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Abstract

We study the distribution Ex [exp (−q ∫ t
0 1(a,b)(Xs) ds);Xt ∈ dy], where −∞ ≤ a <

b < ∞, and where q, t > 0 and x ∈ R for a spectrally negative Lévy process X. More
precisely, we identify the Laplace transform with respect to t of this measure in terms
of the scale functions of the underlying process. Our results are then used to price step
options and the particular case of an exponential spectrally negative Lévy jump-diffusion
model is discussed.
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1. Introduction

One of Paul Lévy’s arcsine laws gives the distribution of the occupation time of the pos-
itive/negative half-line for a standard Brownian motion. More precisely, if {Bt , t ≥ 0} is a
standard Brownian motion then, for s ≤ t ,

P

(∫ t

0
1(−∞,0)(Bu)du ≤ s

)
= 2

π
arcsin

(√
s

t

)
.

This result was then extended to a Brownian motion with drift by Akahori [1] and Takács [16].
In the last few years several papers have looked at the distribution of functionals involving

occupation times of a spectrally negative Lévy process (SNLP), in each case over an infinite
time horizon. First, in [10], the Laplace transform of the occupation time of semi-infinite
intervals for a SNLP was derived. More precisely, the Laplace transform of

∫ ∞

0
1(−∞,0)(Xs) ds and

∫ τ−
−b

0
1(−∞,0)(Xs) ds,

whereX = {Xt, t ≥ 0} is a SNLP and τ−
−b = inf{t > 0 : Xt < −b} with b > 0, were expressed

in terms of the Laplace exponent and the scale functions of the underlying process X. Then,
in [14], those results were significantly extended, first by considering more general quantities,
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Joint distribution of a Lévy process and its occupation time. 275

i.e. (
τ−

0 ,

∫ τ−
0

0
1(a,b)(Xs) ds

)
and

(
τ+
c ,

∫ τ+
c

0
1(a,b)(Xs) ds

)
,

where τ−
0 = inf{t > 0 : Xt < 0}, τ+

c = inf{t > 0 : Xt > c}, and 0 ≤ a ≤ b ≤ c, and
by obtaining considerably simpler expressions for the joint Laplace transforms. Note that the
authors of [8] and [15] have also looked at the abovementioned quantities involving occupation
times, but for a so-called refracted Lévy process, while similar quantities for diffusion processes
were studied in [9] and [12].

In this paper we are interested in the joint distribution of a SNLP and its occupation time
when both are sampled at a fixed time. This is closer in spirit to Lévy’s arcsine law and also much
more useful for financial applications, especially for the pricing of occupation time options.

1.1. Occupation time options

Let the risk-neutral price of an asset S = {St , t ≥ 0} be of the form

St = S0eXt ,

where X = {Xt, t ≥ 0} is the log-return process. For example, in the Black–Scholes–Merton
model,X is a Brownian motion with drift. The time spent by S in an interval I , or, equivalently,
the time spent by X in an interval I ′, from time 0 to time T , is given by

∫ T

0
1{St∈I } dt =

∫ T

0
1{Xt∈I ′} dt.

Introduced by Linetsky [13], (barrier) step options are exotic options linked to occupation
times of the underlying asset price process. They are generalized barrier options: instead of
being activated (or canceled) when the underlying asset price crosses a barrier, which is a
problem from a risk management point of view, the payoff of occupation-time options will
depend on the time spent above/below this barrier. Therefore, the change of value occurs more
gradually. For instance, a (down-and-out call) step option admits the following payoff:

e−ρ ∫ T
0 1{St≤L} dt (ST −K)+ = e−ρ ∫ T

0 1{Xt≤ln(L/S0)} dt (S0eXT −K)+,

where ρ > 0 is called the knock-out rate. Therefore, its price can be written as

C(T ) := e−rT
E[e−ρ ∫ T

0 1{St≤L} dt (ST −K)+]
= e−rT

∫ ∞

ln(K/S0)

(S0ey −K)E[e−ρ ∫ T
0 1{Xs≤ln(L/S0)} ds;XT ∈ dy],

where r is the risk-free interest rate, and its Laplace transform, with respect to the time of
maturity T , can be written as

∫ ∞

0
e−pT C(T ) dT

=
∫ ∞

0
e−(p+r)T

∫ ∞

ln(K/S0)

(S0ey −K)E[e−ρ ∫ T
0 1{Xs≤ln(L/S0)} ds;XT ∈ dy] dT

=
∫ ∞

ln(K/S0)

(S0ey −K)

∫ ∞

0
e−(p+r)T

E[e−ρ ∫ T
0 1{Xs≤ln(L/S0)} ds;XT ∈ dy] dT .
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276 H. GUÉRIN AND J.-F. RENAUD

Thus, pricing step options boils down to identyfing this distribution:

E[e−ρ ∫ T
0 1(−∞,b)(Xs) ds;XT ∈ dy]

for a given value b ∈ R. Other occupation time options can also be priced using this distribution.
For references on occupation-time option pricing, see, e.g. [4], [5].

The rest of the paper is organized as follows. In Section 2 we give the necessary background
on SNLPs and their scale functions. In Section 3 the main results are presented, while their
proofs are left until Appendix C. Finally, in Section 4 we consider the pricing step options
question and a specific example of a jump-diffusion process with hyperexponential jumps.

2. SNLPs

On the filtered probability space (�,F , (Ft )t≥0,P), let X = {Xt, t ≥ 0} be a SNLP, that
is a process with stationary and independent increments and no positive jumps. Hereby, we
exclude the case of X having monotone paths. As the Lévy process X has no positive jumps,
its Laplace transform exists: for λ, t ≥ 0,

E[eλXt ] = etψ(λ),

where

ψ(λ) = γ λ+ 1

2
σ 2λ2 +

∫ ∞

0
(e−λz − 1 + λz 1(0,1](z))
(dz)

for γ ∈ R and σ ≥ 0, and where 
 is a σ -finite measure on (0,∞) such that
∫ ∞

0
(1 ∧ z2)
(dz) < ∞.

This measure is called the Lévy measure of X, while (γ, σ,
) is refered to as the Lévy triplet
ofX. Note that for convenience we define the Lévy measure in such a way that it is a measure on
the positive half-line instead of the negative half-line. Furthermore, note that E[X1] = ψ ′(0+).

There exists a function � : [0,∞) → [0,∞) defined by �(q) = sup{λ ≥ 0 | ψ(λ) = q}
(the right-inverse of ψ) such that

ψ(�(q)) = q, q ≥ 0.

It follows that �(q) = 0 if and only if q = 0 and ψ ′(0+) ≥ 0.
The process X has jumps of bounded variation (BV) if

∫ 1
0 z
(dz) < ∞. In that case, we

denote by c := γ + ∫ 1
0 z
(dz) > 0 the so-called drift of X which can now be written as

Xt = ct − St + σBt ,

where S = {St , t ≥ 0} is a driftless subordinator (for example, a gamma process or a compound
Poisson process with positive jumps).

For more details on SNLPs, we refer the reader to [7].

2.1. Scale functions and fluctuation identities

The law of X such that X0 = x is denoted by Px and the corresponding expectation by Ex .
We write P and E when x = 0. Finally, for a random variable Z and an event A,E[Z;A] :=
E[Z 1A].
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We now recall the definition of the q-scale function W(q). For q ≥ 0, the q-scale function
of the process X is defined as the continuous function on [0,∞) with Laplace transform

∫ ∞

0
e−λyW(q)(y) dy = 1

ψ(λ)− q
for λ > �(q). (1)

This function is unique, positive, and strictly increasing for x ≥ 0 and is further continuous for
q ≥ 0. We extend W(q) to the whole real line by setting W(q)(x) = 0 for x < 0. We write
W = W(0) when q = 0. The initial value of W(q) is known to be

W(q)(0) =
⎧⎨
⎩

1

c
when σ = 0 and

∫ 1
0 z
(dz) < ∞,

0 otherwise,

where we used the following definition: W(q)(0) = limx↓0W
(q)(x). We also have, when

ψ ′(0+) > 0,

lim
x→∞W(x) = 1

ψ ′(0+) .
Finally, we recall the following useful identity (see [14, Equation (6)]): forp, q ≥ 0 and x ∈ R,

(q − p)

∫ x

0
W(p)(x − y)W(q)(y) dy = W(q)(x)−W(p)(x). (2)

We will also frequently use the function

Z(q)(x) = 1 + q

∫ x

0
W(q)(y) dy, x ∈ R. (3)

Now, for any a, b ∈ R, define the stopping times

τ−
a = inf{t > 0 : Xt < a} and τ+

b = inf{t > 0 : Xt > b},
with the convention inf ∅ = ∞. It is well known that, if a ≤ x ≤ c then the solution to the
two-sided exit problem for X is given by

Ex[e−qτ+
c ; τ+

c < τ−
a ] = W(q)(x − a)

W(q)(c − a)
,

Ex[e−qτ−
a ; τ−

a < τ+
c ] = Z(q)(x − a)− Z(q)(c − a)

W(q)(c − a)
W(q)(x − a).

It is well known (see, e.g. [7]) that under the change of measure given by

dP
c
x

dPx

∣∣∣∣
Ft

= exp{c(Xt − x)− ψ(c)t}

for c such that Ex[ecX1 ] < ∞, X is a SNLP with Laplace exponent

ψc(θ) = ψ(θ + c)− ψ(c) for θ ≥ −c. (4)

Its right-inverse function is then given by

�c(q) = �(q + ψ(c))− c.
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We writeW(q)
c and Z(q)c for the corresponding scale functions. Note that [7, Lemma 8.4] states

that, for x ≥ 0,
W(q)(x) = ecxW(q−ψ(c))

c (x).

A direct application then gives us, for p, q ≥ 0,

W(p+q)(x) = e�(p)xW(q)

�(p)(x). (5)

Note also that in this case, ψ ′
�(p)(0+) = ψ ′(�(p)) > 0 and ��(p)(0) = 0 if p > 0.

For examples and numerical techniques related to the computation of scale functions, we
refer the reader to [6].

3. Main results

We are interested in the following distribution: for fixed q, t > 0, and for all x ∈ R,

Ex[e−q ∫ t
0 1(0,a)(Xs)ds;Xt ∈ dy]. (6)

We will consider the Laplace transform, with respect to t , of the expectation in (6): for all
x ∈ R, set, for p > 0,

v(x, dy) :=
∫ ∞

0
e−pt

Ex[e−q ∫ t
0 1(0,a)(Xs) ds;Xt ∈ dy] dt.

We note that it can be written as

v(x, dy) = 1

p
Ex[e−q ∫ ep

0 1(0,a)(Xs) ds;Xep ∈ dy], (7)

where ep is an exponentially distributed random variable (independent of X) with mean 1/p.

Remark 1. In what follows, for the sake of simplicity, we will omit indicator functions of
the form 1τ<∞ in our expectations, where τ is a first-passage stopping time when there is no
confusion. For example, we will write Ex[e−qτ−

a ] instead of Ex[e−qτ−
a ; τ−

a < ∞].
As in [14], for the sake of compactness of the next result, we introduce the following

functions. First, for p, p + q ≥ 0 and x ∈ R, set

W
(p,q)
a (x) = W(p+q)(x)− q

∫ a

0
W(p+q)(x − z)W(p)(z) dz

= W(p)(x)+ q

∫ x

a

W(p+q)(x − z)W(p)(z) dz, (8)

the second equality following from (2). We note that W
(p,q)
a (x) = W(p)(x) for x ≤ a.

Secondly, for p ≥ 0, q ∈ R with p + q ≥ 0 and x ∈ R, set

H (p,q)(x) = e�(p)x
[

1 + q

∫ x

0
e−�(p)zW(p+q)(z) dz

]
.

From (5), we easily obtain that

H (p,q)(x) = e�(p)xZ(q)�(p)(x). (9)
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Finally, note that the Laplace transform of H (p,q) on [0,∞) is explicitly given by
∫ ∞

0
e−λxH (p,q)(x) dx = 1

λ−�(p)

(
1 + q

ψ(λ)− p − q

)
for λ > �(p + q).

Here is our main result.

Theorem 1. Fix a > 0, q ≥ 0, and x ∈ R. For p > 0, y ∈ R,∫ ∞

0
e−pt

Ex[e−q ∫ t
0 1(0,a)(Xs) ds;Xt ∈ dy] dt

= e−�(p)a
(

H (p,q)(x)− q
∫ x
a
W(p)(x − z)H (p,q)(z) dz

ψ ′(�(p))+ q
∫ a

0 e−�(p)zH (p,q)(z) dz

)

×
{
H (p,q)(a − y)− q

∫ −y

0
H (p,q)(a − y − z)W(p)(z) dz

}
dy

−
{
W
(p,q)
x−a (x − y)− q

∫ −y

0
W
(p,q)
x−a (x − y − z)W(p)(z) dz

}
dy.

The proof of this theorem can be found in Appendix C.
We now extend the result of Theorem 1 to any finite and then semi-infinite interval, i.e. we

study the Laplace transform of

Ex[e−q ∫ t
0 1(a,b)(Xs) ds;Xt ∈ dy] and Ex[e−q ∫ t

0 1(−∞,b)(Xs) ds;Xt ∈ dy],
where t > 0.

We could reapply the same methodology (in a quite shorter form) as in the proof of Theorem 1
for proving the second part of the next result, but we will instead take limits in our main result.

Corollary 1. Fix a, b ∈ R with a < b. For all x ∈ R and q ≥ 0, we have, for p > 0,∫ ∞

0
e−pt

Ex[e−q ∫ t
0 1(a,b)(Xs) ds;Xt ∈ dy] dt

= e−�(p)(b−a)
(

H (p,q)(x − a)− q
∫ x
b
W(p)(x − z)H (p,q)(z− a) dz

ψ ′(�(p))+ q
∫ b−a

0 e−�(p)zH (p,q)(z) dz

)

×
{
H (p,q)(b − y)− q

∫ −y+a

0
H (p,q)(b − y − z)W(p)(z) dz

}
dy

−
{
W
(p,q)
x−b (x − y)− q

∫ −y+a

0
W
(p,q)
x−b (x − y − z)W(p)(z) dz

}
dy,

and∫ ∞

0
e−pt

Ex[e−q ∫ t
0 1(−∞,b)(Xs) ds;Xt ∈ dy] dt

=
{(

�(p + q)−�(p)

q

)
H (p+q,−q)(x − b)H (p,q)(b − y)− W

(p,q)
x−b (x − y)

}
dy,

(10)

where we understand (�(p + q) − �(p))/q in the limiting sense for q = 0 and, hence, we
replace it by 1/ψ ′(�(p)).
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Proof. From the spatial homogeneity of the process X, we have

Ex[e−q ∫ T
0 1(a,b)(Xs) ds;XT ∈ dy] = Ex−a[e−q ∫ T

0 1(0,b−a)(Xs) ds; a +XT ∈ dy],
so the first result is just an easy consequence of Theorem 1.

For the second result, we will take the limit of the first result when a goes to −∞. First note
that, from (5) and (9),

H (p,q)(x + c)

W(p+q)(c)
= e�(p)x

Z
(q)

�(p)(x + c)

W
(q)

�(p)(x + c)

(
W
(q)

�(p)(x + c)

W
(q)

�(p)(c)

)

−→ e�(p)x
q

��(p)(q)
e��(p)(q)x as c → ∞

= e�(p+q)x q

�(p + q)−�(p)
, (11)

where, to compute the limit, we used the fact that limc→∞ Z(q)(c)/W(q)(c) = q/�(q) and, to
obtain the last expression, we used the results from the beginning of Section 3. As a consequence,
using Lebesgue’s dominated convergence theorem, we obtain

lim
a→−∞

H (p,q)(x − a)− q
∫ x
b
W(p)(x − z)H (p,q)(z− a) dz

W(p+q)(−a)
= q

�(p + q)−�(p)

(
e�(p+q)x − q

∫ x

b

W(p)(x − z)e�(p+q)z dz

)

= q

�(p + q)−�(p)
e�(p+q)bH (p+q,−q)(x − b). (12)

On the other hand, using again Lebesgue’s dominated convergence theorem with the limit
in (5) and (11), we can write

lim
a→−∞

e�(p)(b−a)

W(p+q)(−a)
(
ψ ′(�(p))+ q

∫ b−a

0
e−�(p)zH (p,q)(z) dz

)

= q2

(�(p + q)−�(p))2
e�(p+q)b, (13)

since we also have

e�(p)(b−a) ψ ′(�(p))
W(p+q)(−a) = e�(p)b

ψ ′(�(p))
W
(q)

�(p)(−a)
→ 0 as a → −∞.

Finally, combining (12) and (13), we have

lim
a→−∞ e−�(p)(b−a)H

(p,q)(x − a)− q
∫ x
b
W(p)(x − z)H (p,q)(z− a) dz

ψ ′(�(p))+ q
∫ b−a

0 e−�(p)zH (p,q)(z) dz

= (�(p + q)−�(p))

q
H (p+q,−q)(x − b).

Using the fact that W(p)(x) = 0 for x < 0, the proof is complete. �

https://doi.org/10.1017/apr.2015.17 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2015.17


Joint distribution of a Lévy process and its occupation time. 281

Remark 2. (i) We note that W
(p,q)
0 (x) = W(p+q)(x). Thus, for x = b, the expression in (10)

can be written as
∫ ∞

0
e−pt

Eb[e−q ∫ t
0 1(−∞,b)(Xs)ds;Xt ∈ dy] dt

=
{(

�(p + q)−�(p)

q

)
H (p,q)(b − y)−W(p+q)(b − y)

}
dy.

(ii) Note that when q = 0, the result in (10) can be written as

∫ ∞

0
e−pt

Px(Xt ∈ dy) dt =
{

e�(p)(x−y)

ψ ′(�(p))
−W(p)(x − y)

}
dy,

which agrees with [7, Corollary 8.9] for the density of the p-potential measure of X without
killing.

4. Pricing step options

4.1. General case

Following the notations introduced in Section 1.1, we consider the risk-neutral price process
St = S0eXt , where X = {Xt, t ≥ 0} is a SNLP. Recall that the price of a (down-and-out call)
step option with knock-out rate ρ and risk-free interest rate r is given by

C(T ) := e−rT
E[e−ρ ∫ T

0 1{St≤L}dt (ST −K)+].

In what follows, without loss of generality, we take r = 0. The Laplace transform of the price
is then given by

∫ ∞

0
e−pT C(T ) dT

=
∫ ∞

ln(K/S0)

(S0ey −K)

∫ ∞

0
e−pT

E[e−ρ ∫ T
0 1(−∞,ln(L/S0))(Xs) ds;XT ∈ dy] dT ,

where, by Corollary 1 or more precisely (10), we have

∫ ∞

0
e−pT

E[e−ρ ∫ T
0 1(−∞,ln(L/S0))(Xs) ds;XT ∈ dy] dT

=
{(

�(p + ρ)−�(p)

ρ

)
H (p+ρ,−ρ)

(
ln

(
S0

L

))
H (p,ρ)

(
ln

(
L

S0

)
− y

)

− W
(p,ρ)

ln(S0/L)
(−y)

}
dy.

From a financial point of view, as we are interested in a down-and-out step option, it is
natural to look at the case when S0 > L and K > L.

Corollary 2. In an exponential spectrally negative Lévy model, the Laplace transform of the
price C(T ) of a (down-and-out call) step option with S0,K > L is given by, for p > 0 such
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that �(p) > 1,

∫ ∞

0
e−pT C(T ) dT = �(p + ρ)−�(p)

ρ�(p)(�(p)− 1)
H (p+ρ,−ρ)

(
ln

(
S0

L

))
K

(
L

K

)�(p)

−
∫ ln(S0/K)

0
(S0e−y −K)W(p)(y) dy,

with

H (p+ρ,−ρ)
(

ln

(
S0

L

))
=

(
S0

L

)�(p+ρ)(
1 − ρ

∫ ln(S0/L)

0
e−�(p+ρ)yW(p)(y) dy

)
.

Proof. We first note that, under the assumptions on S0,K, andL, on the interval [ln(K/S0),

+∞), we have y > ln(L/S0) and, thus,

H (p,ρ)

(
ln

(
L

S0

)
− y

)
=

(
L

S0

)�(p)
e−�(p)y and W

(p,ρ)

ln(S0/L)
(−y) = W(p)(−y).

Then, when K > L, we have, for p > 0 such that �(p) > 1,

∫ ∞

0
e−pT C(T ) dT =

(
�(p + ρ)−�(p)

ρ

)
H (p+ρ,−ρ)

(
ln

(
S0

L

))(
L

S0

)�(p)

×
∫ ∞

ln(K/S0)

(S0ey −K)e−�(p)y dy −
∫ ∞

ln(K/S0)

(S0ey −K)W(p)(−y) dy

= �(p + ρ)−�(p)

ρ�(p)(�(p)− 1)
H (p+ρ,−ρ)

(
ln

(
S0

L

))
K

(
L

K

)�(p)

−
∫ 0

ln(K/S0)

(S0ey −K)W(p)(−y) dy,

which concludes the proof. �
Of course, using Corollary 1, we could easily derive similar expressions for down-and-out

put step options, as well as for up-and-out call/put step options.

4.2. Particular case of a Lévy jump-diffusion process with hyperexponential jumps

We now present the case of a Lévy jump-diffusion process where the jump distribution is a
mixture of exponential distributions, as in [14]. In other words, let

Xt = ct + σBt −
Nt∑
i=1

ξi,

where σ ≥ 0,c ∈ R, B = {Bt , t ≥ 0} is a Brownian motion, N = {Nt, t ≥ 0} is a Poisson
process with intensity η > 0, and {ξ1, ξ2, . . .} are independent and identically distributed
random variables with common probability density function given by

fξ (y) =
( n∑
i=1

aiαie
−αiy

)
1{y>0},
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where n is a positive integer, 0 < α1 < α2 < · · · < αn, and
∑n
i=1 ai = 1, where ai > 0 for all

i = 1, . . . , n. All of the aforementioned objects are mutually independent.
The Laplace exponent of X is then clearly given by

ψ(λ) = cλ+ 1

2
σ 2λ2 + η

( n∑
i=1

aiαi

λ+ αi
− 1

)
for λ > −α1.

In this case

E[X1] = ψ ′(0+) = c− η

n∑
i=1

ai

αi
.

We note that λ �→ (ψ(λ)− q)−1 is a rational fraction of the form P(λ)/Q(λ), where P and
Q are polynomial functions given by

P(λ) =
n∏
i=1

(λ+ αi) and Q(λ) = (ψ(λ)− q) P (λ).

Note that if σ > 0 then Q is a polynomial of degree n+ 2 with σ 2/2 as the coefficient of the
leading term, and if σ = 0 then Q is a polynomial of degree n + 1 with c as the coefficient
of the leading term. In all cases, P is a polynomial of degree n. To ease the presentation,
set N = (n + 1) + 1{σ>0}. For q ≥ 0, the function λ �→ (ψ(λ) − q)−1 has N simple poles
such that θ(q)N < θ

(q)
N−1 < · · · < θ

(q)
2 ≤ 0 ≤ θ

(q)
1 with θ(q)1 = �(q). Studying the functions

λ �→ ψ(λ)− q and λ �→ Q(λ) extended on R \ {−αn, . . . ,−α1}, we deduce that, for σ > 0,

θ
(q)
n+2 < −αn < θ

(q)
n+1 < −αn−1 < θ

(q)
n · · · < −α1 < θ

(q)
2 ≤ 0 ≤ θ

(q)
1 ,

and, for σ = 0,

−αn < θ
(q)
n+1 < −αn−1 < θ

(q)
n · · · < −α1 < θ

(q)
2 ≤ 0 ≤ θ

(q)
1 ,

where, in both cases, we have one of the following three cases:

• θ
(q)
2 < θ

(q)
1 = �(q) = 0 if and only if q = 0 and ψ ′(0) > 0;

• θ
(q)
2 = θ

(q)
1 = �(q) = 0 if and only if q = 0 and ψ ′(0) = 0;

• θ
(q)
2 = 0 < θ

(q)
1 = �(q) if and only if q = 0 and ψ ′(0) < 0.

For more details see, e.g. [3], where a similar analysis is undertaken for a closely related jump-
diffusion process. For simplicity, in what follows, we assume that either q > 0 or q = 0 and
ψ ′(0) �= 0, in which cases θ(q)2 �= θ

(q)
1 . Consequently, using the classical decomposition of

rational fractions and noting that

P(θ
(q)
i )

Q′(θ(q)i )
= 1

ψ ′(θ(q)i )
,

we can write
1

ψ(λ)− q
=

N∑
i=1

1

ψ ′(θ(q)i )

1

(λ− θ
(q)
i )

. (14)
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In conclusion, by Laplace inversion, we have, for x ≥ 0,

W(q)(x) =
N∑
i=1

eθ
(q)
i x

ψ ′(θ(q)i )
, (15)

Z(q)(x) =

⎧⎪⎪⎨
⎪⎪⎩
q

N∑
i=1

eθ
(q)
i x

θ
(q)
i ψ ′(θ(q)i )

if q > 0,

1 if q = 0,

since taking λ = 0 in (14) gives q
∑N
i=1 (θ

(q)
i ψ ′(θ(q)i ))

−1 = 1.

Remark 3. We recover well-known expressions of scale functions in two specific cases; see,
e.g. [6]. When σ > 0 and n = 0, X is a Brownian motion with drift and, for x ≥ 0,

W(q)(x) = eθ
(q)
1 x√
�q

− eθ
(q)
2 x√
�q

with θ(q)1 = (1/σ 2)(
√
�q − c), θ(q)2 = (−1/σ 2)(

√
�q + c), and �q = c2 + 2σ 2q.

When σ = 0 and n = 1,X is a compound Poisson process with drift and exponential jumps
and, for x ≥ 0,

W(q)(x) = α + θ
(q)
1√

�q
eθ

(q)
1 x − α + θ

(q)
2√

�q
eθ

(q)
2 x

with θ(q)1 = (1/2c)(q + η − cα + √
�q), θ

(q)
2 = (1/2c)(q + η − cα − √

�q), and �q =
(q + η − cα)2 + 4cαq.

Now, let us explicitly compute the Laplace transform of the priceC(T ), given by Corollary 2,
for this particular SNLP.

We first give an expression of H (p,q). Let us recall, from (9), that H (p,q)(x) =
e�(p)xZ(q)�(p)(x) with �(p) = θ

(p)
1 . Denoting by θ(q)�(p),i the poles of (ψ�(p)(λ)− q)−1 and

using (4), we have θ(q)�(p),i = θ
(p+q)
i −�(p) and ψ ′

�(p)(θ
(q)

�(p),i) = ψ ′(θ(p+q)
i ). Consequently,

for q > 0 and x ≥ 0,

H (p,q)(x) = q

N∑
i=1

eθ
(p+q)
i x

(θ
(p+q)
i − θ

(p)
1 )ψ ′(θ(p+q)

i )
, (16)

and, for x < 0,H (p,q)(x) = exp (θ(p)1 x).
We also compute, for a < x,

W
(p,q)
a (x) = q

N∑
i,j=1

exp (θ(p+q)
i x + (θ

(p)
j − θ

(p+q)
i )a)

(θ
(p+q)
i − θ

(p)
j )ψ ′(θ(p+q)

i )ψ ′(θ(p)j )
.

Note that W
(p,q)
a had already been computed in [14]. However, our expression here is slightly

simpler because we made one more simplification.

Corollary 3. In a Lévy jump-diffusion model with hyperexponential jumps, the Laplace trans-
form of the price C(T ) of a (down-and-out call) step option with S0,K > L is given by,
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for p > 0 such that �(p) > 1,∫ ∞

0
e−pT C(T ) dT

= K

N∑
i=2

1

ψ ′(θ(p)i )

[
�(p + ρ)−�(p)

(�(p + ρ)− θ
(p)
i )�(p)(�(p)− 1)

(
L

K

)�(p)(
S0

L

)θ(p)i

− 1

θ
(p)
i (θ

(p)
i − 1)

(
S0

K

)θ(p)i
]
,

when S0 > K > L, and∫ ∞

0
e−pT C(T ) dT

= K
�(p + ρ)−�(p)

�(p)(�(p)− 1)

N∑
i=1

1

(�(p + ρ)− θ
(p)
i )ψ ′(θ(p)i )

(
L

K

)�(p)(
S0

L

)θ(p)i

,

when K ≥ S0 > L.

Proof. From (16), we deduce that, for S0 > L,

H (p+ρ,−ρ)
(

ln

(
S0

L

))
= ρ

N∑
i=1

1

(θ
(p+ρ)
1 − θ

(p)
i )ψ ′(θ(p)i )

(
S0

L

)θ(p)i

.

Using (15), we also deduce that, when S0 > K ,

∫ ln(S0/K)

0
(S0e−y −K)W(p)(y) dy = K

N∑
i=1

1

θ
(p)
i (θ

(p)
i − 1)ψ ′(θ(p)i )

(
S0

K

)θ(p)i

,

otherwise, when K ≥ S0 the integral is equal to 0. Then, from Corollary 2, for S0 > K ,

∫ ∞

0
e−pT C(T ) dT = θ

(p+ρ)
1 − θ

(p)
1

ρθ
(p)
1 (θ

(p)
1 − 1)

H (p+ρ,−ρ)
(

ln

(
S0

L

))
K

(
L

K

)θ(p)1

−
∫ ln(S0/K)

0
(S0e−y −K)W(p)(y) dy

= K
θ
(p+ρ)
1 − θ

(p)
1

θ
(p)
1 (θ

(p)
1 − 1)

N∑
i=1

1

(θ
(p+ρ)
1 − θ

(p)
i )ψ ′(θ(p)i )

(
S0

L

)θ(p)i
(
L

K

)θ(p)1

−K

N∑
i=1

1

θ
(p)
i (θ

(p)
i − 1)ψ ′(θ(p)i )

(
S0

K

)θ(p)i

=
N∑
i=2

1

ψ ′(θ(p)i )
S
θ
(p)
i

0

[
θ
(p+ρ)
1 − θ

(p)
1

(θ
(p+ρ)
1 − θ

(p)
i )θ

(p)
1 (θ

(p)
1 − 1)

L(θ
(p)
1 −θ(p)i )K1−θ(p)1

− 1

θ
(p)
i (θ

(p)
i − 1)

K1−θ(p)i

]
.

The result follows since θ(s)1 = �(s) for all s ≥ 0. �
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Appendix A. A probabilistic decomposition

In our proof of Theorem 1, we will use a probabilistic decomposition of v(x, dy) (see
Lemma 1 below). In order to do so, we first recall known results about resolvents; see, e.g. [6,
Theorem 2.7].

First, for 0 ≤ x ≤ a,

U(p)(x, dy; a) =
∫ +∞

0
e−pt

Px(Xt ∈ dy; t < τ−
0 ∧ τ+

a ) dt

is the p-potential measure of X killed on exiting [0, a] (see also [7, Theorem 8.7]) and it has a
density supported on [0, a] given by

U(p)(x, dy; a) =
{
W(p)(x)W(p)(a − y)

W(p)(a)
−W(p)(x − y)

}
dy. (17)

Also, for x ≤ a,

U
(p)
+ (x, dy; a) =

∫ +∞

0
e−pt

Px(Xt ∈ dy; t < τ+
a ) dt

is the p-potential measure of X killed on exiting (−∞, a] and it has a density supported on
(−∞, a] given by

U
(p)
+ (x, dy; a) = {e�(p)(x−a)W(p)(a − y)−W(p)(x − y)} dy. (18)

Finally, for x ≥ a,

U
(p)
− (x, dy; a) =

∫ +∞

0
e−pt

Px(Xt ∈ dy; t < τ−
a ) dt

is the p-potential measure of X killed on exiting [a,+∞) and it has a density supported on
[a,+∞) given by

U
(p)
− (x, dy; a) = {e−�(p)(y−a)W(p)(x − a)−W(p)(x − y)} dy. (19)

Recall that if we assume X has paths of BV, then, for any b ∈ R, we have Xτ−
b
< b almost

surely (a.s.). In fact, this means that X does not creep downward, which is true as soon as the
Brownian part is 0 (σ = 0).

Lemma 1. Assume that a > 0. For all x ∈ R, v(x, dy) satisfies

v(x, dy) = U
(p)
− (x, dy; a) 1y>a +Ex[e−pτ−

a U(p+q)(Xτ−
a
, dy; a)] 1y∈[0,a]

+ v(a, dy)

W(p+q)(a)
Ex[e−pτ−

a W(p+q)(Xτ−
a
)]

+ v(0, dy)Ex[e−pτ−
a EX

τ
−
a

[e−(p+q)τ−
0 +�(p)X

τ
−
0 ; τ−

0 < τ+
a ]]

+ Ex[e−pτ−
a EX

τ
−
a

[e−(p+q)τ−
0 U

(p)
+ (Xτ−

0
, dy; 0); τ−

0 < τ+
a ]] 1y<0 .
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Proof. For simplicity, we assume that X has paths of BV. The proof is almost identical
when X has paths of unbounded variation (UBV), so the details are left to the reader.

We use representation (7) of v(·, dy). For x < 0, we note that

v(x, dy) = 1

p
Px(Xep ∈ dy; ep < τ+

0 )+ v(0, dy)Px(τ
+
0 < ep)

= U
(p)
+ (x, dy; 0) 1y<0 +e�(p)xv(0, dy). (20)

Let us now consider 0 ≤ x < a. We have

v(x, dy) = 1

p
Ex[e−qep ;Xep ∈ dy; ep < τ−

0 ∧ τ+
a ] + v(a, dy)Ex[e−qτ+

a ; τ+
a < τ−

0 ∧ ep]

+ Ex[e−qτ−
0 v(Xτ−

0
, dy); τ−

0 < ep ∧ τ+
a ]

= U(p+q)(x, dy; a) 1y∈[0,a] +v(a, dy)Ex[e−(p+q)τ+
a ; τ+

a < τ−
0 ]

+ Ex[e−(p+q)τ−
0 v(Xτ−

0
, dy); τ−

0 < τ+
a ]

= U(p+q)(x, dy; a) 1y∈[0,a] +v(a, dy)
W(p+q)(x)
W(p+q)(a)

+ Ex[e−(p+q)τ−
0 v(Xτ−

0
, dy); τ−

0 < τ+
a ].

Since X is of BV, Xτ−
0
< 0 a.s. Consequently, using (20), we note that for any x < a,

v(x, dy) = U(p+q)(x, dy; a) 1y∈[0,a] +v(a, dy)
W(p+q)(x)
W(p+q)(a)

+ v(0, dy)Ex[e−(p+q)τ−
0 +�(p)X

τ
−
0 ; τ−

0 < τ+
a ]

+ Ex[e−(p+q)τ−
0 U

(p)
+ (Xτ−

0
, dy; 0); τ−

0 < τ+
a ] 1y<0 . (21)

We now study the last case. Let x ≥ a,

v(x, dy) = 1

p
Px(Xep ∈ dy; ep < τ−

a )+ Ex[v(Xτ−
a
, dy); τ−

a < ep]

= U
(p)
− (x, dy; a) 1y>a +Ex[e−pτ−

a v(Xτ−
a
, dy)].

Since Xτ−
a
< a a.s., we deduce from (21) that, for x ≥ a,

v(x, dy) = U
(p)
− (x, dy; a) 1y>a +Ex[e−pτ−

a U(p+q)(Xτ−
a
, dy; a)] 1y∈[0,a]

+ v(a, dy)

W(p+q)(a)
Ex[e−pτ−

a W(p+q)(Xτ−
a
)]

+ v(0, dy)Ex[e−pτ−
a EX

τ
−
a

[e−(p+q)τ−
0 +�(p)X

τ
−
0 ; τ−

0 < τ+
a ]]

+ Ex[e−pτ−
a EX

τ
−
a

[e−(p+q)τ−
0 U

(p)
+ (Xτ−

0
, dy; 0); τ−

0 < τ+
a ]] 1y<0 .

To conclude the proof, we just note that this last expression is satisfied for any x ∈ R. �
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Appendix B. Technical results

It is easy to show that the Laplace transform of x �→ ∫ x
0 W

(p)(x − y)H (p,q)(y) dy is given
by

λ �→
(

1

λ−�(p)

)(
1

ψ(λ)− (p + q)

)
.

Therefore, ∫ x

0
W(p)(x − z)H (p,q)(z) dz =

∫ x

0
e�(p)(x−z)W(p+q)(z) dz,

from which we deduce that, in the spirit of (8) and [14, Equation (6)],

H (p,q)(x)− q

∫ x

a

W(p)(x − y)H (p,q)(y) dy = e�(p)x + q

∫ a

0
W(p)(x − y)H (p,q)(y) dy.

Note that, we can use the last relation to rewrite our main result in Theorem 1 and Lemma 5.
The next result is well known (see, e.g. [7] and [11]), but we rewrite it in terms of H (p,q)

for future reference.

Lemma 2. For x ∈ R, a ≤ b, p, q ≥ 0, we have

Ex[e−(p+q)τ−
a +�(p)X

τ
−
a ; τ−

a < τ+
b ]

= e�(p)aH (p,q)(x − a)− H (p,q)(b − a)

W(p+q)(b − a)
e�(p)aW(p+q)(x − a).

Moreover, for x, a ∈ R, p ≥ 0, and q > 0, we have

Ex[e−(p+q)τ−
a +�(p)X

τ
−
a ; τ−

a < ∞]
= e�(p)aH (p,q)(x − a)− q

�(p + q)−�(p)
e�(p)aW(p+q)(x − a)

and, when q → 0, we obtain

Ex[e−pτ−
a +�(p)X

τ
−
a ; τ−

a < ∞] = e�(p)x − ψ ′(�(p))e�(p)aW(p)(x − a).

The next lemma is an immediate consequence of [14, Lemma 2.2].

Lemma 3. Let p, q ≥ 0. For a ≤ b and x, y ∈ R, we have

Ex[e−pτ−
a W(q)(Xτ−

a
− y); τ−

a < τ+
b ]

= W(p)(x − y)+ (q − p)

∫ a−y

0
W(p)(x − y − z)W(q)(z) dz

− W(p)(x − a)

W(p)(b − a)

(
W(p)(b − y)+ (q − p)

∫ a−y

0
W(p)(b − y − z)W(q)(z) dz

)
,

and
Ex[e−pτ−

a W(q)(Xτ−
a

− y); τ−
a < +∞]

= W(p)(x − y)+ (q − p)

∫ a−y

0
W(p)(x − y − z)W(q)(z) dz

−W(p)(x − a)H (p,q−p)(a − y).
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Proof. First, let us note that, by the spatial homogeneity of X, we have

Ex[e−pτ−
a W(q)(Xτ−

a
− y); τ−

a < τ+
b ] = Ex−y[e−pτ−

a−yW(q)(Xτ−
a−y ); τ

−
a−y < τ+

b−y],
Ex[e−pτ−

a W(q)(Xτ−
a

− y); τ−
a < +∞] = Ex−y[e−pτ−

a−yW(q)(Xτ−
a−y ); τ

−
a−y < +∞].

So, it suffices to prove the lemma for the y = 0 case.
Let y = 0. We know from [14, Lemmas 2.1 and 2.2] that

Ex[e−pτ−
a W(q)(Xτ−

a
); τ−

a < τ+
b ]

= W(q)(x)− (q − p)

∫ x

a

W(p)(x − z)W(q)(z) dz

− W(p)(x − a)

W(p)(b − a)

(
W(q)(b)− (q − p)

∫ b

a

W(p)(b − z)W(q)(z) dz

)
.

Using (2), the expression can be written as

Ex[e−pτ−
a W(q)(Xτ−

a
); τ−

a < τ+
b ]

= W(p)(x)+ (q − p)

∫ a

0
W(p)(x − z)W(q)(z) dz

− W(p)(x − a)

W(p)(b − a)

(
W(p)(b)+ (q − p)

∫ a

0
W(p)(b − z)W(q)(z) dz

)
.

Since

Ex[e−pτ−
a W(q)(Xτ−

a
); τ−

a < ∞] = lim
b→+∞ Ex[e−pτ−

a W(q)(Xτ−
a
); τ−

a < τ+
b ],

W(p)(b)

W(p)(b − a)
= e�(p)a

W�(p)(b)

W�(p)(b − a)
,

W(p)(b − z)

W(p)(b − a)
= e�(p)(a−z)

W�(p)(b − z)

W�(p)(b − a)
,

by Lebesgue’s dominated convergence theorem, we have

Ex[e−pτ−
a W(q)(Xτ−

a
); τ−

a < +∞]
= W(p)(x)+ (q − p)

∫ a

0
W(p)(x − z)W(q)(z) dz

− e�(p)(a)W(p)(x − a)

(
1 + (q − p)

∫ a

0
e−�(p)zW(q)(z) dz

)
. �

Using the same tools as in the previous lemma, we also have the following result for Z(q).

Lemma 4. Let p, q ≥ 0. For a ≤ b and x, y ∈ R, we have

Ex[e−pτ−
a Z(q)(Xτ−

a
− y); τ−

a < τ+
b ]

= Z(q)(x − y)+ (q − p)

∫ a−y

0
W(p)(x − y − z)Z(q)(z) dz

− W(p)(x − a)

W(p)(b − a)

(
Z(q)(b − y)+ (q − p)

∫ a−y

0
W(p)(b − y − z)Z(q)(z) dz

)
.
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and

Ex[e−pτ−
a Z(q)(Xτ−

a
− y); τ−

a < +∞]

= Z(p)(x − y)+ (q − p)

∫ a−y

0
W(p)(x − y − z)Z(q)(z) dz

−W(p)(x − a)e�(p)(a−y)
[

p

�(p)
+ (q − p)

∫ a−y

0
e�(p)zZ(q)(z) dz

]
,

where limp→0 p/�(p) → ψ ′(0) ∨ 0 in the p = 0 case.

Lemma 5. For all a, x ∈ R, p ≥ 0, and p + q ≥ 0,

Ex[e−pτ−
a H (p,q)(Xτ−

a
); τ−

a < ∞]
= H (p,q)(x)− q

∫ x

a

W(p)(x − z)H (p,q)(z) dz

−W(p)(x − a)e�(p)a
(
ψ ′(�(p))+ q

∫ a

0
e−�(p)zH (p,q)(z) dz

)
.

Proof. First, using (9), we note that

Ex[e−pτ−
a H (p,q)(Xτ−

a
); τ−

a < ∞] = Ex[e−pτ−
a +�(p)X

τ
−
a Z

(q)

�(p)(Xτ−
a
); τ−

a < ∞]
= e�(p)xE�(p)x [Z(q)�(p)(Xτ−

a
); τ−

a < ∞]
= e�(p)xEx[Z(q)�(p)(Yν−

a
); ν−

a < ∞],
where Y is the SNLP obtained from X by the change of measure with coefficient �(p) and
ν−
a = inf{t > 0 : Yt < a}. Therefore, we can apply Lemma 4 and write

Ex[e−pτ−
a H (p,q)(Xτ−

a
); τ−

a < ∞]
= Z�(p)(x)+ q

∫ a

0
W�(p)(x − y)Z

(q)

�(p)(y) dy

−W�(p)(x − a)e��(p)(0)a
[
ψ ′
�(p)(0)+ q

∫ a

0
e��(p)(0)yZ(q)�(p)(y) dy

]

since ψ ′
�(p)(0) = ψ ′(�(p)) ≥ 0 and��(p)(0) = 0. The result follows from the discussion at

the end of Section 2.1. �

Appendix C. Proofs of the main results

Proof of Theorem 1 when X is of BV. First, we assume that X has paths of BV.
In order to simplify the manipulations, we introduce the following quantities:

A(x) := Ex[e−pτ−
a EX

τ
−
a

[e−(p+q)τ−
0 +�(p)X

τ
−
0 ; τ−

0 < τ+
a ]],

B(x; a) := Ex[e−pτ−
a W(p+q)(Xτ−

a
)], C(x, dy) := Ex[e−pτ−

a U(p+q)(Xτ−
a
, dy; a)],

D(x, dy) := Ex[e−pτ−
a EX

τ
−
a

[e−(p+q)τ−
0 U

(p)
+ (Xτ−

0
, dy; 0); τ−

0 < τ+
a ]],

https://doi.org/10.1017/apr.2015.17 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2015.17


Joint distribution of a Lévy process and its occupation time. 291

where, as mentioned previously, all these expectations are taken over the set {τ−
a < ∞}. At this

point, let us note that these quantities can be made more explicit (in terms of scale functions)
using results from Appendix B; this will be done later on.

Then, using Lemma 1, we can write, for all x ∈ R,

v(x, dy) = A(x)v(0, dy)+ B(x; a)
W(p+q)(a)

v(a, dy)

+ U
(p)
− (x, dy; a) 1y>a +C(x, dy) 1y∈[0,a] +D(x, dy) 1y<0 . (22)

Therefore, the quantities v(0, dy) and v(a, dy) satisfy the following 2 × 2 linear system:

(1 − A(0))v(0, dy)− W(p+q)(0)
W(p+q)(a)

v(a, dy) = C(0, dy) 1y∈[0,a] +D(0, dy) 1y<0,

− A(a)v(0, dy)+
(

1 − B(a; a)
W(p+q)(a)

)
v(a, dy)

= U
(p)
− (a, dy; a) 1y>a +C(a, dy) 1y∈[0,a] +D(a, dy) 1y<0 .

Our aim is to exhibit the values of v(0, dy) and v(a, dy) from this linear system using results
from Appendix B in order to obtain an explicit expression of v(x, dy).

From Lemma 2, we note that

A(x) = Ex[e−pτ−
a H (p,q)(Xτ−

a
)] − H (p,q)(a)

W(p+q)(a)
B(x; a), (23)

and from Lemma 3, we have

B(x; a) = W(p)(x)+ q

∫ a

0
W(p)(x − z)W(p+q)(z) dz−W(p)(x − a)H (p,q)(a). (24)

We deduce that

A(0) = 1 − W(p+q)(0)
W(p+q)(a)

H (p,q)(a),

and, using (2), that
B(a; a) = W(p+q)(a)−W(p)(0)H (p,q)(a). (25)

Then, since W(p+q)(0) > 0, the linear system can be written as

H (p,q)(a)v(0, dy)− v(a, dy) = W(p+q)(a)
W(p+q)(0)

[C(0, dy) 1y∈[0,a] +D(0, dy) 1y<0],

− A(a)v(0, dy)+ W(p)(0)

W(p+q)(a)
H (p,q)(a)v(a, dy)

= U
(p)
− (a, dy; a) 1y>a +C(a, dy) 1y∈[0,a] +D(a, dy) 1y<0 .

The determinant of the matrix related to this linear system is equal to

� = W(p)(0)

W(p+q)(a)
(H (p,q)(a))

2 − A(a)
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with, from (23), (25), and Lemma 5,

A(a) = −W(p)(0)e�(p)a
(
ψ ′(�(p))+ q

∫ a

0
e−�(p)zH (p,q)(z) dz

)

+ W(p)(0)

W(p+q)(a)
(H (p,q)(a))

2
.

We deduce that

� = W(p)(0)e�(p)a
(
ψ ′(�(p))+ q

∫ a

0
e−�(p)zH (p,q)(z) dz

)
. (26)

Since ψ is increasing on [�(0),+∞) and W(p)(0) = 1/c > 0 when X has paths of BV, the
determinant � is not equal to 0 and there is a unique solution to the linear system satisfied by
v(0, dy) and v(a, dy).

We first note, using (23) and the first equation of the linear system, that (22) can be written
as

v(x, dy) = Ex[e−pτ−
a H (p,q)(Xτ−

a
)]v(0, dy)+ U

(p)
− (x, dy; a) 1y>a

+
[
C(x, dy)− B(x; a)

W(p+q)(0)
C(0, dy)

]
1y∈[0,a]

+
[
D(x, dy)− B(x; a)

W(p+q)(0)
D(0, dy)

]
1y<0 (27)

with, by Lemma 5,

Ex[e−pτ−
a H (p,q)(Xτ−

a
)] = H (p,q)(x)− q

∫ x

a

W(p)(x − z)H (p,q)(z) dz− W(p)(x − a)

W(p)(0)
�.

(28)
Case 1. We first consider y > a. The linear system satisfied by v(0, dy) and v(a, dy) is

then

H (p,q)(a)v(0, dy)− v(a, dy) = 0,

−A(a)v(0, dy)+ W(p)(0)

W(p+q)(a)
H (p,q)(a)v(a, dy) = U

(p)
− (a, dy; a).

We deduce that v(a, dy) = H (p,q)(a)v(0, dy) and v(0, dy) = �−1U
(p)
− (a, dy; a). Conse-

quently, from the expression of v(x, dy) given by (27), we finally have, for y > a,

v(x, dy) = �−1U
(p)
− (a, dy; a)Ex[e−pτ−

a H (p,q)(Xτ−
a
)] + U

(p)
− (x, dy; a)

with U(p)− (·, dy; a) given by (19) and Ex[e−pτ−
a H (p,q)(Xτ−

a
)] given by (28). We finally have,

for y > a,

v(x, dy) = −W(p)(x − y) dy

+�−1W(p)(0)e�(p)(a−y)
(

H (p,q)(x)− q

∫ x

a

W(p)(x − z)H (p,q)(z) dz

)
dy.
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Case 2. We now consider y ∈ [0, a]. The linear system satisfied by v(0, dy) and v(a, dy)
becomes

H (p,q)(a)v(0, dy)− v(a, dy) = W(p+q)(a)
W(p+q)(0)

C(0, dy),

−A(a)v(0, dy)+ W(p)(0)

W(p+q)(a)
H (p,q)(a)v(a, dy) = C(a, dy),

and its unique solution is given by

v(0, dy) = �−1(H (p,q)(a)C(0, dy)+ C(a, dy)),

v(a, dy) = �−1
(
A(a)

W(p+q)(a)
W(p+q)(0)

C(0, dy)+ H (p,q)(a)C(a, dy)

)
.

Let us now study C(x, dy). From (17), we obtain

C(x, dy) =
{
W(p+q)(a − y)

W(p+q)(a)
Ex[e−pτ−

a W(p+q)(Xτ−
a
)] − Ex[e−pτ−

a W(p+q)(Xτ−
a

− y)]
}

dy,

from which we deduce that

C(0, dy) = W(p+q)(0)W(p+q)(a − y)

W(p+q)(a)
dy.

Introducing the notation B(·; ·) and using (25), we obtain

C(x, dy) =
{
W(p+q)(a − y)

W(p+q)(a)
B(x; a)− B(x − y; a − y)

}
dy,

C(a, dy) = W(p)(0)

(
H (p,q)(a − y)− W(p+q)(a − y)

W(p+q)(a)
H (p,q)(a)

)
dy.

We deduce that

v(x, dy) = v(0, dy)Ex[e−pτ−
a H (p,q)(Xτ−

a
)] − B(x − y; a − y) dy

with v(0, dy) = �−1W(p)(0)H (p,q)(a − y) dy. So using (24) and (28), we obtain, for y ∈
[0, a],

v(x, dy) =
{
�−1W(p)(0)H (p,q)(a − y)

(
H (p,q)(x)− q

∫ x

a

W(p)(x − z)H (p,q)(z) dz

)

−W(p)(x − y)− q

∫ a−y

0
W(p)(x − y − z)W(p+q)(z) dz

}
dy.

Case 3. We finally consider the case where y < 0. Now the linear system becomes

H (p,q)(a)v(0, dy)− v(a, dy) = W(p+q)(a)
W(p+q)(0)

D(0, dy),

−A(a)v(0, dy)+ W(p)(0)

W(p+q)(a)
H (p,q)(a)v(a, dy) = D(a, dy),
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and its unique solution is

v(0, dy) = �−1(H (p,q)(a)D(0, dy)+D(a, dy))

v(a, dy) = �−1
(
A(a)

W(p+q)(a)
W(p+q)(0)

D(0, dy)+ H (p,q)(a)D(a, dy)

)
.

Let us now study D(x, dy).
From (18), for y < 0, we have U(p)+ (x, dy; 0) = {e�(p)xW(p)(−y)−W(p)(x − y)} dy for

x ≤ a and then

D(x, dy) = Ex[e−pτ−
a EX

τ
−
a

[e−(p+q)τ−
0 U

(p)
+ (Xτ−

0
, dy; 0); τ−

0 < τ+
a ]],

= {W(p)(−y)A(x)− Ex[e−pτ−
a EX

τ
−
a

[e−(p+q)τ−
0 W(p)(Xτ−

0
− y); τ−

0 < τ+
a ]]} dy.

Using Lemma 3 and B(x−y; a−y) = Ex[e−pτ−
a W(p+q)(Xτ−

a
− y)], with an explicit form

given by (24), we obtain

Ex[e−pτ−
a EX

τ
−
a

[e−(p+q)τ−
0 W(p)(Xτ−

0
− y); τ−

0 < τ+
a ]]

= B(x − y; a − y)− q

∫ −y

0
B(x − y − z; a − y − z)W(p)(z) dz

− B(x; a)
W(p+q)(a)

(
W(p+q)(a − y)− q

∫ −y

0
W(p+q)(a − y − z)W(p)(z) dz

)
.

From (23), we deduce that

D(x, dy) =
{
W(p)(−y)Ex[e−pτ−

a H (p,q)(Xτ−
a
)] − B(x − y; a − y)

+ q

∫ −y

0
B(x − y − z; a − y − z)W(p)(z) dz

+ B(x; a)
W(p+q)(a)

(
W(p+q)(a − y)− q

∫ −y

0
W(p+q)(a − y − z)W(p)(z) dz

−W(p)(−y)H (p,q)(a)

)}
dy.

We easily compute B(h; a + h) = W(p+q)(h) for h ≥ 0 and then, using (2), we have

D(0, dy) = W(p+q)(0)
W(p+q)(a)

{
W(p+q)(a − y)− q

∫ −y

0
W(p+q)(a − y − z)W(p)(z) dz

−W(p)(−y)H (p,q)(a)

}
dy.

Consequently, we have

D(x, dy)− B(x; a)
W(p+q)(0)

D(0, dy)

=
{
W(p)(−y)Ex[e−pτ−

a H (p,q)(Xτ−
a
)] − B(x − y; a − y)

+ q

∫ −y

0
B(x − y − z; a − y − z)W(p)(z) dz

}
dy
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and then, from (27) satisfied by v(x, dy), we deduce that

v(x, dy) = (v(0, dy)+ pW(p)(−y) dy)Ex[e−pτ−
a H (p,q)(Xτ−

a
)]

−
{
B(x − y; a − y)− q

∫ −y

0
B(x − y − z; a − y − z)W(p)(z) dz

}
dy.

Taking x = a in (28), we note that Ea[e−pτ−
a H (p,q)(Xτ−

a
)] = H (p,q)(a)−�. Then, using the

expression of the solution of the linear system, the expression of D(·, dy), and (25), we have

v(0, dy)+W(p)(−y) dy

= �−1(H (p,q)(a)D(0, dy)+D(a, dy)+�W(p)(−y) dy)

= �−1W(p)(0)

{
H (p,q)(a − y)− q

∫ −y

0
H (p,q)(a − y − z)W(p)(z) dz

}
dy.

Introducing this value in the last expression of v(x, dy) and using (28), we have

v(x, dy)

=
{
−(W(p)(x − a)H (p,q)(a − y)+ B(x − y; a − y))

+ q

∫ −y

0
(W(p)(x − a)H (p,q)(a − y − z)+ B(x − y − z; a − y − z))W(p)(z) dz

+�−1W(p)(0)

(
H (p,q)(a − y)− q

∫ −y

0
H (p,q)(a − y − z)W(p)(z) dz

)

×
(

H (p,q)(x)− q

∫ x

a

W(p)(x − z)H (p,q)(z) dz

)}
dy.

From (24), we have

W(p)(x − a)H (p,q)(a)+ B(x; a) = W(p)(x)+ q

∫ a

0
W(p)(x − u)W(p+q)(u) du,

then we finally deduce that, for y < 0,

v(x, dy) =
{
−W(p)(x − y)− q

∫ a−y

0
W(p)(x − y − u)W(p+q)(u) du

+ q

∫ −y

0

(
W(p)(x − y − z)

+ q

∫ a−y−z

0
W(p)(x − y − z− u)W(p+q)(u) du

)
W(p)(z) dz

+�−1W(p)(0)

(
H (p,q)(a − y)− q

∫ −y

0
W(p)(z)H (p,q)(a − y − z) dz

)

×
(

H (p,q)(x)− q

∫ x

a

W(p)(x − z)H (p,q)(z) dz

)}
dy.

Introducing the value of � given by (26) and noting that the function W (p,q) satisfies the
relations

W
(p,q)
x−a (x − y) = W

(p+q,−q)
a−y (x − y),

and, if y > a then it is also equal to W(p)(x − y), Theorem 1 is proved for any y ∈ R when X
is a process of BV. �
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Proof of Theorem 1 when X is of UBV. We follow the argument of [14] to extend the result
to SNLPs with paths of UBV.

The proof uses an approximation argument for which we need to introduce a sequence
(Xn)n≥1 of SNLPs of BV. To this end, suppose that X is a SNLP having paths of UBV, with
Lévy triplet (γ, σ,
). Set, for each n ≥ 1, the SNLP Xn = {Xnt , t ≥ 0} with Lévy triplet
(γ, 0,
n), where


n(dθ) := 1{θ≥1/n}
(dθ)+ σ 2n2δ1/n(dθ)

with δ1/n(dθ) standing for the Dirac point mass at 1/n. Note thatXn has paths of BV with drift
cn := γ + ∫ 1

1/n θ
(dθ)+ σ 2n2, which means that cn may be negative for small n. Note that
Xn is a true SNLP when n is large enough n. By Bertoin [2, p. 210] , Xn converges a.s. to X
uniformly on compact time intervals. We denote byW(p)

n the p−scale function corresponding
to the SNLP Xn. We also introduce ψn the Laplace exponent and �n its right-inverse of Xn,
with the convention inf ∅ = ∞.

From the result for BV processes, we have, for y ≥ 0,

∫ ∞

0
e−pt

Ex[e−q ∫ t
0 1(0,a)(Xns ) ds;Xnt ∈ dy] dt

= e−�n(p)a
(

H
(p,q)
n (x)− q

∫ x
a
W
(p)
n (x − z)H

(p,q)
n (z) dz

ψ ′
n(�n(p))+ q

∫ a
0 e−�n(p)zH (p,q)

n (z) dz

)

×
{
H
(p,q)
n (a − y)− q

∫ −y

0
H
(p,q)
n (a − y − z)W

(p)
n (z) dz

}
dy

−
{
W
(p,q)
n,x−a(x − y)− q

∫ −y

0
W
(p,q)
n,x−a(x − y − z)W

(p)
n (z) dz

}
dy (29)

with

W
(p,q)
n,a (x) := W

(p+q)
n (x)− q

∫ a

0
W
(p+q)
n (x − z)W

(p)
n (z) dz

and

H
(p,q)
n (x) := e�n(p)x

[
1 + q

∫ x

0
e−�n(p)zW(p+q)

n (z) dz

]
.

Our aim is to let n → ∞ on both sides of (29).
By Bertoin [2, p. 210] , Xn converges a.s. to X uniformly on compact time intervals, i.e.

for all t > 0, limn→∞ sups∈[0,t] |Xns −Xs | = 0 Px-a.s. Let f be a real-valued continuous
and bounded function. Therefore, e−q ∫ t

0 1(0,a)(Xns ) dsf (Xnt ) converges to e−q ∫ t
0 1(0,a)(Xs) dsf (Xt )

a.s. Since e−q ∫ t
0 1(0,a)(Xns ) dsf (Xnt ) is bounded, it is easy to show that the left-hand side of (29)

converges to the desired expression.
Let us now study the convergence of the right-hand side of (29) when n → ∞. The Laplace

exponent ψn of Xn converges to the Laplace exponent ψ of X, which implies that �n and ψ ′
n

converge to � and ψ ′, respectively. It also means via (1) that the Laplace transform of W(p)
n

converges to the Laplace transform of W(p), and thanks to the continuity theorem of Laplace
transforms, W(p)

n (x) → W(p)(x) for all x ∈ R and p ≥ 0. Finally, since all the functions
involved are continuous and since we consider compact sets, using the dominated convergence
theorem on the definition of W

(p,q)
n,a and H

(p,q)
n , we deduce the convergence of W

(p,q)
n,a and

H
(p,q)
n to W

(p,q)
a and H (p,q), respectively, when n → ∞. �
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