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SUMMARY
Parallel kinematics machines (PKMs) can exhibit kinematics
as well as actuation redundancy. While the meaning of
kinematic redundancy has been already clarified for serial
manipulators, actuation redundancy, which is only possible
in PKMs, is differently classified in the literature. In this
paper a consistent terminology for general redundant PKM
is proposed. A kinematic model is introduced with the
configuration space (c-space) as central part. The notion of
kinematic redundancy is recalled for PKM. C-space, output,
and input singularities are distinguished. The significance
of the c-space geometry is emphasized, and it is pointed
out geometrically that input singularities can be avoided
by redundant actuation schemes. In order to distinguish
different actuation schemes of PKM, a nonlinear control
system is introduced whose dynamics evolves on c-space.
The degree of actuation (DOA) is introduced as the number
of independent control vector fields, and PKMs are classified
as full-actuated and underactuated machines. Relating this
DOA to degree of freedom allows to classify the actuation
redundancy.

KEYWORDS: Parallel manipulator; Terminology; Kine-
matic redundancy; Actuation redundancy; Singularities.

1. Introduction
Redundancy has been introduced to provide the dexterity
needed for manipulation tasks and to overcome the kinematic
and dynamic limitations of parallel kinematics machines
(PKMs). Kinematically redundant PKMs were first proposed
as variable geometry trusses (VGT),35, 50, 52 where special
attention was payed to the elastic properties.23, 54 Although
several design concepts, such as tetrahedron-based VGT,21

2-degree of freedom (DOF) planar PKM,14 and hyper-
redundant PKM,8 were proposed, kinematically redundant
PKM did not draw as much attention as did the redundantly
actuated PKM (RA-PKM). Moreover, redundant actuation
schemes were developed to increase and homogenize
kinematic manipulability and stiffness, to increase the
achievable acceleration, and to eliminate singularities and
thus enlarge the usable workspace, as reported for a number
of prototypes in refs. [1, 6, 11, 18, 27, 53, 60, 61, 66, 67],
and references given in ref. [34]. Actuation redundancy can
be achieved by actuation of passive joints or by additional
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kinematic chains connecting the moving and fixed platform,
which is the standard approach. It is also beneficial for
the calibration as shown in refs. [22, 58, 65], since it
provides additional sensor data. It was shown in refs.
[49, 64] that actuation redundancy improves the kinematic
manipulability and eventually avoids singularities. The latter
were investigated in refs. [16, 32]. Stiffness and force
capabilities were studied in refs. [7, 13, 48]. Investigations of
optimal force distribution and the related design issues have
been reported in refs. [26, 29, 30, 31, 44] ]. The advantages
of RA-PKM are however due to a more complex control, in
particular if model-based controlled is envisioned, as pointed
out in refs. [11, 17, 20, 36, 41, 42, 53, 66]. One critical point
is the redundancy resolution within the feed-forward part of
the controller. Another challenge is the presence of undesired
antagonistic control forces that are due to geometric model
uncertainties40 but are also inherent in decentralized control
schemes.41 These forces cause elastic deformations that must
be taken into account for the calibration, in particular, of
heavy payload RA-PKM.15

Despite the advances in control and design of redundant
PKM, there is yet no consistent terminology. Whereas for
redundant serial manipulators the terminology was already
clarified in ref. [12], there is no established classification
of redundant PKM. In particular, actuation redundancy is
frequently referred to as overactuation, and occasionally
RA-PKMs are confused with overconstrained mechanisms.
Clear definitions and concepts are essential for the systematic
design and analysis of novel RA-PKM.

This paper aims on clarifying the terminology for
redundant PKM in general and RA-PKM in particular. As
a basis for such a classification, a kinematic model for PKM
is first introduced in Section 2.1, and the PKM motion
equations are recalled in Section 2.2, which are used in
the model-based control allowing to represent PKMs as
nonlinear control systems in Section 3. As preparation,
singularities of PKMs are classified as input, output, and
c-space singularities in Section 4. This is used in Section 5.1
to distinguish different actuation modes. Section 5.2 recalls
the definition of kinematic redundancy adopted to PKM. The
main contribution of this paper is the definition of actuation
in Section 5.3 upon the nonlinear control system. PKMs are
further classified as full-actuated and underactuated.

The discussion explicitly refers to the geometric aspects
of redundancy. The central object in the kinematics of PKM
is the c-space in which the manipulator motion is encoded.
In contrast to serial manipulators, where the c-space is a
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smooth manifold, its geometry is usually rather complicated
for PKM, and it is only locally a smooth manifold. The
abundance of singularities in the c-space is reflected by non-
smooth motions impairing the PKM control. On the other
hand, it is this c-space geometry, and its dimension relative to
the number of actuators, that gives rise to different actuation
schemes. From the geometric point of view, the actuation
corresponds to a parameterization of the c-space in terms
of actuator coordinates, and the c-space of a PKM being
embedded in the joint space allows for redundant actuation of
PKM by combining different parameterizations. It is pointed
out geometrically that input singularities can be avoided by
redundant actuation.

2. Parallel Manipulator Modeling

2.1. Manipulator kinematics
A PKM consists of a moving platform, carrying an end-
effector (EE) that is connected to the base platform by several
(possibly identical) kinematic chains (limbs, struts, legs)
containing actuated joints. PKMs are thus characterized by
closed kinematic loops imposing certain constraints. Denoted
by q ∈ V

n, the vector of joint variables qa, a = 1, . . . , n

(higher DOF joints are split into 1-DOF joints), where
V

n := T
nR × R

nP is the joint space of a PKM comprising nR

revolute and nP prismatic/screw joints. The vector q ∈ V
n is

referred to as the configuration of the PKM. A configuration
is clearly admissible only if it satisfies loop constraints. The
r geometric constraints are summarized in the system as

0 = h (q) , h (q) ∈ R
r . (1)

Time differentiation yields the kinematic constraints,

0 = J (q) q̇, J (q) ∈ R
r,n (2)

with the constraint Jacobian J.
In any practical implementation there are further

constraints due to joint limits, or to prevent collisions. This
is expressed as a system of c inequality constraints,

0 ≤ g (q) , g (q) ∈ R
c. (3)

Then the configuration space of the PKM, being the set of all
admissible configurations, is

V := {
q ∈ V

n|h (q) = 0, g (q) ≥ 0
}
. (4)

It is instructive to consider the c-space geometry. Neglecting
inequality constraints (3), V is a variety and only locally (i.e.
closed to a given configuration q) a smooth manifold. These
manifolds are separated by the singular points of V where
the rank of J changes (Section 4.1). If in the neighborhood
of q in V the number of locally independent constraints is
constant rank J ≤ r , the local DOF of the PKM is δloc :=
n − rank J. It is important to note that the DOF is in fact a
local property of the mechanism, and the PKM might even
attain different mobilities without disassembling it as for the
so-called kinematotropic mechanisms.63 The maximal local
DOF is referred to as the global DOF denoted by δ.

The PKM interacts with its environment via an EE – the
mechanical output. This EE is represented by an EE-frame
that is rigidly attached to it. The configuration of this EE-
frame relative to a world-fixed (inertial) frame is represented
by a matrix C ∈ SE (3).43 The output mapping fO : V →
SE (3), yields the EE-configuration C = fO (q) in terms of
configuration q. Then the workspace of the PKM is the set
of attainable EE-configurations:

W := {fO (q) |q ∈ V } ⊂ SE (3) . (5)

Usually only a part of this W is used depending on the
application and the presence of singularities.

The EE-velocity is represented by a twist coordinate
vector V ∈ R

6, respectively V̂ ∈ se (3). The instantaneous
EE-kinematics is determined by

V = JO (q) q̇ (6)

relating the EE-velocities to the state of the PKM, where
JO (q) : TqV → se (3) is the output Jacobian.

The PKM motion is determined by the motion of its
actuators – the mechanical inputs. The relation of actuator
and PKM motion is expressed by the input mapping fI :
V → I that assigns to any PKM configuration the admissible
inputs. This relation may not be unique, as there may be
different inputs corresponding to the same configuration.
If the PKM is equipped with m actuator inputs, I is m-
dimensional. The inputs are not necessarily the motion of
some joints of the PKM, since the actuators may act at
arbitrary locations of the PKM, e.g. via tendons or pulleys.
Generally arbitrary exogenous inputs could be considered.
In the following it is assumed that m joints are directly
actuated. Then the joint coordinate vector can be split into
coordinates of m active and n–m passive joints, qa and qp,
respectively. That is, qa are the kinematic inputs, and the input
mapping is simply the projection of V

n to the corresponding
m-dimensional subspace. With this splitting, the kinematic
constraints (2) become

0 = Jp (q) q̇p + Ja (q) q̇a, (7)

where Jp (q) ∈ R
r,n−m, Ja (q) ∈ R

r,m.
The kinematic PKM model can be schematically

represented as

W fO←− V
fI−→ I (8)

Clearly the central object is the c-space V geometrically
representing the mechanism. The input and output mapping
yields the input and output, respectively, that corresponds to
a given configuration. They are not one to one for PKM in
general and for redundant PKM in particular.

Figure 1 shows a schematic representation of this model
for a 2-dimensional (2D) c-space in a 3D joint space that can
be locally parameterized by q2 and q3, or by q1 and q2, for
instance. The latter may be used as inputs, and the projection
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Fig. 1. (Colour online) Geometric interpretation of the PKM control system. The operation modes refer to input space I.

of V on the respective coordinate subspaces gives the input
spaces I and I ′.

Model (8) is rather abstract. For the analysis of a PKM in a
given configuration the following instantaneous kinematics
model is used

0 = Jp (q) q̇p + Ja (q) q̇a

V = JO (q) q̇

q̇a = JIq̇

(9)

The first implicit equation locally describes the c-space
V . The second equation is the differential output mapping
relating instantaneous PKM and EE motion. The third
equation is the differential input mapping that yields the
instantaneous input motion. Since the input mapping is the
projection from V to the qa coordinate subspace I , the
Jacobian JI is constant with entries 1 and 0.

Remark 1. The instantaneous Model (9) applies to
general PKM. It admits to separately investigate the
mechanism’s kinematics and its interaction with the
environment via inputs and outputs. It further allows to
exhaustively analyze and classify the corresponding critical
phenomena as it is presented in ref. [68]. On the other hand,
the input–output kinematics of the PKM is often represented
in the form M2V = M1q̇a,19, 55 which is easily obtained with
the reciprocal screw approach. If M2 is square, the forward
Jacobian is JF = M−1

2 M1. That is, the three mappings in

Model (9) are resolved. However, the internal state of the
PKM is hidden.

2.2. Motion equations in minimal coordinates
A dynamical model is indispensable for the model-based
control of PKM. A PKM is a force-controlled multibody
system (MBS) subject to geometric constraints due to
kinematic loops. In applications where the manipulator
interacts with its environment, the PKM is subjected to
additional, possibly non-holonomic, constraints. The latter
will not be taken into account here. There are several
approaches for deriving motion equations of constrained
MBS that have different numerical efficiencies. Independent
from the applied principle, a basic fundamental difference
is the choice of independent generalized coordinates. It is
crucial that the dynamic PKM model, which is eventually
used for the control, is given in terms of a minimal set of
δ generalized coordinates. The solution of the geometric
constraints (1) can (locally) be expressed in terms of a subset
q2 comprising δloc joint variables so that the configuration is
given as q = ψ (q2). In other words, q2 are local coordinates
on V for a parameterization ψ that admits to describe the
internal kinematics of the mechanism. It is usually impossible
to explicitly derive the relation of q on some chosen q2.
Therefore, a standard method for MBS with kinematic loops
is to introduce a relation on velocity and acceleration levels
after a coordinate partitioning in dependent and independent
joint variables.2, 46 With this approach the computationally
efficient forms of PKM motion equations can be derived as
it was pursued in refs. [11, 24, 33, 36, 45].
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Denote with c ≡ (c1, . . . , cm) the vector of m generalized
control forces in the actuated joints, and with τ ∈ se∗ (3)
the EE wrench due to external loads at EE. Then the PKM
dynamics is governed by the motion equations36

G (q) q̈2 + C (q, q̇) q̇2 + Q (q, q̇, t) + J
T

E (q) τ = AT (q) c,

(10)

where G is the generalized mass matrix, Cq̇2 represents the
generalized Coriolis and centrifugal forces, and Q represents
all remaining generalized forces. The m × δloc control matrix
A is such that q̇a = Aq̇2, and the right-hand side Qa = AT c
in Eq. (10) are the generalized control forces because of
actuator forces c. Equation (10) is a system of δloc ordinary
differential equations in q ∈ V

n that, together with the
r kinematic constraints, completely determines the PKM
dynamics.

If the number m of actuated joints exceeds the PKM DOF
(i.e. the PKM is redundantly actuated), then AT is not square
and has a null-space of dimension m − δloc. Only the actuator
forces c not in the null-space of AT are effective control
forces. It is a peculiarity of RA-PKM that actuator forces
can be generated in the null-space of AT . Such null-space
forces, giving rise to internal prestress, can be exploited for
second-level tasks such as backlash avoidance or stiffness
control.28, 36, 37, 56, 57

3. The Associated Nonlinear Control Systems
A PKM is a force-controlled (holonomically) constrained
dynamical system whose dynamics is governed by Eq. (10).
The control purpose is to manipulate the EE that embodies the
system’s mechanical output. This makes PKM the second-
order control-affine control system on the configuration
space V that is represented as the first-order control
system,5, 47

ẋ = f (x) +
m∑

i=1

gi (x) ci, (11)

C = fO (x) ,

with state vector x := (q2, q̇2). Therein

f :=
(

q̇2

−G
−1(

Cq̇2 + Q + J
T

E τ
))

(12)

is the drift vector field, and the columns gi , i = 1, . . . , m ≤ n

of

g :=
(

0

G
−1

AT

)
(13)

are the control vector fields through which the control forces
affect the system. The actuation of the PKM determines
the immediate effect of control forces in a given pose of
a PKM. Apparently the DOA has to do with the number of
independent control vector fields, as well as with the vector
space spanned by gi (see Section 5).

4. Critical Configurations
Singularities are manifested in the qualitative change of the
manipulator’s kinematic and static properties. A PKM may
become structurally unstable, lose the ability to properly
interact with its environment, or become non-manipulable.
This must be taken into account for the proper definition
of actuation. For this purpose it is sufficient to distinguish c-
space, output, and input singularities. These singularity types
can occur simultaneously, and their combination, if possible,
may lead to phenomena such as instantaneously impossible
input motions, or instantaneously redundant inputs. An
exhaustive study is presented in ref. [68], where six different
types are identified and all possible combinations are listed.
In the following c-space, input, and output singularities are
classified as far as necessary for introducing a sensible
notion of redundancy. It is instructive to explicitly refer
to the c-space geometry, since this allows interpreting
the different singularities and the actuation redundancy
geometrically. Moreover, the c-space topology reveals all
motion characteristics as shown in refs. [33] and [38]. In
ref. [33] the input, output, and c-space singularities were
analyzed using differential forms. The local structure of the
c-space was addressed in ref. [38].

At this point a remark is in order. Singularities are
identified upon the rank of certain Jacobians. It should be
stressed that a singular point is one in which the rank of the
considered Jacobian changes, but frequently any situation
is referred to as singular whenever the rank is lower than
expected.

4.1. C-space singularities
The configuration space V is a variety in V

n. V comprises
several connected smooth manifolds (subspaces like smooth
curves or surfaces) that are separated by singular points,
indicating “non-smoothness” of V at these points. Points of
V that belong to a smooth manifold are called regular. The
attribute “singular,” meaning solitary or unique, reflects the
fact that they are special in the sense that almost all points
are regular. Clearly the mechanism’s mobility has to do with
the dimension of V . A motion of the PKM corresponds to a
curve in V , and in points where V is not a smooth manifold,
the motion can be non-smooth.

The PKM mobility can be clearly defined upon the c-space
topology. The differential DOF (or instantaneous DOF) of
the mechanism is defined as δdiff (q) :=n−rank J(q). A point
q ∈ V is regular if and only if it belongs to a submanifold
of V , i.e. there is a neighborhood U (q) such that δdiff is
constant in U (q) ∩ V , otherwise it is singular. The local
DOF in q, denoted by δloc (q), is the local dimension of V .
This is the highest dimension of manifolds passing through
q. If q is regular, then V is locally a δloc (q)-dimensional
manifold. In case of kinematotropic mechanisms63 there are
different local DOF in a connected component of V . The
global DOF δ is the highest local dimension of V . If V

is not connected, i.e. there are different assemblies of the
mechanism, which can not be attained via an admissible
finite motion, the global DOF needs to be restricted to the
relevant assembly. A detailed discussion of the geometric
mobility concept can be found in refs. [38, 39].
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Since V is locally a smooth manifold if and only if the
constraint Jacobian J has constant (not necessarily full) rank,
one can introduce the following.

Definition 1. A point q ∈ V is called a c-space
singularity if and only if rank J is not constant in any
neighborhood of q in V .

As a practical consequence, even if the c-space has locally
a dimension δloc, in a c-space singularity no subset of δloc joint
variables can be used to parameterize V , and the generalized
mass matrix G in Eq. (10) is not regular.

For example, the c-space V ∈ R
3 in Fig. 1 is a 2D smooth

manifold except at the indicated c-space singularity. At any
other point it is smooth with J having constant rank, and
a unique tangent plane can be attached to V . At the c-
space singularity there is no unique tangent plane, and the
differential DOF of the PKM increases.

4.2. Input singularities
Naturally, a configuration is regarded as an input singularity
if the interdependence of actuator motion and the motion of
the PKM undergoes a qualitative change. To state this more
precisely, it is necessary to separately consider the motion of
actuated and passive joints.

Definition 2. The configuration q ∈ V is called passive
singularity (actuator singularity) if rank Jp (rank Ja) is not
constant in any neighborhood of q in V . If q is either a passive
or an actuator singularity, it is called input singularity.

Active and passive singularities can occur simultaneously
without being c-space singularities.

If in the model in Fig. 1 the projection of V onto the q2–
q3 coordinate plane is used as input space I, its boundary
points are passive (input) singularities, since there V is
normal to I so that instantaneous motions q1 are possible
independently from the inputs. To cope with this problem, in
such configurations, joints 1 and 2 could be used as actuators
with input space I ′. Also, this actuation scheme exhibits
input singularities at the boundary of I ′.

The constraints (7) can be solved for the velocities
of passive and actuator joints. The general solution is
respectively

q̇p = −J+
p Jaq̇a + q̇p0, with q̇p0 ∈ N(Jp), (14)

q̇a = −J+
a Jpq̇p + q̇a0, with q̇a0 ∈ N(Ja),

where N (J) is the null-space of J. The left pseudoinverse
J+ always exists. If rank Ja < m, the null-space N (Ja) is
non-empty, and there exist instantaneous motions of actuator
joints even if all passive joints are locked. If rank Jp <

n − m, the null-space N
(
Jp

)
is non-empty, and there exist

instantaneous motions of passive joints for locked actuator
joints. Whether these instantaneous motions correspond
to finite motions depends on whether the considered
configuration is regular, that is whether the rank of the
respective Jacobian is constant in the neighborhood of q.
In input singularities the rank of Jp or Ja drops and the
respective null-space increases.

End-effector
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q 2

q 3

q 4
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Fig. 2. (Colour online) (a) The 5-bar mechanism, and (b) its
redundant extension, the RR/2RRR PKM.

Remark 2. In ref. [19] a classification of input and output
singularities of PKM was proposed upon a formulation of
the form M2V = M1q̇a (see also Remark 1). Accordingly,
singularities of types I and II are identified when,
respectively, M1 or M2 is not full rank. Types I and II
singularities are also called serial and parallel singularities,
respectively, as type II only occurs for PKM. Type II
singularities are also termed force singularities, since certain
EE-wrenches can not be equilibrated by control forces. This
classification is useful when considering the PKM as a
transmission device, relating input and output motions. The
internal state of the PKM is hidden, however; for example,
the PKM may be in a passive singularity even if both matrices
are regular.

Example 1. The 5-bar mechanism in Fig. 2(a) and the
mechanism in Fig. 2(b), which is obtained by adding a third
kinematic chain between the EE and the base, are examples
showing the avoidance of input singularities by means of
redundant actuation. The EE of both mechanisms can be
positioned in the plane, and the two translation components
are the mechanical outputs. The 5-bar mechanism is
controlled by two drive units at the base. Adding an identical
actuated chain to the 5-bar mechanism does not change
the DOF nor the EE mobility so that both mechanisms
have the DOF 2. In the pose shown in Fig. 2(a) the 5-
bar mechanism exhibits a passive input singularity. This
is revealed by the manipulability measure defined as the
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Fig. 3. (Colour online) Manipulability measure 1/κ of (a) the 5-bar
mechanism, and (b) the RR/2RRR PKM.

inverse of the condition number κ of JFJT
F ,43, 51, 59 where the

forward kinematic Jacobian JF relates the EE-velocity V and
actuator velocities q̇a according to V = JFq̇a in Remark 1
(notice that for this positioning device the measure does
not depend on the scaling of translations and rotations,
which is problematic in general for spatial manipulators).
Figure 3 shows the distribution of 1/κ for the EE positions in
the workspace. It is clearly visible that the kinematic dexterity
measures of two manipulators differ significantly. Moreover,
the 5-bar mechanism exhibits singularities, where the EE-
motion is not controllable by the actuators, reflected by a
drop of manipulability. The configuration in Fig. 2(a) is such
an input singularity. This indeterminacy is removed with the
redundant third actuated chain in Fig. 2(b). Following the
conventional notation, the mechanism in Fig. 2(b) will be
denoted as RR/2RRR, indicating that the EE is connected to
the fixed base by one kinematic chain (chain 2) comprising
two revolute joints and two chains (chains 1 and 3) with three
revolute joints, where underlines specify the actuated joints.

Geometrically the occurrence of an input singularity means
that, in the configuration in Fig. 2(a), the 2D c-space cannot
be parameterized by the two actuator joint angles q1 and
q2. Figure 4 shows the q1–q2–q4 section of the c-space,

q2

q4

q1

1

–1

0

1

0

–1

–1
0

1
2

Fig. 4. (Colour online) q1–q2–q4 c-space section of the 5-bar
mechanism.

where the origin q0 = 0 is assigned to the input singularity.
Apparently the projection of V onto the q1–q2 coordinate
plane is not unique, and at q0 the joint angle q4 does
not depend uniquely on the input coordinates q1 and q2.
These input singularities occur whenever the two middle
links are parallel, i.e. when the mechanism resembles a 4-bar
mechanism, and the EE position for these input singularities
lies on the coupler curve of this 4-bar mechanism, restricted
to the work space as indicated in Fig. 3(a). The non-
uniqueness problem, and thus the input singularities, are
removed by adding a third actuated chain that yields the
redundantly actuated RR/2RRR PKM in Fig. 2(b). Then the
mobility is unaltered but the number of parameters used to
prescribe the motion is increased. Beside the increased and
homogenized manipulability, the apparent advantage of this
redundant actuation is the elimination of input singularities.
The dimension of the joint space is increased without
increasing the dimension of the c-space (i.e. DOF), and
the c-space of the RR/2RRR is embedded in an 8D joint
space (while that of the 5-bar is embedded in a 5D space),
which gives more freedom for choosing actuator coordinates,
or even using a redundant set. In other words, two 5-bar
mechanisms are connected and two copies of the c-pace in
Fig. 4 are glued together by identifying the respective q1–q4

subspaces.

4.3. Output singularities
The output mapping fO assigns to any configuration an EE-
pose, and the output Jacobian the EE-twist to the PKM
state. Output singularities are situations where the number
of instantaneous motions that are determined by the PKM
motion changes.
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Definition 3. The configuration q ∈ V is called output
singularity if rank JO is not constant in any neighborhood of
q in V .

Apparently the occurrence of output singularities depends
on how the outputs are assigned to the PKM according to fO.
They indicate a change of the way the PKM interacts with
its environment, but not critical configurations of the PKM
itself.

5. Proposal for a Terminology

5.1. Operation modes
Critical configurations impair the integrity of the PKM and
the stability of its dynamics model. A reliable operation is
only ensured in regular configurations. The submanifolds of
regular points constitute modes of operation of the PKM. In
this regard only those are relevant that can be attained by a
motion starting from the initial assembly, but not those that
could be attained by opening kinematic loops and assembling
it differently.

Definition 4. The connected subvarieties of V are
called the assembly modes of the PKM. The connected
submanifolds of regular points of V are called motion
modes of the PKM. The submanifolds of the motion modes
consisting of configurations that are not input singularities
are called actuation modes of the PKM. The submanifolds
of the motion modes consisting of configurations that are
neither input nor output singularities are called operation
modes of the PKM.

This is a refinement of the c-space according to critical
configurations. The motion modes consist of all regular
configurations in which the PKM is stable in the sense
that it does not exhibit c-space singularities. The actuation
modes are the submanifolds where, in addition, a continuous
control of the PKM is ensured. Finally, a further restriction
to the configurations where a continuous interaction with the
environment is ensured, so that the PKM can be operated as
transmission device, yields the operation modes. The motion
and actuation modes are indicated for the geometric model
in Fig. 1, which has only one assembly mode.

Remark 3 (aspects). The motion modes consist of all
configurations in which the PKM performs smooth motions.
The actuation modes are submanifolds of the motion modes
that in addition ensure uninterrupted actuation. For serial
manipulators exists an equivalent to operation modes, called
aspects, which refer to the manifolds of regular points of
forward kinematics.3 The so-called “generalized aspects”
were introduced for a fully parallel PKM in ref. [9] as the
connected submanifolds where both Jacobians M1 and M2 in
Remark 1 were regular. These submanifolds may, however,
comprise other (e.g. c-space) singularities, since, as already
mentioned, the internal state of a PKM is ignored.

It is sensible to classify the tasks of a PKM according
to critical configurations. To this end consider a task with
corresponding task space T ⊂ SE (3), i.e. a set of poses the
EE has to attain. It is assumed that T is connected.

Definition 5. A task with task space T is a regular task
if there is an operation mode M ⊂ V such that T ⊆ fO(M).

Remark 4. A regular task can be accomplished without
passing through any critical configuration. An interesting
concept in this regard is the notion of cuspidal serial
manipulators62 that is being adopted for PKM.9, 10

5.2. Kinematic redundancy
Traditionally, kinematic redundancy refers to situations were
the DOF of a manipulator exceeds the required EE-mobility.
This notion can be directly adopted for PKM.

Definition 6. Consider a PKM with global mobility δ.
The PKM is called kinematically redundant if dimW < δ.
The degree of kinematic redundancy is ρk := δ − dimW .
The motion that the PKM can perform with fixed EE-
configuration C ∈ SE (3) is called the self-motion with C.
The submanifolds of SC := {q|C = fE (q)} ⊂ V are called
the self-motion manifolds for this EE-pose. For serial
manipulators, this was studied in ref. [4].

Remark 5. This definition appears similar to the
definition of kinematic redundancy of serial manipulators. It
is important, however, to notice the specifics of PKM. While
the c-space of serial manipulators is a smooth manifold,
the c-space V of a PKM comprises manifolds (possibly of
different dimensions, as for kinematotropic mechanisms) that
are separated by c-space singularities. For this reason the
global DOF appears in the above definition, and it should
be noticed that possibly dimW < δloc in one motion mode,
while dimW ≥ δloc in another mode.

This notion of kinematic redundancy is solely based on the
local dimensions of c-space and workspace, but does not take
into account how (or even if) the task motion is embedded in
the workspace. Even if the PKM is kinematically redundant,
it may not be able to accomplish a particular task. Moreover,
the motion characteristics may be different in different
motion modes. For instance, the EE may perform planar
motions in one mode and spherical motions in another.
Therefore, it is appropriate to introduce the notion of task
redundancy.

Consider a task with corresponding task space T ⊂
SE (3), assumed to be connected.

Definition 7. The PKM is called task-redundant if
dim T < dimW and T ⊆ W , and task-deficient if T ⊆ W .

Remark 6. Notice that a manipulator may be
kinematically redundant as well as task-deficient.

5.3. Types of actuation
The above preliminaries admit to introduce a stringent
terminology for RA-PKM. The following definitions refer
to a configuration q in a certain actuation mode where the
PKM has local DOF δloc.

Definition 8. In the considered actuation mode, the DOA
is the number of independent input vector fields in the control
system (11):

α (q) := rank g (q) = rank A (q) . (15)

https://doi.org/10.1017/S0263574712000173 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574712000173


144 On the terminology and geometric aspects of redundant parallel manipulators

If α < δloc, the PKM is called underactuated, and if α =
δloc, the PKM is full-actuated. The degree of redundancy
of the actuation is ρα := m − α. The PKM is called
redundantly actuated if ρα > 0 and non-redundantly
actuated if ρα = 0.

Remark 7. Redundantly actuated PKMs are occasionally
termed “overactuated.” Notwithstanding that RA-PKM can
be underactuated, a full-actuated PKM is completely
actuated, and an improvement is impossible. Hence, the
term “overactuation” should not be used. Geometrically,
underactuation refers to situations where the active joint
variables do not constitute local coordinates on V , i.e. qa

does not fully determine the PKM configuration.

Remark 8. Actuation refers to the immediate effect of
control forces on the state of the system. It is a pointwise
property. The effect of the actuation on the PKM motion is
described by the controllability of the system. This is a local
property, i.e. considering the effect of actuation over a small
time.5, 47 Clearly, an underactuated PKM can be controllable
(but it is questionable whether such a PKM offers sufficient
stability).

Remark 9. The above DOA definition makes explicit use
of the expression of Eq. (13) and thus of Eq. (10). This is only
valid at regular configurations (i.e. in actuation modes), since
in c-space or input singularities the projected mass matrix G
or the control matrix A in Eq. (10) may be singular, or does
not exist. Nevertheless, the DOA is a general concept, and
input vector fields can indeed be assigned to any (possible
singular) configuration. Then the DOA would change at input
singularities. For instance, the Gough–Stewart platform is
non-redundantly full-actuated as long as it does not enter
the well-known input singularities where the prismatic joint
screws become dependent and form a 5-system. In these input
singularities the control matrix AT has rank 5. Hence, the
DOA reduces to 5, and the PKM is redundantly underactuated
in this input singularity.

The geometric meaning of redundancy can vividly be
explained for the 2D c-space V ∈ R

3 in Fig. 1. Clearly, at the
indicated c-space singularity, V loses its manifold property,
as one can not assign a 2D tangent plane at this point. The
two manifolds, separated by the c-space singularity, are the
motion modes of this fictitious PKM. The system has global
and local DOF δ = 2, and can be locally controlled using
joint variables q2 and q3 as inputs. Then the PKM is non-
redundantly full-actuated. The input space I is the q2–q3

section of V , and q2 and q3 are local coordinates on V . This
parameterization fails when the PKM attains a configuration
that projects to the boundary of I. The corresponding points
in V are the input singularities as depicted in Fig. 1. The latter
separate the c-space V into the indicated actuation modes.
However, the PKM cannot be steered from actuation mode
1 to 2 using the inputs q2 and q3. This would be possible
using q1 and q2 with input space I ′. Obviously, also for I ′,
there are input singularities, as indicated. Neither I nor I ′
alone is a globally feasible input space, but the combination
of these (non-redundant) actuation schemes gives rise to one
with input space I ∪ I ′ ≡ V and (redundant) inputs q1, q2,
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Fig. 5. (Colour online) A 2-DOF manipulator in different actuation
modes.

and q3 that is free of input singularities. Then the PKM is
always redundantly full-actuated.

Example 2. Consider two actuation schemes of the planar
mechanism with DOF δ = 2 in Fig. 5. First assume that joints
5 and 6 are actuated. The configuration shown in Fig. 5(a)
is an input and passive singularity, as the motion of joints
1, 3, and 8 are instantaneously independent from the input
motion. From there the mechanism can enter an actuation
mode, whose configuration is shown in Fig. 5(b). In this
mode the DOA is α = 2, the system is non-redundantly full-
actuated. It can leave this actuation (and motion) mode when
steered into the c-space singularity (Fig. 5(c)), where two
branches (motion modes) of the configuration space intersect.
Figure 5(d) shows a configuration in one of the possible
actuation modes with DOA α = 1 so that the mechanism is
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redundantly underactuated with actuation redundancy ρ = 1.
In fact, the motion of joints 1, 3, and 8 cannot be controlled
by the actuated joints 5 and 6.

Now assume that in addition to joints 5 and 6 joint 1
is also actuated. Then configurations (a) and (b) belong to
a single actuation mode, where the system is redundantly
full-actuated. That is, configuration (a) is not an input
singularity for this redundant actuation scheme. After passing
through the c-space singularity, in the actuation mode (d), the
mechanism is again redundantly full-actuated.

Example 1 (cont). In the configuration q0 of the 5-
bar mechanism in Fig. 2(a) the constraint and actuator
Jacobian have full ranks, rank J (q0) = 3 and rank Ja (q0) =
2, respectively, but rank Jp (q0) = 2. Moreover, since Jp has
full rank 3 outside q0, this is a passive singularity. There
are possible instantaneous motions, q̇p ∈ ker Jp, of passive
joints without actuator motions. Because of rank J (q0) >

rank Jp (q0) not all actuator motions are feasible. In fact, only
coupled actuator motions are possible in this configuration.
This situation is classified in ref. [68] as a singularity of
redundant passive motion (RPM) and impossible input (II)
type. If one would assign a DOA to this configuration,
it would be α (q0) = 0. Otherwise the 5-bar mechanism
has DOA α = 2. The 5-bar mechanism can be regarded
as instantaneously redundantly underactuated in q0, as the
control forces cannot fully actuate the mechanism. Moreover,
if the mechanism is at rest in q0, and if there are no external or
inertia forces, it is not controllable. The images of actuation
modes in workspace are visible in Fig. 3(a). The two actuation
modes are separated by input singularities.

The redundantly actuated RR/2RRR PKM does not
possess such input singularities, and it has a single
uninterrupted actuation mode.

Remark 10. Apparently actuation redundancy allows for
elimination of input singularities. A fundamental question
is what degree of redundancy is sufficient for achieving full
actuation in all regular configurations. A preliminary answer
follows from the embedding theorem by Whitney25 that,
adapted to this problem, states that any δ-dimensional c-
space can be embedded in an Euclidean space of dimension
2δ + 1. It is not sure, however, that 2δ + 1 actuators are
sufficient for full actuation. In case of the 5-bar linkage, the
mechanism could always be fully actuated using five inputs.
But one must be careful, since the theorem only says that V

can be embedded in some Euclidean space. It does not say
that this space is the (non-Euclidean) joint space.

Example 3. Consider the 3-URU Double-Y Multi-
Operational (DYMO) PKM in Fig. 6(a) that was reported in
ref. [69]. This PKM, with mobility δ = 3, exhibits operation
modes with different degrees of actuation. First consider
the actuation scheme with joints 4–6 are actuated. In this
mode the PKM acts as a planar manipulator, since the
platform can only move in the horizontal plane. The PKM
configuration is completely determined by the active joints so
that in this mode the PKM is non-redundantly full-actuated
with DOA α = 3. It can leave this operation mode via
the c-space singularity in Fig. 6(b), where different motion
modes (branches of the configuration space) intersect. In this
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Fig. 6. (Colour online) The 3URU DYMO PKM in its (a) planar
operation mode, (b) c-space singularity, and (c) lockup mode.

singularity the platform center is above the center of the
base triangle. Figure 6(c) shows a configuration in one of the
possible operation modes. This mode was called the lockup
mode,69 since the platform is immobile. In fact, the platform
motion is independent of the motion of the limbs. With joints
4–6 actuated, the PKM is redundantly underactuated with
DOA α = 0 and DOA redundancy, ρα = 3. That is, not only
is the platform fixed but the PKM motion cannot be even
controlled, as the limbs can spin freely. In order to fully
actuate the PKM in this mode, one needs to actuate joints
1–3. Now, if one intends to take advantage of the lockup
mode, one would need additional (possibly low-powered)
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actuators in joints 1–3. Then with joints 1–6 actuated, the
PKM is redundantly full-actuated with DOF α = 3 and
ρα = 3. Note that this redundancy is not achieved by the
addition of kinematic chains connecting ground and moving
platform but by the activation of passive joints.

This redundant actuation would also be required to operate
in the further modes of this PKM that exhibits a spherical and
mixed mode of the platform motion.69 Using the redundant
actuation scheme with joints 1–6 the PKM is full-actuated in
any mode.

6. Summary
In this paper a terminology for redundant PKM has been
proposed. The aim of this contribution was to provide
consistent definitions upon a general model, and to highlight
the geometric aspects of redundancy. To this end, a kinematic
model is introduced with the c-space as central part. Input,
output, and c-space singularities are distinguished and
used to introduce motion, actuation, and operation modes.
The notion of kinematic redundancy is recalled and task
redundancy is introduced.

A dynamic model was introduced that enables to treat
PKM as nonlinear control systems and to define actuation.
The DOA was introduced as the number of independent
control vector fields, and PKM are classified as full-actuated
and underactuated. Further, actuation redundancy is defined
as the difference of the number of actuators and the DOA.
It is pointed out geometrically that input singularities can be
avoided by redundant actuation.
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