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We consider models for financial data by Lévy processes, including hyperbolic,
normal inverse Gaussian, and Carr, Geman, Madan, and Yor~CGMY! processes+
They are given by their Lévy triplet~m~u!,s2,euxg~x!n~dx!!, wherem denotes
the drift, s2 the diffusion, andeuxg~x!n~dx! the Lévy measure, and the unknown
parameteru models the skewness of the process+ We provide local asymptotic
normality results and construct efficient estimators for the skewness parameteru
taking into account different discrete sampling schemes+

1. INTRODUCTION

Lévy processes, processes with stationary independent increments, became pop-
ular for modeling financial data during the last decade+ However, the earliest
attempt to model the stock behavior by a Lévy process, the Brownian motion,
was by Bachelier~1900! in his Ph+D+ thesis+ More recently there has been a
focus on Lévy processes with jumps+ Hyperbolic Lévy motions~cf+ Eberlein
and Keller, 1995; Keller, 1997!, generalized hyperbolic Lévy motions~cf+ Prause,
1999; Raible, 2000!, normal inverse Gaussian processes~cf+ Barndorff-Nielsen,
1998; Rydberg, 1997!, stable processes~cf+ Rachev and Mittnik, 2000!, vari-
ance gamma processes~cf+ Madan and Senata, 1990!, and CGMY processes,
also called truncated Lévy flights~cf+ Carr, Geman, Madan, and Yor, 2002!
yield good models for log-return processes of prices and exchange rates+ These
are models of the form logSt 5 Xt , whereSt is the price process+ Models based
on these processes are less restrictive than the traditional ones; they allow jumps
and include both finite and infinite activity and also bounded and unbounded
variation+ Furthermore, the empirical facts of excess kurtosis, skewness, and
fat tails can be modeled more realistically+

One parameter that is especially important for modeling is the skewness
parameter+ The skewness of a distribution is modeled by multiplying with an
exponential termeux, u [ IR+ For u . 0 the resulting distribution is right0
positive skewed depending on the size ofu; i+e+, the biggeru is the more weight
is put on largerx+ This parameter is an important parameter in finance, because
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according to the empirical data the distribution of the log-return prices is mostly
skewed~cf+ Prause, 1999!+ Carr et al+ ~2002! perform a detailed analysis of
skewness, finding that statistical data~i+e+, the time series of stock returns! are
significantly skewed either right or left, whereas risk-neutral data~i+e+, data
derived from option prices! are consistently left skewed+ The skewness param-
eter is of course not the same as the financial termskewness, the appropriately
normed third centered moment of a distribution+ It measures the same effect,
namely, the derivation from the symmetric distribution, but especially for fit-
ting data we need the skewness parameter itself+

The main problem for estimating parameters entering a Lévy processXt is
that in general the process is given by the Lévy–Khinchin formula or in other
words the characteristic function,

EeiuXt 5 eium~u!2~u202!s2~u!1*~eiux212iuh~x!!g~x,u!n~dx!,

wherem denotes the drift, s2 the diffusion, and g the density w+r+t+ n of the
Lévy measure, satisfying*~1 ∧ x2!g~x,u!n~dx! , `, andh~x! is some trun-
cation function, which behaves likex in the neighborhood of zero and ensures
integrability in the characteristic function+ Common examples areh~x! 5
x16x6#1~x! andh~x! 5 x0~x2 1 1!+ However, the density of the process itself is
unknown and cannot be calculated explicitly, as for most stable, hyperbolic,
generalized hyperbolic and CGMY processes+ Hence we have to find condi-
tions on the Lévy triplet~m~u!,s2~u!, g~x,u!n~dx!! that allow us to construct
efficient estimators explicitly+

We look at the special case where our unknown parameter is the skewness,
g~x,u! 5 euxg~x!, and focus on the concept of asymptotic statistics+ We show
that under very mild regularity conditions we obtain local asymptotic normal-
ity for the skewness parameter, giving us the maximal rate of convergence of a
sequence of regular estimators and the minimal asymptotic variance, which turns
out to be fully explicit, only involving the quantities of the Lévy triplet+ Fur-
thermore, we can then construct efficient estimators and show the relation to
martingale estimating functions+

For all financial applications~e+g+, fitting of models and also pricing deriva-
tives and quantifying risk! it is important to have good estimators of the under-
lying parameters when the data are given at discrete time points, XD,X2D, + + + ,XnD,
because continuous data are hardly available in practice or not economical to
observe+

We face two different sampling schemes; either we let the distance between
the observationsD be fixed and the number of observationsn tend to infinity,
or we letnD r ` asD r 0 andn r `+ The first sampling scheme seems to
be of more practical interest, because the distance of the observations can be
large+ The second one is an approximation to the continuously observed model+
The third possible discrete sampling scheme wherenD 5 const+ , `, n r `,
andD r 0, which would be the classical framework of high-frequency data, is
not possible in our setting+ Heuristically, this can easily be seen when looking
at the continuously observed model+ In the continuously observed model we
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obtain local asymptotic normality for the skewness parameter~cf+ Akritas and
Johnson, 1981! when the observed timeT tends to infinity+ Hence we also need
in the discretely observed model thatDn r `, becauseT may be identified
with nD+ This has some important implications+ We cannot infer the skewness
parameter by high-frequency data over a fixed period of time+ On the other
hand, it has the advantage that it makes sense to infer the skewness parameter,
even in the presence of other unknown parameters such as diffusion or scale,
because they have a faster rate of convergence+

The outline of the paper is the following+ In Section 2 we will review the con-
cepts of local asymptotic normality and measure changes in Lévy processes and
the result for continuously observed models+ In Section 3 we will prove local
asymptotic normality, and in Section 4 we construct efficient estimators and view
them in the context of martingale estimating functions+ Section 5 concludes+

2. PRELIMINARY RESULTS

The theory of local asymptotic statistics and the related efficiency results are
established by Le Cam~1960! and Hájek~1972! and extended by Jeganathan
~1981, 1983! and others+

This concept provides answers to important questions in estimation theory,
e+g+, how to characterize optimal estimators+ Having local asymptotic normal-
ity we can specify the maximal rate of convergence of a sequence of estimators
and the minimal asymptotic variance+ Furthermore, it not only allows us to decide
if a given sequence of estimators is efficient but also allows us to construct
efficient estimators from suboptimal estimators by a one-step improvement,
described, e+g+, in Le Cam and Young~1990!+

Let us recall the definition of local asymptotic normality~LAN !+ Let
pn~X0, + + + ,Xn;u! be the joint density of~X0, + + + ,Xn! underu [ Q and l n~u 1
dnh,u! the log-likelihood aroundu, i+e+,

ln~u 1 dnh,u! 5 log
pn~X0, + + + ,Xn;u 1 dnh!

pn~X0, + + + ,Xn;u!
,

wheredn, h . 0+

DEFINITION ~LAN !+ Let Q be an open subset of IRd and En 5
~Vn,Fn, $Pn,u : u [ Q%!, n $ 1 a sequence of experiments.

For fixed u [ Q ~En!n is calledLAN in u, if
(i) There existdn 5 dn~u! f 0.

∃ Fn-measurableLn :Vn r IRd

Gn :Vn r IRd3d,

Gn symmetric, strictly positive definite, such that for all h[ IRd

ln~u 1 dnh,u! 5 hTLn 2
1

2
hTGnh 1 oPn,u

~1! as nr `+
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(ii) There exists a finite, positive semidefinite, nonrandom matrixG, such that

Gn
P
&& G,

Ln
D

&& N nr`
&&

D ~0,G!,

as nr `.

LAN im nr`
&&

D plies that a sequence of estimators cannot converge to the true
parameter valueu0 at a rate faster thandn

21 and the asymptotic variance of a
dn

21-consistent estimator is bounded from below byG21+
The LAN property is often established by provingL2-convergence, which

implies the appropriate expansion of the log-likelihood function only involving
first derivatives+ However, in our case of the skewness parameter it turns out
that it is easier to take a different way, looking at the Taylor expansion of the
log-likelihood function up to the second order, because second derivatives exist+
For the sampling scheme with fixed distance of observationsD we are in the
framework of independent and identically distributed~i+i+d+! random variables,
which is well studied~cf+ Witting, 1985; Janssen, 1992; van der Vaart, 1998!+
For the other sampling scheme we are in the framework of triangular arrays
because of the dependence of the densities onn throughDn, and we have to
establish an appropriate central limit theorem~CLT! and law of large numbers
~LLN ! for the first and second terms of the Taylor expansion of the log-
likelihood function around the true parameteru0+ For more details see the proof
of Theorem 2 in Section 3+

Our aim is to prove LAN for discretely observed Lévy processes+ However,
for continuously observed Lévy processes there are some results known+ Akri-
tas and Johnson~1981! consider general purely discontinuous Lévy processes+
We will state their result for the special case of the skewness parameter+ We
recall this result because the continuously observed model builds a natural bench-
mark for the model with discrete observations+ Especially the sampling scheme
with nD r ` asD r 0 andn r ` may be well compared with the continuous
model, asnD corresponds tot+

However, the continuous model only provides an optimality bound when the
underlying measures are absolutely continuous+ This is quite a strong restric-
tion to the possible variation of parameters as we can see in the following theo-
rem+ Skorokhod~1957! derived this result first; for a detailed account, see, e+g+,
Shiryaev~1999!+

THEOREM 1+ Let Xt be a Lévy process with triplet~m,s2, g~x!n~dx!! under
some probability measure P. Then the following two conditions are equivalent.

(1) There is a probability measure Q;loc P such that Xt is a Q-Lévy process
with triplet ~ Tm, Ts2, Sg~x! Tn~dx!!.

(2) All of the following four conditions hold.
• Sg~x! Tn~dx! 5 k~x!g~x!n~dx! for some Borel function k: IR r ~0,`!.
• Tm 5 m 1 *h~x!~k~x! 2 1!g~x!n~dx! 1 sb for someb [ IR.
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• Ts 5 s.
• *~1 2 Mk~x!!2g~x!n~dx! , `.

This theorem implies that we cannot have the LAN property in the continu-
ous model when we aim to estimate the diffusion, or a scalar factor in front of
an infinite Lévy measure, because the underlying measures cannot be abso-
lutely continuous+ However, for the skewness parameter, i+e+, k~x! 5 exp$ux% ,
we can have an absolutely continuous change of measures and LAN for
the continuously observed model withd 5 1YMT andG 5 *x2eu0xg~x!n~dx!,
whereT is the observed time that tends to infinity ands 5 0 ~cf+ Akritas and
Johnson, 1981!+

3. LOCAL ASYMPTOTIC NORMALITY

Let us now assume that we are given a Lévy process with a skewed Lévy
measureeuxg~x!n~dx! and we aim to estimate the skewness parameteru+
First of all we are interested how the multiplicative term in the Lévy measure
changes the distribution of the underlying Lévy process+We obtain the follow-
ing lemma+ Though we shall only look at Lévy processes with unbounded sup-
port, the same calculations hold for processes with bounded support, especially
for subordinators+

LEMMA 1 + Denote by pt~x! the density of the Lévy process w.r.t. m, given
by the triplet~m,s2, g~x!n~dx!! and by pt~x,u! the density corresponding to
the process with the skewed Lévy measure euxg~x!n~dx!. Furthermore, assume
that for all u [ U~u0! , Q, where U~u0! is a neighborhood of the true param-
eter u0,

E
6x6$1

euxg~x!n~dx! , `+ (1)

Then we obtain

pt ~x,u! 5
euxpt ~x!

Eeuxpt ~x!m~dx!

, (2)

and the corresponding drift isTm 5 m 1 *h~x!~eux 2 1!g~x!n~dx!.

Remark+ ~1! For processes with finite variation, i+e+, *~6x6 ∧ 1!g~x!n~dx! ,`,
e+g+, all compound Poisson processes and subordinators, we may takeh~x! 5 0
and obtain Tm 5 m+

~2! We consider densitiespt w+r+t+ to some measurem+ However, of most
practical interest, except for compound Poisson processes, is whenm equals
the Lebesgue measure, as is the case in our examples+ Even though the density
pt might not be known explicitly, conditions on the Lévy measure may ensure
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its existence; e+g+, as was shown in Tucker~1962!, infiniteness of the Lévy
measure together with a Lebesgue density of the Lévy measure already ensures
the existence of a Lebesgue densitypt + However, the relation between the exis-
tence of a densitypt and the existence of a density of the corresponding Lévy
measure and its mass near zero is much more complex+ A detailed outline is
given in Sato~1999!+

Proof+ Under the assumption~1! the denominator in~2! is well defined+ We
assume that the characteristic function corresponding topt is

etSium2~102!s21E~eiux212iuh~x!!g~x!n~dx!D+
Hence we can calculate the characteristic function of the skewed distribution

Eeiux
euxpt ~x!

Eeuypt ~ y!m~dy!

m~dx!

5 expHtSium 1 um 2
1

2
s2u2 1

1

2
s2u2

1 E~eiux1ux 2 1 2 iuh~x! 2 uh~x!!g~x!n~dx! 2 um

2
1

2
s2u2 2E~eux 2 1 2 uh~x!!g~x!n~dx!DJ

5 expHtSiuSm 1Eh~x!~eux 2 1!g~x!n~dx!D2
1

2
s2u2

1 E~eiux 2 1 2 iuh~x!!euxg~x!n~dx!DJ ,
which yields the desired result+ n

Of course this result is not new+ The principle of multiplying with an expo-
nential factor is well established in different disciplines of stochastics but is
named differently+ In statistics the family of distributions or processes derived
by varying the skewness parameter is called the natural exponential family~cf+
Janssen, 1992; Küchler and Sørensen, 1997!+ In finance the the distribution
obtained by adding the skewness is called the Esscher transform~cf+ Shiryaev,
1999!+ This concept is also an easy way of explicitly calculating equivalent
martingale measures+

Using ~2! we can prove LAN for the skewness parameter+ Though we start
with a general Lévy process with unknown density, we obtain a fully explicit
result of the minimal asymptotic variance, depending only on the quantities of
the Lévy triplet, for both sampling schemes+ Furthermore, our minimal asymp-
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totic variance for the sampling scheme withD r 0 turns out to be the same as
in the continuously observed model+

THEOREM 2+ Assume condition (1) foru [ U~u0! , Q, a neighborhood of
u0; then we obtainLAN

(i) with dn 5 10Mn and

G 5 DSs2 1Ex2eu0xg~x!n~dx!D,
as nr `, under the sampling scheme with fixedD,

(ii) with dn 5 1YMnD and

G 5 s2 1Ex2eu0xg~x!n~dx!,

as nD r `, under the sampling scheme withD r 0 and nr `.

Proof+ Because we have i+i+d+ increments as a result of the structure of the
Lévy processes, we can use the results for i+i+d+ random variables+

First, we have to calculate the derivatives+ We may interchange integration
and differentiation ifu is in the interior ofQ and obtain

]

]u
pt ~x,u! 5

]

]u

euxpt ~x!

Eeuxpt ~x!m~dx!

5

xeuxpt ~x!Eeuxpt ~x!m~dx! 2 euxpt ~x!S ]

]u
Eeuxpt ~x!m~dx!D

SEeuxpt ~x!m~dx!D2

5 xpt ~x,u! 2Expt ~x,u!m~dx! pt ~x,u!

]2

]u2 pt ~x,u! 5 x
]

]u
pt ~x,u! 2Ex

]

]u
pt ~x,u!m~dx!pt ~x,u!

2 Expt ~x,u!m~dx!
]

]u
pt ~x,u!

5 x2pt ~x,u! 2 2Expt ~x,u!m~dx!xpt ~x,u!

2 Ex2pt ~x,u!m~dx!pt ~x,u!

1 2SExpt ~x,u!m~dx!D2

pt ~x,u!+
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~i! For the sampling scheme with fixed distance of observationsD, we are in
the framework of i+i+d+ random variables with densities; hence conditions under
which LAN in u0 holds are well known~see, e+g+, Witting, 1985, p+ 179; Le
Cam and Young, 1990, Ch+ 6+3!+ The conditions are that the density is positive
m a+s+ and continuously differentiable w+r+t+ the unknown parameteru in a neigh-
borhoodU~u0!+ Then we obtain LAN with maximal rate of convergencedn 5
10Mn and

G~u0! 5E _pD
2~x,u0!

pD~x,u0!
m~dx!,

which is the inverse of the minimal asymptotic variance, providedG~u! is finite
for all u [ U~u0! and continuous inu0+ This result applies as foru [ U~u0!,
pt~x,u! is continuously differentiable inu and pt~x,u! . 0 @m# + We obtain
LAN with dn 5 1YMn and

G~u0! 5E ~ _pD~x,u0!!2

pD~x,u0!
m~dx!

5Ex2pD~x,u0!m~dx! 2SExpD~x,u0!m~dx!D2

5 DSs2 1Ex2eu0xg~x!n~dx!D,
becauseG~u! is obviously finite foru [ U~u0! and continuous inu0+ For the
last equation we use the well-known moment representation, by the derivatives
of the characteristic function, [pD

~n!~0! 5 ~i !n*xnpD~x!m~dx!+
~ii ! For the sampling scheme withD r 0 we need a few more conditions to

ensure the LAN property, which results basically from conditions needed to
perform the CLT and LLN for triangular schemes~see Woerner, 2001; Gnedenko
and Kolmogorov, 1968!+ The conditions are as follows+ Assume that there exists
a neighborhoodU~u0! of u0 such that the densitypt~x,u! w+r+t+ m of the Lévy
process is two times continuously differentiable w+r+t+ the unknown parameteru
and regular~i+e+, * _pt~x,u!m~dx! 5 ~]0]u!*pt~x,u!m~dx! 5 0, * ]pt~x,u!m~dx! 5
~]20]u2!*pt~x,u!m~dx! 5 0! for all u [ U~u0!+ Denote byun 5 un~x! a mea-
surable function fromIR r @u0,u0 1 hYMnD# + Furthermore, assume that for all
e . 0 asn r ` andD r 0, such thatnD r `,

~ i!
1

D
E _pD

2~x,un~x!!

pD
2~x,un~x!!

pD~x,u0!m~dx! r G~u0! , `,

~ ii !
1

D
E ]pD~x,un~x!!

pD~x,un~x!!
pD~x,u0!m~dx! r 0,
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~ iii !
1

D
E
* _pD~x,u0!

pD~x,u0! *$eMnD

_pD
2~x,u0!

pD~x,u0!
m~dx! r 0,

~ iv! E
* 1

D

_pD
2~x,un~x!!

pD
2~x,un~x!!

2G~u0!*.en
* 1

D

_pD
2~x,un~x!!

pD
2~x,un~x!!

2 G~u0!*pD~x,u0!m~dx! r 0,

~v!
1

D
E1

D*
]pD~x,un~x!!

pD~x,un~x!! *.en*
]pD~x,un~x!!

pD~x,un~x!! *pD~x,u0!m~dx! r 0+

Then we obtain LAN withdn 5 10MnD andG 5 G~u0! for the sampling scheme
with D r 0 asn r `+

Finding dominating functions to ensure these conditions is straightforward
because of the special simple structure thatu only enters in the exponential
term andD only as a polynomial factor, by applying the moment representation
to the integrals w+r+t+ pD~x,u!m~dx!+We look at the details of condition~i!; the
others can be checked analogously+

1

D
E _pD

2~x,un~x!!

pD
2~x,un~x!!

pD~x,u0!m~dx!

5
1

D SEx2pD~x,u0!m~dx! 2 2ExpD~x,u0!m~dx!ExpD~x,un~x!!m~dx!

1SExpD~x,un~x!!m~dx!D2D
5 s2 1Ex2g~x,u0!n~dx!

2 2DSm 1Eh~x!~eu0x 2 1!g~x!n~dx! 1E~x 2 h~x!!g~x,u0!n~dx!D
3Sm 1Eh~x!~eun~x!x 2 1!g~x!n~dx! 1E~x 2 h~x!!g~x,un~x!!n~dx!D
1 DSm 1Eh~x!~eun~x!x 21!g~x!n~dx! 1E~x2 h~x!!g~x,un~x!!n~dx!D2

r s2 1Ex2g~x,u0!n~dx!,

asn r `, D r 0, andnD r `+ n
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Example 1 (Normal inverse Gaussian process)

The normal inverse Gaussian process is characterized by the Lévy triplet

Sm,0,
daK1~a6x6!ebx

p6x6 D,
whereK1 denotes the modified Bessel function of third order with index 1 and
m [ IR, a,d . 0, 0 # 6b 6 , a+ Because as6x6 r 0

daK1~a6x6!ebx

p6x6
; const+

1

x2 ,

the process is of unbounded variation and possesses infinitely many jumps+
Hence it also has a density w+r+t+ the Lebesgue measure,

pt ~x,a,b,d,m! 5
aetdMa22b22tbm

p

td

M t 2d2 1 ~x 2 tm!2

3 K1~aM t 2d2 1 ~x 2 tm!2!ebx+

As pointed out in Barndorff-Nielsen~1998! this process is used both for mod-
eling turbulence, in particular when the Reynolds number is high, and in finance+
This is due to some special properties of the normal inverse Gaussian process,
such as possible asymmetry modeled by the skewness parameterb, unbounded
variation, and semiheavy tails; namely, as 6x6 r `

daK1~a6x6!ebx

p6x6
; const+ 6x62302e2a6x61bx+

The parameterb may be estimated according to Theorem 2+ Here assumption
~1! is satisfied+ Hence for the sampling scheme withD fixed andn r ` we
havedn 5 10Mn and

Gb 5Ex2pD~x,a,b,d! dx2SExpD~x,a,b,d! dxD2

5 DEx2g~x,a,b,d! dx

5 D
da2

~a2 2 b2!502 ,

which is indeed the same result as using the density and the results for i+i+d+
random variables+
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Example 2 (Gamma process)

The gamma process is characterized by the Lévy triplet

S0,0,
ae2bx

x
D,

with a,b, x . 0+ Hence the process is a subordinator and only possesses non-
negative jumps+ The density w+r+t+ the Lebesgue measure can be calculated, and
we can see that the name reflects the fact that the increments are distributed
according to a gamma function,

pt ~x,a,b! 5
batxat21e2bx

G~at !
+

Analogously to Example 1b can be estimated, and we obtain for the sampling
scheme withD fixed andn r `, dn 5 10Mn and

Gb 5 DEx2g~x,a,b! dx5 D
a

b2 ,

which is again the same result as using the density and the i+i+d+ results+

Example 3 (Hyperbolic Lévy motion)

The hyperbolic Lévy motion which was introduced by Barndorff-Nielsen~1977!
for modeling mass-size distributions of aeolin sand deposits, has also been
applied to some other areas of interest, e+g+, turbulence data~cf+ Barndorff-
Nielsen, 1996! and to financial data~cf+ Eberlein and Keller, 1995; Keller, 1997;
Rydberg, 1997; Prause, 1999; Raible, 2000!+

The hyperbolic Lévy motion may be characterized by the Lévy triplet

Sm,0,
ebx

6x6 SE0

` e2M2y1a26x6

p2y~J1
2~dM2y! 1 Y1

2~dM2y!!
dy1 e2a6x6DD,

whereJ1 denotes the Bessel function of the first order with index 1 andY1 the
Bessel function of the second order with index 1+ Furthermore, we havea,d . 0
and 0# 6b 6 , a+ Keller ~1997! has established that the density of the Lévy
measure behaves likex22 at the origin; hence the process is of unbounded vari-
ation+ Though the process possesses a density, we cannot calculate it analyti-
cally+ Only the distribution fort 5 1 can be written down explicitly; it is the
hyperbolic distribution

Ma2 2 b2

2adK1~dMa2 2 b2!
e2aMd21~x2m!21b~x2m!,
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whereK1 denotes the modified Bessel function of third order with index 1+We
can estimateb analogously to Example 1 and obtain for the sampling scheme
with D fixed andn r `, dn 5 10Mn and

Gb 5 DEx2g~x,a,b! dx

5 d2S K2~x!

xK1~x!
1

b2

a2 2 b2 F K3~x!

K1~x!
2S K2~x!

K1~x!D2GD,
wherex 5 dMa2 2 b2 using Keller~1997!+

Example 4 (CGMY process)

The CGMY process, named after Carr, Geman, Madan, and Yor, or in physical
literature called truncated stable or truncated Lévy flight, is given by the Lévy
triplet

S0,0,C
exp$2G6x6%

6x611Y 1x,0 1 C
exp$2M 6x6%

6x611Y 1x.0D,
whereC . 0, G $ 0, M $ 0, andY , 2+ This class of processes is a flexible
model for index dynamics and also for the dynamics of individual stocks, because
by varying the parameters it allows all features of finite and infinite activity,
bounded and unbounded variation, and also skewness to be modeled directly
by the characteristic function~cf+ Carr et al+, 2002!+ The variance gamma pro-
cess~cf+ Madan and Senata, 1990! is a special case of the CGMY process+ In
general the density of the process is not known explicitly, but as in the previ-
ous examples we can infer the parametersM or G in the special one-sided case,
when eitherG 5 ` or M 5 `, only by the knowledge of the Lévy measure+
When G 5 ` we obtain~0,0,C~exp$2M 6x6%06x611Y!1x.0! and for the sam-
pling scheme withD fixed andn r `, dn 5 10Mn and

GM 5 DCE
0

`

x2
exp~2Mx!

xY11 dx5 DCG~2 2 Y!M Y22+

4. EFFICIENT ESTIMATORS

With this explicit result for the minimal asymptotic variance we can now try to
find a sequence of estimators that is efficient+ Because the continuous model is
a benchmark for the discretely observed model, we look at the continuous like-
lihood function to get an idea of what discrete estimation functions may look
like+ In the continuous model the likelihood function is given by

Lt ~u! 5 exp$uYt 2 t log EeuY1 %,

whereYt denotes the process under the measurept~x!m~dx!+ Changing to the
processXt under the measureeuxpt~x!m~dx!0~*euxpt~x!m~dx!! and discretiz-
ing the time, i+e+, t 5 nD, leads to the log-likelihood function
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ln~u! 5 XnD 2 nDEu X1, (3)

which indeed provides an appropriate estimating function+
We obtain that only the knowledge of the last observation is important for

the estimation procedure+ In other words, the last observation contains all nec-
essary information+ This is however not surprising, because from the theory of
exponential families it is well known thatYt or XnD, respectively, is sufficient
for $Pt

u ,u [ Q% +

THEOREM 3~Optimal estimators!+

(i) Let Zun
D be the solution of ln~u! 5 XnD 2 nDEu X1 5 0; then

Mn~ Zun
D 2 u! D

&& NS0,FDSs2 1Ex2euxg~x!n~dx!DG21D
as nr `. Hence it is efficient for the sampling scheme with fixedD and
n r `.

(ii) Let ZunD be the solution of ln~u! 5 XnD 2 nDEu X1 5 0; then

MnD~ ZunD 2 u! D
&& NS0,Ss2 1Ex2euxg~x!n~dx!D21D,

as nD r `, whereD r 0 and nr `. Hence it is efficient for the sam-
pling scheme when nD r ` as D r 0 and nr `.

Proof+

~i! Using X0 5 0 andnDEu X1 5 Eu XnD, we can rewrite

l n~u! 5 XnD 2 nDEu X1

5 (
i51

n

@XiD 2 X~i21!D 2 Eu @XiD 2 X~i21!D ## + (4)

This yields asymptotic normality by inserting

1

Mn
ln~u! D

&& N~0,DVaru~X1!!

asn r ` by the CLT and

1

n
^ln~u! 5 2D

]

]u SEh~x!~eux 2 1!g~x!n~dx!

2E~x 2 h~x!!euxg~x!n~dx!D
5 2DEx2euxg~x!n~dx! 5 2DVaru~X1!
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in the expansion

ln~u! 5 2 ^ln~un!~ Zun 2 u!,

whereun [ ~u, Zun!+
~ii ! This is analogous to using the CLT for triangular schemes as in Theo-

rem 2 for the convergence in distribution and calculating the explicit form
of ^l n~u!0~nD! as in~i!+ n

With Theorem 3 equation~3! now provides an easily computable estimating
function that indeed leads to efficient estimators+ It is especially simple because
it only involves the observations and the first moment+ Depending on the form
of the first moment the equation can sometimes even be solved analytically+

Example 5 (Gamma process)

For the gamma process equation~3! is

XnD 2 nD
a

b
5 0+

Hence we obtain Zbn
D 5 ~nD0XnD!a for the sequence of efficient estimators as

n r ` for the sampling scheme with fixedD+

Equation~4! can also be viewed as the simplest form of a martingale esti-
mating function, having the general form

Gn~u! 5 (
i51

n Sf ~Yi ,u! 2E f ~x,u!pD~x,u!m~dx!D,
whereYi 5 XiD 2 X~i21!D i+i+d+ distributed according topD~+ ,u!+ We can now
show that our sequence of estimators is not only optimal in the sense of local
asymptotic statistics but also in the sense of Godambe and Heyde~1987!, which
is the classical optimality concept for martingale estimating functions+

Let us first give a short review on the concept of martingale estimating func-
tions and the definition of optimality by Godambe and Heyde~1987!+

The basic problem is that we want to draw inference for discretely observed
stochastic processes when the likelihood function is unknown+ Because in gen-
eral the maximum likelihood estimator performs quite well, the idea is to approx-
imate the unknown score function to obtain an approximate maximum likelihood
estimator+ Using an approximation, the problem might occur that we perhaps
do not have mean zero and hence eventually will get biased estimates, espe-
cially when the distance of observationsD is bounded away from zero+ A solu-
tion is to approximate the score function by a zero mean martingale w+r+t+ the
filtration generated by the observations+ This implies that we obtain consistent
and asymptotically normal estimators+

The optimality concept of Godambe and Heyde~1987! and Heyde~1988!
formalizes the heuristics that the optimal element in a given class of martingale

940 JEANNETTE H.C. WOERNER

https://doi.org/10.1017/S0266466604205060 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604205060


estimating functions is the one whoseL2-distance to the true score function is
minimal, or in the partial order of nonnegative matrices the distance to the score
function is minimal+

DEFINITION ~OA-optimality!+ Let

Gn
* [ M1 , M 5 $Gn6Gn martingale,EGn 5 0, ^G,GT&, OGn nonsingular%,

where OGn denotes the compensator ofĜn and ^G,GT& the quadratic character-
istic of Gn. Then Gn

* [ M1 is called OA-optimal inM1 if and only if

~ OGn!21^G,G*T&n 5 ~ OGn
*!21^G*,G*T&n ∀Gn [ M1+

As a result of the special structure of i+i+d+ increments, all considerations sim-
plify greatly for our model compared to general stochastic processes+ By straight-
forward calculations we obtainf *~x! 5 x for the optimalG*+ Hence we also
have optimality in the sense of Godambe and Heyde~1987! for the estimators
in Theorem 3+

5. CONCLUSION

We derived local asymptotic normality for the skewness parameter of Lévy pro-
cesses that are observed at discrete time points only+ This provides an effi-
ciency criterion in terms of the maximal rate of convergence and the minimal
asymptotic variance for a sequence of estimators+ Furthermore, we obtained
easily computable estimating functions that lead to efficient estimators both in
the sense of asymptotic statistics and in the sense of Godambe and Heyde~1987!
for martingale estimating functions+ Hence our results enable us to optimally
infer the skewness parameter from discrete observations for the popular Lévy
process models, such as generalized hyperbolic, normal inverse Gaussian, and
CGMY, even when other unknown parameters are involved+
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SankhyāA43, 26–36+

Jeganathan, P+ ~1983! Some properties of risk functions in estimation when the limit of the exper-
iment is mixed normal+ SankhyāA45, 66–86+
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