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1. Introduction

Let g be a finite-dimensional simple Lie algebra over C, ( | ) be a normalized invariant

inner product, i.e., 1
2h∨ ×Killing form.

Let ĝ = g[t, t−1
]⊕CK ⊕CD be the Kac–Moody Lie algebra associated with g and ( | ),

with the commutation relations

[x(m), y(n)] = [x, y](m+ n)+m(x | y)δm+n,0 K ,

[D, x(m)] = mx(m), [K , ĝ ] = 0,

where x(m) = x ⊗ tm . For k ∈ C, set

V k(g) = U ( ĝ )⊗U (g[t]⊕CK ⊕CD)Ck,

where Ck is the one-dimensional representation of g[t]⊕CK ⊕CD on which g[t]⊕ D
acts trivially and K acts as multiplication by k. The space V k(g) is naturally a vertex

algebra, and it is called the universal affine vertex algebra associated with g at level k.

By the PBW theorem, V k(g) ∼= U (g[t−1
]t−1) as C-vector spaces.

Let Vk(g) be the unique simple graded quotient of V k(g). As a ĝ-module, Vk(g) is

isomorphic to the irreducible highest weight representation of ĝ with highest weight k30,

where 30 is the dual element of K .

https://doi.org/10.1017/S1474748016000025 Published online by Cambridge University Press

mailto:arakawa@kurims.kyoto-u.ac.jp
mailto:anne.moreau@math.univ-poitiers.fr
https://doi.org/10.1017/S1474748016000025
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Let XV be the associated variety [5] of a vertex algebra V , which is the maximum

spectrum of Zhu’s C2-algebra,

RV := V/C2(V ).

In the case V is a quotient of V k(g), V/C2(V ) = V/g[t−1
]t−2V and we have a surjective

Poisson algebra homomorphism

C[g∗] = S(g)� V/g[t−1
]t−2V, x 7→ x(−1)+ g[t−1

]t−2V,

where x(−1) denotes the image of x(−1) in the quotient V . Then XV is just the zero

locus of the kernel of the above map in g∗. It is G-invariant and conic, where G is the

adjoint group of g. Note that on the contrary to the associated variety of a primitive

ideal of U (g), the variety XVk (g) is not necessarily contained in the nilpotent cone N of

g. In fact, XVk (g) = g∗ for a generic k since Vk(g) = V k(g) in this case.

A conjecture of Feigin and Frenkel, proved in [7], states that XVk (g) ⊂ N if Vk(g) is

admissible [31]. In fact, it is also believed that the converse is true, that is, XVk (g) ⊂

N only if Vk(g) is admissible, so that the condition XVk (g) ⊂ N gives a geometric

characterization of admissible affine vertex algebras. One of the aims of this paper is

to provide a counterexample to this fact, that is, there exist non-admissible affine vertex

algebras Vk(g) such that XVk (g) ⊂ N .

Let (eθ , hθ , fθ ) be an sl2-triple associated with the highest positive root θ of g. Let

Omin = G · fθ be the unique minimal non-trivial nilpotent orbit of g which is of dimension

2h∨− 2 [41], where h∨ is the dual Coxeter number of g.

Consider the Deligne exceptional series

A1 ⊂ A2 ⊂ G2 ⊂ D4 ⊂ F4 ⊂ E6 ⊂ E7 ⊂ E8

discussed in [17, 18].

Theorem 1.1. (1) Assume that g belongs to the Deligne exceptional series and that

k = −
h∨

6
− 1.

Then XVk (g) = Omin.

(2) Assume that g is of type D4, E6, E7, E8 and that k is an integer such that

−
h∨

6
− 1 6 k 6 −1.

Then XVk (g) = Omin.

(3) Assume that g is of type Dl , l > 5. Then XVk (g) = Omin for k = −2,−1.

Note that for g of type A1, A2, G2, F4, the rational number −h∨/6− 1 is admissible.

However, for types D4, E6, E7, E8, the number −h∨/6− 1 is a negative integer which is

certainly non-admissible [33, Proposition 1.2].
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A consequence of the fact XVk (g) ⊂ N is that Vk(g) has only finitely many simple

modules in the category O (cf. Corollary 5.3), as in case Vk(g) is admissible [1–3, 9, 11, 36,

37]. If g belongs to the Deligne exceptional series outside the type A and k = −h∨/6− 1,

it is possible to derive the classification of simple Vk(g)-modules that belong to O from

Joseph’s result [28] in the following manner.

If g is not of type A, it is known [24, 27] that there exists a unique completely prime

ideal J0 in U (g), called the Joseph ideal, whose associated variety is Omin, that is, Omin
is the zero locus in g∗ of grJ0. As a by-product, we obtain a lifting to the Joseph ideal in

the following sense. For a Z>0-graded vertex algebra V , let A(V ) be its Zhu’s algebra [42].

Such a vertex algebra V is called a chiralization of an algebra A if A(V ) ∼= A. We claim

that if g belongs to the Deligne exceptional series outside the type A and if k = −h∨/6− 1,

then Vk(g) is a chiralization of C⊕U (g)/J0. Namely,

A(Vk(g)) ∼= U (g)/JW ∼= C×U (g)/J0,

for some ideal JW (cf. Proposition 2.2 and Theorem 3.1). Hence the classification of

simple highest weight U (g)/J0-modules obtained in [28] gives the classification of simple

highest weight Vk(g)-modules thanks to Zhu’s theorem [42], which for types G2, D4, F4
reproves the earlier results obtained in [11, 37, 38].

Another consequence of the fact XVk (g) ⊂ N is that the D-module on the moduli stack

of G-bundles on a curve obtained from Vk(g) by the Harish-Chandra localization [14, 22]

has its micro-local support inside the global nilpotent cone. It would be very interesting

to consider the associated modular functor (cf. [21]), or the corresponding conformal field

theory (cf. [15, 16]). We hope to come back to this point in our future work.

In physics literature, the affine vertex algebras in Theorem 1.1(1) have been studied

in the work [13] of Beem et al. in connection with four-dimensional superconformal field

theory. The associated varieties of these vertex algebras seem to describe the Higgs branch

of the corresponding four-dimensional theory. We also hope to come back to this point

in our future work.

Theorem 1.1, or its proof, has the following important application:

Let Wk(g, fθ ) be the W -algebra associated with (g, fθ ) at level k [29], which is a

conformal vertex algebra with central charge

c(k) =
k dim g

k+ h∨
− 6k+ h∨− 4

provided that k 6= −h∨. Note that if g belongs to the Deligne exceptional series,

c(k) = −
6(k+ h∨/6+ 1)((h∨/6+ 1)k− (h∨− 4)h∨/6)

(k+ h∨)(h∨/6+ 1)
,

so that c(k) = 0 for k = −h∨/6− 1.

Denote by Wk(g, fθ ) the unique simple quotient of Wk(g, fθ ). Since XWk (g, fθ ) is

naturally isomorphic to the Slodowy slice Smin at fθ [7, 19], with

Smin := fθ + geθ , geθ = {x ∈ g | [x, eθ ] = 0},

the variety XWk (g, fθ ) is a C∗-invariant, Poisson subvariety of Smin.
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It is known [19] that the (Ramond-twisted) Zhu’s algebra of Wk(g, fθ ) is naturally

isomorphic to the finite W -algebra U (g, fθ ) associated with (g, fθ ) introduced by

Premet [39].

Premet [40] has shown that the Joseph ideal is closely connected with one-dimensional

representations of U (g, fθ ). The chiralization of U (g)/JW explained above is closely

related with one-dimensional representations of Wk(g, fθ ) as well. The significant

difference in the affine setting is that Wk(g, fθ ) does not necessarily admit

one-dimensional representations. In fact, Wk(g, fθ ), g 6= sl2, admits one-dimensional

representations if and only if Wk(g, fθ ) = C, and this happens if and only if g belongs

to the Deligne exceptional series and k = −h∨/6− 1, or g is of type Cl and k = −1/2
(cf. Theorem 7.2).

Note that the trivial vertex algebra C is certainly a lisse vertex algebra. Here, recall

that a vertex algebra V is called lisse, or C2-cofinite, if dim XV = 0. Lisse vertex

algebras may be regarded as an analogue of finite-dimensional algebras. One of the

remarkable properties of a lisse vertex algebra V is the modular invariance of characters

of modules [35, 42]. Further, if it is non-trivial and also rational, it is known [26] that

under some mild assumptions the category of V -modules forms a modular tensor category,

which for instance yields an invariant of 3-manifolds, see [12].

In [7], in order to approach the Kac–Wakimoto conjecture [33] on the rationality of

exceptional W -algebras, the first author showed that each admissible affine vertex algebra

produces exactly one lisse simple W -algebra. More precisely, the associated variety of an

admissible affine vertex algebra Vk(g) is isomorphic to O for some nilpotent orbit O of g,

and if we take the nilpotent element f from this orbit O, then Wk(g, f ) is lisse. Until very

recently it has been widely believed that these W -algebras are all the lisse W -algebras,

cf. [33]. However, it turned out that there are a lot more.

Theorem 1.2. (1) Let g be of type D4, E6, E7, E8. For any integer k that is equal to or

greater than −h∨/6− 1, the simple W -algebra Wk(g, fθ ) is lisse.

(2) Let g be of type Dl with l > 5. For any integer k that is equal to or greater than

−2, the simple W -algebra Wk(g, fθ ) is lisse.

In the case that k = −h∨/6, the first statement of Theorem 1.2 is a recent result of

Kawasetsu [34]. Kawasetsu actually proved that W−h∨/6(g, fθ ) is rational and C2-cofinite

if g belongs to the Deligne exceptional series, providing a first (surprising) example of

rational and C2-cofinite W -algebras that are not coming from admissible representations

of ĝ. Our present work is motivated by his result. It would be very interesting to know

whether the lisse W -algebras appearing in Theorem 1.2 are rational or not. We hope to

come back to this point in future work.

2. Minimal nilpotent orbit closures and Joseph ideals

Let J0 be the prime ideal of S(g) corresponding to the minimal nilpotent orbit closure

Omin in g∗.
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Suppose that g is not of type A. According to Kostant, J0 is generated by a g-submodule

Lg(0)⊕W in S2(g) such that

S2(g) = Lg(2θ)⊕ Lg(0)⊕W,

where Lg(λ) is the irreducible representation of g with highest weight λ and θ is the

highest root of g.

Note that the above decomposition of S2(g) still holds in type A, [25, Ch. IV,

Proposition 2]. Also, note that Lg(0) = C� where � is the Casimir element in S(g).

Lemma 2.1. Suppose that g is not of type A. The ideal JW in S(g) generated by W contains

�2, and hence,
√

JW = J0.

Proof. By the proof of [24, Theorem 3.1] JW contains g ·�, and the assertion follows.

The structure of W was determined by Garfinkle [25]. Set

g( j) = {x ∈ g | [hθ , x] = 2 j x}.

Then

g = g(−1)⊕ g(−1/2)⊕ g(0)⊕ g(1/2)⊕ g(1),

g(−1) = C fθ , g(1) = Ceθ , g(0) = Chθ ⊕ g\, g\ = {x ∈ g(0) | (hθ |x) = 0}.

The subalgebra g\ is a reductive subalgebra of g whose simple roots are the simple roots

of g perpendicular to θ . Write

[g\, g\] =
⊕
i>1

gi

as a direct sum of simple summands, and let θi be the highest root of gi .

If g is neither of type Al nor Cl ,

W =
⊕
i>1

Lg(θ + θi ).

If g is of type Cl , then g\ is simple of type Cl−1, so that there is a unique θ1, and we

have

W = Lg(θ + θ1)⊕ Lg

(
1
2 (θ + θ1)

)
.

If g is not of type A, it is known [24, 27] that there exists a unique completely prime

ideal J0 in U (g), called the Joseph ideal, whose associated variety is Omin. It is known

that J0 is maximal and primitive. By [24, 25], J0 is generated by W and �− c0, where

W is identified with a g-submodule of U (g) by the g-module isomorphism S(g) ∼= U (g)
and c0 is the eigenvalue of � for the infinitesimal character that Joseph obtained in [27,

Table p.15]. We have

grJ0 = J0 =
√

JW

and this shows that J0 is indeed completely prime.

Let JW be the two-sided ideal of U (g) generated by W .
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Proposition 2.2. We have an algebra isomorphism

U (g)/JW ∼= C×U (g)/J0.

Proof. By the proof of [24, Theorem 3.1], JW contains (�− c0)g. Hence it contains

(�− c0)�. Since c0 6= 0, we have an isomorphism of algebras

U (g)/JW
∼
→ U (g)/〈JW , �〉×U (g)/〈JW , �− c0〉.

As we have explained above, 〈JW , �− c0〉 = J0. Also, since JW contains (�− c0)g,

〈JW , �〉 contains g. Therefore U (g)/〈JW , �〉 = C as required.

3. A lifting of Joseph ideals

For a Z>0-graded vertex algebra V =
⊕

d Vd , let A(V ) be Zhu’s algebra of V :

A(V ) = V/V ◦ V,

where V ◦ V is the C-span of the vectors

a ◦ b :=
∑
i>0

(
1

i

)
a(i−2)b

for a ∈ V1,1 ∈ Z>0, b ∈ V , and V → (End V )[[z, z−1
]], a 7→

∑
n∈Z a(n)z−n−1, denotes the

state-field correspondence. The space A(V ) is a unital associative algebra with respect

to the multiplication defined by

a ∗ b :=
∑
i>0

(
1

i

)
a(i−1)b

for a ∈ V1, 1 ∈ Z>0, b ∈ V . More generally, for a V -module M , a bimodule A(M) over

A(V ) is defined similarly [23].

Zhu’s algebra A(V ) naturally acts on the top degree component Mtop of a Z>0-graded

V -module M , and M 7→ Mtop gives [42] a one-to-one correspondence between simple

graded V -modules and simple A(V )-modules.

The vertex algebra V is called a chiralization of an algebra A if A(V ) ∼= A.

For instance, consider the universal affine vertex algebra V k(g). A V k(g)-module is the

same as a smooth ĝ′-module of level k, where ĝ′ = [ ĝ, ĝ ] = g[t, t−1
]⊕CK . Zhu’s algebra

A(V k(g)) is naturally isomorphic to U (g) ([23], see also [9, Lemma 2.3]), and hence, V k(g)

is a chiralization of U (g). The top degree component of the irreducible highest weight

representation L(λ) of ĝ with highest weight λ is Lg(λ̄), where λ̄ is the restriction of λ to

the Cartan subalgebra of g.

Let Ĵk be the unique maximal ideal of V k(g), so that

Vk(g) = V k(g)/Ĵk .

We have the exact sequence A(Ĵk)→ U (g)→ A(Vk(g))→ 0 since the functor A(?) is

right exact and thus A(Vk(g)) is the quotient of U (g) by the image Ik of A(Ĵk) in U (g):

A(Vk(g)) = U (g)/Ik .
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−
h∨

6
− 1 λ0 W0

G2 −
5
3 $1+

1
3$2 {1, s2}

D4 −2 $1+$3+$4 {1, s1, s3, s4}

F4 −
5
2

1
2$1+

1
2$2+$3+$4 {1, s1, s2}

E6 −3 $1+$2+$3+$5+$6 {1, s2, s3, s1s3, s5, s6s5}

E7 −4 $1+$2+$3+$5+$6+$7 {1, s2, s3, s1s3, s5, s6s5, s7s6s5}

E8 −6 $1+$2+$3+$5+$6+$7+$8 {1, s2, s3, s1s3, s5, s6s5, s7s6s5, s8s7s6s5}

Table 1. −h∨/6− 1, λ0 and W0.

One may ask whether Ik coincides with the Joseph ideal J0 for some k ∈ C, so that

Vk(g) is a chiralization of U (g)/J0. But this can never happen. Indeed, U (g)/J0 does not

admit finite-dimensional representations while C is always an A(Vk(g))-module as Vk(g)

is a module over itself and Vk(g)top = C. However, by Proposition 2.2, it makes sense to

ask the same question for the ideal JW .

Theorem 3.1. Assume that g belongs to the Deligne exceptional series outside the type A
and that k = −h∨/6− 1. Then Vk(g) is a chiralization of U (g)/JW , that is,

A(Vk(g)) ∼= U (g)/JW ∼= C×U (g)/J0.

In particular, since J0 is maximal, the irreducible highest weight representation L(λ) of

ĝ is a Vk(g)-module if and only if

λ̄ = 0 or AnnU (g) Lg(λ̄) = J0.

According to [28, 4.3], the weights µ such that AnnU (g)Lg(µ) = J0 are

w ◦ (λ0− ρ) := w(λ0)− ρ, w ∈ W0,

where the weight λ0 and the subset W0 of the Weyl group W of g are described in Table 1.

Here we adopt the standard Bourbaki numbering for the simple roots {α1, . . . , α1} of g,

and we denote by $1, . . . ,$l the corresponding fundamental weights.

Note that the last statement of Theorem 3.1 reproves the earlier results [11,

Proposition 3.6(1)] for type G2, [38, Theorem 4.3] for type D4 and [37, Theorem 6.4]

for type F4.

For types G2 and F4, the level k = −h∨/6− 1 is admissible, that is, k30 is an admissible

weight [31] for ĝ. Using [9, Proposition 3.3] one finds that

{k30, w ◦ (λ0− ρ)+ k30 | w ∈ W0}

is exactly the set of admissible weights of level k whose integral Weyl group is isomorphic

to that of k30, which agrees with [9, Main theorem].

Theorem 3.1 will be proved at the end of § 4.
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4. Singular vectors of affine vertex algebra of degree 2

By the PBW theorem, we have V k(g) ∼= U (g[t−1
]t−1) as C-vector spaces. Below we often

identify V k(g) with U (g[t−1
]t−1).

The vertex algebra V k(g) is naturally graded:

V k(g) =
⊕

d∈Z>0

V k(g)d , V k(g)d = {v ∈ V k(g) | Dv = −dv}.

Note that each homogeneous component V k(g)d is a finite-dimensional g-submodule of

V k(g).

Lemma 4.1. We have a g-module embedding

σd : Sd(g) ↪→ V k(g)d , x1 . . . xd 7→
1
d!

∑
σ∈Sd

xσ(1)(−1) . . . xσ(d)(−1).

Let v be a singular vector in Sd(g). Then σd(v) is a singular vector of V k(g) if and only

if fθ (1)σd(v) = 0. For d = 2, we simply denote by σ the embedding σd .

Let W =
⊕

i Wi be the decomposition of W into irreducible submodules, and let wi be

a highest weight vector of Wi .

Theorem 4.2. (1) Assume that g belongs to the Deligne exceptional series outside the

type A.

(a) For any i , σ(wi ) is a singular vector of V k(g) if and only if

k = −h∨/6− 1.

(b) Assume that g is not of type G2. For each n ∈ Z>0 and each i , σ(wi )
n+1 is a

singular vector of V k(g) if and only if

k = n− h∨/6− 1.

(2) Let g be of type Bl , l > 3, so that W = W1⊕W2 where W1 ∼= Lg(θ + θ1) =

Lg(2$1) and W2 ∼= Lg(θ + θ2) = Lg($4) if l > 5 (and W2 ∼= Lg(θ + θ2) = Lg(2$l)

if l = 3, 4).

(a) [36] For each n ∈ Z>0, σ(w1)
n+1 is a singular vector of V k(g) if and only if

k = n− l + 3/2.

(b) For each n ∈ Z>0, σ(w2)
n+1 is a singular vector of V k(g) if and only if

k = n− 2.

(3) [1] Let g be of type Cl , l > 2, so that W = W1⊕W2 where W1 ∼= Lg(θ + θ1) =

Lg(2$2) and W2 ∼= Lg(
1
2θ + θ1) = Lg($2). For each n ∈ Z>0, σ(w1)

n+1 is a

singular vector of V k(g) if and only if

k = n− 1/2.
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Type D4 E6 E7 E8

h∨/6+ 1 2 3 4 6

θ (1211) (122321) (2234321) (23465432)
θ1 (1000) (101111) (0112221) (22343210)

(β j , δ j ), (0100), (0111) (010000), (011210) (1000000), (1122100) (00000001), (01122221)
β j + δ j = θ − θ1 (0101), (0110) (010100), (011110) (1010000), (1112100) (00000011), (01122211)

(010110), (010100) (1011000), (1111100) (00000111), (01122111)
(1011100), (1111000) (00001111), (01121111)

(00011111), (01111111)
(01011111), (00111111)

Table 2. Data for D4, E6, E7, E8.

(4) Let g be of type Dl , l > 5, so that W = W1⊕W2 where W1 ∼= Lg(θ + θ1) = Lg(2$1)

and W2 ∼= Lg(θ + θ2) = Lg($4) if l > 6 (and W2 ∼= Lg(θ + θ2) = Lg($4+$5) if

l = 5).

(a) [38] For each n ∈ Z>0, σ(w1)
n+1 is a singular vector of V k(g) if and only if

k = n− l + 2.

(b) For each n ∈ Z>0, σ(w2)
n+1 is a singular vector of V k(g) if and only if

k = n− 2.

Note that (1) for D4 is also a particular case of [38], that (1)(a) for G2 was proved

in [11], and that (1) for F4 was proved in [37].

Proof. (1) Assume that g is of type D4, E6, E7, E8. Then it is enough to prove (b).

For E6, E7, E8, W = W1. For D4, W = W1⊕W2⊕W3. Using the Dynkin automorphism,

we can assume that i = 1, and that W1 = Lg(2$1).

For types E6 and E7, g is of depth one, [25, Ch. IV, Definition 1], and (θ − θ1)/2 is not

a root.

Then we apply [25, Ch. IV, Proposition 11] to construct a singular vector w1 for W1.

Table 2 describes the pairs of positives roots (β j , δ j ) such that

β j + δ j = θ − θ1.

The number of such pairs turns out to be equal to h∨/6+ 1. In this table, a positive root

γ is represented by (k1, . . . , kl) if γ =
∑l

j=1 k jα j .

Choose a Chevalley basis {hi }i ∪ {eα, fα}α of g so that the conditions of [25, Ch. IV,

Definition 6] are fulfilled, that is

∀ j, [eδ j , [eβ j , eθ1 ]] = eθ , [eβ j , eθ1 ] = eβ j+θ1 , [eδ j , eθ1 ] = eδ j+θ1 . (1)

Then set

w1 := eθeθ1 −

h∨
6 +1∑
k=1

eβ j+θ1eδ j+θ1 ,
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so that

σ(w1) =
1
2
(eθ (−1)eθ1(−1)+ eθ1(−1)eθ (−1)

−

h∨
6 +1∑
k=1

(eβ j+θ1(−1)eδ j+θ1(−1)+ eδ j+θ1(−1)eβ j+θ1(−1))).

We observe using the relations (1) that for each j ,

[[ fθ , eβ j+θ1 ], eδ j+θ1 ] = [[ fθ , eδ j+θ1 ], eβ j+θ1 ] = −eθ1 . (2)

By (2), we get:

fθ (1) · σ(w1) =

(
[ fθ , eθ ](0)+ k+

h∨

6
+ 1

)
eθ1(−1)

−

h∨
6 +1∑
k=1

(eβ j+θ1(−1)[ fθ , eδ j+θ1 ](0)+ eδ j+θ1(−1)[ fθ , eβ j+θ1 ](0)).

Observe that

[ fθ , eθ ](0) · σ(w1) = −2σ(w1)

since 〈θ + θ1, θ
∨
〉 = 〈θ, θ∨〉 = 2, and that

[ fθ , eδ j+θ1 ](0) · σ(w1) = [ fθ , eβ j+θ1 ](0) · σ(w1) = 0

since −θ + δ j + θ1, −θ +β j + θ1 are perpendicular to θ + θ1, the weight of σ(w1), for

each j . In addition, since β j + 2θ1, δ j + 2θ1 are not roots, [eθ1(−1), σ (w1)] = 0. So, for

any n ∈ Z>0 we get,

fθ (1) · σ(w1)
n+1
= σ(w1)

n
(

k+
h∨

6
+ 1

)
eθ1(−1)

+

n∑
j=1

(
σ(w1)

n− j
(
[ fθ , eθ ](0)+ k+

h∨

6
+ 1

)
· σ(w1)

j eθ1(−1)
)

=

n∑
j=0

(
−2 j + k+

h∨

6
+ 1

)
σ(w1)

neθ1(−1)

= (n+ 1)
(
−n+ k+

h∨

6
+ 1

)
σ(w1)

neθ1(−1).

Hence σ(w1)
n+1 is a singular vector of V k(g) for k = n− h∨/6− 1.

Assume that g has type E8. Then g is not of depth one and we follow the construction

of [25, Ch. IV, § 4]. According to [25, Ch. IV, § 4], there is a positive root α such that the

algebra g̃ generated by eα, e2, . . . , e8, fα, f2, . . . , f8 has type D8, where ei , fi , i = 1, . . . , 8
are the generators of a Chevalley basis of g corresponding to the simple roots α1, . . . , α8 in

the Bourbaki numbering. Moreover, we have that α = θ1. Then we apply the construction

of [25, Ch. IV, § 1] to the algebra g̃ which is of depth one. One can choose our Chevalley
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basis {hi }i ∪ {eα, fα}α of g so that the conditions of [25, Ch. IV, Definition 6] are fulfilled

for g̃. Note that the highest root of g̃ is θ , that is, the same as for g.

Then we apply as in cases E6, E7 the construction of [25, Ch. IV, Proposition 11].

Table 2 describes the pairs of positives roots (β j , δ j ) such that

β j + δ j = θ − θ1.

The number of such pairs is h∨/6+ 1 too.

Then we set

w1 := eθeθ1 −

h∨
6 +1∑
k=1

eβ j+θ1eδ j+θ1 .

We verify as for the types E6, E7 that σ(w1)
n+1 is a singular vector of V k(g) for

k = n− h∨/6− 1.

(2)(b) and (4)(b) Assume that g is of type Bl , l > 3, or of type Dl , l > 5. Then in both

cases, θ2 is the highest root of the root system generated by α3, . . . , αl , (θ − θ2)/2 is not a

root and there are precisely two pairs (β j , δ j ) such that β j + δ j = θ − θ2. Namely, these

pairs are:

(β1, δ1) = (α2, α1+α2+α3) and (β2, δ2) = (α2+α3, α1+α2).

According to [25, Ch. IV, Proposition 11],

w2 := eθeθ2 −

2∑
k=1

eβ j+θ2eδ j+θ2

is a singular vector for g. Moreover, all bracket relations (1) and (2) hold as in case (1)1,

with θ2 in place of θ1. Hence we get,

fθ (1) · σ(w2)
n+1
= (−n+ k+ 2)σ (w2)

neθ2(−1).

The statement follows.

Remark 4.3. If g is of type Cl , l > 3, we can construct a singular vector for V k(g) of

weight 1
2 (θ + θ1) with k = −(l + 2)/2 as follows.

Set

θ0 := (θ + θ1)/2 = α1+ 2(α2+ · · ·+αl−1)+αl .

For j ∈ {2, . . . , l}, set

β j := α1+α2+ · · ·+α j−1, δ j := α2+ · · ·+α j−1+ 2(α j + · · ·+αl−1)+αl .

For j ∈ {3, . . . , l}, set

β ′j := α2+ · · ·+α j−1, δ′j := α1+ · · ·+α j−1+ 2(α j + · · ·+αl−1)+αl .

1For B3, a factor 2 appears in some brackets but this does not affect the final result.
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Then

∀ j ∈ {3, . . . , l}, β j + δ j = β
′

j + δ
′

j = θ0 =
1
2 (θ + θ1) and β2+ δ2 = θ0.

We can choose a Chevalley basis of g such that the vector

v2 := eθ (−1)e−α1(−1)−
1
2

h1(−1)eθ0(−1)+ eθ0(−2)

− eβ2(−1)eδ2(−1)−
1
2

l∑
j=3

(eβ j (−1)eδ j (−1)− eβ ′j (−1)eδ′j (−1))

is singular for V k(g) with k = −(l + 2)/2. The verifications are left to the reader. This

remark will be not used in the sequel.

Proof of Theorem 3.1. Let g, k be as in Theorem. Then σ(wi ) is a singular vector of

V k(g) for all i by Theorem 4.2. Let N be the submodule of V k(g) generated by σ(wi )

for all i , and set Ṽk(g) = V k(g)/N . By construction, the image of N in A(V k(g)) ∼= U (g)
is JW . Hence,

A(Ṽk(g)) = U (g)/JW .

It remains to show that Ṽk(g) = Vk(g), that is, Ṽk(g) is simple. (In the case that k is

admissible, that is, if g is of type G2, F4, this follows from [30]. Also, this has been

proved in [38] in the case that g is of type D4.)

Suppose that Ṽk(g) is not simple, or equivalently, Ṽk(g) is reducible as a ĝ-module. Then

there is at least one non-zero weight singular vector, say, v. Let µ be the weight of v, and

let M be a submodule of Ṽk(g) generated by v. Since Mtop = Lg(µ̄), Lg(µ̄) is a module

over A(Ṽk(g)) = U (g)/JW = C×U (g)/J0. On the other hand, Lg(µ̄) is finite-dimensional

since it is a submodule of V k(g)d for some d. This implies that Lg(µ̄) cannot be a

U (g)/J0-module. Therefore, µ̄ = 0. This implies that v coincides with the highest weight

vector of Ṽk(g) up to non-zero multiplication, which is a contradiction.

5. Proof of Theorem 1.1

Let g be of type Dl , l > 4, E6, E7, or E8.

For n ∈ Z>0, set

kn =

 n− h∨/6− 1 if g is of type D4, E6, E7, E8,

n− 2 if g is of type Dl , l > 5.
(3)

Let N be the submodule of V k(g) generated by σ(wi )
n+1 for all i for type D4, E6, E7,

E8, and by σ(w1)
n+l−3 and σ(w2)

n+1 for type Dl , l > 5, and let

Ṽkn (g) := V kn (g)/N .

Conjecture 1. Ṽkn (g) = Vkn (g), that is, Ṽkn (g) is simple, if kn < 0.
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We have proven Conjecture 1 in the case that n = 0 in type D4, E6, E7, E8 in the proof

of Theorem 3.1.

Remark 5.1. If kn > 0, Ṽkn (g) is obviously not simple as the maximal submodule of V kn (g)

is generated by eθ (−1)kn+1.

Proposition 5.2. For each n > 0, we have X Ṽkn (g)
= Omin.

Proof. Set k = kn . The exact sequence 0→ N → V k(g)→ Ṽk(g)→ 0 induces an exact

sequence

N/g[t−1
]t−2 N → V k(g)/g[t−1

]t−2V k(g)→ Ṽk(g)/g[t−1
]t−2Ṽk(g)→ 0.

Under the isomorphism V k(g)/g[t−1
]t−2V k(g) ∼= S(g), the image of N/g[t−1

]t−2 N in

V k(g)/g[t−1
]t−2V k(g) is identified with the ideal J of S(g) generated by some powers

of wi for all i . Hence J ⊂ JW ⊂
√

J . Therefore,
√

J =
√

JW = J0

by Lemma 2.1 as required.

Proof of Theorem 1.1. For g of type A1, A2, G2, F4, the number −h∨/6− 1 is admissible,

and the statement (1) of the theorem is a special case of [7, Theorem 5.14]. So let us

assume that g is of type Dl , l > 4, E6, E7, or E8 as above. Since Vkn (g) is a quotient of

Ṽkn (g), Proposition 5.2 implies that

XVkn (g) ⊂ Omin = Omin ∪ {0}.

Therefore, XVkn (g) is either {0} or Omin. The assertion follows since XVk (g) = {0} if and

only if k ∈ Z>0 by [7, Proposition 4.25] (see also Theorem 6.1(2) and (3)(a)).

The following assertion was proved in [38] in the case that g is of type D4 and k = −2.

Corollary 5.3. Let g, k be as in Theorem 1.1. Then Vk(g) has only finitely many simple

modules in the category O.

Proof. By [19, Proposition 2.17(c)], [10, Proposition 3.3] there is a surjection

RVk (g) � gr A(Vk(g))

of Poisson algebras,where gr A(Vk(g)) is the associated graded algebra of A(Vk(g))

with respect to Zhu’s filtration [42], which coincides with the one induced from

the PBW filtration of U (g) under the identification A(Vk(g)) = U (g)/Ik . Hence

Specm(gr A(Vk(g))) ⊂ XVk (g) ⊂ N . It follows that the action of the argumentation ideal

C[g∗]G+ of C[g∗] is nilpotent on gr A(Vk(g)) = C[g∗]/ gr Ik . Let Z(g) be the center of U (g).
The PBW filtration induces a filtration on Z(g)/(Z(g)∩ Ik). Since the associated graded

algebra gr(Z(g)/(Z(g)∩ Ik)) = C[g∗]G/(C[g∗]G ∩ gr Ik) is a subalgebra of C[g∗]/ gr Ik , the

nilpotentcy of generators implies that gr(Z(g)/(Z(g)∩ Ik)) is finite-dimensional. Hence so

is Z(g)/(Z(g)∩ Ik). We conclude that Z(g) acts finitely on A(Vk(g)) andtherefore there

are only finitely many possible central characters for the simple modules of A(Vk(g)).
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Remark 5.4. Let g, f be as in Theorem 1.1. As in [8, Theorem 9.5], one finds that

XVk (g) = Specm(gr A(Vk(g))), which gives another evidence for [8, Conjecture 1].

Conjecture 2. We have

XVk (g) = Omin

if and only if

(1) g is of type A1, and k is a rational admissible number that is not an integer, or

k = −2.

(2) g is of type A2, Cl (l > 2), F4, and k is admissible with denominator 2.

(3) g is of type G2, and k is admissible with denominator 3, or k = −1.

(4) g is of type D4, E6, E7, E8 and k is an integer such that

−
h∨

6
− 1 6 k 6 −1.

(5) g is of type Dl with l > 5, and k = −2,−1.

One can easily verify Conjecture 2 for type A1. Note that the ‘if’ part of Conjecture 2

follows from Theorem 1.1 and [7, Theorem 5.14].

6. Proof of Theorem 1.2

Let H
∞

2 +•

fθ (M) denote the BRST cohomology associated with the quantized Drinfeld–

Sokolov reduction corresponding to fθ [29], so that

Wk(g, fθ ) = H
∞

2 +0
fθ (V k(g)).

The correspondence M 7→ H
∞

2 +0
fθ (M) gives a functor Ok →Wk(g, fθ ) -Mod, where Ok is

the category O of ĝ of level k and Wk(g, fθ ) -Mod is the category of Wk(g, fθ )-modules.

Recall that Wk(g, fθ ) is the unique simple quotient of Wk(g, fθ ).

Theorem 6.1. (1) [4, Main theorem] The functor Ok →Wk(g, fθ ) -Mod, M 7→

H
∞

2 +0
fθ (M), is exact.

(2) [4, Main theorem] We have H
∞

2 +0
fθ (L(λ)) = 0 if λ(α∨0 ) ∈ Z>0, where α∨0 = K − θ .

Otherwise H
∞

2 +0
fθ (L(λ)) is an irreducible highest weight representation of Wk(g, fθ ).

In particular,

H
∞

2 +0
fθ (Vk(g)) ∼=

Wk(g, fθ ) if k 6∈ Z>0,

0 if k ∈ Z>0.

(3) [7, Theorem 4.21] For any quotient V of V k(g) we have

X
H
∞
2 +0

fθ
(V )
= XV ∩Smin.
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Hence

(a) [7, Proposition 4.22] H
∞

2 +0
fθ (V ) 6= 0 if and only if Omin ⊂ XV .

(b) [7, Theorem 4.23] H
∞

2 +0
fθ (V ) is a lisse vertex algebra if XV = Omin.

Remark 6.2. By [32, Theorem 6.3], the image H
∞

2 +0
fθ (M(λ)) of the Verma module M(λ)

of ĝ with highest weight λ is isomorphic to a Verma module of Wk(g, fθ ). Moreover, all

the Verma modules of Wk(g, fθ ) appear in this way. By Theorem 6.1(1), (2), H
∞

2 +0
fθ (L(λ))

is the unique simple quotient of H
∞

2 +0
fθ (M(λ)) provided λ(α∨0 ) 6∈ Z>0. From this, one sees

that all the irreducible highest weight representations of Wk(g, fθ ) appear as H
∞

2 +0
fθ (L(λ))

for some λ (see [4] for the details).

Let k be non-critical, that is, k+ h∨ 6= 0. By [32, Theorem 6.3], one finds that

H
∞

2 +0
fθ (M(λ)) ∼= H

∞

2 +0
fθ (M(µ)) if and only if µ = s0 ◦ λ, where s0 is the reflection

corresponding to α0. It follows that H
∞

2 +0
fθ (L(λ)) and H

∞

2 +0
fθ (L(µ)) are non-zero and

isomorphic if and only if λ(α∨0 ), µ(α
∨

0 ) 6∈ Z>0 and µ = s0 ◦ λ.

Proof of Theorem 1.2. Let k = kn with n > 0 as in § 5. We have shown that X Ṽk (g)
= Omin

in Proposition 5.2. Hence, the vertex algebra H
∞

2 +0
fθ (Ṽk(g)) is non-zero and lisse by

Theorem 6.1(3). Note that both Wk(g, fθ ) and H
∞

2 +0
fθ (Ṽk(g)) are quotients of Wk(g, fθ ).

Indeed, H
∞

2 +0
fθ (Ṽk(g)) is a quotient of Wk(g, fθ ) = H

∞

2 +0
fθ (V k(g)) by Theorem 6.1(1) since

Ṽk(g) is a quotient of V k(g). Because it is the unique simple quotient of Wk(g, fθ ),

Wk(g, fθ ) is a quotient of H
∞

2 +0
fθ (Ṽk(g)), which is lisse as we have just proved. Therefore,

Wk(g, fθ ) is lisse as well.

Conjecture 3. Let g and k be as in Theorem 1.2. Then H
∞

2 +0
fθ (Ṽk(g)) ∼=Wk(g, fθ ), where

Ṽk(g) is defined above.

Remark 6.3. Let g and k be as in Theorem 1.2. Then Wk(g, fθ ) 6∼= H
∞

2 +0
fθ (L(λ)) for

any irreducible admissible representation L(λ) of ĝ. Indeed, if k 6 −1 (respectively if

k > −1), L(k30) = Vk(g) (respectively L(s0 ◦ k30)) is the unique irreducible highest

weight representation of ĝ such that Wk(g, fθ ) ∼= H
∞

2 +0
fθ (L(λ)) (see Remark 6.2). But

k30 (respectively s0 ◦ k30) is not an admissible weight since it is not regular dominant.

7. Classification of lisse minimal W -algebras

Theorem 7.1. (1) Wk(sp2l , fθ ), l > 2, is lisse if and only if k is admissible with

denominator 2, that is, k = p/2 and p is an odd number equal to or greater than −1.

(2) Wk(so7, fθ ) is lisse if and only if k is admissible with denominator 2, that is,

k = p/2 and p is an odd integer equal to or greater than −3.

(3) Wk(so2l+1, fθ ), l > 4, is never lisse.
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(4) Wk(so2l , fθ ), l > 2, is lisse if and only if k is an integer equal to or greater than −2.

(5) Wk(F4, fθ ) is lisse if and only if k is admissible with denominator 2, that is, k = p/2
and p is an odd number equal to or greater than −5.

(6) Wk(E6, fθ ) is lisse if and only if k is an integer equal to or greater than −3.

(7) Wk(E7, fθ ) is lisse if and only if k is an integer equal to or greater than −4.

(8) Wk(E8, fθ ) is lisse if and only if k is an integer equal to or greater than −6.

If Wk(g, fθ ) = C, then it is obviously lisse. Hence, it is natural to ask when

Wk(g, fθ ) = C. It turns out that not every W -algebra admits one-dimensional represen-

tations.

Theorem 7.2. Suppose g is not of type A1. The following are equivalent:

(1) Wk(g, fθ ) admits a (non-twisted or Ramond-twisted) one-dimensional represen-

tation,

(2) Wk(g, fθ ) = C,

(3) (a) g belongs to the Deligne exceptional series and k = −h∨/6− 1, or

(b) g = sp2l , l > 2, and k = −1/2.

Remark 7.3. If g = sl2, then fθ = freg is regular, Wk(g, fθ ) =Wk(sl2, freg) is the simple

Virasoro vertex algebra provided that k 6= −2, and the results are well known2. Namely,

– Wk(sl2, freg) is lisse if and only if either k+ 2 = p/q, with p, q ∈ Z>0, (p, q) = 1
and p, q > 2, or k+ 2 = 0 (cf. [5]),

– Wk(sl2, freg) = C if and only if either k+ 2 = 2/3, or k+ 2 = 3/2, or k+ 2 = 0.

The rest of this section is devoted to the proof of Theorems 7.1 and 7.2.

Let g0 be the center of the reductive Lie algebra g\, so that

g\ =
⊕
i>0

gi .

Define an invariant bilinear form on gi , i > 0, by

(x |y)\i :=
(

k+
h∨

2

)
(x |y)−

1
4
(trg(0)(ad x ad y)),

where ( | ) is the normalized inner product of g as before. Then there exists a polynomial

k\i of k of degree 1 such that

( | )
\
i = k\i ( | )i ,

where ( | )i is the normalized inner product of gi , that is, (θi |θi ) = 2.

By [32, Theorem 5.1], we have an embedding⊗
i>0

V k\i (gi ) ↪→Wk(g, fθ )

of vertex algebras.

2Note that Wr−2(sl2, freg) ∼=W1/r−2(sl2, freg) for any r ∈ C∗.
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sl3 sll+1, l > 3 sp2l , l > 2 so7 so8 son , n > 9

g\ g0, g0⊕ g1 g1, g1⊕ g2,
3⊕

i=1

gi , g1⊕ g2,

g0
∼= C g0

∼= C, g1
∼= sll−1 g1

∼= sp2l−2 g1
∼= g2

∼= sl2 gi
∼= sl2, g1

∼= sl2, g2
∼= son−4

k\i k\0 = k+ 3
2 k\0 = k+

l + 1
2
, k\1 = k+ 1

2 k\1 = k+ 3
2 , k\i = k+ 2, k\1 = k+ n

2 − 2,

k\1 = k+ 1 k\2 = 2k+ 4 i ∈ {1, 2, 3} k\2 = k+ 2

Table 3. g\ =
⊕

i>0 gi and k\i for the classical types.

G2 F4 E6 E7 E8

g\ sl2 sp6 sl6 so12 E7

k\1 3k+ 5 k+ 5
2 k+ 3 k+ 4 k+ 6

Table 4. g\ =
⊕

i>0 gi and k\i for the exceptional types.

Lemma 7.4. (1) Suppose that Wk(g, fθ ) is lisse. Then the value of k\i for all i > 1 must

be a non-negative integer.

(2) Suppose that Wk(g, fθ ) admits a (non-twisted or Ramond-twisted) one-dimensional

representation. Then the value of k\i for all i > 0 must be zero.

Proof. (1) By [20], if a lisse vertex algebra V contains a quotient of an affine vertex

algebra as a vertex subalgebra, this quotient must be integrable. With V =Wk(g, fθ ),
we deduce that the simple quotient Vk\i

(gi ) must be integrable for any i > 1, that is, k\i
is a non-negative integer for any i > 1.

(2) If Wk(g, fθ ) admits a (non-twisted or Ramond-twisted) one-dimensional

representation, by restriction we obtain that V k\i (gi ), for i > 0, admits a one-dimensional

representation. Hence, k\i = 0 for all i > 0.

Lemma 7.5. The reductive Lie algebras g\ =
⊕

i>0 gi and the polynomials k\i are described

in Tables 3 and 4.

Proof. The verifications are easy and left to the reader.

Proof of Theorem 7.1. The ‘if’ part of Theorem 7.1 has been already proven in

Theorem 1.2 and [7, Theorem 5.18], and the ‘only if’ part follows from Lemmas 7.4

and 7.5.

Remark 7.6. For g = sp2l it is possible to show the following.

A(V−1/2(g)) ∼= U (g)/JW1
∼= C× (Lg($1)

∗
⊗C Lg($1))×U (g)/J0,
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where JW1 is the ideal generated by W1 := Lg(θ + θ1) ⊂ W . This implies that J0 is

generated by JW1 and �− c0.

Conjecture 4. (1) Wk(sl3, fθ ) is lisse if and only if k is admissible with denominator 2,

that is, k = p/2 and p is an odd integer equal or greater than −3.

(2) Wk(sln, fθ ), n > 4, is never lisse.

(3) Wk(G2, fθ ) is lisse if and only if k is admissible with denominator 3, or an integer

equal to or greater than −1.

The ‘if’ part of Conjecture 4 follows from [7, Theorem 5.18].

Proof of Theorem 7.2. Clearly (2) implies (1). The direction (1) ⇒ (3) follows from

Lemmas 7.4 and 7.5.

Let us show (3) implies (2).

The A2 case follows from [6].

Assume that g is of type Dl , E6, E7, or E8. Note that k = k0 in (3). Let N be the

submodule of V k(g) generated by vi = σ(wi ), for all i , and set Ṽk(g) = V k(g)/N as in § 5.

By Theorem 6.1(1) we have an exact sequence

0→ H
∞

2 +0
fθ (N )→ H

∞

2 +0
fθ (V k(g))→ H

∞

2 +0
fθ (Ṽk(g))→ 0

of Wk(g, fθ )-modules. The image v̄i of vi ∈ N in H
∞

2 +0
fθ (V k(g)) =Wk(g, fθ ) is non-zero,

since its image in RWk (g, fθ ) = C[Smin] is non-zero and coincides with eθi under the

identification C[Smin] = S(g fθ ), where eθi is a highest root vector of gi . By weight

consideration one finds that v̄i coincides with eθi (−1) ∈ V k\i (gi ) ⊂Wk(g, fθ ) up to

non-zero constant multiplication.

Since Wk(g, fθ )1 = g\ =
⊕

i>1 gi , the whole weight one space Wk(g, fθ )1 is included in

the image of H
∞

2 +0
fθ (N ). Then from the commutation relations of Wk(g, fθ ) described in

[32, Theorem 5.1] it follows that all the generators Gv, v ∈ g1/2, defined in [32], and the

conformal vector are also in the image of H
∞

2 +0
fθ (N ). Therefore H

∞

2 +0
fθ (Ṽk(g)) must be

trivial, and hence, so is its simple quotient Wk(g, fθ ).
Assume that g is of type Cl , G2 or F4, so that g\ is simple and k is admissible,

and hence the maximal submodule Nk of V k(g) is generated by a singular vector v.

By Theorem 6.1(1), (2) we have the exact sequence

0→ H
∞

2 +0
fθ (N )→Wk(g, fθ )→Wk(g, fθ )→ 0.

Also, by [32, Theorem 6.3.1] H
∞

2 +0
fθ (N ) is generated by the image v̄ of v. Since the image

of H
∞

2 +0
fθ (N ) in Wk(g, fθ ) is non-zero as Wk(g, fθ ) is lisse [7], the image of v̄ in Wk(g, fθ )

is non-zero. Hence, as above, by weight consideration it follows that W1(g, fθ )1 is included

in the image of H
∞

2 +0
fθ (N ), which gives that Wk(g, fθ ) = C as required.
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useful discussions, and Dražen Adamović for bringing the article [38] to his attention.

After submitting the first version of the present paper he had stimulating discussions

with Leonardo Rastelli, Hiraku Nakajima, Takahiro Nishinaka and Yuji Tachikawa. The

author would like to thank all of them. His research is supported by JSPS KAKENHI

Grant Numbers 25287004 and 26610006.

The second author would like to thank Rupert Wei Tze Yu for bringing the

article [24] to her attention, and Pierre Torasso for useful discussions about central

characters. Her research is supported by the ANR Project GERCHER Grant number

ANR-2010-BLAN-110-02.
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