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Abstract
This is the first of two papers in which we estimate transition probabilities amongst levels of

disability as defined in the Australian Survey of Disability, Ageing and Carers. In this paper we

describe both the main tools of our estimation and the estimation of the numbers of individuals in

different disability categories at annual intervals using survey data that are available at five year

intervals. In Paper II we describe our estimation procedure, followed by its implementation,

discussion of results and graduation of the estimated transition probabilities.
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1 Introduction

Our aim in this paper and its accompanying paper, Hariyanto et al. (2014b), referred to as Paper II,

is to develop a method to estimate the probability of transition at individual ages between disability

states as defined in the Survey of Disability, Ageing and Carers (SDAC) produced by the Australian

Bureau of Statistics (ABS). In particular, our study is part of a wider project on reverse mortgages,

and consequently we are interested in transition probabilities at older ages. A method for estimating

transition probabilities was presented by Rickayzen and Walsh (2002), and this method was applied

by Leung (2004) in the Australian context. In each of these papers, the data for estimation is a single

set of disability prevalence rates. The main contribution of this study is that we show how data from

successive surveys can be used to estimate transition probabilities. We use Rickayzen and Walsh’s

approach as a starting point, then refine these estimates by applying data on prevalence rates from a

subsequent survey.
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The approach adopted in this paper utilises the disability data from both the 1998 SDAC and the

2003 SDAC, and employs an Iterative Proportional Fitting (IPF) procedure. Fundamental to our

estimation is the apparent stability of disability prevalence rates over two decades. Given this

stability, we can linearly interpolate the disability prevalence rates reported in the 1998 and 2003

surveys to estimate the prevalence rates in years 1999 to 2002. Applying these prevalence rates to

the estimated resident population (ERP) of Australia in the relevant years, we obtain our estimate of

the disabled population in years 1998 to 2003. We then apply the IPF procedure to the estimated

disabled population in pairs of successive years (i.e. 1998 and 1999, etc) to estimate one-year

longitudinal disability data. The idea of the procedure is to model the disability state of an

individual in two subsequent years using a log-linear model. The row category represents the

disability state at the base year while the column category represents the state at the following year.

The interaction between row and column categories is estimated from initial disability transition

probabilities calculated using the approach of Leung (2004). The procedure involves projecting the

disabled population in the middle of a given year to the middle of the next year using the initial

disability transition probabilities, and then adjusting the projection such that it satisfies the age

structure of the disabled population at the middle of the next year. The results of the procedure are

our estimates of one-year longitudinal disability data. From these longitudinal data, the refined

estimates of one-year disability transition probabilities are determined. Following that, we graduate

the estimated (refined) transition probabilities to obtain the final estimates of transition

probabilities. Figure 1.1 presents the overall steps of the estimation of disability transition

probabilities. In this paper, we present the analysis of steps 1 and 2, while in Paper II, we present the

analysis of steps 3 to 5.

We can summarise the steps in Figure 1.1 as follows.

1. Estimation of initial disability transition probabilities by implementing the multiple state model

to disability prevalence rates data reported in the 2003 SDAC.

2. Estimation of the numbers of individuals in different disability categories at annual intervals

from 1998 to 2003.

3. Estimation of one-year longitudinal disability data under the IPF procedure.

4. Improvement (refinement) of estimates of disability transition probabilities.

5. Graduation of the refined estimates of disability transition probabilities.

Figure 1.1. Estimation steps of disability transition probabilities.
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2 Importance of Estimating Disability Rates

Australia and many other developed nations have been witnessing an increase in life expectancy

and, at the same time, declining birth rates. Both of these factors will lead to an increase, over time,

in the proportion of the population who are classified as elderly. Based on the Intergenerational

Report 2010 (Treasury, 2010), produced by the Commonwealth Government of Australia, the

proportion of the population aged 85 and above is expected to increase from 1.8% in 2010 to 5.1%

in 2050. This ageing presents a challenge for the provision of aged care services and for formulating

suitable funding mechanisms to support the increased need for such care. Several commentators

suggest that the current funding system is unlikely to be sustainable and the current aged care

services will not be able to deliver the quantity and quality of aged care needed in the future (Access

Economics (2010), Australian Institute of Health and Welfare (AIHW) (2007)).

To deal with this funding problem, various alternative funding mechanisms have been suggested.

These include increases to the rates of taxation, use of long term care (LTC) insurance, sale of

reverse mortgages (RM), implementation of voluntary incentivised healthy ageing saving accounts

and a voucher system (Access Economics, 2010). Determination of the appropriate funding model is

difficult, in part due to the uncertainty of future aged care costs. In addition, there are difficulties in

the pricing of LTC insurance and RM. This high level of uncertainty will lead to higher margins in

LTC insurance premiums or, in the case of RM, higher levels of interest charged on outstanding

balances. In turn this limits the effectiveness of these instruments in meeting their policy objectives.

On the supply side, uncertainty in the magnitude and the type of aged care (high care needed for

those who have higher levels of disability or low care needed for those with more mild levels of

disability) that will be needed in the future creates difficulty when planning for the increased levels

of aged care that will inevitably be required.

Accurate estimation of the probability of lives being disabled and the extent to which they are

disabled are essential inputs to funding models for the provision of aged care and are therefore of

great significance. On the funding side, reliable estimates of disability prevalence rates result in

more accurate estimates of future aged care costs, which in turn will help in determining the

appropriate funding mechanism. In addition, this will reduce the uncertainty associated with the

pricing of LTC or RM and hence lower premiums or interest that will need to be charged on these

products. On the supply side, a better estimate of the magnitude of demand for aged care and the

type of care needed will allow more accurate planning for the provision of this care.

3 Data

There are a number of datasets which can be used to analyse transition probabilities between

disability categories. These include a statistical overview of residential aged care (AIHW (2009)), a

national disability survey (SDAC), and various local longitudinal surveys which measure both

disability and aged care home use. In addition, one might want to consider large scale overseas

longitudinal data (for example the National Long Term Care Survey in the U.S.).

For this paper we have chosen to use the SDAC data. This Australia-wide cross sectional disability

survey is preferred over regional longitudinal data. This is because national experience might differ

from regional experience and so the SDAC data are likely to give a more accurate representation of

national trends in disability rates. Overseas longitudinal data, although representative of national

experience, are likely to be of limited use as overseas data might not be comparable to Australian data.
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There are many reasons for differences between disability rates in different countries including

differing aged care policy, disability experience, survey methods or different definitions of disability.

SDAC is a national disability survey conducted by the ABS at five-yearly intervals. The survey

collects information from people with a disability, from older people and from their carers.

Information on ability to perform core activities related to communication, mobility and self care

is collected. A difficulty in performing one of these core activities is called a core activity limitation

(CAL). Four levels of CAL are measured in the survey. In increasing order of disability, these CAL

levels are mild, moderate, severe and profound. See ABS (2004a) for a full description of each of

these disability levels. Analysis in this paper uses these four levels of disability as states in a multiple

state model between which lives can transition.

Given that we have chosen to use cross sectional disability data, in the next section we review

research related to the estimation of disability rates using cross sectional data.

3.1 Literature Review on Disability Modelling and Justification
for the Chosen Model

Estimation of transition probabilities across disability states in a multiple state model ideally

requires the total number of transitions between (disability) states, timing of the transitions, as well

as total exposure for each state. If such data were available (and their amount was sufficiently

large), we would be able to estimate transition intensities directly from the data and in turn the

transition probabilities could be estimated. However, in practice, at best only longitudinal data are

available. Longitudinal data, which record the disability status of an individual at two points in

time, only allow a direct estimation of transition probabilities for a discrete time interval where the

interval is dictated by the timing of each of the two consecutive surveys. As for Australia, the

suitable data at a national scale are even less ideal as only cross sectional data are available. Cross

sectional data, which are less informative than longitudinal data, measure the disability status of an

individual only at one point in time.

Papers which present a method for estimating the probability of disablement using cross sectional

data include Nuttall et al (1994), Brelivet et al (2001), Davis et al (2002), Rickayzen and Walsh

(2002), Alegre et al (2004), Leung (2004, 2006), and Albarran et al (2005). In the following we

briefly review the modelling approaches from these papers and provide justification for the

methodology adopted in this paper.

Nuttall et al (1994) estimated disability incidence rates by employing a multiple state model with

three states: healthy, disabled and dead. They showed that by assuming the absence of recovery

from the disabled state, the disability incidence rates in the model can be estimated from the

disability prevalence rates and the mortality rates of the disabled. Albarran et al (2005) further

showed that under the same multiple state model and assumptions as Nuttall et al (1994), the

transition probability to the disabled state can be estimated from the disability prevalence rates and

the population mortality rates.

Alegre et al (2004) analysed a multiple state model with four disability states (including healthy),

assuming the absence of recovery from the disabled states. They further assumed that the death

probabilities of each state can be obtained by applying a loading (or discount) to the population

death probabilities, and the transition probabilities from each disabled state can also be obtained by
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applying a loading to transition probabilities from the healthy state. They showed that under these

assumptions, the transition probabilities in the model can be estimated from the prevalence rates of

each disability state and the assumed values of the loadings.

Brelivet et al (2001) estimated the transition probability to the disabled state by following a cohort

in two consecutive cross sectional surveys. This method requires estimates of mortality rates of lives

who are independent, dependent and living in the community, and those who are living in

residential care (who are assumed to be dependent). This method also assumes the absence of both

recovery from dependence and exits from residential care.

Davis et al (2002) estimated a so called marginal disability transition probability defined as

the probability of becoming disabled at a later age conditional on being alive at a base age. The

probability is estimated from the ABS disability survey data in 1981, 1988, 1993 and 1998. The

estimation employed a multinomial modelling distribution. From the estimated probability, current

and cohort health expectancies are calculated.

Rickayzen and Walsh (2002) built functional forms for transition probabilities to a lower disability

state in a multiple state model. Under a stationary population hypothesis, parameters of the

functional forms are chosen to closely replicate the observed disability prevalence rates. Leung

(2004) applied Rickayzen and Walsh’s modelling framework to project the cost of LTC in Australia,

with a slight modification to the functional forms of the transition probabilities to adapt the model

to Australian data. Leung (2006) presented a methodology to graduate transition intensities and

calculate transition probabilities for the multiple state model to price and reserve for a LTC

insurance contract.

In this paper we adopt a similar modelling framework to Rickayzen and Walsh (2002) and Leung

(2004). This modelling framework is preferred as it offers greater flexibility and realism. This is

because the model can be easily altered to include any number of disability states and relevant

information can be easily incorporated into the various aspects of the modelling. There are several

differences in our implementation of the model as compared with Leung (2004) as we have a

different orientation. Firstly, we present a minor improvement in the fitting process to enhance the

realism of the modelling framework. This involves allowing the population, which was assumed to

be stationary in Leung (2004), to vary in line with ABS population statistics. Secondly, we cover

only persons aged 25 years and over as opposed to Leung (2004) who considered persons at all ages.

While our focus is on the transitions between states of disability for lives aged 60 and above, we find

that trends in disability rates over the ages from 25 to 60 are a useful input to the calculation

of these older age transition probabilities. It was not necessary, given our ultimate objective of

understanding disability rates for people post retirement age, to consider rates across the entire

span of ages.

4 Main Tools (Models)

In this section we introduce the main models that we subsequently use. Sections 4.1 and 4.2

introduce the Log-Linear Model and the Iterative Proportional Fitting algorithm, respectively,

which we apply in Section 5 of Paper II. In Section 4.3, we introduce the multiple state model, give

formulae for transition probabilities, and estimate parameters of these formulae. This is Step 1 in

Figure 1.1.
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4.1 Log-Linear Model

In this section we follow the methods described by Bishop et al (2007). Suppose we have a single

sample of size N which forms a rectangular array with I rows and J columns, corresponding to the I

categories of variable 1 and J categories of variable 2. We use the following notation:

Xij : random variable for the count in cell (i, j), with observed value xij.

pij : probability of an observation falling into cell (i, j), with maximum likelihood estimate (MLE) p̂MLE
ij .

mij 5 Npij 5 E(Xij) : expected value of Xij, with MLE m̂MLE
ij .

Now since
P

i;j p̂MLE
ij ¼ 1 we have

P
i;j m̂MLE

ij ¼ N. As a convention, the sum over a subscript is

denoted by replacing the subscript by ‘‘1’’, so for example xiþ ¼
PJ

j¼ 1 xij for i 5 1, 2,y, I.

The saturated log-linear model is defined as

logmij ¼ lij ¼ u þ
XI

x¼ 1

ifxgu1ðxÞ þ
XJ

y¼ 1

jfygu2ðyÞ þ
XI

x¼ 1

XJ

y¼1

ifxgjfygu12ðxyÞ

for i 5 1, 2,y, I and j 5 1, 2,y, J, where u, u1(i), u2(j) and u12(ij) are parameters,

ifxg ¼
1 : x ¼ i;

0 : otherwise
and jfyg ¼

1 : y ¼ j;

0 : otherwise:

((

The following constraints are applied to the parameters:

X
i

u1ðiÞ ¼
X

j

u2ðjÞ ¼
X

i

u12ðijÞ ¼
X

j

u12ðijÞ ¼ 0: ð4:1Þ

The parameters are defined as

u ¼ lþþ
IJ : overall mean.

u1ðiÞ ¼
liþ
J �

lþþ
IJ : main effect of variable 1.

u2ðjÞ ¼
lþj

I �
lþþ
IJ : main effect of variable 2.

u12ðijÞ ¼ lij�
liþ
J �

lþj

I þ
lþþ
IJ : two factor interaction effect between the two variables.

Due to constraint (4.1), the number of independent parameters (I 3 J) is equal to the number

of cells.

Each u-term can be expressed as a function of cross product ratios under different arrangements of

the contingency table (see Bishop et al (2007)); in particular, the terms u12(ij) are direct functions of

cross product ratios under a standard arrangement of the table. Hence, the terms u12(ij) capture the

interaction pattern between variables 1 (row categories) and 2 (column categories). Note that

independence between variables 1 and 2 implies that the terms u12(ij) are zero (since pij 5 pi1p1j

under an independence model).
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Under the saturated log-linear model the main effect of variable 1 is captured by the terms u1(i)

while the main effect of variable 2 is captured by the terms u2(j). Further, the interaction between

variables 1 and 2 (as measured by the cross product ratios under a standard arrangement of the

contingency table) is captured by the terms u12(ij).

In our application, we fit the saturated log-linear model with the purpose of estimating all

values in an I 3 J contingency table when only the marginal totals of the data are available. This

is done by fitting a saturated log-linear model combining information from two different

datasets: the incomplete dataset, containing only marginal totals and a second complete dataset

containing observations for all I 3 J cells in the contingency table. The method assumes that

the cross product ratios observed in the complete dataset are the same as the cross product

ratios of the dataset that we try to estimate. By making this assumption, we estimate the

values in the dataset for which only marginal totals are known by imposing the observed

two-way interactions from our complete dataset to this incomplete dataset. In the following

we describe the procedure along with the required algorithm (iterative proportional fitting) to fit

the model.

4.2 Iterative Proportional Fitting Algorithm

We use the following notation.

> {xij} are the elements in dataset 1. Only row and column totals are observed here.

> {wij} are the elements in dataset 2. All elements are observed.

> Xij is the random variable associated with xij as the observed value (as defined in Section 4.1); and

similarly pij, mij and m̂MLE
ij are related to xij as defined in Section 4.1.

> m̂ij is an estimate of mij.

Note that by fitting a saturated log-linear model to {xij}, we have m̂MLE
ij ¼ xij.

Now suppose that we only have the values of xi1 and x1j, and we want to estimate xij for i 5 1,

2,y, I and j 5 1, 2,y, J. In addition, suppose that we have wij for all i and j; and the cross product

ratios of {wij} are assumed to be the same as the cross product ratios of {xij}.

Firstly, we present the results of Birch (1963) which state that for a given log-linear model the

following apply

> m̂MLE
ij

n o
are unique and replicate the values of the sufficient statistics, and

> m̂ij

� �
which replicate the values of the sufficient statistics are unique.

To fit a saturated log-linear model to {xij}, the sufficient statistics are xi1, x1j and the cross product

ratios of {xij}. Specifically

> u is estimated from x11,

> u1(i) are estimated from xi1,

> u2(j) are estimated from x1j, and

> u12(ij) are estimated from the cross product ratios of {xij}.

Note that since the cross product ratios of {wij} are assumed to be the same as the cross product

ratios of {xij}, we have the sufficient statistics to fit the saturated log-linear model to {xij}.
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We now describe the IPF algorithm which is used to estimate values in the incomplete dataset. Let

f̂ ðtÞij

n o
denote our estimate of {mij} at step t under the IPF procedure, so that f̂ ð0Þij

n o
is the set of initial

values. We set f̂ ð0Þij ¼ wij for i 5 1,y, I and j 5 1,y, J. Then we adjust f̂ ð0Þij

n o
to fit successively to

xi1 and x1j. Fitting to xi1 gives

f̂ ð1Þij ¼ f̂ ð0Þij

xiþ

f̂ ð0Þiþ

and subsequent fitting to x1j gives

f̂ ð2Þij ¼ f̂ ð1Þij

xþj

f̂ ð1Þ
þj

:

We repeat this two step cycle until convergence to the desired accuracy is obtained. At convergence

we have

f̂ iþ � xiþ and f̂ þj � xþj

and the cross product ratios of f̂ ij

n o
are the same (to any degree of accuracy specified for

convergence of the IPF algorithm) as the cross product ratios of {wij} (the final estimates retain the

cross product ratios of the initial estimates). For a proof, see Bishop et al (2007).

Since the cross product ratios of {wij} are the same as the cross product ratios of {xij}, we know from

above that f̂ ij � m̂MLE
ij ¼ xij.

In practice, there are likely to be differences between the cross product ratios of {wij} and {xij}. In addition,

the xi1 and x1j might not be exactly known. This results in a certain degree of estimation error.

4.3 Multiple State Model

4.3.1 Outline
Given our objective of deriving longitudinal data for a population of disabled lives, we need to

determine transition probabilities between the various disability states. We do this within a multiple

state modelling framework similar to Leung (2004). The multiple state modelling framework is

implemented using more recent data than Leung; for details see Hariyanto (2013).

The multiple state model used in the analysis is shown in Figure 4.1. From Figure 4.1, we see that

there are three types of transition probabilities, all of which are taken to be annual probabilities:

death probabilities, deterioration probabilities (probabilities of moving to any worse disability

state) and improvement probabilities (probabilities of recovering to a less disabled state or the

healthy state). Deterioration to any worse disability state is possible over the course of a year, while

improvement is only allowed by one category. The transition probabilities are assumed to depend

only on age, gender, year and disability category; no account is taken of how or when someone

arrived in that category (i.e. we ignore duration and past disability experience). Note that we also

assume that only one transition is possible over a one-year period.

Mathematical functions are used to formulate deterioration probabilities and the additional

mortality due to disablement, while the likelihood of improvement is included as an assumption.

Mortality rates for healthy lives are determined after disabled life mortality rates have been

estimated so that overall population mortality rates are retained. In the next section we provide a

brief description of the method used to fit parameters of our functions for transition probabilities
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between states of our multiple state model. The functions used and results of the fitting process are

provided in subsequent sections.

4.3.2 Fitting Methodology
The objective of the fitting process is to estimate the parameters of the formulae for the probabilities

of deterioration. The probabilities of death and of improvement in disability are determined

separately and included as an input in the fitting process.

The deterioration probabilities are estimated such that the model replicates the prevalence rates

reported in the 2003 SDAC. This is done under a stationary population model. Specifically, we

assume that every year, the same number of lives aged 25 years (with constant disability prevalence

rates) enter the population. This population of 25 year old lives is projected until age 109 under the

initial assumed transition probabilities. The parameters of the deterioration probability formulae

are then estimated such that the prevalence rates of the stationary population replicate (as closely as

possible) the reported prevalence rates in the 2003 SDAC.

Note that from the implementation of the multiple state model we have estimates of disabled

population at a single age for each disability category, and disability transition probabilities.

4.3.3 Mathematical Formulae
In the following we briefly describe the formulae used for transition probabilities. For a fuller description

see Rickayzen and Walsh (2002) or Leung (2004).

Mortality Formulae
We model mortality rates as being higher for people in a more severe disability category and, to

reflect this, we split the mortality rate which applies to an individual in state n (n 5 0, 1,y, 4) into

two parts. The first part applies equally to people in any disability state, while the second is higher

for more severely disabled people. Specifically:

Mortalityðx þ 0:5; nÞ ¼ Overall Mortðx þ 0:5Þ þ Additional Mortðx þ 0:5;nÞ ð4:2Þ

where

Mortality(x 1 0.5, n) is the one-year death probability which applies to an individual aged x 1 0.5

and in state n,

State 0: No CAL (Able)

State 1: Mild CAL

State 2: Moderate CAL

State 3: Severe CAL

State 4: Profound CAL

State 5: Dead

Figure 4.1. Multiple state model.
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Overall_Mort(x 1 0.5) is the component of the one-year death probability which applies to any

individual aged x 1 0.5 regardless of the severity of his/her disability (this component is also called

healthy mortality),

Additional_Mort(x 1 0.5, n) is additional annual mortality due to disability for an individual aged

x 1 0.5 and in state n.

Similar to Leung (2004), the formula for the additional annual mortality due to disability is

expressed as (for n 5 0, 1,y, 4):

Additional Mortðx þ 0:5; nÞ ¼
M

1þ 1:150� ðxþ 0:5Þ
�

maxðn� 2; 0Þ

2
ð4:3Þ

where M is the maximum additional annual mortality due to disability.

Due to limited information on disabled life mortality in Australia, the values of M are estimated

starting from the experience of private LTC plans in the U.S.; see Corliss et al (2007). Based on

differences in the prevalence of leading causes of death in the Australian population with

profound CAL and the customers of private LTC plans, we chose values of M of 0.11 for males

and 0.08 for females. The level of overall mortality is then determined as an input to the

process determined so that the mortality rates applying to the healthy and all disabled categories

in aggregate match the mortality rates presented in the Australian life tables for the period

2002–2004 (ABS, 2008).

Deterioration Probabilities
There are two types of deterioration that we need to consider. First, lives can deteriorate from the

healthy state into one of the disabled states. Second, lives in one of the disabled states can move to a

higher level of disability. We first propose formulae for deterioration probabilities relating to a

healthy person making a transition into a particular CAL state over one year given that he/she

survives. This probability is split into two parts: the probability of a healthy person becoming

disabled (attaining any CAL state) over the year and the probability of a healthy person attaining a

particular CAL state given that he/she became disabled over the year. The probability of a disabled

person making a transition into a more severe CAL state is then obtained by applying a multiplier

(deterioration factor) to the probability of a healthy person making a transition into that particular

more severe CAL state. The formulae are the same for males and females and are the same as those

in Leung (2004).

The formula for the probability that a healthy person aged x makes a transition into any CAL state

over one year is:

New CALðxÞ ¼ a A þ
D�A

1 þ BC� x

� �
� 1�

1

3
exp �

x�E

4

� �2
( ) !( )

ð4:4Þ

where the six parameters are A, B, C, D, E and a.

Table 4.1 presents the estimated values of the parameters in (4.4). The parameter values presented in

Tables 4.1 and 4.2 are obtained by fitting the model to the 2003 SDAC data.
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The formula for the probability that a healthy person aged x makes a transition into disability state

n ð1 � n � 4Þ given that he/she becomes disabled over the year is:

Severityðx;nÞ ¼
WðnÞ � f ðxÞn� 1P4

n¼ 1 WðnÞ � f ðxÞn� 1
;

where

f ðxÞ ¼ F þ
1� F

1þGH� x
;

and F, G, H, W(1), W(2), W(3) and W(4) are parameters.

The estimated values of parameters for Severity(x, n) for males and females are presented in

Table 4.2.

Finally, the probability of a healthy individual aged x making a transition into disability category

n ð1 � n � 4Þ over one year is:

Deteriorateðx;0; nÞ ¼ New CALðxÞ� Severityðx; nÞ:

The probability of an individual in disability category m (1rmr3) deteriorating to disability

category n (m , nr4) is:

Deteriorateðx;m; nÞ ¼ Deteriorateðx; 0; nÞ� Im:

The estimated values of I are 1.524242 for males and 1.685492 for females.

Improvements
As in Leung (2004), we assume that people in any CAL state can only improve by one category over

a one-year interval if and only if they survive the year and do not deteriorate to a more severe

disability state. We also assume that the recovery rates (conditional on survival and non-

deterioration of disability) are age and gender invariant.

Recoveries from mild and moderate CAL are estimated from the experience reported in The

Australian Longitudinal Study of Ageing; see Giles et al (2004). Our starting point for recovery

Table 4.2. Parameter values for Severity(x, n).

Parameter F G H W(1) W(2) W(3) W(4)

Males 0.65189 1.23455 92.17871 1 0.51221 0.31547 0.90409

Females 0.40858 1.32060 84.54104 1 1.90451 1.46407 5.42737

Table 4.1. Parameter values for New_CAL(x).

Parameter a A B C D E

Males 7.94291 0.00005 1.07730 98.09020 0.10171 66.97864

Females 7.72074 0.00000 1.06808 97.38444 0.06888 66.46714
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probabilities from profound CAL was the experience of the private LTC plan in the U.S. (Corliss

et al (2007)), which suggests a rate around 13%. We have chosen a lower rate of 10%, reflecting the

fact that we are interested in the entire Australian population rather than an insured population.

The recovery rate from severe CAL has been set between the rates for moderate and profound CAL.

The annual recovery rates determined from this process are presented in Table 4.3.

Recall that the fitting process involves projection of a stationary population which is then matched

to the disability prevalence rates in the 2003 SDAC. It is therefore useful to define the following

probabilities.

Deteriorate Fromðx þ 0:5;mÞ represents the probability that a person aged x 1 0.5 and in state m

makes a transition to any more severe disability state within one year given that he/she survives

during the year. Therefore

Deteriorate Fromðx þ 0:5;mÞ¼
X4

n¼mþ 1

Deteriorateðx þ 0:5;m;nÞ:

Improve_From(x 1 0.5, n) is the probability that a person aged x 1 0.5 and in disability state

n (n 5 1, 2,y, 4)) who survives and does not deteriorate over one year, improves by one state

during the year. For reasons described in Hariyanto (2013), we set:

Improve Fromðx þ 0:5;nÞ ¼

0:1 : n¼ 4;

0:125 : n¼ 3;

0:15 : n¼ 1; 2:

8><
>:

Figure 4.2 presents some estimated transition probabilities from the implementation of the multiple

state model with the 2003 SDAC data.

Table 4.3. Annual recovery assumption in the multiple state model.

CAL Level

Mild Moderate Severe Profound

Recovery Rate 15% 15% 12.5% 10%
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Figure 4.2. One-year transition probabilities from able (no CAL) state.
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5 Estimation of the Disabled Population at Each Mid-Year

In this section we consider Step 2 from Figure 1.1, i.e. we consider the number of individuals in

different disability categories at different ages.

We used data published by the ABS. Specifically, we have

> an estimate of ERP at the middle of each calendar year, by gender, for each year of age up to 99,

with grouped data for age 100 and above (ABS (2009)), and

> disability prevalence rates from the 1998 SDAC and the 2003 SDAC, by gender, and in age

groups 60–64, 65–69, y, with a grouping 851 in the 1998 SDAC and 901 in the 2003 SDAC.

A key assumption is that these prevalence rates are applicable in the middle of the appropriate years.

We view this as reasonable since the 1998 SDAC was conducted from March to May 1998 and the

2003 SDAC was conducted from June to November 2003.

We apply these rates to the ERP to estimate the disabled population mid–1998 and mid–2003. The

prevalence rates for years 1999 to 2002 (at the middle of each year) are interpolated from the

prevalence rates presented in these two surveys. Unfortunately, the SDAC disability prevalence rates

are only provided for groups of ages, and we need to estimate the disabled population at single ages.

To do this we suggest two approaches, both based on interpolation.

(a) Estimate the prevalence rates at single ages at years 1998 and 2003, and then interpolate these

single age prevalence rates from 1999 to 2002.

(b) Interpolate the age group prevalence rates from 1999 to 2002. The disabled population at a

single age will be estimated from the age group total.

We opt for approach (b) as the prevalence rate at a single age is likely to have a much higher

fluctuation annually than the age group prevalence rate. Before considering interpolation methods,

we address a problem related to the reported prevalence in the surveys which is significant for the

analysis in this paper.

5.1 Disability Prevalence Rates at High Ages

In the SDAC, disability prevalence rates of the very old are reported for a very wide age interval

(851 for the 1998 survey and 901 for the 2003 survey). This could mask the dynamics of the

disability process at high ages where the progression of disablement is the most significant. In our

application, this could result in inaccurate estimates of longitudinal disability data for the very old.

To remedy this problem, we estimate disability prevalence rates of the very old at narrower age

bands (namely 85–89, 90–94, y, 105–109). These estimates are obtained by implementing the

multiple state model described in Section 4.3 separately for 1998 and 2003.

In implementing this model to the 1998 survey data, we adopt similar recovery rates and additional

mortality (due to disability) assumptions as described in Section 4.3. We use the ERP (ABS (2009))

at the middle of 1998 to estimate the population at single ages at the survey date and the Australian

life tables for the period 1997–1999 (ABS, 2008) to determine the total number of deaths across

disability categories in the fitting process.

For the purpose of estimation of longitudinal disability data, the estimated prevalence rates (at age

groups 85–89, 90–94, y, 105–109) for some disability categories do not sufficiently replicate the
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reported overall prevalence rates of the very old. For disability categories for which this is the case, we

alternatively estimate the prevalence rates under a parametric formula to satisfy the following criteria:

(a) closely replicate the reported overall disability prevalence rates of the very old,

(b) the progression across ages is similar to the progression of the prevalence rates estimated from

the multiple state model,

(c) each value is between 0 and 1,

(d) the sum of the estimated prevalence rates across all disability categories (including healthy) in a

given age group is one.

To determine a suitable parametric formula, we experimented with polynomials of order 2 to 6.

Each disability category was considered separately (i.e. a different polynomial might be used to

estimate different categories). We considered fitting the polynomial functions to all age groups and

only to age groups 60–64 and above. Reported prevalence rates for age groups 80–84 and below are

assumed to relate to the ages at the middle of the age groups. For (reported) prevalence rates of the

very old, we experimented with the ages to which they related. Specifically, we considered ages

around (and including) the weighted average age of the very old. The polynomials were fitted using

ordinary least squares (OLS). From a given polynomial function, prevalence rates at age groups

85–89, 90–94, y, 105–109 were calculated by assuming that the prevalence rates of these age

groups related to the weighted average age of the corresponding age group.

We only estimated the prevalence rate for each CAL state; the prevalence rate for the healthy state

was set to be one minus the sum of the prevalence rates of all CAL states. This ensured that criterion

(d) was satisfied.

For some polynomials, criterion (c) can be enforced by adding an assumed prevalence rate at age

110 in the fitting. The value of this assumed prevalence rate is either 0 or 1 depending on whether

the initial estimated prevalence rate is above 1 or below 0. This procedure does not always work.

For example, with the 2003 data for males, the prevalence rate for the mild disability category at

age group 105–109 is negative. To adjust this negative prevalence rate, we calculated the ratio of the

prevalence rates for each of the healthy and mild categories to the total prevalence rates of both the

healthy and mild categories at age group 100–104. We applied this ratio to the total prevalence rates

of these categories (healthy and mild) at age group 105–109 to derive the adjusted prevalence rates

for the healthy and mild categories at this age group. The chosen polynomial formula was the one

which best satisfied criteria (a) and (b). Note that due to the adopted adjustment procedure, criteria

(c) and (d) were satisfied by every polynomial formula.

Table 5.1. Estimated prevalence rates from the SDAC 2003, males (IPF adjusted).

Age No Mild Moderate Severe Profound

(years) CAL CAL CAL CAL CAL

90–94 10.69% 19.12% 14.88% 16.04% 39.28%

95–99 4.88% 11.08% 10.52% 16.84% 56.68%

100–104 3.64% 2.93% 5.82% 15.86% 71.75%

105–109 1.15% 0.92% 2.80% 14.27% 80.86%

Fitted (901) 9.54% 17.53% 13.97% 16.16% 42.79%

Observed (901) 9.61% 17.47% 13.97% 16.16% 42.79%
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The estimated prevalence rates can be further adjusted using the IPF procedure. This is done by taking

disability category as the column variable and age group as the row variable. Note that in a given age

group (say 90–94), we can reliably estimate the total disabled population across disability categories

(including healthy). This can be estimated from the ERP at the closest central date of the survey. In

addition, in a given disability category, the total population of the very old is given by the survey. We

multiply the estimated prevalence rates with the total population to derive the starting values for the

IPF procedure. From the IPF procedure, we calculate our final estimate of disability prevalence rates.

These are shown in Table 5.1 along with observed and fitted rates at ages 90 and above.

5.2 Trend of Disability Prevalence Rates

Our methodology is based on the assumption that disability prevalence rates are stable over time.

Although underlying disability prevalence rates are affected by many factors such as incidence rates of

disability, recovery rates, age at onset and survival rates of people with disability (AIHW, 2003), recent

reviews of the trends of disability prevalence rates (e.g. Davis et al (2001) and AIHW (2003 and 2008))

suggest that for ages 65 and above, overall disability prevalence rates have been roughly constant from

1988 to 2003 (see Table 8.1 of AIHW (2003) or Table 1 of AIHW (2008)). While there was a

substantial increase in overall disability prevalence rates (for ages 65 and above) between the 1981

survey and the four later surveys, this was largely because of the increasing emphasis in the later surveys

on ageing, rather than reflecting an actual increase of the underlying prevalence rates (AIHW, 2003).

Prevalence rates for each CAL category in the 1998 and 2003 surveys are presented in Figures 5.1

and 5.2 for males and females separately. While there are some fluctuations, in general, the

prevalence rates across ages for each CAL category are similar between the two surveys.
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Figure 5.1. Prevalence rates for each CAL category, males.
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5.3 Estimation of Age Group Prevalence Rates at Each Mid-Year

A possible method to estimate disability prevalence rates at the middle of each year from 1999 to

2002 is by modelling the disability status using a multinomial logit specification (see Waidmann and

Liu (2000)). By including time (in years) as one of the covariates, disability prevalence rates at these

mid-years can be estimated from the model. However, since we only have two observations

(i.e. prevalence rates in 1998 and 2003) to estimate the time trend term, this method is not feasible.

Due to the limited amount of available data and given the apparent stability of disability prevalence

rates from 1988 to 2003, we use linear interpolation to estimate the prevalence rates in years 1999

to 2002.

Multiplying the estimated prevalence rates by the ERP, we obtain our estimate of the disabled

population at the middle of each year from 1998 to 2003. This estimate is obtained for all age

groups and disability categories. The ERP at single ages for ages 100 and above is estimated by

using functions from the Australian life table in the corresponding year published by The Human

Mortality Database (www.mortality.org). Given our purpose of estimating transition probabilities,

rounding of the estimates (to the nearer integer) is not necessary. Tables 5.2 and 5.3 present the

disabled population estimates at year 2000.

5.4 Estimation of Disabled Population at Single Ages

There are a variety of methods to estimate the population at single ages from an age group total.

These include estimation by employing a rectangular assumption, the prorating method, and

graphic and parametric interpolation (see Siegel and Swanson (2004) for details). We applied

parametric interpolation. The rectangular assumption is likely to result in inaccurate estimates at
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Figure 5.2. Prevalence rates for each CAL category, females.
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very high ages where probabilities of disablement are significant, while the prorating method is

difficult to implement since there is no suitable information source to accurately estimate the

age structure of the disabled population across the whole age range considered (60 and above).

Note that it is unlikely that the age structure of the disabled population is similar to the age structure of

the general population (the total population across disability categories) at this age range. Lastly,

graphical analysis is also difficult to implement in our situation.

Table 5.2. Estimate of disabled population at the middle of year 2000, males.

Age No Mild Moderate Severe Profound

(years) CAL CAL CAL CAL CAL

0–4 634,083.30 0.00 1,178.66 9,452.15 11,155.89

5–14 1,254,285.82 29,448.00 10,513.76 43,144.39 39,909.03

15–24 1,262,438.15 30,606.57 11,337.90 18,182.38 10,445.99

25–34 1,333,539.74 42,881.55 19,854.16 20,500.37 13,924.18

35–44 1,328,209.72 53,060.86 41,489.60 31,644.46 13,783.36

45–54 1,093,211.93 76,237.02 66,992.68 51,883.16 13,239.21

55–59 371,536.61 45,975.13 34,426.09 28,611.20 9,649.98

60–64 274,567.16 56,790.57 37,359.41 21,942.51 10,139.35

65–69 218,723.01 52,478.58 32,615.83 17,005.05 11,212.53

70–74 170,560.20 61,908.26 31,974.57 16,260.98 18,882.99

75–79 99,821.97 49,619.82 28,748.36 16,311.88 25,087.97

80–84 46,133.00 29,280.37 13,245.97 10,856.79 19,452.87

85–89 13,482.78 12,047.85 6,106.42 6,213.47 18,941.49

90–94 1,213.79 2,655.22 1,517.93 2,329.84 9,014.23

95–99 70.59 313.56 199.90 491.98 2,419.97

100–104 10.39 10.15 14.48 62.43 375.60

105–109 0.17 0.17 0.37 3.04 21.43

Table 5.3. Estimate of disabled population at the middle of year 2000, females.

Age No Mild Moderate Severe Profound

(years) CAL CAL CAL CAL CAL

0–4 610,410.32 246.81 1,607.52 4,258.86 6,576.49

5–14 1,251,480.21 13,089.07 3,893.81 20,288.30 21,044.62

15–24 1,224,056.41 27,311.18 9,494.17 13,690.56 10,730.68

25–34 1,359,026.80 35,045.24 16,763.81 25,795.72 8,700.42

35–44 1,332,776.21 54,677.81 41,520.27 44,629.98 11,716.73

45–54 1,074,766.43 75,461.53 66,334.07 58,974.91 21,725.05

55–59 348,885.39 47,649.25 38,805.15 27,779.88 10,363.32

60–64 276,604.32 45,314.99 37,218.27 25,105.15 12,610.27

65–69 233,364.33 46,679.25 31,874.31 18,238.81 14,924.30

70–74 190,248.76 52,134.95 37,965.69 24,980.59 28,313.02

75–79 134,955.83 54,373.23 30,731.48 25,154.02 42,529.44

80–84 65,547.82 38,213.85 14,851.15 19,129.01 52,258.18

85–89 24,512.90 11,287.42 11,017.83 15,125.92 54,745.93

90–94 4,677.57 3,120.01 1,654.08 5,449.76 30,581.60

95–99 475.39 485.20 135.47 1,213.91 9,051.02

100–104 25.69 28.90 7.48 150.49 1,305.15

105–109 1.09 2.18 0.29 7.07 85.96
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To implement parametric interpolation, there are two possible methods: midpoint and cumulation-

differencing. Under the midpoint method, the average of the population in a given age group

(i.e. the population in a given age group divided by the length of the age group) is assumed to relate

to the age at the middle of the age group. By interpolating these values, the population at a single

age is estimated. The shortcoming of this method (theoretically) is that the average of the

population (in a given age group) seldom relates to the age at the middle of the age group. It is

possible to instead consider the weighted average age; however, in our application, this is difficult to

estimate since we do not know the age structure of the disabled population. Considering this, we

adopt the cumulation-differencing method which is described below.

Let f(x) be a parametric function of x, let l(x) denote the observed number of the population aged x last

birthday, and let L(x) denote the observed number of the population in age interval [0,x), so that

lðxÞ ¼ Lðx þ 1Þ�LðxÞ: ð5:1Þ

For each disability category, the values of L(x) for x 5 5, 15,y, 55, 60,y, 110 can be obtained from

the estimated age group total (see Tables 5.2 and 5.3). Note that these values relate to the precise age at

which they apply. We fit a parametric function f(x) to these values to estimate L(x) for, x 5 60,

61,y, 110. From these estimates, we use (5.1) to estimate l(x) for, x 5 60 61,y, 109. In implementing

this method, we assume that the pattern of accumulation of the population over a five or ten year age

interval is a good indicator of the pattern of accumulation at a single age interval.

In applying the cumulation-differencing method, we considered a variety of parametric functions,

namely natural cubic spline, Karup-King, Sprague, Beers ‘‘Ordinary’’ and Beers ‘‘Modified’’.

Descriptions of each of the functions can be found in Siegel and Swanson (2004). These functions

are commonly employed with the cumulation-differencing method in the estimation of a single year

age distribution from five yearly or other regularly grouped demographic data (e.g. Bijak and

Kupiszewska (2008) and Smith et al (2004)).

The cumulation-differencing method has been applied to estimate the disabled population at a

single year of age (l(x)) from the age group totals estimated in Section 5.3 by employing each of the

above interpolation formulae (for convenience, these formulae are referred to as osculatory

formulae). For each formula, the estimates were obtained for each disability category and each

middle year from 1998 to 2003. These formulae, except Beers’ ‘‘Modified’’, result in similar

estimates. The reason for Beers’ ‘‘Modified’’ formula resulting in slightly different estimates is

because this formula combines interpolation with some smoothing (which results in smoother

interpolated values but does not replicate the given values). Figure 5.3 presents the estimates of l(x)

for males in the profound category at the middle of year 2000.

For some disability categories, the estimates of l(x) are negative for certain ages above 90.

This problem occurs for all interpolation formulae considered. The reason for this is that as the

number of disabled population (in a given disability category) decreases rapidly at high ages (see

Tables 5.2 and 5.3), the slope of the curve of L(x) changes rapidly at these ages and this causes the

interpolation curve to be non-monotonic (so that the differences of L(x) are negative). This problem

is more prevalent for less severe disability categories than for more severe categories (severe and

profound CAL) since, at high ages, the population in the less severe categories decreases more

rapidly with age. Table 5.4 presents the estimates of l(x) for females at the middle of year 2000

under cubic splines. The estimates are presented for each disability category.

Evan A. Hariyanto, David C.M. Dickson and David G.W. Pitt

148

https://doi.org/10.1017/S1748499513000158 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499513000158


A similar problem has been encountered by Wilmoth (2002) in the estimation of the number of deaths

at a single age using cubic splines. Wilmoth (2002) dealt with his problem by imposing a constraint on

the slope of the spline function. More recently, Smith et al (2004) proposed the use of a ‘Hyman filter’

to ensure monotonicity of an interpolating cubic spline. This method has been applied by Smith et al

(2004) to estimate the number of deaths at a single age with a satisfactory result.

To deal with negative estimates of l(x), we instead considered three alternative interpolation

methods, which we call Methods (a) to (c). Method (a) was cumulation-differencing by employing

an appropriate polynomial with a restriction such that the estimates of l(x) are non-negative.

Estimation of the parameters of the polynomials with this restriction was done in R using the

function ‘‘constrOptim.nl’’; see Varadhan (2011). Method (b) was the same as Method (a) with

further refinement by the prorating method. Under Method (b), the estimates under Method (a) are

only used to estimate the age structure of the disabled population in a given age group. For example,

suppose that under Method (a), we have 20% of the disabled population (in a given disability category)

in age group 60–64 at age 60. Then, the estimate of the disabled population aged 60 (in the

corresponding category) under Method (b) is 20% of the observed disabled population in the age group

60–64. Under Method (c), the estimates under Method (b) are further refined using the IPF procedure

such that they satisfy the known age group totals for each disability category and the known ERP for

each age. This was done by taking the disability category as the column variable and age as the row

variable. Note that in a given disability category, the size of the disabled population for each age group
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Figure 5.3. Estimates of l(x) for profound CAL at the middle of year 2000, males.

Table 5.4. Estimate of l(x) at the middle of year 2000, females.

Age No Mild Moderate Severe Profound

(years) CAL CAL CAL CAL CAL

105 23.11 4.50 27.43 0.61 34.27

106 20.89 1.79 22.44 1.14 22.88

107 0.77 20.24 1.31 1.55 14.35

108 1.88 21.59 3.80 1.82 8.65

109 2.43 22.27 5.05 1.95 5.81
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is known. In addition, at a given age, the sum of the disabled population across disability categories

(including healthy) is also known (which is the general population (ERP) at that age).

To compare the performance of the methods considered, we experimented with the ERP data. We

summed the reported single-age distributions of ERP into five year age groups and estimated the

ERP at a single age from these age groups under Methods (a), (b) and (c). We compared the

estimates under each method with the reported single-age distributions of the ERP. We

experimented with data from both genders and from each year from 1998 to 2003. In this

experiment, Method (c) was implemented by taking year as the column category and age as the row

category. We consider polynomials of orders 2 to 6, and OLS and WLS fitting methods. Conclusions

from this experiment are:

> Method (c) results in the best estimate, while Method (b) performs better than Method (a). Therefore,

implementation of prorating and the IPF procedure improves the accuracy of the estimates.

> Polynomials which result in accurate estimates after being refined with prorating and IPF procedures

(Method (c)), typically, before being refined with these procedures, also result in an appropriate age

structure. On the other hand, if the polynomial initially results in an inappropriate age structure (for

example, increasing with age), the resulting estimates under Method (c) will also not be accurate.

Figure 5.4 illustrates the accuracy of Method (c) in estimating the single-age distributions of the

ERP. The relative error is defined as the absolute value of the difference between the observed and

the estimated values divided by the observed value. Note that the estimation of single-age

distributions of disabled population (for each disability category) is a more difficult problem than

the similar estimation of ERP especially for estimation at very high ages (disabled population,

especially those in less severe categories, decreases more rapidly with age). Therefore, a similar level

of accuracy of Method (c) in the estimation of the disabled population cannot be expected.

Arguably, in the estimation of the single-age distributions of ERP, an accurate result under Method

(c) requires a suitable estimate of the age and time (in years) interaction, while in the estimation of

the disabled population, it instead requires a suitable estimate of the age and disability interaction.

However, a suitable estimate of the age and disability interaction can be obtained from appropriate

estimates of the disabled population at a single age for each disability category. Therefore, if
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Method (b) results in such estimates, the further refinement under the IPF procedure is also likely to

increase the accuracy of these estimates.

Choosing a polynomial which is likely to result in accurate estimates is difficult. However, we are able to

determine polynomials which are likely to result in poor estimates. These are polynomials which result

in an inappropriate age structure (for example, an increasing age structure). After discarding such

polynomials, the chosen polynomial is the one which best replicates the observed accumulated values.

In applying Method (c), we opt to keep the estimates under osculatory formulae up to age 89. This

method is employed only to estimate the disabled population at ages 90 and above. This is because

in another experiment with ERP data, we found that osculatory formulae consistently result in

better estimates than ordinary polynomials (in the experiment, the estimates from the polynomials

have been refined with the prorating method). The cutoff age 89 is chosen for convenience. There is

little impact to the accuracy of the estimation associated with the chosen cutoff age as osculatory

formulae do not perform very well at very high ages.

Estimates for ages 60 to 89 under osculatory formulae are also refined using the IPF procedure such

that it satisfies both the known age group total for each disability category and the known ERP for

each age (similar to Method (c)).

A further refinement in the estimation is possible by maintaining the continuity of the given osculatory

curve with the chosen polynomial curve. The parameters of the chosen polynomial can be restricted

such that its derivatives (up to a certain desired degree) at age 90 are equal to the derivatives of the
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Figure 5.5. Estimates of the single-age distributions (l(x)) of the disabled population at the middle
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osculatory curve at this age. We have experimented with this method with ERP data and decided not to

employ this refinement. Under an appropriate polynomial, there is no additional gain in the accuracy of

the estimation to compensate for the additional complexity of the fitting process under this refinement.

Estimates of the single-age distributions of the disabled population could also be obtained by

implementing the multiple state model described in Section 4.3. We implemented this model to the

disabled population at the middle of each year from 1998 to 2003 estimated in Section 5.3. The

recovery rates and the additional mortality (due to disability) assumptions are as described in

Section 4.3. ERP and Australian life tables at the relevant year (ABS, 2008) are used in the

estimation. The estimates were also refined under the IPF procedure similar to Method (c). Due to

the methodology of the estimation, the problem of the negative estimated values is not encountered

for the estimation under the multiple state model.

To summarise, we have two sets of estimates of the single-age distribution of the disabled population:

1. Estimates under the cumulation-differencing method. For ages 60 to 89, the estimates are

obtained under each of the osculatory formulae, while for ages 90 and above, the estimates are

obtained under Method (c).

2. Estimates at all ages considered under the multiple state model.

Figures 5.5 and 5.6 present the estimates at the middle of year 2000 for males and females

respectively. Note that the estimates for ages 90 and above using the osculatory formulae are

obtained under Method (c).
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Figure 5.6. Estimates of the single-age distributions (l(x)) of the disabled population at the middle
of year 2000, females.
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Note that the final estimates of the disabled population (after IPF adjustment) under each of the

osculatory formulae are very similar. In addition note that the final estimates of the disabled

population under the multiple state model show an abrupt pattern which indicates its unsuitability.

In the following we proceed from the estimated disabled population obtained using cubic splines

(with the estimates for ages 90 and above obtained under Method (c)). Note that other osculatory

formulae are also appropriate (Figures 5.5 and 5.6) and in fact they all result in very similar

estimates of the crude transition probabilities.

6 Conclusion

In this paper, we have described the main tools (models) of our estimation: the log-linear model and

the multiple state model. The mutiple state model has been implemented to the disability prevalence

rates data from the SDAC 2003 to obtain the initial estimate of disability transition probabilities. In

addition, the numbers of individuals in different disability categories at annual intervals from 1998

to 2003 have been estimated using prevalence rates data from the 1998 SDAC and the 2003 SDAC.

The estimation of one-year longitudinal disability data, refinement of the estimated transition

probabilities and their graduation are discussed in Paper II.
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