the task information into task segments
with a fine granularity, based on which the trajectories
to be tracked are generated. The Control Law unit computes
the robot commands based on the trajectories, robot feedback
and the specific control algorithms, such as the impedance-
control algorithm. These robot and joint commands are
sent by the Robot Coordination unit to the Execution-Stage
Controller. The Strategy-Stage Controller sends notification
to the Decision-Stage Controller indicating the system’s
dynamic status, and the start and termination of the tasks.
The Data Logger unit logs the run-time information of the
sub-system for post-task analysis.

3.1.3. Execution-stage controller. The basic function units
in the Execution-Stage Controller are Actuation, Perception
and Safety Guard. The Actuation unit transfers robot
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Fig. 3.2. Typical system functional sequences.

commands from the Strategy-Stage Controller into digital
values and sends them to the interfaces of the robot joint
actuators, which further apply the corresponding physical
voltages or currents to the actuators. This unit also accepts
the commands from the local Safety Guard unit when there
is an emergency situation. The Perception unit acquires
the sensor data reflecting the robot dynamic status and the
environment status. These raw data from sensor interfaces
are further transferred into meaningful information and
sent to the Strategy-Stage Controller and Decision-Stage
Controller as feedback to the Control Law, Data Logger and
Task Management function units. The Safety Guard unit
evaluates the robot status and issues an emergency status
if necessary. These emergencies include excess in speed
limits, joint torque limits, and end-effector force and torque
limits. There are other kinds of emergencies not sensed
by the sensors. Instead, they are detected by cooperation
between the sub-controllers and between the function units
(such as loss of communication and/or synchronization).

3.1.4. Functional sequence. The system functionality of a
modern robot application is achieved by collaboration of the
sub-systems running on a computer or computer network(s).
The sequence diagram in Figure 3.2 shows the typical
interactions among sub-controllers. There are three different
periods during an application task procedure: initialization,
task performance and termination. For the two dimensions
in the sequence diagram, the vertical dimension represents
time, and the horizontal one represents different objects.

The procedure of a robot application is originated by the
Task Goal. After setting the Task Information (contained
in the Task File) for the Strategy-Stage Controller (SSC),
the Decision-Stage Controller (DSC) issues a System-On
command to power on the robotic system hardware. Then the
DSC launches the SSC and the Execution-Stage Controller
(ESC). The notifications from the SSC and the ESC indicate
success of the launches. Finally, the ESC gets the initial
sensor data and sends them to the SSC; the SSC sets initial
robot commands for the ESC to execute. This is the end of
task initialization.

Decision-Stage
Controller

Task Goal
Environment
Configuration
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Task File
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Fig. 3.3. DSC-related data modules.

During task performance cycles, the SSC and the ESC
perform their functions until the task is accomplished. The
task termination period begins with the End-Task command
issued by the SSC. The ESC then stops the robot(s) that it
directly interfaces to. After receiving notifications from the
SSC and the ESC, the DSC sends a System-Off command to
power off the robotic system hardware.

Please note that the termination period shown in Figure 3.2
is the one with a successfully fulfilled task session. A good
system design should also deal with the interruption of the
task session with unanticipated situations. Sections 4 and 5
discuss in detail the abnormal terminations of a task session.

3.2. Data modeling
In this section, we present the data modules and the
relationship among them and the sub-controllers. Then we
examine the persistency of the data modules with respect to
task sessions. Data modules are abstracted from the physical
function model of a robot application (such as that in Fig-
ure 3.1). Therefore, it will be clearer if we discuss the data
modules and their associations with the sub-controllers.

3.2.1. DSC-associated data modules. As shown in Fig-
ure 3.3, four data modules relate to the DSC. The multiplicity
is depicted along with the aggregation associations. There
is usually only one DSC in a robot application with one or
more robot groups, each performing its own task. A DSC can
contain all four modules, each with one or more instances.
One set of the four modules corresponds to a robot group.

The Task Goal is the information of what is to be done,
while the Task File contains the sub-tasks specifying how
to fulfill the Task Goal. The Environment Configuration
contains different potential work-cell layouts and the sub-
system capability information for re-configuring the robot
system when necessary. These re-configurations may involve
software and hardware components of the control system and
the mechanical sub-systems. Work-cell Geography contains
the dynamic information of the relative positions and motions
of the robots and objects in the work-cell. Typically, this
information is acquired by range sensors, vision sensors or
human operators when a part of the DSC. The DSC uses this
information to evaluate and anticipate overall system status.
One of the uses of the Work-cell Geography information
for the DSC is to determine whether the system is in a safe
condition.

3.2.2. SSC-associated data modules. Figure 3.4 shows the
data modules related to the SSC. The SSC usually exists
for a robot group performing one task in an application
session. Therefore, there is only one instance of the Task
File, Work-cell Configuration and Work-cell Geography.
Because a robot group may contain more than one robot,
the SSC can contain one or more instances of the Robot

https://doi.org/10.1017/S0263574704000360 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704000360


Multi-robot control 665

Task
File

Strategy-Stage
Controller

1

1

Robot
Configuration

Tool
Configuration

Object
Configuration

W orkcell
Configuration

Robot
Command

Robot Position
and Velocity

Internal
Force/ torque

W orkcell
Geography

1

1

1

1

1..*

1..*

1..*1..*

1..*

1

1

1

1

1

1..*

1..*

External
Force/Torque

1

1

Fig. 3.4. SSC-related data modules.
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Configuration, Tool Configuration, Object Configuration,
Robot Command, Robot Position and Velocity, Internal and
External Force/Torque.

The Task File contains sub-task information, such as target
robot position and orientation in position-control mode,
or target force and torque in force-control mode, control
algorithm related parameters and task end conditions for
all sub-tasks. The Work-cell Configuration contains static
work-cell information such as the reference of the world co-
ordinates, and the positions and orientations of the robot base
coordinates. The Work-cell Geography is denotes feedback
from the ESC containing dynamic work-cell information.
When used by the SSC, it is usual for robots to find an
optimal trajectory for online collision avoidance, or to catch a
moving object. The Robot Configuration contains geometric
measures and the inertia data of the robots in the group.
The Tool Configuration and Object Configuration contain the
geometry of the tools attached to the robots, and the geometry
of the objects manipulated by the robots. The Robot Position
and Velocity, and the Internal and External Force/Torque de-
note the dynamic feedback information of the robots from the
ESC. The Robots Commands are the outputs sent to the ESC.

3.2.3. ESC-associated data modules. Figure 3.5 shows
the data modules related to the ESC. One ESC is usually
associated with each mechanical robotic system. Therefore,
the ESC has only one set of Robot Command data and
robot feedback: Robot Position and Velocity, Internal and
External Force/Torque, and Work-cell Geography. In order to
interface to input/output hardware modules, the ESC needs
one instance of Input/Output Interface Configuration, and
Sensor and Actuator Configuration.

The Input/Output Interface Configuration data contains
the addresses and channels of the interface modules, and
input/output parameters. The input parameters are used
for translating the digital values from input modules (e.g.,

Table 3.I. Characteristics of the data modules.

Related sub-controller
Data

Data modules DSC SSC ESC persistency

Task Goal Yes Static
Task File Yes Static
Environment Config. Yes Static
Work-cell Geography Yes Dynamic
Robot Configuration Yes Static
Tool Configuration Yes Static
Object Configuration Yes Static
Work-cell Config. Yes Static
Robot Command Yes Dynamic
Robot Position/Velocity Yes Dynamic
Internal Force/Torque Yes Dynamic
External Force/Torque Yes Dynamic
I/O Interface Config. Yes Static
Sensor/Actuator Config. Yes Static

analog to digit converters, optical encoders) to feedback
information. The output parameters are used for translating
robot commands to digital values that are provided to the
output modules (e.g., digit to analog converters). Similarly,
the Sensor and Actuator Configuration information con-
tains the parameters for translation between electrical signals
at the interface module ends and the robot status (e.g., force
and position) at the sensor/actuator ends.

3.2.4. Data association analysis. Data modules have
different characteristics and can be classified as static data
(constant data during a task session) and dynamic data
(variable as the system status changes). Some modules are
owned by one sub-controller, while others are shared by
multiple sub-controllers. Table 3.I shows the characteristics
of the data modules. Note that the data persistency is with
respect to a task session. We can see that all the static
data modules (except the Task File) are exclusively related
to one sub-controller, while all dynamic data modules and
the Task File are shared by multiple sub-controllers. The
differentiation between local data and shared data forms the
basis of the modular design for the system components and
the information exchange scheme.

3.3. Data awareness of function groups
In the previous sections, we have described function modules,
data modules and their associations. For these shared data,
we can see that they are actually the exchanged information
between sub-controllers. In fact, they are shared only in
the space dimension (physical memory space). In the time
dimension, on the other hand, they are transferred among the
sub-controllers. The Task File, for instance, is produced by
the DSC and consumed by the SSC. The Robot Command
data are produced by the SSC and passed to the ESC to control
the robots. From this point of view, the sub-controllers have
a producer-consumer relationship.

Further, we have clearly partitioned the sub-controllers
(function groups) and bestowed data awareness on them. That
is, the sub-controllers know what the prerequisite data are,
what the responsibility is, and what the consequent data to be
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disposed of are. With the data awareness, a sub-controller or
a function unit can exist and work well if its prerequisite data
is available and the consequent data is disposable. In other
words, it is not necessary that the sub-controllers or the func-
tion units have global knowledge of the robot system. Only
having local knowledge of the robot or robot group under the
control of the sub-controllers is sufficient for the survival of a
sub-controller or a function unit. This kind of data awareness
improves the modularity and mobility of system components
and hence system scalability and adaptability.

4. ARCHITECTURE AND DESIGN
This section presents the architectural design of the multi-
robot control system based on the analysis and modeling
in Section 3. We adopt a top-down style by starting with
the global system structure, then the sub-controller structure,
and finally the structure of the individual function units, and
run through these topics with data related concepts: data con-
nection, data isolation and data encapsulation. We conclude
this section with a trade-off analysis of the system design
by examining the design against the design requirements
discussed in Section 2. The discussion of the design of the
Dynamic Data Management and the data modules is deferred
to the next section, since most of their features more or less
depend on implementation-related issues.

4.1. Global system structure
The global system structure provides a bird’s-eye view of the
whole system when running an application task. In order
to meet the design requirements in Section 2, we must
construct loosely coupled system components. Based on
the system modeling and analysis in Section 3, one way
to achieve a loosely coupled connection is to build up the
system components functionally independent of each other.
The connections among the system components are realized
by the shared data modules, which the sub-controllers treat as
data repository. From the perspective of the sub-controllers,
the peripheral world is only the data source and destination.
Therefore, they can home in to wherever the data repository
is available. It is worthwhile noticing that for a real-time
system, there are temporal requirements for the availability
of the data repository, which will be discussed in Section 5.
Figure 4.1 shows the system structure.

4.1.1. Data connection. Since the goal is that there are
no direct functional interactions among sub-controllers,
we need Dynamic Data Management (DDM) modules to
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Fig. 4.2. Global system behavior.

update the shared data when needed. Those shared data are
actually input and output information exchanged between
the sub-controllers. The dynamic data updating by the DDM
accomplishes the data exchange between the sub-controllers
and closes up the information flow loop. In order to achieve
a modular system, the sub-controllers should have a uniform
interface to get access to the shared information, especially
for dynamic data. The DDM realizes the shared data object,
to which the sub-controllers will conform. Since potentially
the sub-controllers may physically be hosted on different
machines, each sub-controller needs to have its own DDM
so that it can be mobile and achieve system scalability and
adaptability. The structure of the sub-controllers will be
discussed in the next section.

4.1.2. System behavior. The state-chart diagram in Fig-
ure 4.2 shows the designed global system behavior. We can
see that all the sub-controllers and DDM are running as
independent processes. We use orthogonal states to depict
the independence among the subsystems.

A multi-robot control system is a real-time synchronous
system. An application task needs the cooperation of different
parts of the system by some means of synchronization. While
using local synchronization does not cause problems for the
loose coupling of the system, using an explicit global timing
signal, however, brings the system back to a tightly coupled
one. Moreover, explicit global synchronization requires more
system resources or perhaps a more powerful hardware
system than that without explicit global synchronization.
This is even more true when the system is implemented
over a network. In Figure 4.2, we can see that there is no
explicit global synchronization and all the processes are
running under their own contexts. We realize the global
synchronization implicitly through data dependency, which
will be discussed in later sections. Although all the processes
have time-critical characteristics, only the SSC and the ESC
need synchronization on every sampling and control period.
The DSC needs only to react quickly to emergencies. The
DDM needs no synchronization at all, not only because the
data updating occurs only when needed, but also because
different data could change at different rates. That is the other
positive effect of local synchronization: the sub-controllers
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can run at different frequencies, which is particularly useful
for a heterogeneous system.

4.2. Sub-controller structure
In this section, we discuss the structures of the SSC and
the ESC, while leaving the DSC sub-system open for future
work. The design and implementation of the DSC are beyond
the scope of this paper.

4.2.1. Static structure. Figure 4.3 shows the detailed sub-
controller structure. A sub-controller contains one Manager
process and one or more Worker processes. The basic
responsibility of the Manager process is initializing the
controller group, launching Worker processes, synchronizing
the controller group and monitoring run-time status. The
Worker processes are responsible for specialized functions
of the sub-controllers. For an ESC, for example, there are
worker processes for Data Acquisition, Command Sender
and Safety Guard.

The connection between the SSC and each ESC is the
shared data object exchanged by the DDM via the Robot
Group Shared Data object. The sub-controller gets access
only to the local data module for the input and output
information, without any awareness of the existence of the
other sub-controller(s). In other words, the local data module
is the whole interface of the sub-controller for information
exchange.

The partitioning of the controller’s function into separate
processes is based on the following conditions and concerns:

(i) It can be naturally partitioned into independent function
units;

(ii) There is little data dependence between the function
units, so that they can be running independently;

(iii) It is necessary and possible to prioritize and schedule
the function units separately;

(iv) The separation and combination can improve system
safety.

4.2.2. Data isolation. From Figure 4.3, we can see that in
the local data module, there are extra local dynamic data and
a local copy of robot group shared data, in addition to the
basic static data (as shown in Table 3.1). Local dynamic data
are used for maintaining system integrity and safety, while a
local copy of robot group shared data is used for improving
real-time performance. The latter is examined next.
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Although all the controller processes are running autonom-
ously, or asynchronously, the sequence of data production
and consumption, have to be synchronized in a specific order,
especially in a control system. That means the processes will
get access to the global data at different instants and this will
cost a lot in terms of real-time performance. By keeping a
local copy of the global shared data, which is updated by the
DDM only once for each sampling/control period, the need
for access to the global shared data object is significantly
reduced. The real-time performance is hence improved.

The shared data object acts as the connection among
the sub-controllers as discussed above. That is because of
the data dependency between the sub-controllers. Within
the scope of a sub-controller, the controller processes are
constructed for the least dependency as was described in
Section 4.2.1. The local shared data object actually acts as
the isolation among the controller processes and serves as
a medium for them to get access to the robot group shared
data. This is an extension of the data connection among
the sub-controllers in that the controller processes can run
with significant autonomy, while fulfilling naturally tightly
coupled functions for a robot task session.

4.2.3. Sub-controller behavior. Figure 4.4 shows the sub-
controller behavior. The Manager process and all the
Worker processes run under their own contexts, which are
represented by the orthogonal states. All Worker processes
have the same behavior, but different routines. There is an
independent timer for each sub-controller. The Manager
sends the local synchronization signal with a predefined
frequency of the local timer. It is not necessary that all the
sub-controllers run at the same frequency, since the sub-
controllers synchronize themselves independently.

When the task is completed successfully, the SSC sets
the Task End flag. Within the scope of the sub-controller,
the Manager issues the Session End signal, on which all the
Worker processes will stop running and quit. All the
processes can set an Emergency Stop flag if they detect
any unsafe situations. Once the Emergency Stop flag is
sensed, the Manager sends the Session End signal to the
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local Workers and sets the Emergency Stop flag in the local
copy of Robot Group Shared Data as well. Finally, the DDM
propagates the flag to all the related sub-controllers.

4.3. Controller process structure
The controller processes are the finest granules of the
independent run-time entities. They have different responsi-
bilities, such as the Manager and the Workers, and are spe-
cialized for various functions, such as control computations,
data acquisition, sending commands, etc. However, they have
the same static structure and dynamic behaviors, as those
designed in this paper.

4.3.1. Static hierarchy. The class diagram in Figure 4.5
shows the static structure and inheritance hierarchy of the
controller process. On top of the hierarchy is the Controller
Process (an abstract class) that contains a Local Data module.
The Local Data module contains Shared Dynamic Data (local
copy of the robot group shared data), Local Dynamic Data
and Configuration Files. The contents of these data objects
can be found in Section 3.

The SSC Process and the ESC Process are generalized
from the Controller Process. The difference between the SSC
Process and the ESC Process is hat the latter has a Robot-
level Driver in the fact that it needs to communicate directly
with the robot control system hardware. The SSC Manager
and SSC Worker are the sub-classes of the SSC Process. The
SSC Manager has a timer for timing-based synchronization,
while the SSC Worker has not, since it only needs to receive
the synchronization signal. This is the same situation in the
ESC: only the ESC manager has the timer. The ESC Worker
is further generalized to four specialized work processes.
Those processes are ESC Data Acquisition, ESC Command
Sender and Safety Guard, ESC Self-calibration, and ESC
PID Computation.

The Robot-level Driver contains an I/O Module Driver,
which interfaces directly to the input/output boards. The I/O
Module Driver is a set of hardware-specific and general-
purpose classes/functions handling raw data, which is
understood directly by the input/output boards. The Robot-
level Driver is actually a wrapper library that serves an
isolation layer between high-level software and the low-
level hardware input/output operations. It presents a virtual
machine to the high-level software and maps it to the I/O
hardware modules. To achieve this, the Robot-level Driver

interprets the meaningful robot-level commands to board-
level ones and executes them with the relevant I/O Module
Driver operations. With this structure, the low-level hardware
operations are transparent to the high-level application
software. A properly designed protocol between the Robot-
level Driver and I/O Module Driver will achieve the isolation
between high-level software and low-level hardware. The
Robot-level Driver can adapt to any line of input/output
boards and the I/O Module driver can adapt to different
robotic systems. This will facilitate system reconfiguration.

4.3.2. Data encapsulation. From Figure 4.5, we can see that
every individual controller process encapsulates all relevant
data modules and objects. All the controller processes treat
the static and the dynamic data in the same way, taking
advantage of the fact that the shared dynamic data will be
updated by the DDM every sampling and control period.
This kind of data encapsulation makes it possible for all
the controller processes to work in a self-sufficient manner,
while the DDM modules ensure data dependency, i.e.,
data producer-consumer relationship among the controller
processes.

With the object and data module encapsulation, realiza-
tions of some important functions in a multi-processing
system become as easy as that in a single-process system. For
example, when the robot system starts, there is an uncertain
period between the power-on of the robots and the first
issuing of a robot command. We need to freeze the robots
as early as possible to eliminate any possible unspecified
robot movement caused by any environment disturbance. In
a multi-processing system, the session is started with the
Manager process, which in turn launches the specialized
Worker processes. The process that has the ability to issue a
freezing-robot command might not start in the early stage of
the task session, nor has it the priority to execute earlier than
the other processes. This might increase the uncertain period.
Now the ESC Manager has the Robot-level Driver and the
system hardware configuration. It can send the freeze-robot
command at the earliest instant before spawning any other
Worker processes, even if its normal operation priority is the
lowest in the controller group.

4.3.3. Controller process behavior. All controller pro-
cesses have four mandatory states: Initialization, Routine,
Cleanup and Idle as shown in Figure 4.4.

• Initialization: entry of the process. This does process
initialization before the application session is started.

• Routine: body of the process. This does synchronized
work during each control and sampling period.

• Cleanup: end of the process. This is executed before the
actual termination.

• Idle: after the Routine is finished and before the next
control and sampling period. This does non-synchronized
work (if any) during the session.

4.4. Benefits and overheads
The goal of the modular design of the multi-robot control
system is to meet the requirements discussed in Section 2. In
addition, our aim is to facilitate an efficient implementation
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that is based on the design. The following summary discusses
the tradeoffs of the system architecture and design.

4.4.1. Benefits

a. Scalability and adaptability. All the run-time entities
(robot group controllers, sub-controllers and controller
processes) are functionally self-sufficient. There is no explicit
global synchronization, and the data dependency is ensured
by the DDM modules. With the autonomy and mobility
of the system components, this system design can adapt
to reconfigurations and scale-up by expansions. With the
two-layered control hardware driver, the system can also
adapt to various robotic systems and different interface
hardware. The benefits of scalability and adaptability are
gained from the modular design of the system structure and its
behavior.

b. Schedulability and predictability. The overall system has
been partitioned with least dependency. The system com-
ponents can be scheduled independently. They run virtually
in their own context. Different hardware resources are only
communicated with specific run-time entities. For instance,
the input hardware modules communicate with ESC Data
Acquisition only. The output hardware modules are related
to ESC Command Sender and Safety Guard only (except at
the very beginning of the task session, the ESC Manager will
send the freeze robot command). Another example is that
within the sub-controller node, only the Manager process
can display run-time information. These arrangements in the
system behavior design effectively prevent possible priority
inversions, if the processes are assigned different priorities.
All run-time behaviors of the processes are predictable.
This is one of the most important issues when a real-time
synchronized task is performed by a group of processes
running either independently or concurrently. The benefits
of schedulability and predictability are gained mostly from
the system behavior design.

c. Safety and reliability. The contribution of the structural and
behavioral design to system safety and reliability is mainly
gained from the loose coupling of the system components.
First, all the components are functionally independent.
Second, the software-hardware connections are designed
as one-to-one relationships. Third, the robot only gets the
next command if its current states pass the safety check
at every sampling/control period. The first two design
issues prevent the common mode failures, the single-point
failures that affect multiple parts.11 The third will keep the
consequence of the system behavior deterministic and restrict
the energy released by the system to the environment within
bounded limits. The safety issues will be addressed further
in Section 5.

d. Cost-effectiveness. With a modular and object-oriented
design, the system components can be developed, debugged
and tested independently, either by a single programmer or
by a team. The individual components can be modified and
the behavior can be changed, while keeping the other parts
of the system intact. Well-tested modules may be re-used at a
future time for the system expansion or for constructing new
systems.

4.4.2. Overheads. In order to maintain the integrity and
safety of a system with a group of autonomous sub-
controllers that may be distributed on a computer network,
extra data traffic in the communication is unavoidable. To
improve the autonomy and real-time performance of the
system, extra copies of data modules are justified. That is to
trade space for time. However, with the availability of high-
performance low-cost computer systems, these overheads
may not affect the system real-time performance as a
whole. The benefits gained from the overheads make them
worthwhile.

5. IMPLEMENTATION
This section presents the implementation of a multi-robot
control system based on the analysis and design presented
in the previous sections. The system is built on the QNX
RTOS9,10,13 using standard C++. This section also discusses
the fail-safe features including fault-detection, fault-
anticipation, and fault-termination in the implementation.
Although the target system runs under the QNX RTOS, it
is implemented with a high degree of portability, since all
the important parts of the implementation have been made to
conform to the POSIX standard. Although some features of
the implementation are aimed at the target robot system, the
concept and the practical aspects of the work can be extended
to a generic control system with multiple processes.

5.1. Prioritizing and scheduling
With real-time systems, although it is important that the
operating system should quickly respond to external events,
the most crucial point is how deterministic those responses
are in terms of the instants when they occur. The more
deterministic the operating system, the more suitable that
system will be for real-time applications. A typical robotic
application has sampling/control frequency ranging from
50 Hz to 500 Hz; the corresponding period ranges from
20 ms to 2 ms, as is the case in this research. The real-time
performance of QNX is quite suitable for such an application
with a reasonable number of processes.13 Under the QNX
system, every process has a priority. A higher-priority process
can preempt lower-priority processes. The system schedules
the process with the highest priority to run when the process is
ready. QNX provides three scheduling methods: FIFO (First-
In-First-Out), round-robin, and adaptive scheduling. While
these methods are effective on a per-process basis, they affect
the behavior of a system with a group of processes interacting
with each other.

From the system design described in Section 4, we know
that the sub-controllers work in an autonomous mode. There
is no necessity to schedule the sub-controllers by means
of the QNX facility. However, the controller processes
are synchronized within the scope of every sub-controller.
Table 5.I shows the priorities assigned to the processes in
the implementation. In QNX, the priorities range from 0
(the lowest) to 31 (the highest). Processes started by the
Shell normally have a priority of 10, which is inherited from
the Shell by default. We choose the lowest priority of the
controller process as 15 to make the robot controller run at
a higher priority than the Shell commands and their child
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Table 5.I. Controller process priorities.

Priority ESC node SSC node

19 ESC Data Acquisition
18 ESC Command Sender & SSC Worker

Safety Guard
17 ESC Self-calibration
16 ESC PID Computation
15 ESC Manager SSC Manager

processes. We use round-robin as the scheduling method.
If the ESC and SSC run on different computer nodes,
the scheduling method does not actually affect the system
behavior, since the processes run with different priorities.
When the ESC and SSC run on the same computer, the
processes with the same priority will be scheduled for a
time-slice in turn.

For a group of prioritized processes, it is important to
prevent any scenarios of priority inversion. Priority inversion
is the situation that a higher-priority process is blocked by
a lower-priority process. This is usually caused by resource
conflicts when the processes share system resources. For
example, a higher-priority process cannot run when the
required resource is owned by a lower-priority process. From
the design in Section 4, we can see that the hardware resource
sharing (such as input/output modules, hard disk drive, and
the display monitor) is avoided during the entire task session.
There are no possibilities of priority inversion, either when
all the controller processes are well conducted or in a fault
situation.

5.2. Information sharing and exchanging
Information sharing and exchanging forms the cornerstone
of the system architecture. There are two types of shared
data modules for the information exchange. One is the Local
Data that is shared among the controller processes within
the scope of a sub-controller. The other is the Robot Group
Shared Data that is exchanged among an SSC and all the
ESCs in a robot group.

5.2.1. Structural implementation. As shown in Figure 5.1,
the Robot Group Shared Data contains robot commands
and feedback data, which are grouped on an individual
robot basis for the sake of efficiency. Robot Command Data
contains robot joint motion/torque commands, joint on/off
commands and session status. Session status is issued by
the SSC Manager and indicates whether the session is in-
progress or finished. Feedback Data contains joint position
and velocity, end-effector force and torque, joint torque, and
emergency stop status. The emergency stop status indicates
the emergency stop flag of the related robot.

Figure 5.2 shows the structural implementation of a Local
Data module. The information is classified into Local Static
Data, Local Dynamic Data and local copy of Robot Group
Shared Data. The static data contains system configurations
and the run-time address of the module. In the dynamic
data category, Mutual Exclusion Status is used for data
consistency by ensuring the data will be read or written by
only one process at any instant. Synchronization Flags are
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Fig. 5.1. Structural implementation of robot group shared data.
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Fig. 5.2. Structural implementation of a local data module.

used to ensure the order of data production and consumption.
Data Exchange Status states the freshness of the data from
the SSC. Process Status indicates whether the related process
is alive or not. The Process Message Boxes are used for the
worker processes sending messages to the manager process
for displaying or tracing run-time status. Sampling/Control
Time Stamps are the time instants at which the feedback is
sensed and the robot command is sent to the robot. The Robot
Home Switch Status indicates whether the robot joints have
reached the joint home switches or not, which is mainly used
for automatic calibration. The Local Copy of Robot Group
Shared Data contains the same information as that in the
Robot Group Shared Data. It is used as the data repository
of the controller processes, and is updated and transferred by
the DDM.

5.2.2. Physical implementation. One of the design goals
is to achieve a loosely coupled running mode among the
sub-controllers and the controller processes. Therefore, we
implemented the Local Data module as a POSIX-conforming
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shared memory, which is supported by the QNX RTOS. The
DDM sitting on each sub-controller node is responsible for
transferring and updating the Robot Group Shared Data.

There are two physical implementations of the DDM and
Robot Group Shared Data. The first uses QNX message
passing between the SSC DDM process and the ESC DDM
process. Figure 5.3 shows a typical round of the data
exchange in a sampling and control period. At the beginning
of each data exchange, the ESC DDM calls the receive ()
function and becomes blocked waiting for the data from the
SSC DDM. Then the ESC Data Acquisition process sets
the feedback information to the ESC Local Data, and the
SSC Worker exchanges data with the SSC Local Data (gets
feedback and sets command). After getting robot commands,
the SSC DDM sends them to the ESC DDM and waits for a
reply. The ESC DDM returns from the receive-blocked state
once it gets the command from the SSC DDM, and exchanges
data with the ESC Local Data (sets command and gets
feedback). The ESC DDM then replies to the SSC DDM with
the feedback data. At this point the SSC DDM returns with
feedback data and sets the data to the SSC Local Data module,
which will be used for the next sampling/control period. Once
the robot commands are ready, the ESC Command Sender
and Safety Guard process sends them to the robot hardware.

The second physical implementation of the DDM and
Robot Group Shared Data makes use of the Shared
Common RAM Network (SCRAM Network), which is a
commercially available product.14 Any time an application
process updates data located in its local SCRAM Network
memory, the address and data are broadcast immediately and
automatically to all other nodes on the network. Figure 5.4
shows a typical round of the data exchange in a sampling
and control period with the SCRAM Network. The direct
QNX message passing is replaced by exchanging data with
SCRAM Network by the ESC DDM and the SSC DDM. So,
there are not any more blocked states (receive-blocked, reply-
blocked and send-blocked states) for the controller processes.

5.3. Synchronization
There are two types of synchronization: time-based
synchronization and datum-based synchronization. The time-
based one is only used within the scope of a sub-controller
node. The datum-based synchronization is used for both
intra-sub-controller data consistency and inter-sub-controller
data dependency. The latter is used as an alternative to direct
temporal synchronization among the sub-controllers.

a. Temporal synchronization. A discrete control system
fulfills the application task on a discrete sampling/control
basis. All the controller processes execute their routines
during every sampling and control period, and hence
need to be synchronized. The temporal synchronization is
implemented by using POSIX signals supported by QNX
RTOS. Armed with a QNX real-time timer, the Manager
processes send the sync signal to all worker process within
the sub-controller node on a pre-defined frequency. The
termination of the task session is also implemented as a
synchronized event, during which the Manager sends the
task end signal to the Worker processes. The Worker process
is constructed to be able to receive those signals only.

b. Datum-based synchronization. Datum-based synchroniz-
ation is implemented by making use of POSIX semaphores,
which are also supported by the QNX operating system.
Two important features of semaphores make them the
ideal candidates for the means of synchronization for data
dependency and data consistency (mutual exclusion). The
first is that the operations of semaphores (i.e. “post” and
“wait”) are guaranteed atomic. That is, the operating system
makes sure that they are not interruptible. This is extremely
useful for mutual exclusion of the processes having access to
a set of shared data. The second is that semaphores are “async
safe” and can be manipulated by signal handlers. Therefore,
we can use signal handlers in different processes to transfer
synchronization information to each other.

c. Data dependency. Under the system architecture presented
in Section 4, the sub-controllers run in an autonomous
mode. However, data dependency among all parts of the
robot control system still needs to be maintained in order
to accomplish the application task. For instance, the SSC
computes robot commands based on the robot feedback
information acquired by the ESC. This means that the SSC
cannot start to work before the ESC Data Acquisition process
is launched when the task session starts. Figure 5.5 shows
the data dependency during the starting of a task session.
We can see that no matter whether the ESC starts first or
the SSC starts first, the ESC Data Acquisition and the SSC
DDM will meet a synchronization point. This point ensures
that the SSC Manager is not launched until all the ESC Data
Acquisition processes get the initial states of all the robots
in the group. The subsequent robot commands are computed
from the correct robot states. Otherwise, the robots could run
under the commands based on uncertain states, which may
result in unpredictable behavior of the system.

d. Data consistency. Within the scope of an individual sub-
controller node, all the controller processes get access to the
shared Local Data module for information exchange. Should
the data be changed by one process while it is read by another
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process, the reading process cannot get the correct data. We
adopt the POSIX semaphores to guard the accesses to the
shared data. Any time a process wants to exchange data, it
will wait for the semaphore. The process reads and/or writes
only when the data is not locked. Once a process gets access
to the data, the data is locked to the process. Before the
process gets back, it posts the semaphore to unlock the data.
If a process with a higher priority is waiting for a semaphore,
it is blocked and gives up the CPU. The operating system
can then schedule the process with lower priority to run. This
prevents priority inversion. Since the semaphore-wait and
semaphore-post are atomic operations, the shared data can
only be in either locked or unlocked state, but not in transition
between the two states.

5.4. Run-time safety
Run-time safety is usually achieved by incorporating fault-
tolerance and fault recovery facilities in the system. These
may need combinations of software and hardware features.
However, we will only focus on the software ability to achieve
fault detection and failsafe operation.

5.4.1. Fault detection. There are three data facilities for
fault detection. They are process status, process message
boxes and data exchange status, all of which are located in
the Local Data module on each sub-controller node (please
refer to Figure 5.2).

a. Process status. This status is used for detecting errors
within the scope of a sub-controller node. During every
sampling/control period, the Worker processes will sign up
their status into the Process Status in shared Local Data
module. The process status is then checked and reset by the
Manager process. If for some reason, a Worker process fails
to sign-up, this will be deemed as an occurrence of an error.

b. Process message boxes. There is a message box allocated
for each process, which is for the process to put descriptive
messages into if any irregular situations are detected by
the process. The Manager process will display the irregular
message on the monitor to bring it to the operator’s attention.
The message boxes are transferred within the sub-controller
node.

c. Data exchange status. This status is used to detect any
errors of the data exchange between sub-controllers. During

a task session, if the communication between sub-controller
nodes is interrupted for some reason, the ESC will not get
the robot commands feeding from the SSC. If this situation
lasts for a certain amount of time, an error flag is set up.
This scheme is implemented by means of a starving index.
Every time after the ESC Command Sender and Safety Guard
process sends a set of commands to the robot, the process
increases the starving index. Every time the ESC DDM gets
a set of robot commands, the DDM decreases the starving
index. If the starving index exceeds a pre-defined limit, an
error is deemed to have occurred. This implementation can
accommodate sub-controller nodes running under different
frequency.

5.4.2. Fault anticipation. Fault anticipation is implemented
by using the ESC Command Sender and Safety Guard to
check robot joint velocities, end-effector force and joint
torques before sending the robot commands to the robot
for execution. If the magnitudes of these variables exceed
pre-defined maximum values, an error flag is set to indicate
that the system may have a fault. While the values beyond
the limits may not result from a fault situation, they could
bring the system into states that are out of control. From this
point of view, this scheme is a kind of fault anticipation. This
scheme is especially useful for a prototyping system.

5.4.3. Fault terminations. We have planned for the fault
termination scheme to achieve failsafe operation. The failure
may result from either a system fault or a run-time error.
While every controller can set an emergency stop flag, only
the Manager process can start a fault termination procedure.
First, the robot in question is frozen immediately, either by
the ESC Command Sender and Safety process or by the ESC
Manager process, whichever occurs earlier. Then, the ESC
Manager sets the emergency stop flag, which is transferred
by the ESC DDM to the SSC DDM. Third, the SSC DDM
sends the flag to all the ESCs in the robot group. Finally,
every Manager process terminates all the Worker processes
in its controller node by sending the termination signal to all
Worker processes. The three fault terminations are as follows:

a. Unsafe termination. During each control period, if the joint
velocities, Cartesian force and torque, and joint torques do
not pass the safety checks, the ESC Command Sender and
Safety Guard process will freeze the robot immediately. The
ESC Manager then starts an emergency stop procedure.

b. Starving termination. During the task session, if the
starving index exceeds the limit, the ESC Manager freezes the
robot under control and starts an emergency stop procedure.

c. Abnormal termination. Any other unexpected run-time
error will cause abnormal termination of a session.

An ESC process or the human operator freezes the robot
and an emergency stop procedure starts.

6. EXPERIMENTAL VALIDATION
This section describes experimental tasks and the results
from the tests running on a test-bed with dual seven
degrees-of-freedom (DOFs) manipulators. The purpose of
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Fig. 6.1. The REDIESTRO controller hardware system.

the experiments is to examine and validate the effectiveness
of the design and implementation.

6.1. The robotic system
The test-bed consists of two 7-DOF redundant manipula-
tors (REDIESTROs – REdundant, Dexterous Isotropically
Enhanced Seven Turning-pair RObots). Each robot was
designed to be kinematically isotropic in addition to being
redundant.15–17 The goal was to build an advanced highly
dexterous dual-arm robotic manipulation environment that
can be used for developing appropriate methodologies,
and hardware and software testing. The capabilities of
the environment are trajectory planning, position control,
force control, impedance control, object contact, collision
avoidance, dual-arm open-chain and closed-chain control,
and tele-operation. The two manipulators are kinematically
mirror images of each other. The actuator on each joint of the
two robots is a DC motor with a harmonic drive system. All
actuators on REDIESTRO 2 are equipped with incremental
optical encoders, tachometers and torque sensors, while
the actuators on REDIESTRO 1 have encoders only. All
REDIESTRO 1 joints have brakes, but only the second,
third, fourth and fifth joints on REDIESTRO 2 have brakes.
All the joints of both robots have Hall-effect sensors as the
home switches, and both robots have six-axis force sensors
mounted on the last link.

The home switches are used for the control system to get
the reference positions of the joints, since the incremental
encoders can only measure relative changes of joint positions.
As part of its implementation, the control system gets
the initial joint positions from a file instead of the robots
themselves. When a task session starts, the counters of the
encoder interfaces have to be initialized with the recorded
joint positions in order that the data read from the encoder
counters reflects the absolute joint positions. Accordingly,

when the session ends, the controller records the final joint
positions in a file.

Because of joint flexibility, the manipulators are difficult
to calibrate kinematically. Also, since not all the joints
of REDIEDTRO 2 have brakes, there may be a loss of
configuration due to disturbances in the work-cell. A self-
calibration process therefore needs to be constructed that will
run whenever there is need to get back the reference position
of the robots. Another issue concerns run-time safety arising
from the lack of the brakes on the first, sixth and seventh joints
of REDIESTRO 2. The controller must be proactive and stop
the robots if there is any suspected fault. The robots should
not be allowed in any period to have an uncertain state. This
is achieved using the fault detection, fault anticipation and
fault termination schemes described in Section 5. The goal is
that the controller must have the ability to detect any possible
fault as early as possible and terminate the task session before
control is lost, and hence achieve fail-safe operation.

6.2. Controller hardware
Figure 6.1 shows the hardware system of the dual-arm
REDIESTRO controller. The SSC runs on the computer
for the robot-group-level controller. The ESC runs on the
computer for the joint-level controller. The sensor/actuator
interface chassis holds all input/output interface boards. The
signal conditioner and power amplifier is wired to the sensors
and actuators on the robots.

The input/output boards include

• Encoder interface cards for the optical encoders measuring
joint positions,

• Digital-to-analog converter (DAC) cards for DC motor
control,

• Analog-to-digital converter (ADC) cards for joint torque
sensors and tachometers,

• Digital input/output cards for joint home-position
switches (inputs) and brakes (outputs),

• Force sensor receiver cards for the robot end-effector 6-
axis force/torque sensors for measuring Cartesian forces
and torques.

The joint velocity is actually obtained by digital differen-
tiation of joint position data. There are no sensing facilities
to get joint acceleration information. One of the goals of
this work was to achieve a cost-effective solution for a
sophisticated multi-robot control system. Our aim was to
achieve a totally PC-based implementation with all the
interface boards running on the PCI/ISA bus system. Table 6.I
shows the hardware components for the PC-based dual-arm

Table 6.I. Hardware components of the PC-based dual-arm controller.

Model Description QTY Comment

Keithley DAS-1802 16-channel 16-bit ADC 1 REDIESTRO #2
Keithley DDA-16 16-channel 12-bit DAC 1 REDIESTRO #1, #2
Keithley M5312 4-axis 24-bit Quadrature Encoder Interface 4
Keithley PIO-24 24-bit Digital I/O 2
JR3 ISA Receiver DSP-based Force Sensor Receiver 2
DELL PC Pentium 233 MHz 1
DELL PC Dual-processor 350 MHz 1 SSC Computer
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Table 6.II. Segments of the self-calibration task.

Segment Sub-task Goal Reference

1 Clockwise Move − Range Initial joint position
2 Counterclockwise Move + Range Initial joint position
3 Final Positioning Final Position Corrected zero positions

controller. All interface boards are plugged in an ISA-bus
chassis. The chassis was connected to a PC system through a
PCI/ISA bus extender. The robot-group controller computer
runs on a dual-processor 350 MHz Pentium II PC. Both
the controllers were real-time multi-processing programs
running under QNX.

6.3. Task #1: self-calibration
The self-calibration task can be performed by the ESC only,
since the task goal is to get joint positions with reference
to the zero positions corrected by the home switches. The
objective of the experiment was to examine basic real-
time performance of the multi-processing control system
in joint space. Since there are no coupling operations
between each other, the two REDIESTRO manipulators can
run self-calibration either at the same time or separately.
Moreover, there is no need to use the DDM and Robot Group
Shared Data, and only the Local Data module is needed
for the data exchange among the ESC Worker processes.
The participant processes are the ESC Self-calibration, the
ESC PID Computation, the ESC Data Acquisition, the ESC
Command Sender & Safety-Guard, and the ESC Manager
process.

6.3.1. Task segments. There are three segments in this
task for each robot joint. These are Clockwise Move,
Counterclockwise Move, and Final Positioning. The robot
is in position control mode during all the segments. The
duration of all the segments is 10 seconds. Table 6.II lists
the sub-task, goal position and the reference of the goal
position for each segment. The value of the Range is typically
chosen as 10 to 15 degrees. At the end of segment #2, the
positions of all the home switches can be found without
any exception. The third segment will put all the joints
at the desired positions with respect to the corrected zero
positions.

6.3.2. Sampling and control frequency. The working
frequency was set at 200 Hz. We have tested the system up
to 500 Hz with the two robots and a total of 10 processes
concurrently running on the single 233 MHz Pentium PC,
without any degradation in the real-time performance.

6.3.3. Analysis of the results . The plots in Figures 6.2
to 6.4 show the experimental results consisting of joint
positions, joint velocities, and joint torque commands. The
joint velocities were obtained by digital differentiation of
the joint positions. The final positions of all the joints were
specified at the home switch positions. The joint position
trajectories were planned using a fifth-order polynomial
and the joint torque commands were computed with a PID
algorithm. At the end of each of the segments (t = 0 seconds,
10 seconds, 20 seconds, and 30 seconds), the joint velocities
were specified to be zero. At the starting point (t = 0 seconds)
and the final point (t = 30 seconds), the joint accelerations
were also required to be zero. From Figure 6.2, we can
see that the robot performed as was specified and expected.
Only at t = 10 seconds and t = 20 seconds, there are non-
smooth transitions when joint #2 changes its direction, from
negative to positive, and back to negative from positive.
This is mainly caused by the gravity effect, which had the
greatest effect on the motion of joint #2. Figure 6.3 shows
the result of differentiating with respect to time the plots in
Figure 6.2, both of which formed the basis for computing
the command torque that is shown in Figure 6.4. The non-
smooth transitions in the joint #2 trajectory are the jumps
in the negative direction. There was another jump in the
negative direction when the robot begins to move. This is
also caused by the effect of gravity at the instant when the
brake is released. All these jumps are soon corrected by the
commands computed by the PID algorithm.

The plots show that the basic real-time performance of
the multi-processing control system, such as inter-process
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Fig. 6.2. Joint positions for the self-calibration task.
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Fig. 6.3. Joint velocities for the self-calibration task.
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Fig. 6.4. Joint torque for the self-calibration task.

communication and process synchronization, is achieved
very well. Visual observations indicate that the movement
of the REDIESTRO manipulator is very smooth.

6.4. Task #2: peg insertion
A peg insertion task performed by REDIESTRO #2 was
investigated. The goal was to demonstrate the feasibility and
effectiveness of the design and implementation presented
in the previous sections for an advanced application task.
The second physical implementation using the SCRAM
Network as Robot Group Shared Data was adopted as
the communication medium for data exchange between the
SSC and the ESC. The participating processes are the SSC
Worker, the SSC Manager, the SSC DDM, the ESC Data
Acquisition, the ESC Command Sender & Safety Guard, the
ESC Manager, and the ESC DDM.

6.4.1. Task segments. There are in total four segments in this
task: Approach, Insertion, Pullback and Home. Table 6.III
lists the sub-task, control scheme and duration of each
segment.

6.4.2. Frequencies. The SSC and ESC both run at 200 Hz.
As described in the previous sections, the SSC and ESC
are not synchronized with each other. The data-updating
rate by the SCRAM Network through coaxial cables was
set at 1000 Hz. However, there are no documented ways
to determine when the update actually occurs. Therefore,

Table 6.III. Segments of the peg insertion task.

Control Duration
Segment Subtask scheme (Seconds)

1 Approach Position control 20
2 Insertion Force control 28
3 Pullback Force control 12
4 Home Position control (PID) 18

a higher frequency (greater than 200 Hz) of data updating by
each DDM at the sub-controller node had to be used in order
for the sub-controllers to get the updated data in time. As
indicated by the observations in the experiment, the higher
the frequency, the better was the system performance. The
frequency at which the DDM updated the Local Data module
was chosen to be 1000 Hz in this experiment.

6.4.3. Analysis of the results. The plots in Figures 6.5
through 6.14 show the experimental results. These consist of
the positions, velocities, accelerations, and torque commands
for the joints, the end-effector force and torque, and the end-
effector position and orientation.

a. Effectiveness of position control. The goal position of the
end-effector at the end of segment #1 (t = 20 seconds) in the
three directions of the world frame was specified to be (0.215
m, −0.44 m, 0.16 m) and the orientation was specified to be
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Fig. 6.5. Joint positions for the peg insertion task.
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Fig. 6.6. Joint velocities for the peg insertion task.
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Fig. 6.7. Joint accelerations for the peg insertion task.

(−1.57 rad, 1.57 rad, 3.14 rad). As shown in Figures 6.13
and 6.14, at t = 20 seconds, the goal position was achieved
with an error of about 0.0125 m in the X direction only. The
error in achieving the goal pose was mainly the result of the
kinematic error due to joint flexibility.

b. Effectiveness of force control. In the insertion segment
(segment #2, from 20 to 48 seconds), the manipulator was
in force control mode. The goal force in the three directions
of the world frame was specified as (0, 0, −20) N and the

desired torque as (0, 0, 0) N-m. In the period from 24 seconds
to 40 seconds, the peg has landed on the edge of the hole but
has not reached the center of the hole. It can be seen in
Figures 6.11 and 6.12 (or Figures 6.9 and 6.10 for the tool
frame) that the goal force has also been achieved. In addition,
as shown in Figures 6.13 and 6.14, during the same period,
while under impedance (force) control, the robot adjusts itself
in its position and orientation in order to maintain the goal
force. The adjustment leads the peg to reach the center of
the hole and compler the insertion. It can also be seen that
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Fig. 6.8. Joint torque for the peg insertion task.
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Fig. 6.9. End-effector force in tool frame.
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Fig. 6.10. End-effector torque in tool frame.

after the peg has reached the bottom of the hole (between 45
seconds and 48 seconds), the goal force and torque are again
achieved (Figures 6.11 and 6.12, or Figures 6.9 and 6.10).

c. Effectiveness of the real-time data exchange. The SSC and
ESC run on the two computers separately. The data exchange
between the two sub-controllers via the SCRAM Network
has to be in real-time, that is, it must occur during every
sampling and control period. The robot control commands
(Figures 6.7 and 6.8) are computed by the SSC based on
the robot feedback data and sent to the ESC to run the
robot. The robot end-effector force feedback (Figures 6.9 and
6.10, or Figures 6.11 and 6.12) and the robot joint positions
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Fig. 6.11. End-effector force in world frame.
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Fig. 6.12. End-effector torque in world frame.

(Figure 6.5) and velocities (Figure 6.6) are acquired by the
ESC and transferred to the SSC. The robot joint velocities are
computed by digital differentiation. All the data are logged
on the SSC computer node.

The effectiveness of the real-time communication (and
control) can be seen from the plots of the trajectories,
which the robot actually achieved (Figures 6.5, 6.6, and
6.7 through 6.14). For example, consider segment #4 (PID
position control from 60 seconds to 78 seconds). The joint
position trajectories are planned by the SSC using a fifth-
order polynomial and the relevant joint command torque
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Fig. 6.13. End-effector position in world frame.
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Fig. 6.14. End-effector orientation in world frame.

is computed and sent to the ESC for execution. From Fig-
ures 6.5 and 6.6, it can be seen that the actual robot kinematic
trajectories coincide with the fifth-order polynomial very
well. The effectiveness of the position and force control is
actually based on the effective real-time data exchange.

d. Accuracy of the control. The experimental results indicate
that the control scheme has good accuracy. The errors are
within a reasonable range. There are kinematic errors in the
REDIESTRO system because of the effect of joint flexibility,
which mainly contributes to the position error of the goal
position at the end of segment #1 (t = 20 seconds), as
mentioned earlier. Another example is the way the robot joint
velocities are acquired. The joint velocities are computed by
digital differentiation; consequently, the quantization errors
in the position sensing are amplified by the differentiation
and the quantization errors of the delta time slots. There are
also contributions to the inaccuracies of the control from the
position and force sensors themselves.

6.5. Summary of the experiments
The self-calibration task was to test the implemented real-
time multi-processing on a single computer node. The data
exchange was achieved by the POSIX shared memory. The
peg insertion task was to test the system with an advanced
application task on the networked multiple computers. The
data exchange is achieved by the POSIX shared memory
and the SCRAM Network. The successful execution of the

two tasks indicates that the multiple process cooperation
and real-time information exchange, and the real-time
synchronization are effective not only on a single computer
but also on a computer network.

We have also successfully run other sophisticated tasks
involving cooperative operation of the two REDIESTRO
robots such as dual-arm peg-insertion, Velcro handling and
collision avoidance.4 The distributed real-time environment
described in this paper has also been implemented at the
Canadian Space Agency (CSA) in St. Hubert, Quebec, to
perform cooperative control18 of CSA’s Automation and
Robotics Testbed (CART), a highly sophisticated dual-arm
system used for training and evaluation of advanced robotics
methodologies. This and other applications strongly support
the effectiveness and efficiency of the system architecture,
design and implementation described in this paper.

7. CONCLUDING REMARKS
This paper is devoted to the software architecture design
and system implementation of a reconfigurable system for
real-time multiple robot control. Based on the analysis and
modeling of a multi-robot control scheme, we partitioned
the system into loosely coupled function units and data
modules manipulated by the units. We have designed unified
modular structures for the sub-controllers and controller
processes, and constructed the system as a distributed real-
time processing system. This architectural structure is aimed
at facilitating an efficient implementation.

Under the framework of the architectural design and
system implementation, all controller processes work
autonomously. Intra-subcontroller information exchange is
realized by a shared data module. All controller processes
use the shared data module as a data repository. From the
perspective of a controller process the data exchange with
the outer world consists simply of reading data from and
writing data to the repository. Inter-subcontroller information
exchange is realized by the Dynamic Data Management
(DDM) processes running on each subcontroller node.
The DDM processes are independent of the subcontroller
process group and are responsible for updating the data
to the local shared data module. There is no need for
explicit temporal synchronization among subcontrollers. The
data dependencies are maintained by using datum-based
synchronization. All controller processes are synchronized
temporally, since the real-time nature of the control system
requires synchronization for every sampling and control
period. The data consistency is realized by using mutual ex-
clusion. Moreover, the system is designed such that different
hardware resources only relate to specific processes. Thus, all
controller processes can be easily prioritized and scheduled
independently, and the control system can be reconfigured to
meet different functionality requirements. For instance, we
can add new controller processes to the system to expand the
functionality. We can also remove some processes without
affecting the system integrity, provided the new functional
requirements are satisfied. The controller processes can also
run either on a single computer system or on a distributed
computer network. These features ensure that the system
meets the requirements of schedulability, predictability,
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scalability and adaptability. Effective schemes for software
fault detection, fault anticipation and fault termination are
included to meet safety and reliability requirements.

The implementation uses a QNX-based system on a
PC architecture. We have used POSIX-compliant facilities
whenever possible to improve the portability of the system.
All the system components are modularly designed, and can
be developed and tested independently. All these are intended
to meet cost-effectiveness requirements.

The implemented control system has been tested and
validated on an experimental redundant dual-arm robotic
test-bed (the REDIESTRO manipulators) by performing a
self-calibration task, a peg-insertion task and other complex
dual-arm tasks requiring cooperative operation of the two
redundant manipulators. The results obtained indicate that
the implemented system is suitable for advanced real-time
application tasks. Further validation of the effectiveness of
the real-time environment has been obtained through its
adoption and use by the Canadian Space Agency (CSA)
for single- and dual-arm control18 of CSA’s Automation
and Robotics Testbed (CART). These practical applications
strongly support the claim that the system architecture,
design and implementation described in this paper are
effective, efficient, and reliable.
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