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ESTIMATING THE SKEWNESS
IN DISCRETELY OBSERVED
LEVY PROCESSES

JEANNETTE H.C. WOERNER
University of Gottingen

We consider models for financial data by Lévy procesgeduding hyperbolic
normal inverse Gaussiaand Cary Geman Madan and Yor(CGMY) processes
They are given by their Lévy tripletu(8), o2 e™g(x)v(dx)), where u denotes
the drift, o2 the diffusion ande®g(x)v (dx) the Lévy measuteand the unknown
parameter® models the skewness of the procedf&e provide local asymptotic
normality results and construct efficient estimators for the skewness parafimeter
taking into account different discrete sampling schemes

1. INTRODUCTION

Lévy processegprocesses with stationary independent incremdrgsame pop-
ular for modeling financial data during the last decadewever the earliest
attempt to model the stock behavior by a Lévy procéss Brownian motion
was by Bachelief1900 in his PhD. thesis More recently there has been a
focus on Lévy processes with jumpdyperbolic Lévy motiongcf. Eberlein
and Keller 1995 Keller, 1997), generalized hyperbolic Lévy motiofisf. Prause
1999 Raible 2000, normal inverse Gaussian procesggsBarndorff-Nielsen
1998 Rydberg 1997, stable processe&f. Rachev and Mittnik2000, vari-
ance gamma processés. Madan and Senatd 990, and CGMY processes
also called truncated Lévy flightef. Cary, Geman Madan and Yor 2002
yield good models for log-return processes of prices and exchange Tatse
are models of the form lo§ = X, whereS§ is the price procesModels based
on these processes are less restrictive than the traditionagltbegsallow jumps
and include both finite and infinite activity and also bounded and unbounded
variation Furthermorethe empirical facts of excess kurtosskewnessand
fat tails can be modeled more realistically

One parameter that is especially important for modeling is the skewness
parameterThe skewness of a distribution is modeled by multiplying with an
exponential terme?™, # € R. For # > 0 the resulting distribution is riglt
positive skewed depending on the siz&dpf.e., the biggem is the more weight
is put on largex. This parameter is an important parameter in finahezause
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according to the empirical data the distribution of the log-return prices is mostly
skewed(cf. Prause 1999. Carr et al (2002 perform a detailed analysis of
skewnessfinding that statistical daté.e., the time series of stock retunnare
significantly skewed either right or lefivhereas risk-neutral data.e., data
derived from option pricesare consistently left skewed@he skewness param-
eter is of course not the same as the financial tskewnesshe appropriately
normed third centered moment of a distributidhmeasures the same effect
namely the derivation from the symmetric distributiobut especially for fit-
ting data we need the skewness parameter itself

The main problem for estimating parameters entering a Lévy proerss
that in general the process is given by the Lévy—Khinchin formula or in other
words the characteristic function

: : (2 2 iux__q_
Ee|qu — e'UM(l") (U/2)o=(0)+[(e 1 |uh(x))g(x,0)v(dx)’

where . denotes the drifto? the diffusion and g the density w.t. » of the
Lévy measurgsatisfying f(1 O x?)g(x,8)v(dx) < oo, andh(x) is some trun-
cation function which behaves likex in the neighborhood of zero and ensures
integrability in the characteristic functiolCommon examples ark(x) =
X15=1(X) andh(x) = x/(x? + 1). However the density of the process itself is
unknown and cannot be calculated expligiths for most stablehyperbolic
generalized hyperbolic and CGMY processegnce we have to find condi-
tions on the Lévy triplet u(6),02(0), 9(x,8)v(dx)) that allow us to construct
efficient estimators explicitly

We look at the special case where our unknown parameter is the skewness
g(x,0) = e”g(x), and focus on the concept of asymptotic statistitle show
that under very mild regularity conditions we obtain local asymptotic normal-
ity for the skewness parameteiving us the maximal rate of convergence of a
sequence of regular estimators and the minimal asymptotic vayiahgeh turns
out to be fully explicit only involving the quantities of the Lévy tripleFur-
thermore we can then construct efficient estimators and show the relation to
martingale estimating functions

For all financial applicationse.g., fitting of models and also pricing deriva-
tives and quantifying riskit is important to have good estimators of the under-
lying parameters when the data are given at discrete time pEintX,,, ..., Xn,
because continuous data are hardly available in practice or not economical to
observe

We face two different sampling schemesther we let the distance between
the observationd be fixed and the number of observatiam$end to infinity
or we letnA — oo asA — 0 andn — oo. The first sampling scheme seems to
be of more practical interesbecause the distance of the observations can be
large The second one is an approximation to the continuously observed model
The third possible discrete sampling scheme where= const < oo, N — oo,
andA — 0, which would be the classical framework of high-frequency dita
not possible in our settindHeuristically this can easily be seen when looking
at the continuously observed modét the continuously observed model we
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obtain local asymptotic normality for the skewness param@tfeAkritas and
Johnson1981) when the observed timEtends to infinity Hence we also need
in the discretely observed model thah — oo, becausel may be identified
with nA. This has some important implicatiand/e cannot infer the skewness
parameter by high-frequency data over a fixed period of ti@e the other
hand it has the advantage that it makes sense to infer the skewness parameter
even in the presence of other unknown parameters such as diffusion ar scale
because they have a faster rate of convergence

The outline of the paper is the followinth Section 2 we will review the con-
cepts of local asymptotic normality and measure changes in Lévy processes and
the result for continuously observed modéts Section 3 we will prove local
asymptotic normalityand in Section 4 we construct efficient estimators and view
them in the context of martingale estimating functio8ection 5 concludes

2. PRELIMINARY RESULTS

The theory of local asymptotic statistics and the related efficiency results are
established by Le Canl960 and Hajek(1972 and extended by Jeganathan
(1981, 1983 and others

This concept provides answers to important questions in estimation theory
e.g., how to characterize optimal estimatoksaving local asymptotic normal-
ity we can specify the maximal rate of convergence of a sequence of estimators
and the minimal asymptotic variandeurthermoreit not only allows us to decide
if a given sequence of estimators is efficient but also allows us to construct
efficient estimators from suboptimal estimators by a one-step improvement
describede.g., in Le Cam and Yound1990.

Let us recall the definition of local asymptotic normalitfAN). Let
Pn(Xo, ..., Xn; ) be the joint density of Xy, ..., X,) underf € ® andl,(0 +
dnh, ) the log-likelihood around, i.e.,

pn(XO’---’Xn;H + Bnh)
pn(X07~~-7Xn;9) ’

I,(6 +6,h,0) = log
whereéd,,h > 0.

DEFINITION (LAN). Let ® be an open subset of IRand &, =
(Qn, Fns {Prg: 0 € O}),n = 1 a sequence of experiments.

For fixedd € © (&,), is calledLAN in 6, if

(i) There exis®, = 6,(0) L 0.

0F,-measurable\,: Q,, — IR¢
I,:Q,— R4

I, symmetric, strictly positive definite, such that for alehiR¢

1
1,6 +8,h,0) =hTA, — > h'ILh+ 05 ,(1) asn— co.
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(ii) There exists a finite, positive semidefinite, nonrandom matrsuch that
T, 5T,
An 2) Nn_)%(o, F)’

as n— oo.

LAN im n_)melies that a sequence of estimators cannot converge to the true
parameter valu#, at a rate faster thaf,, ! and the asymptotic variance of a
8, 1-consistent estimator is bounded from belowIby*.

The LAN property is often established by provihg-convergencewhich
implies the appropriate expansion of the log-likelihood function only involving
first derivatives However in our case of the skewness parameter it turns out
that it is easier to take a different wdpoking at the Taylor expansion of the
log-likelihood function up to the second ordbecause second derivatives exist
For the sampling scheme with fixed distance of observatibnge are in the
framework of independent and identically distribut@dd.) random variables
which is well studied(cf. Witting, 1985 Janssen1992 van der Vaart1998.

For the other sampling scheme we are in the framework of triangular arrays
because of the dependence of the densities timoughA,, and we have to
establish an appropriate central limit theoré@LT) and law of large numbers
(LLN) for the first and second terms of the Taylor expansion of the log-
likelihood function around the true parame#gr For more details see the proof

of Theorem 2 in Section.3

Our aim is to prove LAN for discretely observed Lévy processtmvever
for continuously observed Lévy processes there are some results kAkrimn
tas and Johnso(1981) consider general purely discontinuous Lévy processes
We will state their result for the special case of the skewness pararkié¢ger
recall this result because the continuously observed model builds a natural bench-
mark for the model with discrete observatio&specially the sampling scheme
with nA — oo asA — 0 andn — oo may be well compared with the continuous
model asnA corresponds to.

However the continuous model only provides an optimality bound when the
underlying measures are absolutely continuduss is quite a strong restric-
tion to the possible variation of parameters as we can see in the following theo-
rem Skorokhod(1957) derived this result firstfor a detailed accounseeg e.g.,
Shiryaev(1999.

THEOREM 1 Let X be a Lévy process with tripléi, o2 g(x)»(dx)) under
some probability measure P. Then the following two conditions are equivalent.

(1) There is a probability measure @ P such that Xis a Q-Lévy process
with triplet (&, &2 g(x)7(dx)).

(2) All of the following four conditions hold.
e g(x)7(dx) = k(x)g(x)»(dx) for some Borel function KR — (0,0).
e n=pu+ [h(x)(k(x) — 1)g(x)v(dx) + B for someB € R.
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° g =a0.

o (1 — VK(X)2g(x)v(dx) < co.

This theorem implies that we cannot have the LAN property in the continu-
ous model when we aim to estimate the diffusiona scalar factor in front of
an infinite Lévy measurebecause the underlying measures cannot be abso-
lutely continuousHowever for the skewness parametee., k(x) = exp{6x},
we can have an absolutely continuous change of measures and LAN for
the continuously observed model wish= 1/\/7 andl’ = [x2e%*g(x)v(dx),
whereT is the observed time that tends to infinity and= 0 (cf. Akritas and
Johnson1987).

3. LOCAL ASYMPTOTIC NORMALITY

Let us now assume that we are given a Lévy process with a skewed Lévy
measuree?*g(x)v(dx) and we aim to estimate the skewness parameter
First of all we are interested how the multiplicative term in the Lévy measure
changes the distribution of the underlying Lévy proc&¥s obtain the follow-

ing lemma Though we shall only look at Lévy processes with unbounded sup-
port, the same calculations hold for processes with bounded sumsmrecially

for subordinators

LEMMA 1. Denote by g(x) the density of the Lévy process w.r.t. m, given
by the triplet(u, o2 g(x)»(dx)) and by p(x,6) the density corresponding to
the process with the skewed Lévy measufg(e) v (dx). Furthermore, assume
that for all & € U(6,) C ©, where U 6,) is a neighborhood of the true param-
eter 6,

f e™g(x)v(dx) < oco. 1)
|x|=1

Then we obtain

ox
pt(xaa) = L(X)’
f e”p (x)m(dx)

and the corresponding drift i& = u + Sh(x)(e?™ — 1)g(x) v (dx).

(@)

Remark (1) For processes with finite variatione., f(|x| 01)g(x)v(dx) < co,
e.g., all compound Poisson processes and subordinat@snay takeh(x) = 0
and obtainz = wu.

(2) We consider densitiep;, w.r.t. to some measuren. However of most
practical interestexcept for compound Poisson processsswhenm equals
the Lebesgue measyr&s is the case in our examplé&s/en though the density
p: might not be known explicitlyconditions on the Lévy measure may ensure
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its existencee.g., as was shown in Tuckefl962, infiniteness of the Lévy
measure together with a Lebesgue density of the Lévy measure already ensures
the existence of a Lebesgue dengityHowever the relation between the exis-
tence of a densitp, and the existence of a density of the corresponding Lévy
measure and its mass near zero is much more complebetailed outline is

given in Sato(1999.

Proof Under the assumptiofl) the denominator iri2) is well defined We
assume that the characteristic function corresponding ®

et(iu,uf(l/z)a-ZJrf(ei“xflfiuh(x))g(x)V(dx)>
Hence we can calculate the characteristic function of the skewed distribution

o e"p(x

f f e”p(y)m(dy)

1 1
= exp{t <iu,u +0u — > o?u? + > 02602

m(dx)

+ J(e‘“”"x —1—iuh(x) — 8h(x))g(x)v(dx) — Ou

1

-5 a6 —f(e@X -1- 0h(x))g(x)v(dx)>}

= exp{t <iu (,u +fh(x)(e"x - 1)g(x)v(dx)) - %azu2

+ J(eiux -1- iuh(x))e"xg(x)v(dx)>},
which yields the desired result u

Of course this result is not nevihe principle of multiplying with an expo-
nential factor is well established in different disciplines of stochastics but is
named differentlyln statistics the family of distributions or processes derived
by varying the skewness parameter is called the natural exponential fahily
Janssen1992 Kiichler and Sgrenserd997). In finance the the distribution
obtained by adding the skewness is called the Esscher trangtbr®@hiryaey
1999. This concept is also an easy way of explicitly calculating equivalent
martingale measures

Using (2) we can prove LAN for the skewness paramefdrough we start
with a general Lévy process with unknown dengsitee obtain a fully explicit
result of the minimal asymptotic varianogepending only on the quantities of
the Lévy triplet for both sampling schemeBurthermorgour minimal asymp-
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totic variance for the sampling scheme with— 0 turns out to be the same as
in the continuously observed model

THEOREM 2 Assume condition (1) f&f € U(6,) C 0, a neighborhood of
0o, then we obtairLAN

(i) with 8, = 1/vn and

r= A<0'2 +fx2e”oxg(X)V(dX)>,

as n— oo, under the sampling scheme with fixad
(i) with 8, = 1/4/nA and

Ir=o¢? +fx2e”°"g(x)v(dx),

as M\ — oo, under the sampling scheme with— 0 and n— co.

Proof Because we haveiid. increments as a result of the structure of the
Lévy processesve can use the results far.d. random variables

First, we have to calculate the derivativédle may interchange integration
and differentiation if0 is in the interior of® and obtain

d e™p(x)

)
—p(x,0) = —
00 00 f e™p,(x)m(dx)

xe™p;(x) f e?™p,(x)m(dx) —e”xpt(X)<% f e"xpt(x)m(dx)>

2
(fe"xpt(x)m(dX)>

Xpt(x70) _fxpt(X,a)m(dX) pt(X7 0)

2

dJ dJ
?02 pt(xve) = XE pt(X70) _J‘XE pt(X90)m(dX)pl(X’6)

d
- fXIO:(X,ﬂ)m(dX) Y] Pe(x,6)
= x2p,(x,0) — Zpr[(x,a)m(dx)xpt(x,e)
- fxzpt(x,ﬁ)m(dX)pt(x,G)

2
+ 2(fxp[(x,6)m(dx)> p.(X,0).
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(i) For the sampling scheme with fixed distance of observatignge are in
the framework of.i.d. random variables with densitiglsence conditions under
which LAN in 6, holds are well knowrn(seg e.g., Witting, 1985 p. 179 Le
Cam and Young199Q Ch. 6.3). The conditions are that the density is positive
ma.s. and continuously differentiable.nt. the unknown paramet#rin a neigh-
borhoodU (6,). Then we obtain LAN with maximal rate of convergenge=
1/4/n and

pg(x7 00)

F(6o) = Pa(X,6o)

m(dx),

which is the inverse of the minimal asymptotic varianuevidedI (9) is finite
for all 6 € U(6,) and continuous irf,. This result applies as fat € U(6p),
p:(x,0) is continuously differentiable i and p,(x,6) > 0 [m]. We obtain
LAN with 8, = 1/+/n and

_ (pA(X’ 00))2
F(6o) = P (X, 0p) mia)

2
= fXZDA(x, o) m(dx) — (JXpA(X, Go)m(dX)>

= A<0’2 +fx2e"oxg(x)v(dx)),

becausd’(0) is obviously finite for6 € U(6,) and continuous i,. For the
last equation we use the well-known moment representabipithe derivatives
of the characteristic functiorp&”)(O) = (i)"fx"pa(x)m(dx).

(ii) For the sampling scheme with— 0 we need a few more conditions to
ensure the LAN properfywhich results basically from conditions needed to
perform the CLT and LLN for triangular schemeee Woerne2001, Gnedenko
and Kolmogoroy1968. The conditions are as followAssume that there exists
a neighborhoodJ (6y) of 6y such that the densitg,(x, 6) w.r.t. m of the Lévy
process is two times continuously differentiable.tvthe unknown parameter
and regulafi.e., [p(x,0)m(dx) = (8/00) [ p.(x,0)m(dx) = O, [ (X,0)m(dx) =
(0%/062) [ p(x,0)m(dx) = 0) for all § € U(6,). Denote by, = 6,(x) a mea-
surable function fronR — [ 6o, 6, + h/+/nA ]. Furthermoreassume that for all
€ > 0 asn — oo andA — 0, such thanA — oo,

1 [ PE(X0n(X)
PR(X, 6,(X))
1 pa(x,6,(x))

(ii) n mpA(X,Ho)m(dX)AO,

(i) Pa(X, 8p)m(dx) — T'(6) < oo,
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1 pi(x’ 60)
- ———m(d 0
(”I) A f Pa (X, 60) =eN/nA pA(Xa 00) m( X) s

pa(X,60)

1 BA(x,6n(X)

A P2 6,0) L)

PA(X, 6p)m(dx) — O,

(iv) fg PR 000
A pR66(x)

W) %fz

A

>en

Pa (X, 6n(X))

m Pa (X, 6,)m(dx) — 0.

Ba (%, 6n(X))
Pa (X, 6n (X))

=>en

Then we obtain LAN withs, = 1/4/nA andT = I'(6,) for the sampling scheme
with A — 0 asn — oo.

Finding dominating functions to ensure these conditions is straightforward
because of the special simple structure thainly enters in the exponential
term andA only as a polynomial factoby applying the moment representation
to the integrals w.t. p,(x,#)m(dx). We look at the details of conditiofi); the
others can be checked analogously

1 [ P00

A J pE(x,0,(x) P (X, o) m(dX)

1
= Z(szm(x,@o)m(dx) = ZJXDA(X,Oo)m(dX)prA(X,On(x))m(dx)

+ <fpr(x,0n(X))m(dX)>2)

=g? +fng(x, ) v (dx)
—2A <,u +Jh(x)(e90x —1g(x)v(dx) +f(x —h(x))g(x, Ho)v(dx)>
X <,U« Jrfh(x)(e"”(x)X —1Dg(x)v(dx) +f(X —h(x)g(x, 0n(X))V(dX)>
2
+ A(M +fh(X)(e””<X)X —1Dg(x)r(dx) +f(x— h(x))g(x, Hn(X))v(dX)>

—o? +fng(x, 6y) v (dx),
asn — oo, A —» 0, andnA — co. [ |
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Example 1 (Normal inverse Gaussian process)

The normal inverse Gaussian process is characterized by the Lévy triplet

< 6aK1(aX|)eBX>
/-L’O’— b

7|X|

whereK; denotes the modified Bessel function of third order with index 1 and
LER, a,d>00=]|8| < a. Because asx| - 0

SaK,(a|x|)er* 1
———————— ~const —;,
| X| X

the process is of unbounded variation and possesses infinitely many .jumps
Hence it also has a densitynt. the Lebesgue measure

e Ve’ B to
p (X5a’B’6’ lu’) =
‘ ™ V257 + (x— tw)?
X Ky (aNt262 + (x — tu)?)ePX
As pointed out in Barndorff-Nielsefl.998 this process is used both for mod-
eling turbulencgin particular when the Reynolds number is highd in finance
This is due to some special properties of the normal inverse Gaussian process

such as possible asymmetry modeled by the skewness pargsnetdrounded
variation and semiheavy taijsiamely as|x| — oo

SaK, (alx|)e?”

~ const | x|~ ¥2g alxIAx
| X|

The parameteB may be estimated according to TheoremH2re assumption
(1) is satisfied Hence for the sampling scheme withfixed andn — oo we
haves, = 1/4/n and

2
I = szpA(x,a,,B,B) dx— (fxp“x,a,ﬁ,&)dx)

= Afng(x,a,B,S) dx

da?

which is indeed the same result as using the density and the results.dor i
random variables
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Example 2 (Gamma process)

The gamma process is characterized by the Lévy triplet

ae X
0’ O’ ’
X

with «, 8, x > 0. Hence the process is a subordinator and only possesses non-
negative jumpsThe density w.t. the Lebesgue measure can be calculated

we can see that the name reflects the fact that the increments are distributed
according to a gamma functipn

'Batxat—le—ﬁx
P (X a,B) = T Ta)

Analogously to Example B can be estimate&nd we obtain for the sampling
scheme withA fixed andn — oo, 8, = 1/4/n and

o
Bz

which is again the same result as using the density anditberesults

Iy = Afng(x,a,ﬁ) dx= A

Example 3 (Hyperbolic Lévy motion)

The hyperbolic Lévy motion which was introduced by Barndorff-Niel&Ei7 7)
for modeling mass-size distributions of aeolin sand depobids also been
applied to some other areas of interesy., turbulence datdcf. Barndorff-
Nielsen 1996 and to financial datécf. Eberlein and Kellerl995 Keller, 1997
Rydberg 1997 Prause 1999 Raible 2000.

The hyperbolic Lévy motion may be characterized by the Lévy triplet

eBX foo e N 2y+a?|x| IxI
0, — dy+e X |,
RO\ o moyzvzy) + Yaevzy) 8

whereJ; denotes the Bessel function of the first order with index 1 #nthe
Bessel function of the second order with indeXFlirthermorewe havea,d > 0
and 0= |B| < a. Keller (1997 has established that the density of the Lévy
measure behaves like 2 at the origin hence the process is of unbounded vari-
ation Though the process possesses a densigycannot calculate it analyti-
cally. Only the distribution fort = 1 can be written down explicitlyit is the
hyperbolic distribution

NPy
« B e« V52+(X_M)2+B(X_,U~),
2a8K, (8N a? — B?)
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whereK; denotes the modified Bessel function of third order with indeXvé

can estimatgd analogously to Example 1 and obtain for the sampling scheme
with A fixed andn — oo, 8, = 1/+/n and

I; = Afng(x,a,,s)dx
_ 52( Keo) | B [Ka(x) - ( Kz(X))ZD
XKi(x) az_Bz Ki(x) Ki(x) ,
wherey = §Va? — 32 using Keller(1997).
Example 4 (CGMY process)

The CGMY processnamed after CayiGemarn Madan and Yot or in physical
literature called truncated stable or truncated Lévy flighgiven by the Lévy
triplet

exp{—G|x exp{—M|x
(00c 2PN, comtub, )

|X|1+Y 1X<0+ c |X|1+Y

whereC > 0,G =0, M = 0, andY < 2. This class of processes is a flexible
model for index dynamics and also for the dynamics of individual stdmcause
by varying the parameters it allows all features of finite and infinite activity
bounded and unbounded variatjiand also skewness to be modeled directly
by the characteristic functiofcf. Carr et al, 2002. The variance gamma pro-
cess(cf. Madan and Senatd 990 is a special case of the CGMY process
general the density of the process is not known explickilyt as in the previ-
ous examples we can infer the paramedMrer G in the special one-sided case
when eitherG = oo or M = oo, only by the knowledge of the Lévy measure
When G = oo we obtain(0,0,C(exp{—M|x|}/|x|**¥)1,-o) and for the sam-
pling scheme with\ fixed andn — oo, §, = 1/4/n and

* _exp(—Mx
Iy = ACJ x2 exp—Mx) dx=ACr(2-Y)M" 2
0

XY+1

4. EFFICIENT ESTIMATORS

With this explicit result for the minimal asymptotic variance we can now try to
find a sequence of estimators that is efficidB¢cause the continuous model is
a benchmark for the discretely observed moda look at the continuous like-
lihood function to get an idea of what discrete estimation functions may look
like. In the continuous model the likelihood function is given by

L,(6) = exp{6Y, — tlog Ee"},

whereY; denotes the process under the meagu(®)m(dx). Changing to the
processX; under the measure”p;(x)m(dx)/(fe”p,(x)m(dx)) and discretiz-
ing the timeg i.e,, t = nA, leads to the log-likelihood function
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1h(6) = Xny — NAE, X, 3)

which indeed provides an appropriate estimating function

We obtain that only the knowledge of the last observation is important for
the estimation procedurén other wordsthe last observation contains all nec-
essary informationThis is however not surprisindpecause from the theory of
exponential families it is well known that or X, respectivelyis sufficient
for {P?,6 € @®}.

THEOREM 3(Optimal estimators

(i) Let 62 be the solution of (6) = Xns — NAE,X; = 0; then

Vn(62 — ) 2N (0, [A <0’2 +fx2ef’xg(x)v(dx)>]l>

as n— oo. Hence it is efficient for the sampling scheme with fixeahd
n — oo.
(ii) Let 6, be the solution of J(#) = X,» — NAE;X; = 0; then

VA (D, — 60) 25N <O, (az +fx2e"xg(x)v(dx)> ),

as M\ — oo, whereA — 0 and n— oo. Hence it is efficient for the sam-
pling scheme whenm— o0 asA — 0 and n— co.

Proof

(i) Using Xy = 0 andnAE,X; = EyX,,», We can rewrite

1,(0) = Xna = PAE, Xy

n
= ;[Xm = Xi-pa— Ep[Xia — X(i—l)A]]- (4)
This yields asymptotic normality by inserting
1 D
ﬁ [,(6) — N(O,AVar,(X;))

asn — oo by the CLT and

}I'O —Ai<fh x —1 d
; n(6) P (x)(e )g(X)v(dx)

—f(x— h(X))e"Xg(X)v(dX)>

—Aszeexg(x)v(dx) = —AVar,(X,)
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in the expansion

ln(e) = _l.n(an)(én - 0),

where6, € (6, 0,).

(ii) This is analogous to using the CLT for triangular schemes as in Theo-
rem 2 for the convergence in distribution and calculating the explicit form
of [,(8)/(nA) as in(i). [

With Theorem 3 equatio(B) now provides an easily computable estimating
function that indeed leads to efficient estimatdtss especially simple because
it only involves the observations and the first momédpending on the form
of the first moment the equation can sometimes even be solved analytically

Example 5 (Gamma process)

For the gamma process equati@ is

o
Xoa — DA E =0.
Hence we obtaiB2 = (nA/X,, )« for the sequence of efficient estimators as
n — oo for the sampling scheme with fixedl.

Equation(4) can also be viewed as the simplest form of a martingale esti-
mating function having the general form

n
Gn(0) = El<f(Yi,0) —ff(x,ﬁ)pA(x,O)m(dX)>,

iz
whereY; = Xiy — X(i—1a i.i.d. distributed according t@,(.,#). We can now
show that our sequence of estimators is not only optimal in the sense of local
asymptotic statistics but also in the sense of Godambe and H&98&, which
is the classical optimality concept for martingale estimating functions

Let us first give a short review on the concept of martingale estimating func-
tions and the definition of optimality by Godambe and Heyi@87.

The basic problem is that we want to draw inference for discretely observed
stochastic processes when the likelihood function is unkn®ecause in gen-
eral the maximum likelihood estimator performs quite wislé idea is to approx-
imate the unknown score function to obtain an approximate maximum likelihood
estimator Using an approximatignthe problem might occur that we perhaps
do not have mean zero and hence eventually will get biased estinesies-
cially when the distance of observatiofss bounded away from zerd solu-
tion is to approximate the score function by a zero mean martingale the
filtration generated by the observatiofi$is implies that we obtain consistent
and asymptotically normal estimators

The optimality concept of Godambe and Heyd®87) and Heyde(1988
formalizes the heuristics that the optimal element in a given class of martingale
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estimating functions is the one whoké-distance to the true score function is
minimal, or in the partial order of nonnegative matrices the distance to the score
function is minimal

DEFINITION (Ox-optimality). Let
G € M, C M ={G,|G, martingaleEG, = 0, (G,G"), G, nonsingula},

whereG, denotes the compensator @f and(G,GT) the quadratic character-
istic of G,. Then G € M is called Qi-optimal in M if and only if

(Gn)_l<G’ G*T>n = (G_:)_1<G*,G*T>n DGn € Ml-

As a result of the special structure dfd. incrementsall considerations sim-
plify greatly for our model compared to general stochastic proceByestraight-
forward calculations we obtaif*(x) = x for the optimalG*. Hence we also
have optimality in the sense of Godambe and Hei$87) for the estimators
in Theorem 3

5. CONCLUSION

We derived local asymptotic normality for the skewness parameter of Lévy pro-
cesses that are observed at discrete time points diig provides an effi-
ciency criterion in terms of the maximal rate of convergence and the minimal
asymptotic variance for a sequence of estimatbrgthermore we obtained
easily computable estimating functions that lead to efficient estimators both in
the sense of asymptotic statistics and in the sense of Godambe and (#H@8de

for martingale estimating functionsience our results enable us to optimally
infer the skewness parameter from discrete observations for the popular Lévy
process modeJsuch as generalized hyperbglimrmal inverse Gaussiaand
CGMY, even when other unknown parameters are invalved
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