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This paper examines the problem of identification and inference on a conditional
moment condition model with missing data, with special focus on the case when the
conditioning covariates are missing. We impose no assumption on the distribution
of the missing data and we confront the missing data problem by using a worst case
scenario approach.

We characterize the sharp identified set and argue that this set is usually too
complex to compute or to use for inference. Given this difficulty, we consider the
construction of outer identified sets (i.e. supersets of the identified set) that are easier
to compute and can still characterize the parameter of interest. Two different outer
identification strategies are proposed. Both of these strategies are shown to have
nontrivial identifying power and are relatively easy to use and combine for inferen-
tial purposes.

1. INTRODUCTION

The problem of missing data is ubiquitous in empirical social science research.
When survey data is used to estimate an econometric model, researchers are often
faced with a dataset that has missing observations. This paper examines the prob-
lem of identification and inference in a conditional moment equality model with
missing data, with special focus on the case when the conditioning covariates are
missing.

Our econometric model is as follows. We are interested in the true parameter
value θ0 that belongs to a parameter space � ⊆ R

dθ and satisfies the following
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(conditional) moment conditions:

EF [m(X,Y,θ0)|X = x] = 0 ∀x F − a.s (1.1)

where (�,A, F) denotes the underlying probability space, Y : � → R
dy denotes

the outcome variables, X : � →R
dx denotes the conditioning variables or covari-

ates, and m :Rdx ×Rdy ×Rdθ →R
dm is a known structural function. Throughout

this paper, a variable is a covariate if it is part of the conditioning variables in
Eq. (1.1) and is an outcome variable otherwise. Models characterized by Eq. (1.1)
have been studied extensively in the econometrics literature, as we illustrate
towards the end of this section.

We explore identification and inference of θ0 characterized by Eq. (1.1) in
the presence of missing data. In practice, the missing data problem affects both
outcomes and covariates. From the perspective of identification analysis, miss-
ing outcome data and missing covariate data are very different problems, and the
former one has been extensively studied in the literature. Therefore, the main text
of this paper focuses on the case when only conditioning covariates are missing.
In the appendix of the paper, we extend our results to allow for arbitrary missing
data patterns on both outcome variables and covariates.

We confront the missing data problem by using a worst case scenario approach.
This approach allows us to extract the information about θ0 from the observed data
without imposing (untestable) assumptions on the (unobserved) distribution of
missing data. Under a worst case scenario approach to missing data, θ0 is typically
partially identified, i.e., the restrictions of the model do not necessarily restrict θ0
to a unique value, but rather they constrain it to belong to an identified set.

According to our results, the identified set of θ0 in the presence of missing
covariate data is an extremely complex object to characterize and this naturally
leads to an even more complicated inferential problem. To the best of our knowl-
edge, the partial identification literature has not been able to address the problem
of identification and inference of θ0 characterized by Eq. (1.1) in the presence of
missing covariate data. This paper is an attempt to fill this gap in the literature.
Given the complications in dealing with the identified set, we consider several
methods to construct supersets of this identified set, referred to as outer identified
sets, which are relatively simple to compute. In particular, all outer identified sets
proposed in this paper take the form of collection of moment inequalities and are
thus amenable to inference using the current techniques in the partial identifica-
tion literature.

The remainder of this paper is organized as follows. Section 1.1 collects sev-
eral motivating examples and Section 1.2 reviews the related literature. Section 2
introduces our econometric model, characterizes the (sharp) identified set, and
explains why it is extremely complex to compute or use for inference. This com-
plexity justifies the construction of simple outer identified sets to characterize the
parameter of interest, developed in Section 3. Section 4 proposes a methodol-
ogy to construct confidence sets of these outer identified sets. Section 5 presents
Monte Carlo simulations. Section 6 concludes the paper. The appendix of the

https://doi.org/10.1017/S0266466615000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466615000250


198 ESTEBAN M. AUCEJO ET AL.

paper collects most of the proofs and intermediate results. Finally, several proofs
can be found in the online supplementary material to this paper (see Aucejo,
Bugni, and Hotz, 2015b).

1.1. Examples

In order to illustrate the theoretical framework of this paper, we now relate it to
econometric models that are routinely used in empirical applications.

Example 1.1 (Mean regression model)
Consider the following econometric model:

Y = f (X,θ0)+ ε, (1.2)

where Y : � →R denotes the outcome variable, X : � →R
dx are the conditioning

covariates, θ0 ∈ � ⊆ R
dθ is the parameter of interest, f : Rdx ×Rdθ → R is a

known regression function for the conditional mean, i.e.,

f (X,θ) = EF [Y |X,θ ],

and ε : � →R is a mean independent error term with its mean normalized to zero,
i.e.,

EF [ε|X = x] = 0 ∀x F−a.s. (1.3)

This model can be equivalently re-written as in Eq. (1.1) with m(X,Y,θ) ≡
Y − f (X,θ).

For illustration purposes, we give special attention to the linear index regres-
sion model, in which f (X,θ) = G(X ′θ) for a known weakly increasing function
G : R → R. As special cases, this model includes the linear regression model
(i.e. G is the identity function) and limited dependent binary choice models, such
as probit or logit (i.e. G is the standard normal or the logistic CDF, respectively).

The mean regression model in Example 1.1 is arguably one of the most com-
monly used empirical frameworks. For example, it constitutes the basis of the
related empirical application in Aucejo, Bugni, and Hotz (2015a), which we
now briefly describe. Prior to the year 1998, the campuses in the University of
California system were allowed to use affirmative action criteria in their admis-
sions procedures. However, starting in 1998, a ban on affirmative action was man-
dated with the passage of Proposition 209, also known as the California Civil
Rights Initiative. The objective of Aucejo et al. (2015a) is to estimate the effect of
the ban on graduation rates for underrepresented minorities. To achieve this goal,
we use a random sample of students to estimate a probit version of Eq. (1.2),
given by

Y = G(θ0,0 + θ0,1 R + θ0,2 P209+ θ0,3(P209× R)+ θ0,4 Z)+ ε, (1.4)
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where Y is a binary indicator of whether the student graduated (or not), R is an
indicator of the student’s minority status, P209 is a binary indicator of whether
the student enrolled after the passage of Proposition 209 (or not), and Z is a vector
of control variables considered in college admissions decisions, such as measures
of the student’s academic qualifications and family background characteristics
(e.g. parental income, etc.).

The main identification problem in the estimation of θ0 in Eq. (1.4) is that
the covariate vector has a significant amount of missing data, both in its discrete
components (e.g. race) and in its continuous components (e.g. parental income).
Moreover, the conjectured reasons for the missing observations are varied and
complex, making it implausible that these data are actually “missing at random”.1

Example 1.2 (Quantile regression model)
For some α ∈ (0,1), consider the following econometric model:

qα[Y |X ] = f (X,θ0),

where qα[Y |X ] denotes the α-quantile of {Y |X}, Y : � →R denotes the outcome
variable, X : � → R

dx are the conditioning covariates, f : Rdx ×Rdθ → R de-
notes a known regression function, θ0 ∈ � ⊆ R

dθ is the parameter of interest.
This model can be equivalently re-written as in condition (1.1) with m(X,Y,θ) ≡
1[Y − f (X,θ) ≤ 0]−α.

Example 1.2 is the result of considering Example 1.1 but with the zero
moment condition in Eq. (1.3) replaced by the zero quantile condition
qα(ε|X = x) = 0 ∀x F−a.s. In this sense, any empirical illustration that serves
as motivation of Example 1.1 could also motivate Example 1.2 as long the mod-
eling objective shifts from the conditional mean to conditional quantile. For the
sake of illustration, consider the empirical application in Abrevaya (2001), who
studies the effect of demographic characteristics (e.g. age, race, etc.) and maternal
behavior during pregnancy (e.g. prenatal care, smoking, etc.) on the quantiles of
the birthweight distribution (among other outcome variables). The paper uses U.S.
data from the Natality Data Set and suffers from significant amounts of missing
covariate data. In particular, data from California, Indiana, New York, and South
Dakota were excluded from Abrevaya (2001) as they were missing key covariates
such as smoking behavior of the mother (see Abrevaya, 2001, p. 250).

Example 1.3 (Simultaneous equations model)
Consider an econometric model in which two or more outcome variables are si-
multaneously determined through a system of equations. For example, consider
the following two equation case:

Y1 = f (Y2, X1, X2,θ0)+ ε1,

Y2 = f (Y1, X2, X1,θ0)+ ε2,

where Y = (Y1,Y2) : � → R
2 denotes the outcomes variables, X = (X1, X2) :

� →R
dx denotes exogenous covariates, f :R×R2dx ×Rdθ →R denotes a known
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regression function, θ0 ∈ � ⊆ R
dθ is the parameter of interest, and ε = (ε1,ε2) :

� → R
2 denotes mean independent error terms with their means normalized to

zero, i.e., EF [ε|X = x] = 0 ∀x F−a.s.

To illustrate Example 1.3, we can consider the empirical illustration in Lund-
berg (1988), who analyzes the labor supply decision of couples in a household
using a simultaneous equations model. In this application, the outcome variables
are hours worked by each family member and covariates include market wages
and other family income. Lundberg (1988) estimates the model with data from
the Denver Income Maintenance Experiment, which have a nontrivial amount of
missing observations (see, e.g., Lundberg, 1988, Table A.1).

1.2. Literature Rreview

There is a vast literature on identification and inference under missing data. How-
ever, the worst case scenario approach to missing information is relatively recent
and intimately related with the development of partial identification. An excellent
summary of this literature can be found in Manski (2003, Chap. 3).

Horowitz and Manski (1998) were the first to consider the identification prob-
lem of jointly missing outcome and covariate variables using worst case scenario
analysis. They provide sharp bounds on EF [g(Y )|X ∈ A] for a known function
g and a set A when either Y or X are missing. In general, EF [g(Y )|X ∈ A]
is shown to be partially identified. By generalizing this result, one could use
their analysis to provide sharp bounds for the parameter value θ0 that sat-
isfies EF [m(X,Y,θ0)|X ∈ A] = 0 for any A when either Y or X are miss-
ing. While helpful for our analysis, this generalization does not characterize
the set implied by our conditional moment restriction in Eq. (1.1). This is be-
cause Eq. (1.1) implies that the true parameter value satisfies the restriction
EF [m(X,Y,θ0)|X ∈ A] = 0 simultaneously for all A, rather than for a single A. In
other words, if we were to select any set A and consider parameter values that sat-
isfy EF [m(X,Y,θ0)|X ∈ A] = 0, we might be losing a large amount of identifying
power. In related work, Horowitz and Manski (2000) examine the case where the
outcome variable Y is binary and consider partial identification of PF [Y = 1|X =
x] and PF [Y = 1|X = x]− PF [Y = 1|X = x̃] for any x and x̃ when both Y and X
are allowed to be missing. As in their earlier work, Horowitz and Manski (2000)
consider identification conditional on a pair (x, x̃), while we are interested in a
conditional moment restriction that simultaneously holds for all pairs (x, x̃).

Manski and Tamer (2002) consider the problem of inference on regressions
with interval valued covariates. Since missing data can be considered a special
case of interval data, one might hope that their methodology can be used to an-
alyze our problem. Unfortunately, in our context, the assumptions imposed by
Manski and Tamer (2002) imply that the data are missing at random, which we
purposely want to avoid. We now explain this point using their notation. Let the
covariates be (X,V ), where V is subject to missing data and assumed to belong
to [V0,V1], let Z denote a variable that indicates if the covariate V is missing, and
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let vL and v H denote the logical lower and upper bounds of V . Missing covariate
data implies that V can be either observed (i.e. Z = 0 and, so, V = V0 = V1) or
unobserved (i.e. Z = 1 and, so, V0 = vL < v H = V1). According to this setup,
Z = 0 occurs if and only if V0 = V = V1. On the other hand, their Mean Indepen-
dence (MI) assumption implies that:

EF [Y |X = x,V = v] = EF [Y |X = x,V = v,V0 = v0,V1 = v1] ∀(x,v,v0,v1),

By applying this assumption to any (x,v) such that v0 = v1 = v , it follows that:

EF [Y |X = x,V = v] = EF [Y |X = x,V = v,V0 = v,V1 = v]

= EF [Y |X = x,V = v,{V0 = V = V1}]
= EF [Y |X = x,V = v, Z = 0]

and, so, their MI assumption applied to the current setup implies that the data are
missing at random.

In related work, Horowitz and Manski (2006) (HM06 hereafter), Horowitz,
Manski, Ponomareva, and Stoye (2003), and Beresteanu, Molinari, and
Molchanov (2011, Sect. 4) (BMM11 hereafter) consider identification and
inference of best linear predictions (BLPs) under squared loss in the presence
of incomplete data, i.e., missing observations and/or interval-valued measures.
We now briefly characterize these papers and discuss how they differ from our
contribution. Under (unconditional) expected square loss, the BLP of {Y |X = x}
is equal to x ′θ0, where θ0 satisfies:

EF [Xε] = 0, where ε ≡ Y − X ′θ0. (1.5)

If EF [X X ′] is nonsingular, Eq. (1.5) implies that θ0 is uniquely identified and
given by:

θ0 = EF
[
X X ′]−1

EF [XY ]. (1.6)

As HM06 and Horowitz et al. (2003) point out, the expression on the right hand
side of Eq. (1.6) is not identified under missing covariate data because neither
EF [X X ′] nor EF [XY ] is identified. By discretizing the distribution of the co-
variates and imposing logical bounds, these papers develop worst case scenario
bounds on θ0. While these sharp bounds are conceptually easy to understand, they
can be very computationally challenging to calculate or estimate. In particular,
HM06 (Page 457) suggest that easier-to-compute outer bounds might be consid-
ered for this class of problems and that “further research is needed to assess the
usefulness of these and other outer bounds in practice”. In response to this chal-
lenge, BMM11 use the support function approach to conduct computationally
feasible sharp inference in a broad class of incomplete data models, including the
aforementioned BLP problem when data of {X,Y } are interval valued (or, in our
case, missing).
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It is important to stress that the BLP problem with missing data considered
by HM06 or BMM11 differs from the econometric problem of interest in this
paper. To see this, consider the mean regression function model in Eq. (1.2) of
Example 1.1 when f (X,θ0) = X ′θ0. While HM06 and BMM11 assume that the
residual in their BLP problem satisfies the unconditional moment restriction in
Eq. (1.5), we assume instead that the residual satisfies the stronger conditional
moment restriction in Eq. (1.3). The reason for considering conditional moment
restrictions instead of the unconditional ones is two-fold. On the one hand, as
Section 1.1 illustrates, there are numerous empirical applications which are mod-
eled as conditional moment restrictions. In fact, this is precisely the case in the
probit model with missing covariates in Aucejo et al. (2015a) that motivated
this work. Second, unlike its unconditional counterpart, the conditional moment
restriction model with missing conditioning covariate has received less attention
in the literature. In particular, neither HM06 nor BMM11 can be used to study the
identified set of interest in this paper.2

In the absence of missing data, θ0 is typically (point) identified under either
conditional or unconditional moment restrictions (in both cases, θ0 is as in
Eq. (1.6)). In the presence of missing covariate data, however, the identification of
θ0 under conditional or unconditional moment restrictions can produce different
answers. The intuition behind this is simple. The unconditional moment restric-
tion in Eq. (1.5) implies a finite number of unconditional moment restrictions,
which typically lead to a strictly partially identified set for θ0, which we denote
by �unc

I (F).3 On the other hand, imposing the conditional moment restriction
proposed in this paper, i.e., Eq. (1.3), implies simultaneously imposing a condi-
tional moment condition of the form:

EF [εg(X)] = 0, (1.7)

for every (measurable) function g, which include the unconditional moment con-
ditions in Eq. (1.5) plus an infinite number of additional ones. We show in this
paper that this can also lead to a strictly partially identified set for θ0, which we
denote by �cond

I (F). By the law of iterated expectations, �cond
I (F) ⊆ �unc

I (F)
and, thus, �unc

I (F) based on Eq. (1.5) can result in a superset of the identi-
fied set for the parameter θ0 that is of interest to this paper. As we explain in
Section 2, the computational complexity of �cond

I (F) will force us to produce
inference on a superset of the identified set, which we denote by �S(F). Since
the set �unc

I (F) and our set �S(F) are different supersets of the identified set
�cond

I (F), our contribution can be considered to be complementary to the existing
literature.

In other work, BMM11 (Section 3) and Galichon and Henry (2011) con-
sider the identification problem in economic games with possible multiplicity
of equilibria. While this setup differs considerably from ours, their unobserved
equilibrium selection rule plays an analogous role to the distribution of missing
covariates in our framework. Galichon and Henry (2011) show that their identified
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set is characterized by the so-called core of the generalized likelihood predicted
by the model and, consequently, the problem of identification reduces to checking
whether a collection of conditional moment inequalities is satisfied or not for each
parameter value. This collection is relatively easy to handle when the support of
the outcome variable is finite and small, but can be computationally very chal-
lenging when the outcome variable takes a large number of values. In terms of
our paper, their method would be hard to implement whenever the support of the
missing covariates has numerous values. Since this last case is relevant in applica-
tions, we consider our contribution to be complementary to Galichon and Henry
(2011).

There are several other papers that can also be related to our identification
problem. Horowitz and Manski (1995) study the problem of corrupted and con-
taminated data. Lewbel (2002), Mahajan (2006), and Molinari (2008) study
identification of the parameter of interest when there is misclassification error
of a categorical covariate data. Finally, Chesher, Rosen, and Smolinski (2013)
and Chesher and Rosen (2014a, 2014b) develop sharp identification results for
instrumental variable models that can be related to our framework.

2. IDENTIFICATION ANALYSIS

We now present the identification analysis for models characterized by conditional
moment restrictions that contain missing data. We begin with an assumption that
formally characterizes our econometric framework.

Assumption A.1. Let the following conditions hold.

(i) Let (�,A, F) be the probability space of (X,Y,W ), let Y : � → SY ⊆Rdy

be the outcome variables, let X = (X1, X2) : � → SX1 ×SX2 ≡ SX ⊆Rdx =
R

d1+d2 be the covariates, where X1 is always observed and X2 is subject
to missing data, and let W : � → {0,1} denote the binary random variable
that takes value 1 if X2 is unobserved, and 0 otherwise.

(ii) There is a known function m : Rdx ×Rdy ×Rdθ → R
dm such that the true

parameter value θ0 ∈ � ⊆ R
dθ satisfies Eq. (1.1), i.e., EF [m(X,Y,θ0)|

X = x] = 0 ∀x F−a.s.

Assumption A.1 characterizes the structure of the data and its “missingness”.
According to Assumption A.1(i), the covariate vector X has two parts, X1 and
X2, and only X2 is subject to missing data. As mentioned earlier, the appendix
extends all of our results to allow for arbitrary missing data patterns on both
X and Y . Assumption A.1(ii) restates the conditional moment restriction in
Eq. (1.1).

By definition, the sharp identified set of θ0 is the smallest subset of the param-
eter space � that is consistent with our assumptions. For a given distribution of
the data F , this identified set is denoted by �I (F) and is characterized by the
following result.
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LEMMA 2.1 (Identified set). Assume Assumption A.1. Then,

�I (F) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ ∈ � s.t. ∃g1 : Rdx → R+ and g2 : Rdy ×Rdx → R+ that satisfy:

(i) g1(x) = 0 ∀x �∈ SX and g2(y, x) = 0 ∀(y, x) �∈ SY × SX

(ii)
∫

x2
g1(x)dx2 = 1 ∀x1 ∈ Rd1 F−a.s.

(iii)
∫

y g2(y, x)dy = 1 ∀x ∈ Rdx (F,g1)−a.s.

(iv)
∫

x2
g2(y, x)g1(x)dx2 = dPF ∀(x1, y) ∈ Rd1 ×Rdy F−a.s.

(v)

⎧⎪⎨
⎪⎩
(∫

y m(x, y,θ)g2(y, x)dy
)

g1(x)dPF [X1 = x1|W = 1]PF [W = 1]+
EF [m(X,Y,θ)|X = x,W = 0]dPF [X = x |W = 0]PF [W = 0] = 0
∀x ∈ Rdx (F,g1)−a.s.

⎫⎪⎬
⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (2.1)

where dPF denotes the probability distribution function that induces PF .

The presence of missing covariate data implies that the following two dis-
tributions are unobserved: dPF [X2 = x2|X1 = x1,W = 1] and dPF [Y = y|
X = x,W = 1]. Nevertheless, the conditional moment restriction in Eq. (1.1) im-
poses restrictions on these two unknown distributions that are specified in Lemma
2.1, where g1(x) represents dPF [X2 = x2|X1 = x1,W = 1] and g2(x, y) repre-
sents dPF [Y = y|X = x,W = 1].

The identified set described by Lemma 2.1 is typically extremely compli-
cated to compute in practice. In particular, in order to determine whether a spe-
cific parameter value belongs to the identified set (or not) we need to prove
(or disprove) the existence of a pair of functions (g1 and g2) that satisfies certain
properties. These functions need to satisfy a possibly large (even uncountable)
number of integral restrictions (i.e. conditions (ii)–(iv) in Eq. (2.1)), which is a
challenging mathematical problem. This identified set appears to be more com-
plex than the traditional moment inequalities and equalities considered by the
standard literature of partially identified econometric models.

To illustrate the complexity in computing the identified set described by
Lemma 2.1, consider a special case of the mean regression model in Example 1.1
with a binary outcome, i.e., Y ∈ {0,1}, and a univariate covariate affected by miss-
ing data and with finite support, i.e., X = X2 and SX = SX2 = {xj }N

j=1 and N > 1.
In this simplified setting, Lemma 2.1 implies that:

�I (F) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θ ∈ � s.t. ∃γ1,γ2 ∈ RN+ with γ2 ≤ γ1 that satisfy:∑N
j=1 γ1, j = 1,∑N
j=1 γ2, j = PF [Y = 1|W = 1],(

PF
[
Y = 1|X = xj ,W = 0

]− f (xj ,θ)
)

PF
[
X = xj ,W = 0

]
+(γ2, j −γ1, j f (xj ,θ)

)
PF [W = 1] = 0 ∀ j = 1, . . . , N .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (2.2)

where γ1 and γ2 can be related to functions g1 and g2 in Lemma 2.1.4 As a con-
sequence, in order to check whether a parameter value belongs to �I (F) (or not),
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we need to solve a linear system of N +2 equations with 2N unknowns subject to
nonnegativity constraints. This is easy to solve when N = 2. On the other hand,
when N > 2, the system of linear equations becomes under-determined, with
a degree of indeterminacy that grows as N increases.

The preceding example is arguably the simplest econometric model based on
conditional moment conditions with missing covariate data. Nevertheless, the
computation of the identified set can be complicated when the support of the
missing covariate has a large number of values. Furthermore, this complexity can
be shown to increase substantially as the model structure and/or the missing data
patterns become richer.

The complexity of the identification problem motivates us to propose simpler
ways of characterizing the identified set in the class of models characterized by
Assumption A.1. To this end, we propose the use supersets of the identified set or,
as they are referred to in the literature, outer identified sets.

DEFINITION 2.1 (Outer Identified set). An outer identified set is a superset of
the identified set.

An outer identified set provides a (possibly nonsharp) characterization of the
parameter of interest. By definition, any parameter value that lies outside of the
outer identified set also lies outside of the identified set and, thus, can be elimi-
nated as a candidate for the true parameter value. Of course, if an outer identified
set is a strict superset of the identified set, it must imply some loss of information
about the parameter of interest. Nevertheless, given the challenges described ear-
lier, outer identified sets that are easier to compute and use for inference can be
an attractive option for applied researchers.

3. OUTER IDENTIFICATION ANALYSIS

In the next two subsections, we propose outer identification strategies to produce
outer identified sets.

3.1. Outer Identification Analysis Using Boxes

Our first approach to constructing outer identified sets is to consider the implica-
tion of the conditional moment condition in Eq. (1.1) over a specific class of sets
that we refer to as boxes. In particular, let B(x,ν) denote a dx -dimensional box
with “center” at x ∈ Rdx and “length” ν ∈ Rdx++, formally defined as follows:

B(x,ν) ≡
{

x̃ ∈ Rdx :
{

xj −νj < x̃ j ≤ xj +νj
}dx

j=1

}
. (3.1)

For any arbitrary r ∈ (0,∞], the conditional moment restriction in Eq. (1.1)
implies the following collection of unconditional moment restrictions:

EF [m(X,Y,θ) 1[X ∈ B(x,ν)]] = 0 ∀(x,ν) ∈ Rdx × (0,r)dx . (3.2)
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In fact, the results in Domı́nguez and Lobato (2004) and Andrews and Shi (2013)
imply that the informational content in the conditional moment restriction in
Eq. (1.1) is equivalent to that in the collection of unconditional moment restric-
tions in Eq. (3.2). The objective of the subsection is to develop an (outer) identi-
fication region based on Eq. (3.2).

In the presence of missing covariate data, the unconditional moment restrictions
in Eq. (3.2) are not identified for the same reason as in Eq. (1.1), i.e., they depend
on the two unknown distributions: PF [X2|X1,W = 1] and PF [Y |X,W = 1].
The outer identification strategy of this section imposes logical bounds for the
unobserved distribution for each individual member of this collection.

Before we describe the result, it is necessary to introduce additional notation.
According to Assumption A.1, the covariate X has two components; X1 ∈ Rd1

which is always observed, and X2 ∈ Rd2 which is subject to missing data. Let
B1(x1,ν1) and B2(x2,ν2) be the d1 and d2-dimensional subboxes that result from
projecting B(x,ν) along the dimensions of these two types of covariates, formally
defined as follows:

B1(x1,ν1) ≡
{

x̃ ∈ Rd1 :
{

xj −νj < x̃ j ≤ xj +νj
}d1

j=1

}
,

B2(x2,ν2) ≡
{

x̃ ∈ Rd2 :
{

xj −νj < x̃ j ≤ xj +νj
}dx

j=d1+1

}
, (3.3)

where x1 ≡ {
xj
}d1

j=1, x2 ≡ {
xj
}dx

j=d1+1, ν1 ≡ {
νj
}d1

j=1, and ν2 ≡ {
νj
}dx

j=d1+1, for

any (x,ν) ∈Rdx ×Rdx++. With this notation in place, we are ready to state our first
outer identified set for θ0.

THEOREM 3.1. Assume Assumption A.1 and choose r ∈ (0,∞] arbitrarily. Let
Z ≡ (Y, X1, (1− W )X2,W ) and let M1(Z ,θ, x,ν) ≡ {M1, j (Z ,θ, x,ν)}dm

j=1 with

M1, j (Z ,θ, x,ν)

≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
⎛
⎜⎝

inf
(ξ2,y)∈{SX2 ∩B2(x2,ν2)}×SY

mj ((X1,ξ2), y,θ)

× 1[SX2 ∩ B2(x2,ν2) �= ∅, X1 ∈ B1(x1,ν1),W = 1]
+mj (X,Y,θ) 1[X ∈ B(x,ν),W = 0]

⎞
⎟⎠ ,

⎛
⎜⎝

sup
(ξ2,y)∈{SX2∩B2(x2,ν2)}×SY

mj ((X1,ξ2), y,θ)

× 1[SX2 ∩ B2(x2,ν2) �= ∅, X1 ∈ B1(x1,ν1),W = 1]
+mj (X,Y,θ) 1[X ∈ B(x,ν),W = 0]

⎞
⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.4)

for all (θ, x,ν, j) ∈ �×Rdx ×Rdx++ ×{1, . . . ,dm}, and where B, B1, and B2 are
defined as in Eqs. (3.1) and (3.3). Consider the following set:

�S1(F) ≡
{
θ ∈ � : EF [M1(Z ,θ, x,ν)] ≥ 0 ∀(x,ν) ∈ Rdx × (0,r)dx

}
. (3.5)

Then, �S1(F) is an outer identified set, i.e., �I (F) ⊆ �S1(F).
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The outer identified set �S1(F) in Theorem 3.1 is the result of imposing logical
bounds on unobserved terms of each member of the collection of unconditional
moment restrictions in Eq. (3.2). These bounds are logically possible from the
point of view of each element of the collection, but may not be from the point of
view of the collection as a whole. In fact, the connection between elements of the
collection of unconditional moment restrictions is the main contributing factor to
the complexity of the sharp identified set �I (F). In contrast, the outer identified
set �S1(F) takes the form of a collection of unconditional moment inequalities,
which makes it amenable to computation and inference.

The computation of �S1(F) requires minimizing and maximizing
{mj ((X1,ξ2), y,θ)}dm

j=1 with respect to (ξ2, y) ∈ {SX2 ∩ B2(x2,ν2)} × SY for

all values of (X1,θ) ∈ SX1 ×�.5 The difficulty of these operations will depend
on the structure of the model under consideration. For example, in the case of
a linear index regression version of Example 1.1, i.e., m(x, y,θ) = y − G(x ′θ)
with weakly increasing function G(·) and SX2 = R

d2 , these optimization prob-
lems have a closed form solution. In particular, if we set yL ≡ infy∈SY y and
yH ≡ supy∈SY

y,

inf
(ξ2,y)∈{SX2 ∩B2(x2,ν2)}×SY

m((X1,ξ2), y,θ)

= yL − G

⎛
⎝X ′

1θ1 +
d2∑

j=1

((
x2, j +ν2, j

)
1
[
θ2, j > 0

]+ (x2, j −ν2, j
)

1[θ2, j < 0]
)
θ2, j

⎞
⎠,

sup
(ξ2,y)∈{SX2 ∩B2(x2,ν2)}×SY

m((X1,ξ2), y,θ)

= yH − G

⎛
⎝X ′

1θ1 +
d2∑

j=1

((
x2, j −ν2, j

)
1[θ2, j > 0]+ (x2, j +ν2, j )1[θ2, j < 0]

)
θ2, j

⎞
⎠.

3.2. Outer Identification Analysis by Integrating Out

Our second approach to constructing outer identified sets is to integrate out the
covariates suffering from missing data, thus removing them from the condition-
ing set. In particular, the conditional moment restriction in Eq. (1.1) implies the
following equation:

EF [m(X,Y,θ0)|X1 = x1] = 0 ∀x F−a.s. (3.6)

The difference between Eq. (1.1) and Eq. (3.6) lies in the set of covariates each
is conditioned on. While Eq. (1.1) conditions on all the covariates, Eq. (3.6) only
conditions on the fully observed covariates. Since Eq. (3.6) does not suffer from
a missing covariate data problem, we can characterize its informational content
by applying a more traditional worst case scenario bounds analysis. As a result,
we obtain our second outer identified set for θ0.
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THEOREM 3.2. Assume Assumption A.1 and choose r ∈ (0,∞] arbitrarily. Let
Z ≡ (Y, X1, (1− W )X2,W ) and let M2(Z ,θ, x,ν) ≡ {M2, j (Z ,θ, x,ν)}dm

j=1 with

M2, j (Z ,θ, x,ν)

≡

⎡
⎢⎢⎢⎢⎢⎢⎣

− inf
ξ2∈SX2

mj ((X1,ξ2),Y,θ) 1[X1 ∈ B1(x1,ν1),W = 1]

−mj (X,Y,θ) 1[X1 ∈ B1(x1,ν1),W = 0],

sup
ξ2∈SX2

mj ((X1,ξ2),Y,θ) 1[X1 ∈ B1(x1,ν1),W = 1]

+mj (X,Y,θ) 1[X1 ∈ B1(x1,ν1),W = 0]

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.7)

for all (θ, x,ν, j) ∈ �×Rdx ×Rdx++ ×{1, . . . ,dm} and where B1 is defined as in
Eq. (3.3). Consider the following set:

�S2(F) ≡
{
θ ∈ � : EF [M2(Z ,θ, x,ν)] ≥ 0, ∀(x,ν) ∈ Rdx × (0,r)dx

}
. (3.8)

Then, �S2(F) is an outer identified set, i.e., �I (F) ⊆ �S2(F).

As explained earlier, the outer identified set �S2(F) is entirely based on
Eq. (3.6). The reason why �S2(F) might not be a sharp identified set for θ0 is
that, in general, there will be a loss of information in the process of integrating
out covariates with missing data that takes us from Eq. (1.1) to Eq. (3.6). As with
our first outer identified set, the outer identified set �S2(F) takes the form of
a collection of unconditional moment inequalities, which makes it amenable to
computation and inference.

The computation of �S2(F) requires minimizing and maximizing
{mj ((X1,ξ2),Y,θ)}dm

j=1 with respect to ξ2 ∈ SX2 for all values of (X1,Y,θ) ∈
SX1 × SY ×�. Once again, the difficulty of these operations will depend on the
structure of the model under consideration. For example, in the case of a linear
index regression version of Example 1.1, i.e., m(x, y,θ) = y − G(x ′θ) with
weakly increasing function G(·), these optimization problems have a closed form
solution. In particular, if we set x L

2, j ≡ infx2∈SX2
x2, j and x H

2, j ≡ supx2∈SX2
x2, j

for all j = 1, . . . ,d2,

inf
ξ2∈SX2

m((X1,ξ2),Y,θ)

= Y − G

⎛
⎝X ′

1θ1 +
d2∑

j=1

(
x L

2, j 1[θ2, j > 0]+ x H
2, j 1[θ2, j < 0]

)
θ2, j

⎞
⎠ ,

sup
ξ2∈SX2

m((X1,ξ2),Y,θ)

= Y − G

⎛
⎝X ′

1θ1 +
d2∑

j=1

(
x H

2, j 1[θ2, j > 0]+ x L
2, j 1[θ2, j < 0]

)
θ2, j

⎞
⎠ .
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3.3. Summary of Outer Identification Strategies

Sections 3.1 and 3.2 characterize two outer identification strategies for θ0 un-
der Assumption A.1. It is easy to verify that these outer identification strategies
are different and thus provide different restrictions to the parameter of interest.
To verify this, consider the linear index regression problem, i.e., m(x, y,θ) =
y − G(x ′θ) with weakly increasing function G(·). In this case, if the outcome
variable Y has bounded support and the missing covariate X2 has unbounded sup-
port, then the first outer identified set is informative while the second one is not
(i.e. �S1(F) ⊂ � = �S2(F)). On the other hand, if the outcome variable Y has
unbounded support and the missing covariate X2 has bounded support, then the
previous result is reversed, with the second outer identified set being informative
and the first one being uninformative (i.e. �S2(F) ⊂ � = �S1(F)).

Both of these outer identified sets take the form of collection of unconditional
moment inequalities. As a result, one can easily combine both collections to gen-
erate a sharper (i.e. more informative) outer identified set, also defined by a collec-
tion of unconditional moment inequalities. This is the content of the next result.

THEOREM 3.3. Assume Assumption A.1 and choose r ∈ (0,∞] arbitrarily.
Let Z ≡ (Y, X1, (1− W )X2,W ) and

M(Z ,θ, x,ν) = [
M1(Z ,θ, x,ν)′, M2(Z ,θ, x,ν)′

]′ (3.9)

for all (θ, x,ν) ∈ � ×Rdx × (0,r ]dx , where M1 and M2 are defined as in Eqs.
(3.4) and (3.7), respectively. Consider the following set:

�S(F) ≡
{
θ ∈ � : EF [M(Z ,θ, x,ν)] ≥ 0 ∀(x,ν) ∈ Rdx × (0,r)dx

}
. (3.10)

Then, �S(F) is an outer identified set, i.e., �I (F) ⊆ �S(F).

The outer identified set �S(F) is given by a collection of unconditional mo-
ment restrictions that represents both identification strategies. In the remainder of
the paper, we use this outer identified set to conduct econometric inference.6

4. INFERENCE

The objective of this section is to construct a confidence set, denoted C Sn , that
covers the true parameter value θ0 with an asymptotic confidence size of (1 −α)
(or more). Given our results in previous sections, it is important to choose an
inferential method that allows the parameter of interest to be partially identified.

Following Theorem 3.3, our outer identified set is characterized by an un-
countable collection of p-dimensional unconditional moment inequalities with
p ≡ 4dm . To the best of our knowledge, our framework does not exactly coin-
cide with the typical econometric model used in the partially identified literature.
On the one hand, we have an uncountable number of unconditional moment
inequalities, which is not allowed in the standard framework for unconditional
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moment inequalities.7 On the other hand, our framework with unconditional mo-
ment conditions is not directly captured by any of the existing inference methods
for conditional moment inequalities. In any case, our outer identification analy-
sis closely resembles the ideas of Andrews and Shi (2013) (hereafter, referred to
as AS13), who also translate conditional moment inequalities into unconditional
ones. For this reason, we find it natural to implement inference by adapting the
Generalized Moment Selection (GMS, henceforth) method developed by AS13.
Although less natural in our setting, one could also have implemented inference
by adapting the results from other references in the conditional moment inequal-
ity literature, which include Kim (2008), Ponomareva (2010), Armstrong (2012,
2014), Armstrong and Chan (2012), Chetverikov (2012), and Chernozhukov, Lee,
and Rosen (2013), among others. It is relevant to point out that, to the best of our
knowledge, there are no inferential procedures that can be applied to the complex
structure of the sharp identified set in Lemma 2.1. In other words, the possibility
of conducting inference along the lines of any of these references is a consequence
of the simplification introduced by our outer identification strategies.

In order to conduct inference, we assume to observe an i.i.d. sample of obser-
vations of {Zi }n

i=1 with Z ≡ (Y, X1, (1 − W )X2,W ) distributed according to F .
Following the GMS procedure in AS13, we propose to construct a confidence set
for θ0 by hypothesis test inversion, that is, by collecting all parameter values that
are not rejected in a hypothesis test with H0 : θ0 = θ vs. H1 : θ0 �= θ . In particular,
we propose:

C Sn ≡ {
θ ∈ � : Tn(θ) ≤ ĉn(θ,1−α)

}
,

where Tn(θ) is the Cramér-von Mises test statistic and ĉn(θ,1 −α) is the GMS
critical value for aforementioned hypothesis test. In the remainder of this section,
we specify the components of C Sn and we discuss its main asymptotic properties.
For reasons of brevity, several details of this section are deferred to Appendix A.2.

4.1. Definition of the Test Statistic Tn(θ)

Given the i.i.d. sample of data {Zi }n
i=1 and for any parameter θ ∈ �, the

Cramér-von Mises test statistic is defined as follows:

Tn(θ) ≡
∫

S
(√

n Mn(θ, x,ν), 
n(θ, x,ν)
)

dμ(x,ν), (4.1)

where (x,ν) ∈ R
dx × R

dx+ , Mn(θ, x,ν) denotes the sample mean of
{M(Zi ,θ, x,ν)}n

i=1, 
n(θ, x,ν) denote a slight modification of the sample
variance of {M(Zi ,θ, x,ν)}n

i=1 (see Eq. (4.2)), and S and μ are a function and
a probability measure chosen by the researcher according to assumptions in
Appendix A.2.2.

According to Theorem 3.3, �S(F) is composed of parameter values θ ∈ � that
satisfy a collection of p moment inequalities. Our test statistic replaces these
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population moment inequalities with their properly scaled sample analogue,√
n Mn(θ, x,ν), weights them according to their sample variance, evaluates their

value according to the criterion function S, and aggregates them across values
of (x,ν) according to the probability measure μ. In the language of the crite-
rion function approach developed by Chernozhukov, Hong, and Tamer (2007),
Tn(θ) is the sample analogue of the criterion function, which indicates whether θ
belongs to the outer identified set �S(F) or not. This statement is formalized in
Theorem A.3 in Appendix A.2.3.

We proceed by specifying each of the components of the test function Tn(θ).
For any θ ∈ � and (x,ν) ∈ Rdx × (0,r)dx , the sample mean, the sample variance,
and its modified version are defined as follows:

Mn(θ, x,ν) ≡ n−1
n∑

i=1

M(Zi ,θ, x,ν),


̂n(θ, x,ν) ≡ n−1
∑n

i=1

[
M(Zi ,θ, x,ν)− Mn(θ, x,ν)

]
× [M(Zi ,θ, x,ν)− Mn(θ, x,ν)

]′
,


n(θ, x,ν) ≡ 
̂n(θ, x,ν) + λ Dn(θ), (4.2)

where λ is an arbitrarily small positive constant8 and Dn(θ) a positive definite
diagonal matrix defined in Eq. (A.5) in Appendix A.2.1. The role of the modifica-
tion is to ensure that we use a measure of sample variance that is positive definite
in a scale invariant fashion.

4.2. Definition of the GMS Critical Value ĉn(θ,1−α)

The GMS critical value ĉn(θ,1 −α) is an approximation to the (1 −α)-quantile
of the asymptotic distribution of Tn(θ) under H0 : θ0 = θ . According to AS13
(Section 4.1), this asymptotic distribution is:

T (h) ≡
∫

S
(
vh2(x,ν)+h1(x,ν) , h2(x,ν)+λ Ip×p

)
dμ(x,ν), (4.3)

where h ≡ (h1,h2), h1 indicates the amount of slackness of the moment in-
equalities, h2 is the limiting variance-covariance kernel, and vh2 is a mean zero
R

p-valued Gaussian process with covariance kernel h2(·, ·).
To define the GMS approximation to the distribution in Eq. (4.3), it is first nec-

essary to define certain auxiliary expressions. For every θ ∈ � and (x,ν), (x̃, ν̃) ∈
R

dx × (0,r)dx , define:

ĥ2,n(θ,(x,ν), (x̃, ν̃)) ≡ D−1/2
n (θ) 
̂n(θ,(x,ν), (x̃, ν̃)) D−1/2

n (θ),

ĥ2,n(θ, x,ν) ≡ ĥ2,n(θ,(x,ν), (x,ν)),

xn(θ, x,ν) ≡ κ−1
n

√
n D̂−1/2

n (θ) Mn(θ, x,ν),

ϕn(θ, x,ν) ≡ {Bn ×1
[
xn, j (θ, x,ν) > 1

]}p
j=1 , (4.4)
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where {κn}n≥1 and {Bn}n≥1 are sequences chosen by the researcher according to
the restrictions in Appendix A.2.2. We briefly describe each of these expressions.
First, ĥ2,n(θ,(x,ν), (x̃, ν̃)) and ĥ2,n(θ, x,ν) are the standardized versions of
the sample variance-covariance kernel and sample variance kernel, respectively.
Second, xn(θ, x,ν) is a sample measure of the slackness of the moment inequal-
ities and ϕn(θ, x,ν) is an increasing function of this measure that is used in the
construction of GMS quantiles. With these definitions in place, the GMS critical
value is defined as follows:

ĉn(θ,1−α) ≡ η+ c(ϕn(θ, ·), ĥ2,n(θ, ·, ·),1−α +η),

where η is an arbitrarily small positive constant9 and c(ϕn(θ, ·), ĥ2,n(θ, ·, ·),
1 − α + η) is the (conditional) (1 − α + η)-quantile of the following random
variable:∫

S
(

vĥ2,n
(x,ν)+ϕn(θ, x,ν) , ĥ2,n(θ, x,ν) + λ Ip×p

)
dμ(x,ν), (4.5)

and vĥ2,n
is a mean zero Rp-valued Gaussian process with covariance kernel

ĥ2,n(θ, ·, ·). The intuition behind the GMS approximation can be understood by
comparing Eqs. (4.3) and (4.5). First, the sample analogue variance-covariance
kernel ĥ2,n(θ, ·, ·) estimates the limiting covariance kernel h2. Second, the empir-
ical slackness measure ϕn(θ, ·) approximates the limiting slackness in the moment
inequalities h1.

There are several details regarding the computation of the GMS quantiles from
Eq. (4.5). First, the Gaussian process vĥ2,n

requires simulation and there are var-
ious methods that can be used to implement this. Second, Eqs. (4.1) and (4.5)
require integration with respect to the measure μ. All of these approximations
can be conducted with arbitrary accuracy by methods described in detail in AS13
(Section 3.5). For the sake of convenience, we include a brief description of these
approximation methods in Appendix A.2.4.

4.3. Properties of the GMS Confidence Sets

The formal results in AS13 suggest that GMS confidence sets provide excellent
asymptotic properties. While these results do not immediately apply to our outer
identified framework, it is not hard to adapt their arguments in order to establish
analogous results. For the sake of completeness, this section announces some of
these results and their proofs can be found in the online supplementary material
(see Aucejo et al., 2015b).

In order to discuss formal coverage properties, it is necessary to introduce
some basic notation regarding the parameter space. As it is customary in the
literature of moment inequality models, one can consider the parameters of the
model to be (θ, F), where θ is the finite dimensional parameter of interest and
F is the distribution of the data. In order to produce asymptotic results, we re-
strict these parameters to a baseline parameter space, denoted by F and formally
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defined in Definition A.1 in Appendix A.2.1. It is worthwhile to point out that the
baseline parameter space F includes both parameter values (θ, F) for which θ
satisfies the moment inequalities of our outer identified set (i.e. θ ∈ �S(F)) and
parameter values (θ̃ , F̃) for which θ̃ does not satisfy the moment inequalities of
our outer identified set (i.e. θ̃ �∈ �S(F̃)). In order to establish coverage results,
we further restrict the baseline parameter space F to a relevant null parameter
space, denoted by F̄0, which imposes the moment inequalities of our outer iden-
tified set (among other technical conditions). In other words, F̄0 ⊂ F and, by
definition, F̄0 is only composed of parameter values (θ, F) such that θ ∈ �S(F).
The formal definition of the parameter space F̄0 is deferred to Definition A.3 in
Appendix A.2.1.

We are now ready to introduce our main asymptotic coverage result, which
establishes that the GMS confidence set covers each parameter θ in �S(F) with
a limiting probability of (1−α) or more.

THEOREM 4.1. Assume Assumptions A.2, A.5-A.6 and let F̄0 be as in Defini-
tion A.3. Then,

liminf
n→∞ inf

(θ,F)∈F̄0

PF [θ ∈ C Sn] ≥ (1−α). (4.6)

There are a couple of relevant aspects in this result that are worth pointing
out. First, recall that (θ, F) ∈ F̄0 implies θ ∈ �S(F) and so the coverage of all
(θ, F) ∈ F̄0 implies the coverage of all θ ∈ �S(F) for the relevant collection of
distributions F . Second, notice that Eq. (4.6) computes limits as n → ∞ after
considering the infimum of (θ, F) ∈ F̄0. In this sense, the asymptotic cover-
age result holds uniformly over a relevant subset of the parameters (θ, F) ∈ F̄0.
According to the literature on partially identified moment inequality models,
obtaining uniformly valid asymptotic results is the only way to guarantee that
the asymptotic analysis provides an accurate approximation to finite sample
results. The reason for this is that the limiting distribution of the test statistic is
discontinuous in the slackness of the moment inequalities, while the finite sample
distribution of this statistic does not exhibit these discontinuities. In consequence,
asymptotic results obtained for any fixed distribution (i.e. pointwise asymptotics)
can be grossly misleading, and possibly produce confidence sets that undercover
(even asymptotically).10

Our next result describes the asymptotic power properties of the GMS confi-
dence set, which shows that the GMS confidence set excludes any fixed θ outside
of �S(F) with probability approaching one.11

THEOREM 4.2. Assume Assumptions A.2-A.6, and let (θ, F) ∈ F such that
θ �∈ �S(F). Then,

lim
n→∞ PF [θ �∈ C Sn] = 1.
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By repeating arguments in AS13, it is also possible to show that inference based
on GMS confidence sets have nontrivial power against a set of relevant n−1/2-
local alternatives, and strictly higher power than inference based on alternative
methods, such as plug-in asymptotics or subsampling. These results are omitted
from the paper for reasons of brevity.

Given the structure of our outer identified set, adapting the GMS infer-
ence method developed by AS13 to our problem was the most natural choice.
However, as we explained earlier, the recent literature offers several other meth-
ods to implement inference for conditional moment inequality models and it is
important to understand how the GMS inference method compares to the rest
of the literature. In this respect, the literature offers many interesting discus-
sions and we now briefly summarize some of the main ideas. Chernozhukov
et al. (2013, p. 672) explain that their method and that of AS13 differ in
the detection rate of n−1/2-local alternatives depending on whether these take
the form of a constant deviation from the null hypothesis on a set of positive
Lebesgue measure (the so-called flat alternative), or not. On the one hand, the
GMS inference method will have nontrivial power against these flat alterna-
tives, while the inference method in Chernozhukov et al. (2013) will not. On
the other hand, the inference method in Chernozhukov et al. (2013) presents
near optimal detection rates of nonflat alternatives, while the GMS inference
method presents suboptimal rates. Both flat and nonflat alternatives are rele-
vant in applications and so both contributions should be considered complemen-
tary. More recently, Armstrong (2012, 2014), Chetverikov (2012), and Armstrong
and Chan (2012) propose new inference methods based on optimally weighted
Kolmogorov–Smirnov (KS) type statistics. While AS13 also considers KS statis-
tics, their method implicitly impose restrictions on the choice of weights due
to technical reasons (See Armstrong, 2012 for a comprehensive analysis of the
power properties of the AS13). By using novel arguments, these new references
show that using an optimal weighted KS statistics can lead to significant power
improvements.

We conclude the section by considering the effect of misspecification on infer-
ence. By definition, any outer identified set is nonempty if the model is correctly
specified, while it may or may not be empty if the model is incorrectly specified.
By applying Theorem 4.1, we conclude that a correctly specified model will pro-
duce a nonempty confidence set with a limiting probability of (1 − α) or more.
However, a misspecified model with an empty outer identified set can generate an
empty confidence set. These ideas can be used as a basis of model specification
in partially identified moment inequality models as in Andrews and Soares (2010,
Sect. 5) and Bugni, Canay, and Shi (2015).

5. MONTE CARLO SIMULATIONS

In this section, we illustrate our results using Monte Carlo simulations based on
the probit linear regression model in Example 1.1. In this setup, the researcher
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correctly assumes that the true value of the parameter θ0 = (θ0,1,θ0,2) ∈ � ≡
[−2,2]2 satisfies the conditional moment condition:

EF [Y |X = (x1, x2)] = �(x1θ1 + x2θ2), (5.1)

where Y ∈ SY = {0,1} is a binary outcome random variable, X = (X1, X2) are the
covariates with X1 ∈ SX1 = [0,1] that is always observed, and X2 ∈ SX2 = {0,1}
that is subject to missing data. As in the main text, W is a binary variable that
indicates whether X2 is missing. In order to conduct inference, the researcher
observes an i.i.d. sample of {(Y, X1, (1− W )X2,W )}n

i=1.
We next discuss aspects of the simulations that are unknown to the researcher.

The covariates X1 and X2 independently distributed with X1 ∼ U [0,1] and
X2 ∼ Be(0.5). The data are missing according to:

PF [W = 1|X = (x1, x2)] = π(x2) for x2 ∈ {0,1}. (5.2)

Notice that Eq. (5.2) allows the conditional probability of missing data to be con-
stant (i.e. π(0) = π(1)) or not (i.e. π(0) �= π(1)). Finally, in all of our simulations,
the data that are not missing are also distributed according to a probit regression
model with parameter value θ̃0 = (θ̃0,1, θ̃0,2), i.e.,

EF [Y |X = (x1, x2),W = 0] = �
(

x1θ̃1 + x2θ̃2

)
, (5.3)

Notice that Eq. (5.3) allows data to be missing at random (i.e. θ0 = θ̃0) or not (i.e.
θ0 �= θ̃0). Finally, we notice that while the researcher correctly assumes Eq. (5.1),
he is unaware that Eqs. (5.2) and (5.3) hold.

We consider five Monte Carlo designs that differ in the value of the population
parameters. These parameter values are specified in Table 1 and are chosen to
illustrate cases with and without missing at random and with and without a con-
stant probability of missing data.

The Monte Carlo setup we consider in our simulations is admittedly simple but
is very useful to illustrate the value of our outer identification strategies. Since
the outcome is binary and the missing data can only take two possible values,

TABLE 1. Parameter values for Eqs. (5.1), (5.2), and (5.3) used in our simula-
tions. In this framework, data are missing at random if and only if θ0 = θ̃0, and
the missing probability is constant if and only if π(0) = π(1).

Design θ0,1 θ0,2 θ̃0,1 θ̃0,2 π(0) π(1) Missing at random Missing probability

Design 1 0.5 1 0.5 1 0.15 0.15 yes constant
Design 2 0.5 0.5 0.5 0.5 0.15 0.15 yes constant
Design 3 0.5 1 0.5 1 0.25 0.15 yes not constant
Design 4 0.5 1 0.75 1 0.15 0.15 no constant
Design 5 0.5 1 0.75 1 0.25 0.15 no not constant
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we are in a situation where the identified set is simple enough to be computed
analytically (i.e. N = 2 in Eq. (2.2)). For each design, we compute the sharp
identified set �I (F), the outer identified set 1, �S,1(F) (Theorem 3.1), the outer
identified set 2, �S,2(F) (Theorem 3.2), and the proposed outer identified set,
�S(F) = �S,1(F) ∩ �S,2(F) (Theorem 3.3). We arbitrarily choose r̄ = 0.5 to
compute our outer identified sets. By looking individually at outer identified sets
1 and 2, we can understand the identifying power of each outer identification
strategy. By comparing the proposed outer identified sets and the sharp identified
set, we can quantify the loss of information involved in our outer identification
strategies.

We also use the Monte Carlo simulations to implement our inference method.
For this purpose, we simulate 2,000 datasets, each with a sample size of n = 500
and, for each of these samples, we construct confidence sets with confidence size
(1 −α) = 90% using two inference methods. First, we construct the GMS confi-
dence set for the outer identified set �S(F) proposed in Section 4. According to
our theoretical results, this confidence set should cover the true parameter value
with a limiting probability of (1−α) or more (Theorem 4.1) and should cover any
fixed parameter value outside of the outer identified set with a probability that con-
verges to zero (Theorem 4.2). Second, we construct a confidence set using only
the fully observed data under the implicit assumption that the data are missing at
random. By using standard arguments, this second inference method can be shown
to cover the parameter value θ̃0 with a limiting probability of (1 −α) and should
cover any other fixed parameter value with a probability that converges to zero.
In cases in which the data are missing at random (i.e. θ0 = θ̃0 as in designs 1–3)
the second confidence set is expected to be size correct and have optimal power
properties. On the other hand, in cases in which data are not missing at random
(i.e. θ0 �= θ̃0 as in designs 4–5) the second confidence set is expected to suffer
from undercoverage problems.

In order to illustrate our coverage properties, we choose 12 specific parameter
values that are purposely chosen in the interior, boundary, and exterior of the
outer identified set �S(F). First, we consider the true parameter value θinterior ≡
θ0, which is always located in the interior of �S(F). Second, we consider the
parameter value θboundary that is on the boundary of the outer identified set located
directly to the east of the true parameter value, i.e.,

θboundary ≡ (θ0,1 +C,θ0,2), (5.4)

where the constant C > 0 is chosen so that θboundary lies exactly in the bound-
ary of the �S(F). Next, we consider a list of 10 additional parameter values
{θexterior,v }10

v=1 chosen according to the following rule:

θexterior,v ≡ (θ0,1 +C + v/
√

n,θ0,2) for v ∈ {1, . . . ,10},
where C > 0 is as in Eq. (5.4). Since θboundary lies exactly in the boundary of
�S(F), {θexterior,v }10

v=1 lie in the exterior of �S(F) and at a distance to this set
that increases with the index v = 1, . . . ,10.
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We conclude by describing the parameters used to implement the GMS method,
which is explained in full detail in Appendix A.2.4. We construct GMS con-
fidence sets with a function S given by the modified method of moments (see
Eq. (A.6) in Appendix A.2.2) and, following AS13, we specify the measure μ
to be uniform distribution using the information regarding the support of the
covariates, i.e., μ(x,ν) =∏2

j=1 μ1, j (x1, j )×μ2(νL , j )×μ2(νH, j ), where μ1,1 is
equal to U (0,1), μ1,2 is equal to Be(0.5), and {μ2(νL , j ),μ2(νH, j )}j=1,2 are all
equal to U (0, r̄) with r̄ = 0.5. Every integral is approximated by Monte Carlo
integration with sn = 1,000. Following AS13, we choose κn = (0.3ln(n))1/2,
Bn = (0.4ln(n)/ ln ln(n))1/2, and η = 10−6. Finally, GMS quantiles are computed
by simulation using τreps = 1,000 repetitions.

5.1. Design 1

Figure 1 describes the identification analysis in Design 1. It shows the true param-
eter value θ0, the identified set, the two outer identified sets, and their intersection.
The outer identified set 1 is a relatively large region of the parameter space while
the outer identified set 2 is relatively smaller. Neither of these sets is a subset
of the other and, consequently, there is an informative gain in considering their
intersection. In fact, the size of the intersection of the outer identified sets is
slightly larger that the size of the identified set. In other words, in the current
setup, the combination of our outer identification strategies captures most of the
information that is available in the data.

FIGURE 1. Identification analysis in Design 1. The black asterisk is θ0, the light shaded
region is �I (F), the medium shaded region is �S(F)∩�I (F)c, the dark shaded region
is �S1(F)∩�S(F)c, and the black region is �S2(F)∩�S(F)c.
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Figure 2 shows coverage probabilities that result from our GMS confidence set
and from inference using a probit model based only on fully observed data. As ex-
pected, the GMS inference on our outer identified set covers θ0 and θ1 (labeled −1
and 0) with probability exceeding (1 −α), and all remaining points are covered
less frequently, with coverage frequency decreasing monotonically as we move
further away from the outer identified set. Inference based on fully observed data
covers θ0 (labeled −1) with (limiting) probability (1 − α), and all other points
are covered less frequently, with coverage dropping monotonically as we move
further to the right. Since data are missing at random in Design 1, it is no surprise
that inference based on fully observed data is significantly more powerful than
inference based on our outer identified set.

FIGURE 2. Empirical coverage frequency with (1−α) = 90% for several parameter types
in Design 1. Solid line represents coverage with our GMS confidence set and dashed line
represents coverage using a probit model based only on fully observed data. Parameter
types are as follows: “-1” refers to θinterior = θ0, “0” refers to θboundary , and “1–10”

refer to
{
θexterior,v

}10
v=1.

5.2. Design 2

Figure 3 presents the identification analysis using the parameters in Monte Carlo
Design 2. Notice that the first two designs share the fact that the data are missing at
random and the probability of missing data is constant. Nevertheless, the results of
the identification analysis in these two simulations are very different. In Design 2,
the outer identified set 2 is a strict subset of the outer identified set 1 and, as a
consequence, the intersection of the outer identified sets coincides with the outer
identified set 2. As in Design 1, the intersection of outer identified sets is slightly
larger than the sharp identified set and, therefore, captures most of the information
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FIGURE 3. Identification analysis in Design 2. The black asterisk is θ0, the light shaded
region is �I (F), the medium shaded region is �S(F) ∩ �I (F)c, and the dark shaded
region is �S1(F)∩�S(F)c.

FIGURE 4. Empirical coverage frequency with (1−α) = 90% for several parameter types
in Design 2. Solid line represents coverage with our GMS confidence set and dashed line
represents coverage using a probit model based only on fully observed data. Parameter
types are as follows: “-1” refers to θinterior = θ0, “0” refers to θboundary , and “1–10”
refer to

{
θexterior,v

}10
v=1.

that is available in the data. Figure 4 presents the inferential results for Design 2.
The coverage probabilities are qualitatively and quantitatively similar to Design 1.
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5.3. Design 3

Figures 5 and 6 repeat the analysis using the parameters in Design 3. The pur-
pose of this simulation is to explore the effect of having a larger and nonconstant
probability of missing data (i.e. π(0) �= π(1)). Increasing the percentage of miss-
ing data enlarges the outer identified sets, leading to a larger intersection of outer
identified sets. Nevertheless, the combination of our outer identification strategies
is still reasonably close to the sharp identified set. Inferential results are similar to
those in previous designs, both qualitatively and quantitatively.

FIGURE 5. Identification analysis in Design 3. The black asterisk is θ0, the light shaded
region is �I (F), the medium shaded region is �S(F)∩�I (F)c, the dark shaded region
is �S1(F)∩�S(F)c, and the black region is �S2(F)∩�S(F)c.

5.4. Design 4

Figures 7 and 8 repeat the analysis with the parameters in Design 4. As opposed
to previous simulations, the data in this design are not missing at random (i.e.
θ0 �= θ̃0). As with all previous designs, the GMS inference on our outer identified
set covers θ0 and θ1 (i.e. parameters types −1 and 0, respectively) with prob-
ability exceeding (1 − α), and all remaining points are covered less frequently,
with coverage decreasing monotonically as we move further away from the outer
identified set. Unlike previous designs, inference based only on fully observed
data suffers from an undercoverage problem. In particular, the empirical coverage
of the true parameter value θ0 is 50%, which is significantly below the desired
coverage level of (1 −α) = 90%. As explained earlier, this undercoverage is an
expected consequence of the fact that data are not missing at random. Inference
based only on fully observed data can be shown to cover θ̃0 = (0.75,1) instead
of the true parameter value θ0 = (0.5,1), which also explains why the coverage
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FIGURE 6. Empirical coverage frequency with (1−α) = 90% for several parameter types
in Design 3. Solid line represents coverage with our GMS confidence set and dashed line
represents coverage using a probit model based only on fully observed data. Parameter
types are as follows: “-1” refers to θinterior = θ0, “0” refers to θboundary , and “1-10” refer

to
{
θexterior,v

}10
v=1.

FIGURE 7. Identification analysis in Design 4. The black asterisk is θ0, the light shaded
region is �I (F), the medium shaded region is �S(F)∩�I (F)c, the dark shaded region
is �S1(F)∩�S(F)c, and the black region is �S2(F)∩�S(F)c.

increases as we consider parameter values located to the east of θ0 and located in
the exterior of the outer identified set.
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FIGURE 8. Empirical coverage frequency with (1−α) = 90% for several parameter types
in Design 4. Solid line represents coverage with our GMS confidence set and dashed line
represents coverage using a probit model based only on fully observed data. Parameter
types are as follows: “-1” refers to θinterior = θ0, “0” refers to θboundary , and “1–10”

refer to
{
θexterior,v

}10
v=1.

FIGURE 9. Identification analysis in Design 5. The black asterisk is θ0, the light shaded
region is �I (F), the medium shaded region is �S(F)∩�I (F)c, the dark shaded region
is �S1(F)∩�S(F)c, and the black region is �S2(F)∩�S(F)c.
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5.5. Design 5

Figures 9 and 10 repeat the analysis using the parameters in Design 5. The pur-
pose of this simulation is to explore the combined effect of having probability of
missing data that is not constant and data that are not missing at random. The iden-
tification analysis produces qualitative results that are similar to a combination of
Designs 3 and 4. The data in this design are not missing at random, which causes
an expected undercoverage problem for inference based only on fully observed
data.

FIGURE 10. Empirical coverage frequency with (1−α) = 90% for several parameter types
in Design 5. Solid line represents coverage with our GMS confidence set and dashed line
represents coverage using a probit model based only on fully observed data. Parameter
types are as follows: “-1” refers to θinterior = θ0, “0” refers to θboundary , and “1-10” refer

to
{
θexterior,v

}10
v=1.

6. CONCLUSIONS

This paper examines the problem of identification and inference on an economet-
ric model with missing data, with special focus on the case when covariates are
missing. Our econometric model is characterized by conditional moment condi-
tions, which are routinely used in econometric applications. In order to address the
missing data problem, we adopt a worst case scenario approach, which extracts
the information from the observed data without imposing (untestable) assump-
tions on the (unobserved) distribution of missing data.

We show that having unobserved covariate observations implies that, in gen-
eral, the parameter of interest is partially identified. We characterize the sharp
identified set and show that it is usually prohibitively complex to compute or use
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for inference (at least with currently available methods). For this reason, we
consider the construction of outer identified sets (i.e. supersets of the identified
set) that are relatively easier to compute and use for inference.

We provide two different strategies to construct outer identified sets. The first
strategy is based on using the conditional moment condition to derive a collection
of unconditional moment conditions within boxes. The second strategy is based
on integrating out the missing covariates in the conditional moment condition.
We argue that these two outer identified sets contain nontrivial identifying power.
Furthermore, we show that the two strategies provide different identifying power
which can be easily combined to create a sharper outer identified set. The resulting
outer identified set is relatively easy to compute and, most importantly, amenable
to inference using recent developments in the literature on inference in partially
identified models.

NOTES

1. See Arcidiacono, Aucejo, Coate, and Hotz (2012) for more evidence and claims about the non-
reporting in these data.

2. By the arguments in Domı́nguez and Lobato (2004), the methods described in HM06 or BMM11
would address our identification problem if one could apply their methodology to a model with an
infinite number of unconditional moment inequalities. Unfortunately, neither of these methods are
computationally feasible in this situation. In the case of HM06, see the discussion in Horowitz et al.
(2003). In the case of BMM11, an infinite number of moment inequalities implies that the number of
terms in the objective function of their optimization problem becomes computationally unmanageable.

3. As previously explained, neither HM06 nor BMM11 allow for an infinite number of uncondi-
tional moment inequalities.

4. To be specific, Eq. (2.2) is equivalent to Eq. (2.1) with g1 and g2 defined as follows. If x = xj
for some j = 1, . . . , N , g1(x) ≡ γ1, j , g2(1, x) ≡ γ2, j /γ1, j , and g2(0, x) ≡ 1−γ2, j . For any other x
or any y �∈ {0,1}, g1(x) = g2(y, x) = 0.

5. If the set SX2 ∩ B2(x2,ν2) is empty, then two things occur. First, the associated inf and sup
are equal to ∞ and −∞, respectively. Second, the indicator function multiplying these expressions
equals zero. Here and throughout the paper, we define ∞× 0 ≡ 0. Consequently, SX2 ∩ B2(x2,ν2)

being empty implies that the associated expression in Eq. (3.4) equals zero.
6. As explained in the introduction, our results can be generalized to allow for arbitrary missing

data patters on both outcomes and covariates. The corresponding outer identified set can be deduced
directly from Theorem 3.3 if we replace M1 and M2 defined as in Eqs. (3.4) and (3.7) with the
corresponding functions defined in Theorems A.1 and A.2, respectively.

7. These are developed and discussed in Andrews, Berry, and Jia-Barwick (2004), Imbens and
Manski (2004), Galichon and Henry (2006, 2013), Chernozhukov et al. (2007), Beresteanu and
Molinari (2008), Romano and Shaikh (2008, 2010), Rosen (2008), Andrews and Guggenberger
(2009), Stoye (2009), Andrews and Soares (2010), Bugni (2010, 2015), Canay (2010), Andrews and
Jia-Barwick (2012), Bontemps, Magnac, and Maurin (2012), and Pakes, Porter, Ho, and Ishii (2014).
In fact, these references could be applied to our problem without loss of information if the conditioning
covariate had finite support.

8. This positive constant controls the amount of modification introduced in the computation of the
sample variance of {M(Zi ,θ, x,ν)}n

i=1. Following AS13 (Page 644), we implement our results with
λ = 5%.

9. This is a universal uniformity factor used to circumvent problems that arise due to the presence
of the infinite-dimensional nuisance parameter associated to the slackness of the moment conditions.
Following AS13 (Page 644), we implement our results with η = 10−6.
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10. See Imbens and Manski (2004), Andrews and Guggenberger (2009), Andrews and Soares
(2010), and AS13 (Section 5.1).

11. Since �S(F) is a superset of the sharp identified set �I (F), there could be parameter values
that belong to �S(F) and lie outside of �I (F). Even though these parameter values cannot (logically)
correspond to the true parameter value, our inference method (based on outer identification) will not
have any (nontrivial) power against them, even asymptotically.

12. See explanation below on how the missing data patterns of X and Y translate into the value of
WX and WY , respectively.

13. The analogous result for missing outcome data is not conceptually hard but it is cumbersome to
express. It is available from the authors upon request.

14. As explained in AS13, this restriction is not particularly problematic in practice, as the potential
uniformity problems arise because the limiting distribution of the test statistic is discontinuous in the
slackness of the moment inequalities and not its variance-covariance kernel.

15. To be precise, our measure μ corresponds exactly to their measure Q∗.
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APPENDIX

This appendix uses the following abbreviations. We use “RHS” and “LHS” to denote
“right hand side” and “left hand side”, respectively. We also use “s.t.” to abbreviate “such
that”. Furthermore, for any population parameter A, we let I(A) denote the (sharp) identi-
fied set of A. Finally, we use G ≡ Rdx × (0,r)dx .

A.1. Appendix to Sections 2 and 3

Results in this section are developed under the following generalization of Assumption A.1.

Assumption B.1. Let the following conditions hold.

(i) Let (�,A, F) be the probability space of (X,Y,WX ,WY ), let Y : � → SY ⊆Rdy be
the outcome variables, let X : � → SX ⊆ Rdx be the covariates, and let WX : � →
{0, . . . ,2dx − 1} and WY : � → {0, . . . ,2dy − 1} denote the missing data patterns
of X and Y , respectively.12 Any of the coordinates of X or Y may be subject to
missing data.

(ii) There is a known function m : Rdx ×Rdy ×Rdθ → R
dm such that the true pa-

rameter value θ0 ∈ � ⊆ R
dθ satisfies Eq. (1.1), i.e., EF [m(X,Y,θ0)|X = x] =

0 ∀x F−a.s.

Assumption B.2. The outcome random variable Y has no missing data.

We briefly comment on these assumptions. Assumption B.1 generalizes Assumption
A.1 by allowing any arbitrary missing data pattern for outcome variables and covari-
ates. Assumption B.2 is used only in order to simplify the statement and the proof of
Lemma A.1.

According to Assumption B.1(i), WX : � → {
0, . . . ,2dx − 1

}
and WY : � →{

0, . . . ,2dy − 1
}

denote the missing data patterns of X and Y , respectively. We now ex-
plain these variables further. Since X has dx dimensions and each of them is allowed to
be individually missing or not, there are 2dx possible missing covariate data patterns. The
variable WX : � → {

0, . . . ,2dx − 1
}

indicates which one of these patterns occur, where
WX = 0 indicates that all of the covariates are observed and WX = 2dx − 1 indicates that
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all of the covariates are unobserved. Notice that this is a special case of the main text in
which there are only two missing data patterns, which gives rise to WX = W ∈ {0,1}. For
every w = 0, . . . ,2dx − 1, let X1,w : � → SX1,w

be the subvector of X that is observed
and let X2,w : � → SX2,w

be the subvector of X that is unobserved. In a similar fashion,
Y has dy dimensions and each of them is allowed to be individually missing or not, there
are 2dy possible missing outcome data patterns. The variable WY : � → {

0, . . . ,2dy − 1
}

indicates which one of these patterns occur, where WY = 0 indicates that all of the
outcome variables are observed and WY = 2dy − 1 indicates that all of the outcome vari-
ables are unobserved. For every w = 0, . . . ,2dy − 1, let Y1,w : � → SY1,w

be the sub-
vector of Y that is observed and let Y2,w : � → SY2,w

be the subvector of Y that is
unobserved.

A.1.1. Proofs for Results in Section 2. For the sake of simplicity, we character-
ize the identified set with arbitrary missing covariate data patterns but fully observed
outcomes.13

LEMMA A.1. Assume Assumptions B.1-B.2. Then, �I (F) is given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ ∈ � s.t. ∀w = 1, . . . ,2dx −1,

∃g1,w : Rdx → R+ and g2,w : Rdy ×Rdx → R+ that satisfy:

(i) g1,w(x) = 0 ∀x �∈ SX,w and g2,w(y, x) = 0 ∀(y, x) �∈ SY × SX,w

(ii)
∫

g1,w(x)dx2,w = 1 ∀x1,w ∈ Rdx 1,w PF −a.s.

(iii)
∫

g2,w(y, x)dy = 1 ∀x ∈ Rdx (PF ,g1,w)−a.s.

(iv)

⎧⎪⎨
⎪⎩
∫

g2,w(y, x)g1,w(x)dx2,wdy PF [WX = w]
= dPF [Y = y|X1,w = x1,w,WX = w]PF [WX = w]

∀(x1,w, y) ∈ Rdx 1,w ×Rdy PF −a.s.

⎫⎪⎬
⎪⎭

(v)

⎧⎪⎪⎨
⎪⎪⎩

EF [m(x,Y,θ)|X = x,WX = 0]dPF [X = x |WX = 0]PF [WX = 0] +∑2dy −2
w=1 (

∫
m(x, y,θ)g2,w(y, x)dy)g1,w(x)dPF [X1,w = x1,w |WX = w]PF [WX = w] +

(
∫

m(x, y,θ)g2,2dx −1(y, x)dy)g1,2dx −1(x)PF [WX = 2dx −1] = 0 ∀x ∈ Rdx (F,g1)−a.s.

⎫⎪⎪⎬
⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where dPF denotes the probability distribution function that induces PF .

Proof. By definition, �I (F) is composed of θ ∈ � for which the observed distributions
and the restrictions on the parameter space do not contradict EF [m(Y, x,θ)|X = x] =
0 ∀x F−a.s.

Step 1. For every w = 1, . . . ,2dx −1, we derive:

I
(

dPF
[
X2,w = x2,w|WX = w, X1,w = x1,w

]
: x ∈ Rdx ,

dPF [Y = y|WX = w, X = x] : (x, y) ∈ Rdx ×Rdy

)
.

Fix w ∈ {1, . . . ,2dx − 2
}

arbitrarily. Conditional on WX = w, the object of interest is
not identified because the distribution of {X2,w|X1,w = x1,w,WX = w} is not observed.
In order to obtain any expression that is identified, the dependence on the unobserved
variable needs to be integrated out.
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Define the set of functions �(w) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1,w : Rdx → R+ and g2,w : Rdy ×Rdx → R+ that satisfy:

(i) g1,w(x) = 0 ∀x �∈ SX,w and g2,w(y, x) = 0 ∀(y, x) �∈ SY × SX,w

(ii)
∫

g1,w(x)dx2,w = 1 ∀x1,w ∈ Rdx 1,w PF−a.s.

(iii)
∫

g2,w(y, x)dy = 1 ∀x ∈ Rdx (PF ,g1,w)−a.s.

(iv)

⎧⎪⎨
⎪⎩

(
∫

g2,w(y, x)g1,w(x)dx2,wdy)PF [WX = w]
= dPF [Y = y|X1,w = x1,w,WX = w]PF [WX = w]

∀(x1,w, y) ∈ Rdx 1,w ×Rdy PF−a.s.

⎫⎪⎬
⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

We now show that:

I
(

dPF
[
X2,w = x2,w|WX = w, X1,w = x1,w

]
: x ∈ Rdx

dPF [Y = y|WX = w, X = x] : (x, y) ∈ Rdx ×Rdy

)
= �(w). (A.1)

We first show that the identified set in the identified set on LHS of Eq. (A.1) is
included in �(w). Consider a vector (ḡ1,w, ḡ2,w) that belongs to the identified set.
Since these are distributions, they need to be nonnegative functions and integrate to one.
Furthermore, they also need to have zero density outside the support. Moreover, when
we combine these distributions and integrate out X2,w they must be able to generate
{dPF [Y = y|X1,w = x1,w,WX = w] : (x, y) ∈ Rdx ×R}, whenever PF [WX = w] > 0.
Hence, (ḡ1,w, ḡ2,w) ∈ �(w).

We now show the reverse inclusion. Consider (ḡ1,w, ḡ2,w) ∈ �(w). In order to show that
(ḡ1,w, ḡ2,w) belongs to the identified set in the LHS of Eq. (A.1), we need to argue that
the properties in �(w) exhaust all the necessary properties for the vector of distributions.

First, since ḡ1,w and ḡ2,w play the role of {dPF [X2,w = x2,w|WX = w, X1,w = x1,w] :
x ∈Rdx } and

{
dPF [Y = y|WX = w, X = x] : (x, y) ∈Rdx ×Rdy

}
, respectively, they need

to satisfy all of the known restrictions regarding the support of (X,Y ). This is guaranteed
by condition (i).

Second, ḡ1,w needs to be a nonnegative function that integrates to one with respect
to x2,w to satisfy the (individual) necessary restrictions to be

{
dPF

[
X2,w = x2,w|WX =

w, X1,w = x1,w
]

: x ∈ Rdx
}
. Similarly, ḡ2,w needs to be nonnegative function that inte-

grates to one with respect to y to satisfies all the (individual) necessary restrictions to be{
dPF [Y = y|WX = w, X = x] : (x, y) ∈ Rdx ×Rdy

}
. These are guaranteed by conditions

(ii) and (iii), respectively.
Third, if PF [WX = w] > 0, then there are restrictions that need to be satisfied by com-

bination of these functions. First, if ḡ1,w plays the role of
{
dPF [X2,w = x2,w|WX =

w, X1,w = x1,w] : x ∈ Rdx
}
, then the restrictions on ḡ2,w that need to be satisfied for

X2,w = x2,w may be allowed to be violated on a negligible set, which explains that
the restrictions on ḡ2 need to be satisfied ḡ1,w − a.s. Second, if ḡ1 plays the role of{
dPF [X2,w = x2,w|WX = w, X1,w = x1,w] : x ∈Rdx

}
and ḡ2 plays the role of

{
dPF [Y =

y|WX = w, X = x] : (x, y) ∈ Rdx ×Rdy
}
, then the combination of these two can be

used to integrate out the unobserved vector X2,w and generate objects identified in the
data. In particular, for any (x1,w, y) ∈ Rdx 1,w ×Rdy , the integral of

{
ḡ2(y, x)ḡ1,w(x) :

x2,w ∈ Rdx 2,w
}

produces dPF [Y = y|X1,w = x1,w,WX = w]. If PF [WX = w] = 0,

https://doi.org/10.1017/S0266466615000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466615000250


230 ESTEBAN M. AUCEJO ET AL.

dPF [Y = y|X1,w = x1,w,WX = w] is not properly defined and the condition becomes
vacuous. This is guaranteed by condition (iv).

Finally, since we are constructing probability distributions of all identified objects and
these completely characterize the behavior of the random variables, this implies we have
exhausted all available information.

Step 2. Derive an expression for EF [m(x,Y,θ)|X = x] in terms of primitive probability
distributions.

This step follows the structure of Manski (2003, Sect. 3.4). Fix x ∈ Rdx arbitrarily and
consider the following argument. By the law of iterated expectations:

EF [m(x,Y,θ)|X = x] =
2dx −1∑
w=0

E[m(x,Y,θ)|X = x,WX = w]PF [WX = w|X = x].

For every w = 0, . . . ,2dx −1, Bayes’ theorem implies that:

PF [WX = w|X = x] = dPF [X = x |WX = w]PF [WX = w]∑2dx −1
ζ=0 dPF [X = x |WX = ζ ]PF [WX = ζ ]

.

By replacing this on the previous equation and expanding the expressions:

EF [m(x,Y,θ)|X = x]

=
∑2dx −1

w=0 E[m(x,Y,θ)|X = x,WX = w]dPF [X = x |WX = w]PF [WX = w]∑2dx −1
ζ=0 dPF [X = x |WX = ζ ]PF [WX = ζ ]

= N (x)

D(x)
,

where N (x) and D(x) are given by:

N (x) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EF [m(x,Y,θ)|X = x,WX = 0]dPF [X = x |WX = 0]PF [WX = 0]+{(∫
y∈Rm(x, y,θ)dPF [Y = y|WX = 2dx −1, X = x]dy

)
×

dPF [X = x |WX = 2dx −1]PF [WX = 2dx −1]

}
+

∑2dx −2
w=1

[∫
y∈Rdy m(x, y,θ)dP[Y = y|WX = w, X = x]dy×

dPF [X2,w = x2,w|WX = w, X1,w = x1,w]

×dPF [X1,w = x1,w|WX = w]PF [WX = w]
]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

D(x) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dPF [X = x |WX = 0]PF [WX = 0]+∑2dx −2
w=1 dPF

(
X2,w = x2,w|WX = w, X1,w = x1,w

)
×dPF [X1,w = x1,w|WX = w]PF [WX = w]

+dPF

(
X2,w = x2,w|WX = 2dx −1

)
PF [WX = 2dx −1]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Notice that the expressions for N (x) and D(x) are identified except for dPF [X =
x |WX = 2dx −1], dPF [Y = y|WX = w, X = x], and dPF [X2,w = x2,w|WX = w, X1,w =
x1,w], with w = 1, . . . ,2dx −2.

Step 3. Fix θ ∈ � arbitrarily and derive I({EF [m(x,Y,θ)|X = x] : x ∈ Rdx }).
Step 1 derives the identified set for a vector of distribution functions conditional on

WX = w for w = 1, . . . ,2dx − 1. Given that the events {WX = w} and {WX = w̃} are
disjoint for w �= w̃, the identified set for the joint vector of functions for w = 1, . . . ,2dx −1
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is the product of the sets derived in step 1, i.e.,

I
({

dPF [X2,w = x2,w|WX = w, X1,w = x1,w] : x ∈ Rdx

dPF [Y = y|WX = w, X = x] : (x, y) ∈ Rdx ×Rdy

}
w=1,...,2dx −1

)

=
∏

w=1,...,2dx −1

I
(

dPF [X2,w = x2,w|WX = w, X1,w = x1,w] : x ∈ Rdx

dPF [Y = y|WX = w, X = x] : (x, y) ∈ Rdx ×Rdy

)
.

When we combine this with step 2, it follows that:

I
({

EF (m(x,Y,θ)|X = x) : x ∈ Rdx
})

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f : Rdx → R
dm s.t. ∀w = 1, . . . ,2dx −1,

∃g1,w : Rdx → R+ and g2,w : Rdy ×Rdx → R+ that satisfy:

(i) g1,w(x) = 0 ∀x �∈ SX,w,g2,w(y, x) = 0 ∀(y, x) �∈ SY × SX,w

(ii)
∫

g1,w(x)dx2,w = 1 ∀x1,w ∈ Rdx 1,w PF−a.s.

(iii)
∫

g2,w(y, x)dy = 1 ∀x ∈ Rdx (PF ,g1,w)−a.s.

(iv)

⎧⎪⎨
⎪⎩
∫

g2,w(y, x)g1,w(x)dx2,wdy PF [WX = w]
= dPF [Y = y|X1,w = x1,w,WX = w]PF [WX = w]

∀(x1,w, y) ∈ Rdx 1,w ×Rdy PF−a.s.

⎫⎪⎬
⎪⎭

(v) f (x) = N (x,g1,g2)/D(x,g1,g2) (F,g1)−a.s.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where N (x,g1,g2) and D(x,g1,g2) are similar to N (x) and D(x) in step 2, except that the

unidentified expressions are replaced by the functions {g1,w}2dx −1
w=1 and {g2,w}2dx −1

w=1 , i.e.,

N (x,g1,g2) ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

EF [m(x,Y,θ)|X = x,WX = 0]dPF [X = x |WX = 0]PF [WX = 0] +(∫
y∈Rm(x, y,θ)g2,2dx −1(y, x)dy

)
g1,2dx −1(x)PF [WX = 2dx −1] +∑2dx −2

w=1

(∫
y∈Rdy m(x, y,θ)g2,w(y, x)dy

)
× g1,w(x)dPF

[
X1,w = x1,w|WX = w

]
PF [WX = w]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

D(x,g1,g2) ≡

⎧⎪⎨
⎪⎩

dPF [X = x |WX = 0]PF [WX = 0] +∑2dx −2
w=1 g1,w(x)dPF [X1,w = x1,w|WX = w]PF [WX = w]

+g1,2dx −1(x)PF [WX = 2dx −1]

⎫⎪⎬
⎪⎭ .

Step 4. Conclude the proof.
By definition, θ ∈ �I (F) if and only if the zero function belongs to
I({EF (m(x,Y,θ)|X = x) : x ∈ R

dx
})

. The characterization in the statement
follows from imposing the existence of the zero function in the definition of
I({EF (m(x,Y,θ)|X = x) : x ∈ Rdx

})
. n

Proof of Lemma 2.1. This result is a special case of Lemma A.1. n

A.1.2. Proofs for Results in Section 3. Recall that WX = w for w = 0, . . . ,2dx − 1
determines the missing data pattern of the covariates. For any (x,ν) ∈ G and any
w = 0, . . . ,2dx − 1, let B1(x1,w,ν1,w) and B2(x2,w,ν2,w) denote the projection of the
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dx -dimensional set B(x,ν) onto the space of the observed covariates X1,w and unobserved
covariates X2,w , respectively. With some abuse of notation, we define:

B1,w(x1,w,ν1,w) ≡ {x1,w ∈ Rd1,w s.t. ∃x2,w ∈ Rd2,w with (x1,w, x2,w) ∈ B(x,ν)},
B2,w(x2,w,ν2,w) ≡ {x2,w ∈ Rd2,w s.t. ∃x1,w ∈ Rd1,w with (x1,w, x2,w) ∈ B(x,ν)}, (A.2)

where the abuse of notation occurs in the reshuffling of coordinates in the expression
“(x1,w, x2,w)”. We note that these definitions imply that B(x,ν) ≡ B1,w(x1,w,ν1,w) ×
B2,w(x2,w,ν2,w).

THEOREM A.1. Assume Assumption B.1 and choose r ∈ (0,∞] arbitrarily. Let Z ≡(∑2dy −1
w̃=0 1[WY = w̃]Y1,w̃,

∑2dy −1
w=0 1[WX = w]X1,w,WX ,WY

)
and let M1(Z ,θ, x,ν) ={

M1, j (Z ,θ, x,ν)
}dm

j=1 with

M1, j
(
Z ,θ, x,ν

)

≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑2dy −1
w̃=0

∑2dx −1
w=1 inf

(ξ2,w,y)∈
{

SX2,w
∩B2,w(x2,w,ν2,w)

}
×SY,w̃

mj ((X1,w,ξ2,w), y,θ)

×1[SX2,w ∩ B2,w(x2,w,ν2,w) �= ∅, X1,w ∈ B1,w(x1,w,ν1,w),WX = w,WY = w̃]

+∑2dy −1
w̃=1 inf

y2,w̃∈SY2,w̃

mj (X, (Y1,w̃, y2,w̃),θ)×1[X ∈ B(x,ν),WX = 0,WY = w̃]

+mj (X,Y,θ)×1[X ∈ B(x,ν),WX = 0,WY = 0]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑2dy −1
w̃=0

∑2dx −1
w=1 sup

(ξ2,w,y)∈{SX2,w
∩B2,w(x2,w,ν2,w)}×SY,w̃

mj ((X1,w,ξ2,w), y,θ)

×1[SX2,w ∩ B2,w(x2,w,ν2,w) �= ∅, X1,w ∈ B1,w(x1,w,ν1,w),WX = w,WY = w̃]

+∑2dy −1
w̃=1 sup

y2,w̃∈SY2,w̃

mj (X, (Y1,w̃, y2,w̃),θ)×1[X ∈ B(x,ν),WX = 0,WY = w̃]

+mj (X,Y,θ)×1[X ∈ B(x,ν),WX = 0,WY = 0]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

for all (θ,(x,ν)) ∈ � × G and where B(·) is defined as in Eq. (3.1) and B1,w(·), and
B2,w(·) are defined as in Eq. (A.2). Consider the following set:

�S1(F) ≡
{
θ ∈ � : EF [M1(Z ,θ, x,ν)] ≥ 0 ∀(x,ν) ∈ Rdx × (0,r)dx

}
.

Then, �I (F) ⊆ �S1(F), i.e., �S1(F) is an outer identified set.

Proof. Consider any arbitrary (θ,(x,ν)) ∈ �I (F) × G. By definition, this implies
that EF [m(X,Y,θ)|X = x] = 0 PF−a.s. and, thus, by multiplying this expression
by 1(X ∈ B(x,ν)) and integrating with respect to the density of X , we deduce that
EF [m(X,Y,θ)1(X ∈ B(x,ν))] = 0, or, equivalently,

EF

⎡
⎢⎢⎢⎢⎢⎣

∑2dy −1
w̃=0

∑2dx −1
w=1 m((X1,w, X2,w̃),Y,θ)

×1[X2,w ∈ B2,w(x2,w,ν2,w), X1,w ∈ B1,w(x1,w,ν1,w),WX = w,WY = w̃]

+∑2dy −1
w̃=1 m(X,Y,θ)×1[X ∈ B(x,ν),WX = 0,WY = w̃]

+m(X,Y,θ)×1[X ∈ B(x,ν),WX = 0,WY = 0]

⎤
⎥⎥⎥⎥⎥⎦= 0.
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For each w = 1, . . . ,2dx −1, the value of X2,w is unobserved. In addition, even if the value
of Y is observed, the value of Y conditional on the event of {X2,w ∈ B2,w(x2,w,ν2,w)}
is also unobserved. Finally, for each w̃ −1, the value of Y2,w̃ is unobserved. By imposing
logical lower and upper bounds on the unknown variables for each of the dm coordinates,
the desired result follows. n

Proof of Theorem 3.1. This result is a special case of Theorem A.1. The only difference
occurs in the definition of Z , which we now explain. Let Z be as defined in Theorem
A.1. In this case, WY = 0 and W = WX ∈ {0,1}, leading to Y1,0 = Y , Y2,0 = ∅, X1,0 =
X , X2,0 = ∅, X1,1 = X1, and X2,1 = X2, and so Z ≡ ((Y, (X1, X2),W = 0,WY = 1),
(Y, X1,W = 1,WY = 1)). To complete the proof, notice that the information in Z can be
equivalently re-expressed by (Y, X1, (1 − W )X2,W ), leading to the definition of Z in the
statement of Theorem 3.1. n

THEOREM A.2. Assume Assumption B.1 and choose r ∈ (0,∞] arbitrarily. Let Z ≡(∑2dy −1
w̃=0 1[WY = w̃]Y1,w̃,

∑2dy −1
w=0 1[WX = w]X1,w,WX ,WY

)
. There are two possible

cases.

1. No covariates that are always observed. Then set M2(Z ,θ) = {
M2, j (Z ,θ)

}dm
j=1

with

M2, j (Z ,θ)

≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

∑2dy −1
w̃=1

∑2dx −1
w=1 sup

(x2,w,y2,w̃)∈SX2,w
×SY2,w̃

mj ((X1,w, x2,w),

(Y1,w̃, y2,w̃),θ)1[WX = w,WY = w̃]

+∑2dx −1
w=1 sup

x2,w∈SX2,w

mj ((X1,w, x2,w),Y,θ)1[WX = w,WY = 0]

⎞
⎟⎟⎟⎟⎟⎠ ,

−

⎛
⎜⎜⎜⎜⎝

∑2dy −1
w̃=1

∑2dx −1
w=1 inf

(x2,w,y2,w̃)∈SX2,w
×SY2,w̃

mj ((X1,w, x2,w),

(Y1,w̃, y2,w̃),θ)1[WX = w,WY = w̃]

+∑2dx −1
w=1 inf

x2,w∈SX2,w

mj ((X1,w, x2,w),Y,θ)1[WX = w,WY = 0]

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Consider the following set:

�S2(F) ≡ {θ ∈ � : EF [M2(Z ,θ)] ≥ 0} .

Then, �I (F) ⊆ �S2(F), i.e., �S2(F) is an outer identified set.
2. Some covariates that are always observed. Denote the subvector of the covari-

ates that are always observed by X AO , denote its support by SX AO ∈ RdAO .
The remaining covariates that are not always observed are denoted by X N AO ∈
R

dN AO and, with a slight abuse of notation, these can take the role of X in

the previous case, i.e., set M2
(
Z ,θ, x AO ,ν AO) = {

M2, j
(
Z ,θ, x AO ,ν AO )}dm

j=1
with
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M2, j

(
Z ,θ, x AO ,ν AO

)

≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑2dy −1
w̃=1

∑2dN AO −1
w=1

⎛
⎜⎜⎜⎝

sup(
x N AO
2,w

,y2,w̃

)
∈S

X N AO
2,w

×SY2,w̃

mj

((
X AO, X N AO

1,w , x N AO
2,w

)
,

(Y1,w̃ , y2,w̃),θ
)

1
[
WX N AO = w,WY = w̃

]
⎞
⎟⎟⎟⎠

+∑2dN AO −1
w=1 sup

x N AO
2,w

∈S
X N AO

2,w

mj

((
X AO, X N AO

1,w , x N AO
2,w

)
,Y,θ

)
1
[
WX N AO = w,WY = 0

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑2dy −1
w̃=1

∑2dN AO −1
w=1

⎛
⎜⎜⎜⎝

inf(
x N AO
2,w

,y2,w̃

)
∈S

X N AO
2,w

×SY2,w̃

mj

((
X AO, X N AO

1,w , x N AO
2,w

)
,

(Y1,w̃ , y2,w̃),θ
)

1
[
WX N AO = w,WY = w̃

]
⎞
⎟⎟⎟⎠

+∑2dN AO −1
w=1 inf

x N AO
2,w

∈S
X N AO

2,w

mj

((
X AO, X N AO

1,w , x N AO
2,w

)
,Y,θ

)
1
[
WX N AO = w,WY = 0

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×1
(

X AO ∈ B
(

x AO,ν AO
))

.

Consider the following set:

�S2(F) ≡
{
θ ∈ � : EF

[
M2

(
Z ,θ, x AO ,ν AO

)]
≥ 0 ∀

(
x AO ,ν AO

)
∈ RdAO × (0,r)dAO

}
.

Then, �I (F) ⊆ �S2(F), i.e., �S2(F) is an outer identified set.

Proof. We only cover the proof of part 1. The proof for part 2 follows exactly
from the same arguments as part 1, except that (a) inside the expectations, there is an
extra 1

[
X AO ∈ B

(
x AO ,ν AO)] term, and (b) the proof should be repeated for every

(x AO ,ν AO ) ∈ RdAO × (0,r)dAO .
Fix θ ∈ �I (F) arbitrarily. By definition, this implies that EF [m(X,Y,θ)|X = x] =

0 PF−a.s. and, thus, EF [m(X,Y,θ)] = 0. Next, consider the following argument. The
law of iterated expectations implies that:

EF [m(X,Y,θ)]

=
2dy −1∑
w̃=0

2dx −1∑
w=0

{∫
x∈SX

EF [m(x, (Y1,w̃,Y2,w̃),θ)|X = x,WX = w,WY = w̃]×
dPF [X = x |WX = w,WY = w̃]PF [WX = w,WY = w̃]

}
.

The RHS is the sum of several terms. The expression is not identified because
{
dPF

[
X =

x |WX = w,Wy = w̃
]

: x ∈ Rdx
}

and
{
dPF

[
Y2,w̃|X = x,WX = w,Wy = w̃

]
: (y2,w̃, x) ∈

R
dy2,w̃ ×Rdx

}
are not identified for w > 0 and w̃ > 0, respectively. By imposing logical

lower and upper bounds on the unknown variables for each of the dm coordinates, the
desired result follows. n

Proof of Theorem 3.2. This result is a special case of Theorem A.2. Notice that X1
in Theorem 3.2 takes the role of X AO in Theorem A.2 as they are always observed. The
only other difference occurs in the definition of Z , which can be explained by repeating
the argument used in the proof of Theorem 3.1. n
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A.2. Appendix to Section 4

This section provides the details regarding the properties of our confidence sets. We first
introduce relevant definitions, follow with our assumptions, and conclude by establishing
formal results.

A.2.1. Definitions. Our moment inequality model described in Theorem 3.3 has pa-
rameters (θ, F), where θ ∈ � denotes a generic value for the parameter of interest and
F denotes the distribution of the data. We now define the random variable M(Z ,θ) that
is an envelope for the collection of random variables {M(Z ,θ, x,ν) : (x,ν) ∈ G} (see,
e.g., Pollard, 1990, p. 19). By definition, for any (θ, F) with Z ∼ F , the envelope M(Z ,θ)
satisfies:

|M(Z ,θ, x,ν)| ≤ M(Z ,θ) ∀(x,ν) ∈ G. (A.3)

In the context of Assumption A.1, the natural envelope is as follows:

M(Z ,θ) ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎧⎪⎨
⎪⎩

sup
(ξ2,y)∈SX2 ×SY

|mj ((X1,ξ2), y,θ)| 1[W = 1]+|mj (X,Y,θ)| 1[W = 0],

sup
(ξ2,y)∈SX2 ×SY

|mj ((X1,ξ2), y,θ)| 1[W = 1]+|mj (X,Y,θ)| 1[W = 0]

⎫⎪⎬
⎪⎭

dm

j=1

,

⎧⎪⎨
⎪⎩

sup
ξ2∈SX2

|mj ((X1,ξ2),Y,θ)| 1[W = 1]+|mj (X,Y,θ)| 1[W = 0],

sup
ξ2∈SX2

|mj ((X1,ξ2),Y,θ)| 1[W = 1]+|mj (X,Y,θ)| 1[W = 0],

⎫⎪⎬
⎪⎭

dm

j=1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Under the more involved setup described in Assumption B.1, one could define an analo-
gous envelope function. This is available from the authors upon request.

For any (x,ν), (x̃, ν̃) ∈ G, we define the following population objects:

DF (θ) ≡ Diag(V arF (M(Z ,θ))),


F (θ,(x,ν), (x̃, ν̃)) ≡ CovF [ M(Z ,θ, x,ν) , M(Z ,θ, x̃, ν̃) ],

h1,n,F (θ, x,ν) ≡ √
n D−1/2

F (θ) EF [M(Z ,θ, x,ν)],

h2,F (θ,(x,ν), (x̃, ν̃)) ≡ D−1/2
F (θ)×
F (θ,(x,ν), (x̃, ν̃))× D−1/2

F (θ),

H2 ≡ {h2,F (θ, ·, ·) : (θ, F) ∈ F}. (A.4)

The diagonal matrix DF (θ) is used to standardize the random variable M(Z ,θ, x,ν)
in a scale-invariant and uniform (in (x,ν)) way at the population level. h1,n,F (θ, x,ν)
and h2,F (θ,(x,ν), (x̃, ν̃)) are standardized version of the slackness in the moment in-
equalities

√
nEF [M(Z ,θ, x,ν)] and the variance-covariance kernel 
F (θ,(x,ν), (x̃, ν̃)),

respectively. Finally, H2 is the parameter space for the standardized variance-covariance
kernels. This is a space of p × p-matrix-valued covariance kernels on G×G, which we
metrize with the sup-norm, i.e., for h2,F (θ, ·, ·), ȟ2,F̌ (θ, ·, ·) ∈H2,

d(h2,F (θ, ·, ·),h2,F̃ (θ̃ , ·, ·)) ≡ sup
(x,ν),(x̃,ν̃)∈G

||h2,F (θ,(x,ν), (x̃, ν̃))

− h2,F̌ (θ̌ , (x,ν), (x̃, ν̃))||.
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Furthermore, for an i.i.d. sample {Zi }n
i=1 distributed according to F , we define the fol-

lowing sample objects associated to {M(Zi ,θ)}n
i=1:

Mn(θ) ≡ n−1
∑n

i=1
M(Zi ,θ),


̂n(θ) ≡ n−1
∑n

i=1

[
M(Zi ,θ)− Mn(θ)

][
M(Zi ,θ)− Mn(θ)

]′
,

Dn(θ) ≡ Diag(
̂n(θ)). (A.5)

By definition, Mn(θ) and 
̂n(θ) are the sample mean and sample covariance of
{M(Zi ,θ)}n

i=1. The diagonal matrix Dn(θ) is the sample analogue of DF (θ).
Finally, we define the following “mixed” (i.e. part sample and part population) objects:

vn,F (θ, x,ν) ≡ n−1/2
∑n

i=1
D−1/2

F (θ) (M(Zi ,θ, x,ν)− EF [M(Z ,θ, x,ν)]),

ĥ2,n,F (θ,(x,ν), (x̃, ν̃)) ≡ D−1/2
F (θ)× 
̂n(θ,(x,ν), (x̃, ν̃))× D−1/2

F (θ).

Notice that vn,F (θ, x,ν) and ĥ2,n,F (θ,(x,ν), (x̃, ν̃)) are the standardized empirical pro-
cess and variance covariance kernel, where the standardization is conducted using the
population variance DF (θ) in Eq. (A.4).

We now define several relevant parameter spaces for (θ, F). The first parameter space
is the baseline parameter space. The second parameter space is the null parameter space
and is the subset of the baseline parameter space in which the moment inequalities of our
outer identified set are satisfied. The third parameter space is a subset of the null parameter
space where the variance-covariance kernel is restricted to an arbitrary compact set. This
last parameter space is related to the parameter space in AS13, Theorems 1 and 2, and is
used to establish the uniform coverage result in Theorem 4.1.14

DEFINITION A.1 (Baseline parameter space). The baseline parameter space, denoted
by F , is the collection of parameter values (θ, F) that satisfy the following conditions:

(i) θ ∈ �,

(ii) {Zi }n
i=1 are i.i.d. distributed according to F,

(iii) σ 2
F, j (Z ,θ) ≡ V arF [Mj (Z ,θ)] ∈ (0,∞), for j = 1, . . . , p,

(iv) EF |Mj (Z ,θ)/σF, j (Z ,θ)|2+δ ≤ K for j = 1, . . . , p,

for some constants δ, K ∈ (0,∞), where M(Z ,θ) satisfies Eq. (A.3).

DEFINITION A.2 (Null parameter space). The null parameter space, denoted by F0, is
the collection of parameter values (θ, F) that satisfy conditions (i)–(iv) in Definition A.1
plus the following one:

(v) EF [M(Z ,θ, x,ν)] ≥ 0 ∀(x,ν) ∈ G or, equivalently, θ ∈ �S(F).

In words, the null parameter spaceF0 is the subset of parameters in the baseline parameter
space F that satisfies the moment inequalities of our outer identified set.

DEFINITION A.3 (Restricted null parameter space). Let H̄2 denote an arbitrary com-
pact subset of H2 (metrized with the sup-norm). The restricted null parameter space, de-
noted by F̄0, is defined as follows:

F̄0 ≡ {
(θ, F) ∈ F0 : h2,F (θ, ·, ·) ∈ H̄2

}
.
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We conclude this section by defining sequences of parameters that are relevant for our
asymptotic analysis.

DEFINITION A.4. For any h2 ∈ H̄2, SubSeq(h2) is the set of sequences {(θn, Fn)}n≥1
for which:

sup
(x,ν),(x̃,ν̃)∈G

||h2,Fn (θn, (x,ν), (x̃, ν̃))−h2((x,ν), (x̃, ν̃))|| → 0.

A.2.2. Assumptions. Our results require the following assumptions which are directly
related to those in AS13.

Assumption A.2. Let W denote the set of p × p positive definite matrices and let
R

p
[+∞] denote p copies of R[+∞] ≡R∪{+∞}. For every (y,
) ∈Rp

[+∞] ×W , the func-
tion S used in Eq. (4.1) satisfies:

(a) S(Dy, D
D) = S(y,
) ∀D ∈ �, where � denotes the space of positive definite
diagonal p × p matrices,

(b) S(y,
) is nonincreasing in each element of y,

(c) S(y,
) ≥ 0,

(d) S is uniformly continuous in the sense that supμ∈Rp
+ |S(ỹ + μ,
̃

) − S(y +
μ,
)| → 0 as

(
ỹ, 
̃

)→ (y,
),

(e) S(y,
) ≤ S(y,
 +
1) for any p × p positive semi-definite matrix 
1,

(f) S(y,
) > 0 if and only if yj < 0 for some j = 1, . . . , p,

(g) For some χ > 0, S(ay,
) = aχ S(y,
) for any scalar a > 0.

Assumption A.3. The probability measure μ used in Eq. (4.1) has full support on G.

Assumption A.4. For every θ ∈ � and (x̄, ν̄) ∈ G, limB(x,ν)↓B(x̄,ν̄) EF [M(Z ,θ, x,ν)]
= EF [M(Z ,θ, x̄, ν̄)], where the convergence B(x,ν) ↓ B(x̄, ν̄) occurs in the Hausdorff
distance, i.e., supa∈B(x,ν) infb∈B(x̄,ν̄) ||a −b|| → 0.

Assumption A.5. For any s = 1, . . . , p, the triangular array of processes
{{M(Zi ,θ, x,ν) : (x,ν) ∈ G}n

i=1}n≥1 is manageable with respect to the envelopes
{{M(Zi ,θ)}n

i=1}n≥1 in the sense of Pollard (1990, Definition 7.9).

Assumption A.6. {κn}n≥1 and {Bn}n≥1 are nondecreasing sequences of positive con-
stants such that n → ∞ implies that: (a) κn → ∞, (b) Bn/κn → 0, (c) Bn → ∞, and (d)√

n/κn → ∞.

We now briefly explain each of these assumptions. Assumption A.2 combines Assump-
tions S1–S4 in AS13, who propose several candidates for S that satisfy all of these nec-
essary conditions. For convenience, we describe two of these candidates that are already
tailored to the setup of this paper. The first example is the modified method of moments
(MMM) test function:

S1(y,
) =
p∑

j=1

[
yj /
[ j, j]

]2
− , (A.6)
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where [z]− ≡ |z|× 1(z < 0). The second example is the quasi-likelihood ratio (QLR) test
function:

S2(y,
) = inf
t∈Rp

+,∞
(y − t)′
−1(y − t).

The measure μ is analogous to the weight function Q in AS13 and so Assumption A.3
corresponds to their Assumption Q.15 By this assumption, any subset of G with positive
Lebesgue measure will be assigned a positive probability. There are many possible candi-
dates for this measure. For example, we could consider the following product measure:

μ(x,ν) =
dx∏

j=1

μ1
(
xj
)×μ2

(
νj
)
,

where μ1 is any continuous distribution with full support on R (e.g. standard normal
N (0,1)) and μ2 is any continuous distribution with support on (0,r).

Assumption A.4 is a smoothness assumption on the moment conditions that define our
partially identified model. Recall from Eqs. (3.4) and (3.7) that EF [M(Z ,θ, x,ν)] is the
result of integrating a function on a box B(x,ν), whose center is x and whose width is
determined by ν. Assumption A.4 requires that this the expectation changes continuously
as we infinitesimally increase the size of the box B(x,ν). This assumption can be consid-
ered mild because it applies to an expectation, which is a smoothing operator. For example,
it is satisfied in Example 1.1 provided that G is continuous.

Assumption A.5 is analogous to Assumption M(c) in AS13. This assumption provides
a sufficient condition to obtain a functional version of the law of large numbers and the
central limit theorem, which are the key to our inferential results.

Finally, Assumption A.6 specifies thresholding sequences that need to be chosen by the
researcher in order to implement the GMS approximation. These sequences are typical
in GMS type of inference (see, e.g., Andrews and Soares, 2010 and Bugni, 2010, among
others). While Assumption A.6 restricts these sequences in terms of rates of convergence,
they provide little guidance on how to choose them in practice for a given sample size.
Based on experience drawn from their Monte Carlo simulation, AS13 (Page 643) recom-
mend using κn ≡ (0.3ln(n))1/2 and Bn ≡ (0.4ln(n)/ ln ln(n))1/2, which we use in our own
simulations.

A.2.3. Results on Identification. Our next result has the objective of providing a formal
justification for our definition of the test function Tn in Eq. (4.1). Our confidence set is
an example of the criterion function approach to inference in partially identified models
developed by Chernozhukov et al. (2007).

A central population object in this approach is the so-called criterion function, denoted
by TF (θ) : � → R+ with the defining property that it takes value of zero if and only if
θ ∈ �S(F). The following result proposes a particular function and verifies that it is a
criterion function for the current problem.

THEOREM A.3. Assume Assumptions A.2-A.4. For any (θ, F) ∈F , define the following
function:

TF (θ) ≡
∫

S(EF [M(Z ,θ, x,ν)],V arF [M(Z ,θ, x,ν)]+λDF (θ))dμ(x,ν),
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where DF (θ) is as in Eq. (A.4). Then, TF (θ) is a population criterion function for �S(F),
i.e., TF (θ) ≥ 0 and TF (θ) = 0 if and only if θ ∈ �S(F).

Proof. TF (θ) ≥ 0 for θ ∈ � follows directly from Assumptions A.2(c) and
A.3. First, consider θ ∈ �S(F). By definition in Theorem 3.3, θ ∈ �S(F) implies
EF [M(Z ,θ, x,ν)] ≥ 0 for all (x,ν) ∈ G. Then, Assumptions A.2(c,f) and A.3 imply that
TF (θ) = 0.

For the remainder of the proof, consider θ �∈ �S(F). By definition in Theorem 3.3,
θ �∈ �S(F) implies EF [Mj (Z ,θ, x̄, ν̄)] < 0 for some ( j, (x̄, ν̄)) ∈ {1, . . . , p}×G. Let ε ≡
|EF [Mj (Z ,θ, x̄, ν̄)]|/2.

For any δ > 0, define the set A(δ) ≡ {(x,ν) ∈ [x̄ − ν̄δ, x̄ + ν̄δ]× [ν̄(1+2δ), ν̄(1+3δ)]}.
We now verify that A(δ) has several properties. First, the fact that min{ν̄s}dx

s=1δ > 0
implies that A(δ) has a positive Lebesgue measure. Second, (x,ν) ∈ A(δ) implies that
x − ν ∈ [x̄ − ν̄ − 4ν̄δ, x̄ − ν̄ − ν̄δ] and x + ν ∈ [x̄ + ν̄ + ν̄δ, x̄ + ν̄ + 4ν̄δ] and these, com-
bined with min{ν̄s}dx

s=1δ > 0, imply that B(x̄, ν̄) ⊆ B(x,ν). Third, ||(x,ν) − (x̄, ν̄)|| ≤
3max{ν̄s}dx

s=1δ and this implies that B(x,ν) ↓ B(x̄, ν̄) (in Hausdorff distance) as δ ↓
0. By ε ≡ |EF [Mj (Z ,θ, x̄, ν̄)]|/2 and Assumption A.4, it follows that ∃δ̄1 > 0 s.t.

EF [Mj (Z ,θ, x,ν)] ≤ −ε for all δ ∈ (0, δ̄1). Finally, the fact that max{ν̄s}dx
s=1 < r im-

plies that ∃δ̄2 > 0 s.t. max{ν̄s}dx
s=1(1+3δ) < r and so A(δ) ⊆ G for all δ ∈ (0, δ̄2). For the

rest of the proof, define A ≡ A(δ̄) for δ̄ ≡ min{δ̄1, δ̄2} > 0.
We now show that ∃η̄ > 0 s.t.

S( EF [M(Z ,θ, x,ν)] , V arF [M(Z ,θ, x,ν)] + λ DF (θ) ) ≥ η̄ ∀(x,ν) ∈ A. (A.7)

By Assumption A.2(e) and the fact that V arF [M(Z ,θ, x,ν)] is positive semidefi-
nite, it suffices to show that ∃η̄ > 0 s.t. S(EF [M(Z ,θ, x,ν)],λDF (θ)) ≥ η̄ ∀(x,ν) ∈ A.
Suppose that this is not true, i.e., suppose that ∃{(xs ,νs)}s≥1 with (xs ,νs) ∈
A ∀s ∈ N s.t. lims→∞ S(EF [M(Z ,θ, xs ,νs)],λDF (θ)) = 0. By the compactness of A,
{(xs ,νs)}s≥1 has a convergent subsequence in A with a limit point (x∗,ν∗) ∈ A s.t.
S(EF [M(Z ,θ, x∗,ν∗)],λDF (θ)) = 0, which is a contradiction to Assumption A.2(f) and
EF [Mj (Z ,θ, x∗,ν∗)] ≤ −ε.

To conclude the proof, consider the following argument:

TF (θ) ≥
∫

A
S(EF [M(Z ,θ, x,ν)],V arF [M(Z ,θ, x,ν)]+λDF (θ))dμ(x,ν)≥ ημ(A) > 0,

where the first inequality holds by Assumptions A.2(c) and A.3, the second inequality
holds by Eq. (A.7), and the strict inequality holds by Assumption A.3. n

A.2.4. Computation of GMS Confidence Sets. This paper considers confidence sets of
the form:

C Sn = {θ ∈ � : Tn(θ) ≤ ĉn(θ,1−α)}.
In practice, both the test statistic Tn(θ) and the GMS critical value ĉn(θ,1−α) require in-
tegration with respect to the probability measure μ. Furthermore, cn(θ,1−α) also requires
computation of quantiles of a certain Gaussian process. The objective of this section is to
describe how to implement these approximations.
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First of all, integrals with respect to probability measure μ can be approximated with
arbitrary accuracy by Monte Carlo simulation, i.e., we draw an arbitrarily large sample:

{(xu ,νu)}sn
u=1 is i.i.d. and distributed according to μ(x,ν), (A.8)

and approximate the integral with a sample average. The quality of the approximation
to these integrals is controlled by the number of random draws used, denoted by sn and
assumed to satisfy sn → ∞ as n → ∞. Following AS13 (Sections 3.5 and 4.2), we only
draw the sample according to Eq. (A.8) once and use it to approximate integrals in both
Tn(θ) and cn(θ,1−α) for all θ ∈ �.

Approximating the test function Tn(θ) in Eq. (4.1) is a matter of replacing the integral
with a sample average. In particular, we use:

T n,sn (θ) ≡ 1

sn

sn∑
u=1

S
(

n1/2 Mn(θ, xu ,νu),
n(θ, xu ,νu)
)
,

where {(xu ,νu)}sn
u=1 is the i.i.d. sample in Eq. (A.8), and Mn(θ, x,ν) and 
n(θ, x,ν) are

as in Eq. (4.2).
Approximating the GMS critical value is slightly more involved. We provide two algo-

rithms that can be used to approximate ĉn(θ,1−α), referred to as asymptotic approxima-
tion and bootstrap. Both algorithms approximate integrals by Monte Carlo integration but
differ in the method used to approximate the Gaussian process. In both of these algorithms,
the quality of the approximation is controlled by the number of repetitions involved,
denoted by τreps and assumed to satisfy τreps → ∞ as n → ∞.

Approximation of ĉn(θ,1−α) by simulation.

1. Draw an i.i.d. sample
{{ζτ,i }n

i=1

}τreps
τ=1 where ζτ,i ∼ N (0,1).

2. For each τ = 1, . . . ,τreps and u = 1, . . . ,sn , define

vτ (θ, xu ,νu) ≡ n−1/2
n∑

i=1

ζτ,i × D−1/2
n (θ)(M(Zi ,θ, xu ,νu)− Mn(θ, xu ,νu)).

where 
̂n(θ) and Dn(θ) are as in Eq. (A.5), and {(xu ,νu)}sn
u=1 is the i.i.d. sample in

Eq. (A.8).
3. For each τ = 1, . . . ,τreps , compute the sample T sn ,τ (θ) as follows:

T sn ,τ (θ) = s−1
n

sn∑
u=1

S
(
vτ (θ, xu ,νu)+ϕn(θ, xu ,νu), ĥ2,n(θ, xu ,νu)+λIp×p

)
,

where ĥ2,n and ϕn are as in Eq. (4.4).
4. ĉn(θ,1 − α) is approximated by η plus the empirical (1 − α + η)-quantile of{

T sn ,τ (θ)
}τreps
τ=1 .

Approximation of ĉn(θ,1−α) by the bootstrap.

1. Draw an i.i.d. sample
{{

Z∗
τ,i

}n
i=1

}τreps
τ=1 where Z∗

τ,i is a bootstrap draw from the em-

pirical distribution of
{

Zi
}n

i=1.
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2. For each τ = 1, . . . ,τreps and u = 1, . . . ,sn , define

v∗
τ (θ, xu ,νu) ≡ n−1/2

n∑
i=1

D̂−1/2
n (θ)

(
M
(
Z∗

τ,i ,θ, xu ,νu
)− Mn

(
θ, xu ,νu

))
.

where 
̂n(θ) and Dn(θ) are as in Eq. (A.5), and {(xu ,νu)}sn
u=1 is the i.i.d. sample in

Eq. (A.8).
3. For each τ = 1, . . . ,τreps , compute the sample T sn ,τ (θ) as follows:

T sn ,τ (θ) = s−1
n

sn∑
u=1

S
(
vτ (θ, xu ,νu)+ϕn(θ, xu ,νu), ĥ2,n(θ, xu ,νu)+λIp×p

)
,

where ĥ2,n and ϕn are as in Eq. (4.4).
4. ĉn(θ,1 − α) is approximated by η plus the empirical (1 − α + η)-quantile of{

T sn ,τ (θ)
}τreps
τ=1 .
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