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Abstract

Let V be a motivic variation of Hodge structure on a K-variety S, letH be the associated
K-algebraic Hodge bundle, and let σ ∈ Aut(C/K) be an automorphism. The absolute
Hodge conjecture predicts that given a Hodge vector v ∈ HC,s above s ∈ S(C) which
lies inside Vs, the conjugate vector vσ ∈ HC,sσ

is Hodge and lies inside Vsσ
. We study

this problem in the situation where we have an algebraic subvariety Z ⊂ SC containing
s whose algebraic monodromy group HZ fixes v. Using relationships between HZ and
HZσ

coming from the theories of complex and �-adic local systems, we establish a
criterion that implies the absolute Hodge conjecture for v subject to a group-theoretic
condition on HZ . We then use our criterion to establish new cases of the absolute Hodge
conjecture.

1. Introduction

Let f : X → S be a smooth projective1 morphism of K-varieties, with S smooth and quasi-
projective, and K ⊂ C a subfield. In this setting, the local system V = R2kfan∗ Q(k) underlies
a polarizable variation of Hodge structure, which has the property that the vector bun-
dle V⊗OSan admits a K-algebraic model H = R2kf∗Ω•

X/S , where Ω•
X/S is the complex of

relative differentials. Moreover, the underlying integral local system VZ ⊂ V admits a com-
parison with the �-adic local system V� = R2kf ét∗ Z�(k) on the étale site of SC. We recall
that an �-adic local system is a lisse Z�-sheaf F = {Fi}i≥0, that is, a compatible projective
system

· · · → Fi+1 → Fi → Fi−1 → · · · → F1 → F0 = 0
of Z/�iZ-sheaves on the étale site of SC such that each Fi is locally constant.

Notation. For s ∈ S(C), we denote by cdR
s : VC,s

∼−→ HC,s and c�
s : VQ�,s

∼−→ V�,Q�,s the natural
comparison isomorphisms.

The fact that H and V� come from a morphism f : X → S of K-varieties means that, for each
automorphism σ ∈ Aut(C/K) and point s ∈ S(C), there are isomorphisms (−)σ : HC,s

∼−→ HC,sσ

and (−)σ : V�,Q�,s
∼−→ V�,Q�,sσ induced by conjugation. Combining these isomorphisms with the

isomorphisms cdR
s and c�

s, we may consider several possible ways in which the rational structure
of V may be preserved under conjugation.
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Absolute Hodge and �-adic monodromy

Definition 1.1. Let s ∈ S(C) be a point, v ∈ Vs be a vector, W ⊂ Vs a subspace, and σ ∈
Aut(C/K). Then we say:

(i) that v has rational conjugates if cdR
s (v)σ (respectively, c�

s(v)σ for all �) are rational
vectors of Vsσ (they lie in the image of Vsσ under the comparison isomorphisms cdR

sσ

and c�
sσ

);
(ii) that v has a canonical rational conjugate if there exists vσ ∈ Vsσ such that cdR

s (v)σ = cdR
sσ

(vσ)
and c�

s(v)σ = c�
sσ

(vσ) for all � (the vector vσ works for all comparison isomorphisms at once);
(iii) that W has rational conjugates if each element of W does;
(iv) that W has a canonical rational conjugate if each element of W does.

Remark 1.2. It is clear that if w and w′ have (canonical) rational conjugates then so do w + w′

and λw for any λ ∈ Q, so we lose nothing by considering subspaces with (canonical) rational
conjugates.

In the case K = Q, the property that a Hodge vector v has rational conjugates is equivalent to
the absolute Hodge conjecture for v formulated in [CS14].2 The property that v has a canonical
rational conjugate is a priori stronger, and would follow for Hodge vectors from the Hodge
conjecture in the geometric setting. These properties are expected to hold for Hodge vectors
more generally in the motivic setting. Loosely speaking, we will say that a variation V is motivic
if it is generated from the geometric situation by functorial constructions; we give a precise
definition suitable for our purposes in § 2.1.

Our central technical result, from which new cases of the absolute Hodge conjecture will
follow, gives a new way of deducing that a subspace W ⊂ Vs (or a subspace of the various
tensor powers of Vs) has rational conjugates by studying the monodromy of complex subvarieties
Z ⊂ SC. To formulate the statement we introduce some notation.

Notation. Given an R-module V , we let V m,n = (V ∗)⊗m ⊗ V ⊗n, with the analogous definition
for R-local systems V.

Notation. Given an R-module V , we let T (V ) =
⊕

m,n≥0 V n,m, with the analogous definition for
R-local systems V.

Notation. Let V be a vector space over R, and let T ⊂ T (V ) be a vector subspace. We denote
by GT ⊂ Aut(V ) the R-algebraic subgroup defined by the property that it fixes each element
of T .

Notation. Let Z ⊂ SC be an irreducible algebraic subvariety, and V be a local system. We
denote by HZ the algebraic monodromy of Z, which is the identity component of the Zariski
closure of the monodromy representation on V

∣∣
Znor , where Znor → Z is the normalization

of Z.

Remark 1.3. Given a subvariety Z ⊂ SC, we may regard HZ as an algebraic subgroup of Aut(Vs)
for any point s ∈ Z(C). We will use the notation HZ for each of these subgroups, even though
the point s may vary, as the context will leave no ambiguity about which algebraic group we
mean.

Remark 1.4. It makes no difference if one considers a desingularization of Z instead of its nor-
malization to define algebraic monodromy, or instead considers the monodromy over an open

2 Although the formulation in [Del82a], notably, is equivalent to the condition that v has a canonical rational
conjugate; see also the discussion in § 2.3.
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subvariety U ⊂ Z or an open subvariety V ⊂ Znor. This can be checked by using the fact that
normality implies that the map π1(V )→ π1(Znor) is surjective for any such V .

Our main technical result is then as follows.

Definition 1.5. If G ⊂ Aut(Vs) is an algebraic group, and W ⊂ T (Vs) is a subspace, we will
say that G fixes W as a Q-subspace if for each g ∈ G(C) we have gW = W .3

Theorem 1.6. Let V be a motivic variation of Hodge structure on S, and let s ∈ S(C). Suppose
that T ⊂ T (Vs) is a subspace with canonical rational conjugates, that Z ⊂ SC is a complex
subvariety containing s satisfying HZ ⊂ GT , and that W ⊂ T (Vs) is a subspace containing T .
Suppose that the normalizer N of HZ inside GT fixes W as a Q-subspace. Then W has rational
conjugates.

Remark 1.7. For a version of Theorem 1.6 which lets us conclude that W has canonical rational
conjugates, see Theorem 4.2.

The following corollary is then a simple application of Theorem 1.6.

Corollary 1.8. Suppose V is a motivic variation of Hodge structure on S, let s ∈ S(C) and
suppose that Z ⊂ SC contains s. Then if the only non-trivial subspaces of (m, n) tensors fixed
by HZ are of the form Qw for some w ∈ Vm,n

s , then the subspace Qw has rational conjugates.

Proof. We show in § 2.2 that any motivic variation admits a polarization Q : V⊗ V→ Q such
that the class of Qs inside V2,0

s has a canonical rational conjugate. Take T to be the span of Qs.
From the fact that N preserves Q we learn that it acts on w by ±1. Taking W to be the span
of Qs and w, we learn that W has rational conjugates. �

As we explain in § 5.1, a form of the argument in Corollary 1.8 appears in Voisin’s
paper [Voi07]. There it is used to prove a ‘weakly absolute Hodge’ statement for Hodge classes
coming from a family of 4-folds for which neither the Hodge nor absolute Hodge conjecture is
known. Our Theorem 1.6 gives the full absolute conjecture in this case; this is Theorem 1.14.

Let Isom(Vs, Vsσ) be the Q-algebraic variety consisting of all isomorphisms between Vs and
Vsσ . Our proof of Theorem 1.6 proceeds through the study of the Q-subvariety

IT (s, Z, σ) ⊂ Isom(Vs, Vsσ),

defined by the property that r ∈ IT (s, Z, σ)(C) if and only if r ◦HZ,C ◦ r−1 = HZσ ,C and r sends
each t ∈ T to its canonical rational conjugate tσ ∈ Tσ. We observe that IT (s, Z, σ) is a torsor
under the normalizer N of HZ inside GT . Theorem 1.6 follows immediately from the following
two facts about IT (s, Z, σ), established in § 3.

Proposition 1.9.

(i) The map

rdR
σ : VC,s

cdR
s−−→ HC,s

σ−→ HC,sσ

(cdR
sσ )−1

−−−−−→ VC,sσ

induced by σ is a C-point of IT (s, Z, σ).
(ii) For each �, the map

r�
σ : VQ�,s

c�
s−→ V�,Q�,s

σ−→ V�,Q�,sσ

(c�
sσ )−1

−−−−−→ VQ�,sσ

induced by σ is a Q�-point of IT (s, Z, σ).

3 We wish to stress that this condition is different from fixing W pointwise, or fixing WC as a subspace.
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Proof of Theorem 1.6 (assuming Proposition 1.9). We let I = IT (s, Z, σ) for ease of notation.
That I is naturally a torsor under N implies that the subspace r(W ) is independent of the
choice of r ∈ I(C): any two choices r and r′ are related by r′ = rn with n ∈ N(C), and N
fixes W by assumption. As I is a Q-variety, it has a Q̄-point r, hence Wσ := r(W ) is defined
over Q̄. If we can show that Wσ is in fact a Q-subspace of Vsσ , then the proof will be com-
plete as Proposition 1.9 then implies both that cdR

s (W )σ = cdR
sσ

(Wσ) and c�
s(W )σ = c�

sσ
(Wσ) for

each �.
By Proposition 1.9(ii) the variety I has Q�-points for every �, hence it follows that, under some

choice of isomorphism C ∼= Q�, every element of Wσ is defined over Q�. The proof is completed
by the following claim.

Claim 1.10. Let v ∈ An(Q̄) be a Q̄-point in affine space, and suppose that for each � there exists
an isomorphism C ∼= Q� under which v is identified with a Q�-point. Then v is defined over Q.

Proof. As An = (A1)n, it suffices to consider the case n = 1. Let f be the minimal polynomial
of v. The statement is unchanged by replacing v with λv for λ ∈ Q, so we may assume that v is
integral and that f is monic with integral coefficients. The hypothesis shows (using integrality)
that f has a root over Z� for every �, hence a root modulo � for every �. As f is irreducible, this
implies that f is linear by [CF67, p. 362, Ex. 6.2]. �

This completes the proof of the theorem. �
Remark 1.11. We note that the proof of Theorem 1.6 in fact only requires Proposition 1.9(ii) for
a set S of primes � of asymptotic density one, since that is all that is required in the reference
[CF67, p. 362, Ex. 6.2]. In that case the conclusion that W has rational conjugates holds only
in the de Rham case and for �-adic cohomology associated to primes � belonging to S.

Remark 1.12. The proof of Theorem 1.6 does not invoke the properties of the filtration F • in
any way, so it applies to motivic mixed variations as well. We focus exclusively on the pure case
in this paper.

Theorem 1.6 lets us deduce the following result on the absolute Hodge conjecture, as we
show in § 2.3.

Theorem 1.13. Let V, S, s, T and Z be as in Theorem 1.6, and suppose that W is a subspace
of Hodge vectors. Then the K-absolute Hodge conjecture4 holds for each element of W .

We give two applications of our results. The first is to resolve the absolute Hodge conjecture
for classes coming from a family of 4-folds considered by Voisin in her paper [Voi07, Example 3.5].
More specifically, we show the following theorem.

Theorem 1.14. Let f : X → S be the family of degree six hypersurfaces in P5 stable under the
involution ι(X0, . . . , X5) = (−X0,−X1, X2, . . . , X5), let V = R4fan∗ Z be the variation on middle
cohomology, and let V− be the subvariation obtained by taking anti-invariants under ι with
algebraic Hodge bundleH−. Then there exists a dense non-empty Zariski open subset U ⊂ F 2H−
such that every Hodge class contained in U(C) under the isomorphism V− ⊗OSan � Han− is
absolute Hodge, except possibly for the 2-adic cohomology.5

Remark 1.15. We also show, as Voisin does, that U(C) contains ‘many’ such Hodge classes, in the
following strong sense: the locus of Hodge classes is topologically dense in the real subbundle of

4 See § 2.3 for a definition; the usual absolute Hodge conjecture is the case K = Q.
5 The proof of this theorem gives an explanation of the subtlety regarding the prime � = 2.
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the quotient F 2Han− /F 3Han− (the real structure coming from the Betti side), and has non-empty
intersection with U(C).

Our method of establishing Theorem 1.14 is similar to the argument employed in Voisin’s
paper to establish that such classes are ‘weakly absolute Hodge’. We are able to obtain a stronger
conclusion due to the presence of �-adic input in our argument.

The involution ι in Theorem 1.14 acts trivially on the fibres of H4,0 = F 4, where F • is
the filtration on H = V⊗OSan , and the anti-invariant Hodge number h1,3

− is equal to 208. In
particular, the Hodge structures parametrized by V− have Hodge level two, and the Hodge
conjecture does not appear to be known for them. Moreover, there does not seem to be any way
to realize the Hodge classes in the fibres of V− as classes inside the cohomology of an abelian
variety via an absolute Hodge correspondence, so the usual techniques for deducing absolute
Hodge-type results do not seem to be applicable.

As a second application, we let V be a motivic variation on S, let Z ⊂ S × S be the algebraic
locus of points (x, y) such that Vx

∼= Vy as integral polarized Hodge structures, and let Z0 ⊂ Z be
an irreducible component containing the diagonal Δ ⊂ S × S. The variety Z0 is a component of
the Hodge locus for the variation V � V∗ on S × S (see Definition 5.2). We call an isomorphism
Vx
∼= Vy with (x, y) ∈ Z0 generic if its class is Hodge at a generic point of Z0. We have the

following result.

Theorem 1.16. If V is a motivic variation of Hodge structure on the smooth K-variety S such
that HS = Aut(Vs, Qs) (monodromy is Zariski dense), then rational tensors fixed by HZ0 have
rational conjugates, and hence generic isomorphisms between Vx and Vy are K-absolutely Hodge.

1.1 Structure of the paper
In § 2 we discuss motivic variations and the Hodge and absolute Hodge conjectures for such
variations. We review some properties of motivic variations in § 2.1, and list all the properties that
we will be needed for the remainder of the paper. The properties in § 2.1 relating to polarizations
require further justification, so we carry out the necessary constructions in § 2.2. As mentioned,
§ 2.3 discusses the relationship between our notion of rational conjugates and the absolute Hodge
conjecture.

In § 3 we prove Proposition 1.9. The proof of Proposition 1.9(i) is already implicit in the
paper [KOU20], so we give a brief summary of the argument in § 3.1. To tackle the �-adic
case in § 3.2 we reduce the necessary statement to a purely algebraic statement involving étale
fundamental groups, after which the result follows by showing that σ ∈ Aut(C/K) essentially
conjugates the representation of πét

1 (SC, s) on the fibre V�,s to the representation of πét
1 (SC, sσ)

on the fibre V�,sσ .
The same ideas that give Theorems 1.6 and 1.13 in fact give several other variants of

Theorems 1.6 and 1.13, as we discuss in § 4. We then consider the example of Voisin in § 5.1, and
the application to generic isomorphisms of Hodge structures in § 5.2.

2. Motivic variations

2.1 Properties of motivic variations
Our central example of a variation of Hodge structure of the type we will consider is the variation
V obtained from a smooth, projective family f : X → S of K-varieties, with S smooth, and with
geometrically connected fibres. Let us briefly state some properties of such variations.
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(i) The Hodge bundle V⊗OSan admits a canonical model as a K-algebraic vector bundle
H = R2kf∗Ω•

X/S , where Ω•
X/S is the complex of relative algebraic differentials.

(ii) The filtration F • on H admits a canonical K-algebraic model, agreeing with the filtration
in the analytic setting. This is obtained from the Hodge filtration F pΩ•

X/S = Ω•≥p
X/S on the

complex Ω•
X/S and the Hodge-to-de Rham spectral sequence.

(iii) The connection ∇ whose flat sections are given by VC is K-algebraic. This is due to Katz
and Oda [KO68].

(iv) The Q-local system V admits a canonical integral subsystem VZ ⊂ V, such that VZ ⊗ Z�

admits a comparison isomorphism with Van
� , where V� is an �-adic local system defined on

the étale site of SC. This is the relative version of the comparison between Betti and étale
cohomology.

The following additional properties relate to the polarization on V, and will be established
in the next section.

(v) The variation V admits a polarization Q : V⊗ V→ Q which is K-algebraic, in the sense that
we have a morphism Q : H⊗H → OS of K-algebraic vector bundles whose analytification
is identified with Q after applying the isomorphism V⊗OSan � Han.

(vi) There exists a bilinear form Q� : V� ⊗ V� → Z�, compatible with the polarization Q in (v).
(vii) Let σ ∈ Aut(C/K), and denote by τσ : Sét → Sét the induced automorphism of the étale

site of SC. Then there exists a canonical isomorphism τ∗
σV� � V�, compatible with the

polarization Q� in (vi).

Properties (i)–(vii) are preserved under any sufficiently functorial construction; for instance,
they are preserved under duals, direct sums and tensor products.

Definition 2.1. We say that V is motivic if properties (i), (ii), (iii) and (v) hold, and (iv), (vi)
and (vii) hold for all primes � outside of a finite subset K ⊂ Z.

We adopt the conventional understanding that in the theorems we prove the conclusions are
shown to hold only for those primes not belonging to K. If the set K is not specified, the theorem
is understood to hold for any choice of K.

We note the following elementary consequence of (v), (vi) and (vii) which will be useful
later.

Lemma 2.2. For motivic variations, the σ-conjugate of the class Qs ∈ V2,0
s is ratio-

nal for V2,0
sσ (and given by Qsσ) in both the de Rham and �-adic setting, where

σ ∈ Aut(C/K).

2.2 Construction of K-algebraic polarizations
The material in this section should be well known to experts, but we cannot find an appropriate
reference.

We consider the geometric situation with V = R2kfan∗ Z, H = R2kf∗Ω•
X/S and V� = R2kf ét∗ Z�,

with f as in the previous section. We will define the primitive cohomology subsystems Vprim ⊂ V
and V�,prim ⊂ V�, and vector subbundle Hprim ⊂ H, as well as polarizations Q, Q� and Q on
the primitive cohomology satisfying properties (v), (vi) and (vii). That properties (v), (vi)
and (vii) hold for the original local systems and vector bundles follows from the usual pro-
cedure of obtaining a polarization on all of cohomology from a polarization on the primitive
part.
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In the case where S = SpecK is a point, our definition of Q andQ essentially appears (among
other places) in [Del71]. Our goal is to generalize this to the relative setting, where we regard the
scheme X as an S-scheme via the map f . The first task is to define the relative Chern classes
cdR
1,S(L) and cét

1,S(L) of a line bundle L on X.

Lemma 2.3. Let L be a line bundle on X. Then there exists a (necessarily unique) global
section cdR

1,S(L) of R2f∗Ω•
X/S whose restriction to the fibre at s ∈ S is the Chern class

cdR
1

(
L

∣∣
Xs

)
.6

Proof. By [Sta20, Section 0FLE] we obtain a class cdR
1 (L) ∈ H2

dR(X/S), where H•
dR(X/S)

is the cohomology of the complex RΓΩ•
X/S . Choose an injective resolution Ω•

X/S → I•. We
may compute R2f∗Ω•

X/S as the cohomology sheaf of f∗I• in degree two. From the equality
Γ(S, f∗I•) = Γ(X, I•) we therefore obtain a morphism g : H2

dR(X/S)→ Γ(S, R2f∗Ω•
X/S), and

we may define cdR
1,S(L) as the image of cdR

1 (L) under g.
Let s ∈ S be a point, and r : Γ(S, R2f∗Ω•

X/S)→ (R2f∗Ω•
X/S)s be the restriction of a global

section to the fibre at s. Let b : (R2f∗Ω•
X/S)s → H2

dR(Xs/κ(s)) be the canonical base-change
morphism. As Chern classes are functorial, the map h : H2

dR(X/S)→ H2
dR(Xs/κ(s)) induced

by the inclusion ι : Xs ↪→ X sends cdR
1 (L) to cdR

1

(
L

∣∣
Xs

)
. It therefore suffices to check that

h = b ◦ r ◦ g.
To make this verification, we recall the construction of the base-change map at the

level of complexes, following [Sta20, Section 0735]. We may identify Ω•
Xs

with the pull-
back ι∗Ω•

X/S , and find an injective resolution ι∗Ω•
X/S → J •. We then obtain the commuting

diagram

where the map β is unique up to homotopy. The map b (respectively, h) is constructed from β by
applying f∗ (respectively, Γ) and taking the induced map on cohomology. The required equality
then follows from the fact that (f ◦ ι)∗ = Γ. �
Lemma 2.4. Let K̄ be an algebraic closure of K inside C, and let L be a line bundle on XK̄ .
Then there exists a (necessarily unique) global section cét

1,SK̄
(L) of R2f ét

K̄,∗Z�(1) whose restriction

to the fibre at s ∈ S(K̄) is the Chern class cét
1

(
L

∣
∣
Xs

)
.7

Proof. We argue analogously to Lemma 2.3. For ease of notation, we assume K = K̄ and so
replace XK̄ by X and SK̄ by S. By [Mil80, VI, § 10] we obtain a class cét

1 (L) ∈ H2
ét(X, Z�(1)).

Choose an injective resolution Z� → I•.8 Proceeding as before, we may compute H2
ét(X, Z�(1))

from the degree two cohomology of I•, and V2
� as the degree two cohomology sheaf of

f ét∗ I•. From the equality Γ(S, f ét∗ I•) = Γ(X, I•) we therefore obtain a map g : H2
ét(X, Z�(1))→

Γ(S, R2f ét∗ Z�(1)), and define cét
1,S(L) as the image of cét

1 (L) under g.

6 In the sense that the equality holds after identifying (R2f∗Ω•
X/S)s with the algebraic de Rham cohomology of

the fibre Xs using proper base change.
7 In the same sense as in Lemma 2.3.
8 Here we really mean a compatible system of resolutions Z/�kZ → Ik, where we regard �-adic sheaves as systems
of Z/�kZ-sheaves in the usual way.
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Letting s ∈ S be a (geometric) point, one defines r, b and h analogously to Lemma 2.3, and
similarly checks that h = b ◦ r ◦ g. �
Definition 2.5. Let f : X → S be a smooth projective morphism of K-varieties, with S smooth
and fibres of dimension n. Let H2k = R2kf∗Ω•

X/S , V2k
� = R2kf ét

K̄,∗Z�(k) and V2k = R2kfan∗ Z(k).
Let L be a very ample bundle over S, and let ωdR = cdR

1,S(L), ωét = cét
1,SK̄

(LK̄) and ω be the
analytification of ωdR. We define:

(i) the operators

LdR : H2k → H2k+2 β 
→ β ∧ ωdR,

Lét
� : V2k

� → V2k+2
� β 
→ β ∧ ωét,

L : V2k → V2k+2 β 
→ β ∧ ω;

(ii) and the subbundle and subsystems

H2k
prim = ker LdR,n−2k+1,

V2k
�,prim = ker Lét,n−2k+1

� ,

V2k
prim = ker Ln−2k+1.

Now fix isomorphisms

ξdR : R2nf∗Ω•
X/S

∼−→ OS ,

ξét
� : R2nf ét

∗ Z�(n) ∼−→ Z�,

ξ : R2nf∗Z(n) ∼−→ Z,

compatible with the comparisons coming from analytification; for instance, using the relative
version of the trace isomorphism (see [Har75, Con]). We then further define

(i) the polarizations

Q2k : H2k
prim ⊗H2k

prim → OS ξdR ◦ [(α, β) 
→ α ∧ β ∧ (ωdR)n−2k],

Q2k
� : V2k

�,prim ⊗ V2k
�,prim → Z� ξét

� ◦ [(α, β) 
→ α ∧ β ∧ (ωét)n−2k],

Q2k : V2k
prim ⊗ V2k

prim → Z ξ ◦ [(α, β) 
→ α ∪ β ∪ ωn−2k].

Proposition 2.6. The polarizations Q2k, Q2k
� and Q2k of Definition 2.5(iii) satisfy properties

(v), (vi) and (vii) of § 2.1.

Proof. For properties (v) and (vi), this follows from the compatibility of the cup product with the
comparison isomorphisms, as well as the compatibility of the maps ξdR, ξét

� and ξ. For property
(vii) this follows from the compatibility of the cup product with conjugation by Aut(C/K), as
well as the fact that the section ω is defined over K. �

2.3 The absolute Hodge conjecture
Let Y be a smooth complex projective variety, and k a non-negative integer. We define by H2k(Y )
the intersection H2k(Y an, Q(k)) ∩Hk,k(Y an), where H2k(Y an, C(k)) ∼=

⊕
p+q=2k Hp,q(Y an) is the

Hodge decomposition. According to [CS14], the absolute Hodge conjecture is as follows.

Conjecture 2.7 (Absolute Hodge). Let σ ∈ Aut(C/Q), and let cdR
Y : H2k(Y an, C(k)) ∼−→

H2k
dR(Y/C) and c�

Y : H2k(Y an, Q�(k)) ∼−→ H2k
ét (Y, Q�(k)) be the comparison isomorphisms. Then:
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(i) if vdR ∈ H2k
dR(Y/C) is the image of v ∈ H2k(Y ) under cdR

Y then vdR
σ ∈ H2k

dR(Yσ/C) is the
image of some vσ ∈ H2k(Yσ) under cdR

Yσ
;

(ii) if v� ∈ H2k
ét (Y, Q�(k)) is the image of v ∈ H2k(Y ) under c�

Y then v�
σ ∈ H2k

ét (Yσ, Q�(k)) is the
image of some vσ ∈ H2k(Yσ) under c�

Yσ
.

Remark 2.8. Deligne in [Del82a] requires the class vσ to be canonical, in the sense that it is the
same for all comparison isomorphisms.

Remark 2.9. Conjecture 2.7 generalizes to all Hodge tensors in the obvious way.

Definition 2.10. More generally, we call the statement of Conjecture 2.7 with Aut(C/Q)
replaced by Aut(C/K) the K-absolute Hodge conjecture.

Definition 2.11. By the (K-)absolute Hodge conjecture for v, we mean the statement of
Conjecture 2.7 for some fixed vector v ∈ H2k(Y ).

Let us now deduce Theorem 1.13 from 1.6.

Proposition 2.12. In the situation of Theorem 1.6, if each element of W is Hodge, then the
K-absolute Hodge conjecture holds for each element of W .

Proof. What needs to be checked is that if wσ is a rational conjugate to w ∈W , then wσ is
automatically Hodge. We recall that a rational vector inside Vs is Hodge if and only if it lies
inside F 0, where F • is the Hodge filtration. As F • is a filtration by K-algebraic bundles on H,
this shows the result in the de Rham case. In the �-adic case, we recall that because IT (s, Z, σ) is
a torsor under N , the subspace Wσ := r(W ) is independent of the point r of IT (s, Z, σ) chosen.
Thus, taking r = r�

σ, we see that the result holds �-adically as well. �

3. Conjugation isomorphisms and monodromy

In this section we establish Proposition 1.9. The variety IT (s, Z, σ) ⊂ Isom(Vs, Vsσ) is defined
by the conditions r ◦HZ ◦ r−1 = HZσ and r(t) = tσ for each t ∈ T , where r is a point of
Isom(Vs, Vsσ) and the first equality is in the sense of Q-subschemes. That rdR

σ and r�
σ satisfy the

second condition is just the assumption that each t ∈ T has a canonical rational conjugate tσ,
so Proposition 1.9 reduces to the following statement.

Proposition 3.1. Fix σ ∈ Aut(C/K). Then the following assertions hold.

(i) The map

rdR
σ : VC,s

cdR
s−−→ HC,s

σ−→ HC,sσ

(cdR
sσ )−1

−−−−−→ VC,sσ

induced by σ satisfies the property that rdR
σ ◦HZ,C ◦ (rdR

σ )−1 = HZσ,C.
(ii) For each �, the map

r�
σ : VQ�,s

c�
s−→ V�,Q�,s

σ−→ V�,Q�,sσ

(c�
sσ

)−1

−−−−−→ VQ�,sσ

induced by σ satisfies the property that r�
σ ◦HZ,Q�

◦ (r�
σ)−1 = HZσ ,Q�

.

3.1 The de Rham case
The required statement is implicit in [KOU20, § 3]; we summarize the argument for expository
purposes. Given a smooth complex algebraic variety Y , the Riemann–Hilbert correspondence
gives an equivalence between the category LocC(Y an) of finite rank local systems on Y an and
the category MICr(Y ) of algebraic modules with regular integrable connections on Y . Given an
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automorphism σ of Aut(C/K), we further obtain an equivalence of categories MICr(Y )
·×C,σC−−−−→

MICr(Yσ) by twisting via σ, where Yσ := Y ×σ,C C. By composing these equivalences one can
associate to any local system L ∈ LocC(Y an) a twisted local system Lσ ∈ LocC(Y an

σ ) obtained
as the image of L. In the special case where Y is defined over K ⊂ C and L is obtained from an
algebraic connection which is also defined over K, one can make the identification Lσ = L.

Turning now to the proof of Proposition 3.1, let us temporarily denote by V the associated
complex local system, and fix a desingularization Z̃ → Z with a lift s̃ ∈ Z̃ of s; we note that
Z̃σ → Zσ is a desingularization of Zσ. Applying the above equivalence together with the
K-algebraicity of the connection ∇ defining V, we obtain an equivalence

〈
V

∣∣
Z̃

〉⊗ �τ

〈
V

∣∣
Z̃σ

〉⊗
,

where the notation 〈−〉⊗ denotes the neutral Tannakian category generated by the enclosed
object (inside the appropriate category of local systems). If FibZ̃,s̃ and FibZ̃σ ,s̃σ

are the obvi-
ous fibre functors, then the Tannakian groups associated to FibZ̃,s̃ and FibZ̃σ,s̃σ

have natural
faithful representations on Vs and Vsσ , as follows from the fact that an automorphism of FibZ̃,s̃
(respectively, an automorphism of FibZ̃σ,s̃σ

) is determined by its induced automorphism of Vs̃

(respectively, Vs̃σ).
Under these representations, the Tannakian groups associated to FibZ̃,s̃ and FibZ̃σ ,s̃σ

agree
with the complex algebraic monodromy groups of Z and Zσ; here we use that by Remark 1.4, it
makes no difference whether we use the normalization or a desingularization to define algebraic
monodromy. It follows from the fact that τ is an equivalence that the induced map rdR

s : VC,s
∼−→

VC,sσ (the notation is in agreement with our previous definition of rdR
s ) gives an isomorphism of

representations, and hence conjugates the (complex) algebraic monodromy groups.

3.2 The �-adic case
We will reduce the problem to a statement about �-adic local systems and the étale fundamental
group, which can then be solved entirely algebraically. We denote the normalization of an alge-
braic variety Z by Zn. If Z is a subvariety of SC and s ∈ S(C) is a point lying in Z(C), we will
denote by sn a lift of s to Zn.

Definition 3.2. Let V� be an �-adic local system on the complex algebraic variety Z. We define
H�,Z to be the identity component of the Zariski closure of πét

1 (Zn, sn) inside Aut(V�,s)Q�
.

Lemma 3.3. Let V be a Z-local system on Zan, let V� be an �-adic local system on Z, and
suppose that we have an isomorphism Van

� � V⊗ Z�. Then the induced isomorphism on fibres
identifies the groups HZ,Q�

and H�,Z .

Proof. Using the analytic (respectively, �-adic) equivalence between local systems and mon-
odromy representations, and the canonical identification of πét

1 (Zn, sn) with the profinite
completion ̂π1(Zn, sn), the statement amounts to the following claim: given the commuting
diagram
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the Zariski closures M and M̂ of the images im(π1(Zn, sn)) and im( ̂π1(Zn, sn)) inside Aut(V�,s)Q�

coincide. We clearly have M ⊂ M̂ from the inclusion im(π1(Zn, sn)) ⊂ im( ̂π1(Zn, sn)), so it
suffices to show the reverse inclusion.

It follows from the fact that a group is dense in its profinite completion that if π1(Zn, sn)→ F

is a morphism to a finite group F , then the induced morphism ̂π1(Zn, sn)→ F has the same
image. As a consequence, the image of ̂π1(Zn, sn) inside Aut(V�,s) ∼= lim←−k

GL(Z/�kZ) consists
of compatible sequences (αk)k≥1 where each αk is a reduction modulo �k of an element in
im(π1(Zn, sn)). Letting f be a polynomial function vanishing on im(π1(Zn, sn)) with coefficients
in Q�, it now suffices to show that f vanishes on such compatible sequences (αk)k≥1. Scaling if
necessary, we may assume that f has coefficients in Z�. But then f(αk) = 0 modulo �k holds for
all k, so the result follows. �

Applying Lemma 3.3, the proof of Proposition 3.1(ii) is reduced to showing that the con-
jugation isomorphism V�,s

∼−→ V�,sσ sends the image of πét
1 (Zn, sn) inside Aut(V�,s) to the

image of πét
1 (Zn

σ , sn
σ) inside Aut(V�,sσ). Given a complex variety X and an automorphism

σ ∈ Aut(C/K), we will denote by τσ : FÉT(X)→ FÉT(Xσ) the categorical equivalence obtained
by twisting coverings by σ, where FÉT(X) is the category of finite étale coverings of X.
Applying the isomorphism V� � τ∗

σV�, it suffices to show that there exist an isomorphism j :
πét

1 (SC, s) ∼−→ πét
1 (SC, sσ) sending im(πét

1 (Zn, sn)) ⊂ πét
1 (SC, s) to im(πét

1 (Zn
σ , sn

σ)) ⊂ πét
1 (SC, sσ)

and a commuting diagram of the following form:

(1)

where the horizontal arrows are the natural representations and the vertical arrow on the right
comes from the natural isomorphism V�,s � (τ∗

σV�)sσ of étale stalks.

Conjugation isomorphisms. To describe the map j, we begin with a more general construction.
For a complex variety X with point x, denote by FibX,x the fibre functor of FÉT(X) at x ∈ X.
Given α ∈ πét

1 (X, x), we may define an automorphism ασ of FibXσ ,xσ as follows: for each cover
of Xσ, choose an isomorphic cover X ′

σ → Xσ in the essential image of τσ; this is the conjugate
of a cover X ′ → X of X. Then define ασ(x′

σ) = α(x′)σ. One checks that ασ extends uniquely to
a well-defined automorphism ασ of FibXσ ,sσ , and that the map πét

1 (X, x)→ πét
1 (Xσ, xσ) defined

by α 
→ ασ is a group homomorphism. We define the map j to be the case with X = SC and
x = s, and the map jZn to be the case X = Zn and x = sn.

Completing the proof. Let iZn : πét
1 (Zn, sn)→ πét

1 (SC, s) and iZn
σ

: πét
1 (Zn

σ , sn)→ πét
1 (SC, s) be

the natural maps. It now suffices check that j ◦ ιZn = ιZn
σ
◦ jZn and that diagram (1) commutes.

In the first case, one immediately checks that if α ∈ πét
1 (SC, s) acts on fibres of S′ → SC above s

by base-changing to a cover of Zn and acting via πét
1 (Zn, sn), then the same is true for ασ with

respect to Zn
σ and πét

1 (Zn
σ , sn

σ). In the second case, it is immediate from the explicit description
of the isomorphism t : V�,s

∼−→ (τ∗
σV�)sσ that, together with the map j, the map t gives a map of

representations (i.e. acting by α then applying t is the same as applying t and then acting by
j(α)). But t giving a map of representations is equivalent to the commutativity of (1).

578

https://doi.org/10.1112/S0010437X2200745X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2200745X


Absolute Hodge and �-adic monodromy

4. Variants of the main theorem

Although our applications will use Theorems 1.6 and 1.13, we wish to briefly explain how
Proposition 1.9 may be used to prove variants of Theorems 1.6 and 1.13 which may be
of independent interest. Let us first generalize the notation IT (s, Z, σ) established in the
introduction.

Definition 4.1. Let s ∈ S(C) be a point, {Zi}i∈I a collection of subvarieties of SC containing s,
σ ∈ Aut(C/K) an automorphism, and T ⊂ T (Vs) a collection of tensors with canonical rational
conjugates. Then we define

I = IT (s, {Zi}i∈I , σ) ⊂ Isom(Vs, Vsσ)

by the property that r ∈ I(C) if and only if r ◦HZi,C ◦ r−1 = HZi,σ ,C for all i, and r sends each
t ∈ T to its canonical rational conjugate tσ ∈ Tσ.

We observe that the normalizer N in the statement of Theorem 1.6 is equal to IT (s, Z, id),
so we may view IT (s, {Z}i∈I , id) as its natural generalization. The following generalization of
Theorem 1.6 is then immediate from Proposition 3.1.

Theorem 4.2. Let V be a motivic variation of Hodge structure on S, and let s ∈ S(C). Suppose
that T ⊂ T (Vs) is a subspace with canonical rational conjugates, that Zi ⊂ SC for i ∈ I is a
collection of complex subvarieties containing s, and that W ⊂ T (Vs) is a subspace containing
T such that either

(i) IT (s, {Zi}i∈I , id) fixes W as a Q-subspace, or
(ii) IT (s, {Zi}i∈I , id) fixes W pointwise.

Then

(i) each element w of W has rational conjugates, or
(ii) each element w of W has a canonical rational conjugate,

in cases (i) and (ii), respectively.

Proof. As in the proof of Theorem 1.6, we obtain from Proposition 3.1 that rdR
σ and r�

σ for all �
are points of I = IT (s, {Zi}i∈I , σ). It follows as in Theorem 1.6 that the points of W are defined
over Q̄ and (under an appropriate isomorphism C ∼= Q�) over Q� for every �. By Claim 1.10 we
conclude in that r(Wσ) is a Q-subspace, where r ∈ I(C). In case (ii) we additionally know that
r(w) = wσ is independent of the choice of r, making the conjugates canonical. �

Finally let us give a similar, but simpler argument which establishes cases of a kind of
‘Q̄-absolute Hodge’ conjecture. We note that a ‘Q̄-absolute Hodge’ conjecture may in fact be
enough for certain applications of absolute Hodge to the algebraicity of periods. The following
result requires no �-adic input.

Theorem 4.3. Let V be a variation of Hodge structure on S, suppose that S, ∇ and H are
defined over K, and choose s ∈ S(C). Let T ⊂ T (VQ̄,s) be a Q̄-subspace whose conjugate rdR

σ (W )
is defined over Q̄, let Zi ⊂ SC for i ∈ I be a collection of complex subvarieties containing s,
and suppose that W ⊂ T (VQ̄,s) is a subspace containing T such that the orbit of [W ] under

I = IT (s, {Zi}i∈I , id) inside the appropriate Grassmannian is finite.9 Then rdR
σ (W ) is defined

over Q̄.

9 The torsor I here is defined analogously to Definition 4.1 with Q replaced by Q̄.

579

https://doi.org/10.1112/S0010437X2200745X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2200745X


D. Urbanik

Proof. The proof follows immediately, as Proposition 3.1 ensures that rdR
σ lies inside I and the

assumptions ensure that r(W ) is defined over Q̄ for any point r of I. �
Finally, we note that there is an additional step involved in translating Theorems 4.2 and 4.3

to absolute Hodge statements (like Theorem 1.13), but this follows exactly as in § 2.3 and we
leave it to the reader.

5. Applications to absolute Hodge

5.1 Voisin’s example
In this section we prove Theorem 1.14, following an approach laid out by Voisin in § 3 of [Voi07].
Let us first revisit the proof of our Corollary 1.8 in the context of Theorem 1.13.

We let V be a motivic variation on the smooth K-variety S, and T ⊂ T (Vs) be the Q-span
of the polarization Qs; by Lemma 2.2 the subspace T has canonical rational conjugates. Suppose
that there exists a subvariety Z ⊂ SC containing s such that the only non-trivial subspace of
Vm,n

s fixed by HZ is the line Qw spanned by the Hodge class w ∈ Vm,n
s . Then if n is a complex

point of the normalizer of HZ inside GT , we have that nw = λw for some λ ∈ C, and from the
fact that Q(nw, nw) = Q(w, w) we learn that λ = ±1. Theorem 1.13 therefore applies, and the
tensor w is absolutely Hodge.

A very similar argument is given by Voisin in her paper (see Remark 1.2 and Theorem 0.6(1)
in [Voi07]). The language used is slightly different: Voisin only considers Hodge vectors v (the
(m, n) = (0, 1) case); the variety Z is taken to be a special subvariety (irreducible component
of the Hodge locus); and the condition that the fixed locus of HZ consist of exactly the line
spanned by w takes the form of the condition that the restricted variation V

∣∣
Z

has Qw as its
constant subvariation. Voisin also only obtains the weaker conclusion that the conjugate vσ is
a Q̄-scalar multiple of a Hodge class; the essential difference, it seems to us, is the presence of
�-adic input in our argument.

Given a variation of Hodge structure V of weight n with Hodge bundle H and filtration F •,
we define Hp,q = F p/F p+1 for non-negative (p, q) such that p + q = n. To study the example of
Theorem 1.14, Voisin states a criterion [Voi07, Theorem 3.1], whose proof gives the following
proposition.

Proposition 5.1 (Voisin). Let V be a polarizable variation of Hodge structure on the smooth
complex variety S of weight 2k. Denote by∇p,q

theOS-linear mapHp,q → Hp−1,q+1 ⊗ Ω1
S induced

by the connection, let α ∈ Vs be a Hodge class with Hodge locus Zα, and let λ be its projection
to Hk,k. Suppose that:

(i) the map μλ : TsS → Hk−1,k+1
s defined by μλ(v) = ∇̄k,k

v (λ) is surjective;
(ii) for p > k, p + q = 2k, the map Hp,q

s → Hp−1,q+1
s ⊗ (TsZα)∗ obtained by restricting ∇̄p,q is

injective;
(iii) and the map Hk,k

s → Hk−1,k+1
s ⊗ (TsZα)∗ obtained by restricting ∇̄k,k has kernel equal to

the span of λ.

Then the fixed locus in Vs of HZα is exactly the line spanned by α.

Proof. We briefly describe the argument appearing in [Voi07], using [Voi03] as a reference. We
begin by giving a local analytic description of Zα near s. Let us abusively think of α as a
section of V(B) for a small analytic ball B ⊂ S centred at s, and let β be the induced section
of H/F kH. Locally on B, choose a decomposition H/F kH � F k−1H/F kH⊕F , where F is a
holomorphic vector bundle. Let β = βk−1 + β′ be the corresponding decomposition of β. Then by
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[Voi03, Lemma 5.15], the locus B ∩ Zα coincides on the level of analytic spaces with the locus
in B defined by the vanishing of βk−1.

This local description has two consequences. First, we learn that the locus Zα ∩B has codi-
mension equal to at most the rank of F k−1H/F kH, which is the Hodge number hk−1,k+1.
Secondly, one argues as in [Voi03, § 5.3.2] that the tangent space of Zα at s is the kernel of
μλ. The surjectivity of μλ then implies that this tangent space has codimension in TsS exactly
equal to hk−1,k+1, so it follows that from the upper bound that Zα has codimension hk−1,k+1

and is smooth at s.
Conditions (ii) and (iii) relate only to the variation on Zα, so, using Remark 1.4, it suffices

to choose a smooth open subvariety U ⊂ Zα containing s and show that the identity component
of the monodromy on V

∣∣
U

fixes only the line spanned by α. After replacing U with a finite
étale covering, any algebraic monodromy invariant vector in Vs is monodromy invariant, hence
is induced by a global flat section γ of V

∣∣
U
. By flatness we have ∇̄p,qγp,q = 0 for each (p, q), and,

applying (ii) and (iii) at s, we learn that γp,q
s = 0 when p > k, and that γk,k

s is a scalar multiple
of λ. Using Hodge symmetry to handle the case when p < k, we learn that γs is a scalar multiple
of α. �
Proof of Theorem 1.14. We observe that the variation V− is motivic, with the implicit set
K = {2}: it is obtained from the variation V = R4fan∗ Z by taking the image under the rel-
ative idempotent correspondence 1

2(id− ι), and properties (i)–(vii) in § 2 are easily obtained
from restriction under the assumption that 2 is invertible. Checking as Voisin does in [Voi07,
Example 3.5], conditions (1), (2) and (3) of Proposition 5.1 hold for α a complex point belong-
ing to a dense Zariski open subset U ⊂ F 2H4−, where we regard the locus Zα for a general
α ∈ F 2H4−(C) as the analytic germ at s defined by the property that flat translates of α remain
in F 2. The result then follows from Proposition 5.1, Theorem 1.13 (using Remark 1.11 to take
into account the exception at � = 2) and the argument given at the start of this section. �
Proof of Remark 1.15. From [Voi07, Proposition 3.3] we know that the locus of Hodge classes
is topologically dense in the underlying real subbundle of H2,2

− , so it suffices to exhibit a single
Hodge class in U(C). As Voisin points out in [Voi07, Example 3.5], one can check this explicitly
for Hodge classes belonging to the Hodge structure of the Fermat hypersurface. �

5.2 Absolutely Hodge isomorphisms
In this section we study the question of when an isomorphism of Hodge structures between two
fibres in a motivic family is absolute Hodge. Related questions are considered in [Voi07, § 3].

Definition 5.2. Let S1 and S2 be algebraic varieties, and let V1 and V2 be variations of Hodge
structure on S1 and S2, respectively. We define V1 � V2 to be the variation p∗1V1 ⊗ p∗2V2 on
S1 × S2, where pi : S1 × S2 → Si is the projection.

Suppose that V is an integral variation of Hodge structure on S, and let Z ⊂ S × S be the
algebraic subvariety whose points are pairs (x, y) such that Vx is isomorphic to Vy as an integral
polarized Hodge structure. These isomorphisms are Hodge tensors of the variation V � V∗. When
a Torelli theorem is available, the locus Z is simply equal to the diagonal Δ, and its algebraic
monodromy is easily determined to be equal to the image of HS under the diagonal action. In
the general case, let Z0 be an irreducible component of Z containing the diagonal Δ ⊂ S × S.
We determine HZ0 by reducing to the Torelli case using a recent result of Bakker, Brunebarbe
and Tsimerman [BBT18].

To show our main result we first prove some lemmas on algebraic monodromy.
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Lemma 5.3. Let f : S → T be a proper, dominant morphism of irreducible complex algebraic
varieties, and let V be a local system on T . Then for any point s ∈ S, the isomorphism (f∗V)s

∼−→
Vf(s) induces an isomorphism between HS and HT .

Proof. That f : S → T is proper means that it has a Stein factorization f = g ◦ h, where h : S →
V is proper with connected fibres and g is finite. We are thus reduced to showing the theorem
in two cases:

(i) when f additionally has connected fibres;
(ii) and when f is additionally finite.

Let us first assume that both S and T are normal. If X is a normal variety, then the
fundamental group of any open subvariety U surjects onto the fundamental group of X, so we
may replace both S and T by Zariski open sets, restricting f appropriately. In case (i) this lets
us assume that f is surjective and flat, and hence by [Sta20, Lemma 01UA] universally open.
Kollár has shown in [Kol19] that a universally open, surjective morphism of complex varieties
with connected fibres satisfies the two-point path lifting property (see [Kol19, Definition 30]), and
therefore induces a surjection of fundamental groups, from which the result follows. In case (ii)
we may assume that f is étale, from which the result follows as the monodromy of S will be
finite index in the monodromy of T , and hence the Zariski closures will have the same identity
component.

Working now in the general case, it follows from the definition of algebraic monodromy that
the algebraic monodromy of a local system V on X agrees with the algebraic monodromy of the
restriction of V to the normal locus of X. The result then follows by restricting f . �
Lemma 5.4. Let V be a polarizable integral variation of Hodge structure on the smooth complex
algebraic variety S, and let Z0 and Δ be as above. Then HZ0 = HΔ.

Proof. The statement is unchanged under replacing S with a finite étale cover, so we may
assume that S admits a log-smooth compactification S̄ for which the monodromy around the
normal crossing divisor S̄ \ S is unipotent. Let ϕ : S → Γ\D be the period map on S; here
D is the full period domain of polarized integral Hodge structures on a fixed lattice V , and
Γ = G(Z) where G = Aut(V, Q). Then Γ\D may be interpreted as the moduli space for polar-
ized integral Hodge structures of the same type as the fibres of V, and the map ϕ sends s to
the isomorphism class of Vs. Arguing as in [CPM03, Corollary 13.7.6], we may extend S to a
larger open subvariety S′ ⊂ S̄ and the map ϕ to a S′ to reduce to the case where ϕ is proper.
Applying the main theorem of [BBT18], we find that there exists a factorization ϕ = ϕ′ ◦ g
where g : S → T is a dominant proper map of algebraic varieties and ϕ′ : T ↪→ Γ\D is a closed
embedding.

The variety T admits a variation V′ such that V may be identified with g∗V′, and ϕ′ is the
period map of V′. The variety Z is then the inverse image of the diagonal under the product
morphism g × g : S × S → T × T . If ΔS ⊂ S × S and ΔT ⊂ T × T are the respective diagonals,
the maps Z0 → ΔT and ΔS → ΔT are both dominant and proper, so the result follows by
Lemma 5.3. �

Let us note that it is a consequence of Deligne’s Principle A (see [Del82b, Theorem 3.8]) that
if the tensor Qs has canonical rational conjugates, then so does every rational tensor fixed by
Aut(Vs, Qs). Theorem 1.16 now follows from the following more general result.

Theorem 5.5. If V is a motivic variation of Hodge structure on the smooth K-variety S such
that rational tensors fixed by HS have canonical rational conjugates and the points of the center
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Z(HS) are defined over Q, then tensors fixed by HZ0 have rational conjugates, and generic
isomorphisms between Vx and Vy are K-absolutely Hodge.

Proof. Let T ⊂ T (Vs) be the subspace of Q-tensors fixed by HS , and let T ∗ be its dual. As the
subspace T (respectively, the subspace T ∗) is fixed under algebraic monodromy, parallel transport
gives a path-independent translate of T (respectively, T ∗) to any fibre of V (respectively, V∗).
It follows that we may unambiguously refer to the subspace R = T ⊗ T ∗ inside T (Vx ⊗ V∗

y) for
any pair (x, y). The fact that T has canonical rational conjugates implies the same fact for R.
We then have the following claim.

Claim 5.6. The groups GR and GT ×GT ∗ are equal as subgroups of Aut(Vx ⊗ V∗
y).

Proof. Let U ⊂ T (Vx ⊗ V∗
y) be the subspace of tensors fixed by GT ×GT ∗ . It suffices to show

that U = T ⊗ T ∗. Let us first argue that the space U is spanned by pure tensors; that is, it has
a basis of the form u⊗ u′ where u ∈ T (Vx) and u′ ∈ T (V∗

y). Indeed, suppose that GT ×GT ∗

fixes
∑m

k=1 vk ⊗ v′k, where {vk}mk=1 and {v′k}mk=1 form linearly independent sets. Let (g, g′) ∈
GT (C)×GT ∗(C) be a point. Then from the fact that (g, 1) fixes

∑m
k=1 vk ⊗ v′k we learn that

g fixes each vk, and analogously we learn that (1, g′) fixes each v′k. It follows that (g, g′) fixes
each term in the sum.

We are reduced to arguing that any element of the form v ⊗ v′ with v ∈ T (Vx) and v′ ∈ T (V∗
y)

fixed by GT ×GT ∗ must satisfy v ∈ T and v′ ∈ T ∗. But since v ⊗ v′ is fixed by GT ×GT ∗ it is
in particular fixed by GT × {1} and {1} ×GT ∗ , so the result follows. �

We may now complete the proof by computing the normalizer N of HZ0 inside HS ×HS . It
follows from Lemma 5.4 that HZ0 is the diagonal subgroup D of HS ×HS . The normalizer N
of D is the group generated by D and the product of centers Z(HS)×Z(HS). It follows that
N preserves the subspace W of all rational tensors fixed by HZ0 , and so the result follows by
Theorems 1.6 and 1.13. �
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