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The formal theory of equality of opportunity emerged as a response –
a friendly amendment – to Ronald Dworkin’s (1981) characterization of
resource egalitarianism, as defined by the allocation that would emerge from
insurance contracts arrived at behind a thin veil of ignorance. This article
compares several of the prominent versions of this response, put forth in the
period 1993–2008. I argue that a generalization of Roemer’s (1998) proposal
is the most satisfactory approach. Inherent in that generalization is an
indeterminism, which reflects a philosophical problem: that we do not know
what comprise the ethically correct rewards to effort. The indeterminism
should be resolved, I propose, by an ancillary theory which limits the degree
of inequality which is acceptable.

INTRODUCTION

The past 60 years have been a fruitful period for egalitarian political
philosophy and social science. This period is long enough to include
John Harsanyi’s (1953, 1955) contributions to the formulation of the
veil of ignorance and utilitarianism, John Rawls’s (1971) transformative
approach to the theory of distributive justice, Amartya Sen’s (1980)
amendments to Rawls involving the notions of functioning and capability,
and Ronald Dworkin’s (1981) resource egalitarian proposal. Dworkin,
in particular, exploited a distinction that was only implicitly dealt with
by Rawls, that there is a cut, perhaps partially obscure, between those
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characteristics of a person’s environment, genetic and social, for which
he should not be held responsible, and those for which he should be.
Dworkin defined the cut as separating a person’s resources from his
preferences, a cut which G.A. Cohen (1989) later criticized as being
misplaced, because a person’s preferences are in part endogenously
determined by his environment, and hence he cannot be consistently held
responsible for all aspects of his choices.

At the philosophical level, Dworkin’s contribution changed the nature
of the discussion in egalitarian theory, because it introduced, as key for
that theory, personal responsibility, which had, generally speaking, been
important only for right-wing political philosophy. Dworkin, moreover,
went further than most philosophers: he proposed an economic allocation
rule to implement his conception of resource egalitarianism, and this
invited economists into the discussion. In a word, Dworkin proposed a
thought experiment involving a thin veil of ignorance (thin, compared
with the Rawlsian veil); behind the veil lived souls who represented
persons in the world, who knew their person’s preferences – over risk
in particular – but not the resources their persons would enjoy. Resources,
importantly, include alienable ones, like wealth, but also inalienable ones,
like talents and birth families. Dworkin ran an insurance market among
these souls, who were each equally financed to purchase insurance against
their persons’ being born unlucky in resources. Presumably rational souls
would purchase insurance to compensate their person, should she be
born unlucky in resources. Thus, the thin veil allowed the souls to know
just what Dworkin had deemed persons to be responsible for (their
preferences) but not know their resources (whose distribution was, to use
the Rawlsian phrase, morally arbitrary). It was an ingenious device for
computing a non-morally-arbitrary distribution of resources – for at the
equilibrium in the insurance market, the society (consisting of souls whose
preferences matched those in actual society) would have determined a
distribution of resources consonant with their preferences, and from a
starting position of wealth equality (wealth, that is, in the currency that
was used behind the veil). Presumably, a soul would buy insurance not
only to pay out to his person, should that person be born poor, but also
should she be born untalented or handicapped. Thus the distribution
of alienable resources would adjust so as to compensate persons for the
distribution of inalienable ones.

Unfortunately, it turns out that the insurance mechanism does not
always work the way Dworkin hypothesized it would. This was initially
noticed by Roemer (1985); the latest form of that critique of the Dworkin
insurance mechanism is available in Moreno-Ternero and Roemer (2008).
In brief, a rational decision maker (here, a soul) might transfer resources
to his person in ‘good’ states (when his person was born talented) and
allow his person to be relatively poorly resourced in ‘bad’ states, because
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the payoff to possessing wealth in good states might more than balance
the paucity of wealth in bad states. This could happen even if all souls
were risk averse. Consequently, although Dworkin’s philosophical idea
was attractive, it was not properly implemented by his hypothetical
insurance scheme. Indeed, one was left with the choice of either rejecting
the insurance scheme as an attractive allocation rule, or retaining it, and
rejecting the fundamental tenet of resource egalitarianism, that persons
should be compensated for poor resource endowments.

Further philosophical contributions were made by Cohen (1989)
and Richard Arneson (1989), who argued that, rather than equalizing
resources, the right way to implement Dworkin’s responsibility-sensitive
intuitions was to equalize ‘opportunities for welfare’. Cohen (1989)
advocated a related ‘access to advantage’. Inspired by these amendments,
Roemer (1993, 1998) proposed an algorithm for equalizing opportunities
which did not rely upon a veil-of-ignorance thought experiment.

Roemer’s approach, however, was only one possible rectification of
Dworkin’s insurance proposal, and other authors, most notably Marc
Fleurbaey and Francois Maniquet, developed an alternative approach
to the compensation/responsibility dyad, also not relying on the veil
of ignorance. This work has been recently codified and extended
in Fleurbaey (2008). The present paper offers some reflections on
the contrasts between Roemer’s approach and that of Fleurbaey and
Maniquet.

Before proceeding, it is worthwhile to comment on the fact that
Harsanyi, Rawls and Dworkin all relied on veil-of-ignorance thought
experiments (although, strangely, Dworkin (1981) denied doing so), while
Cohen, Arneson, Roemer, Fleurbaey and Maniquet do not. My own view
is that the Rawlsian project – of deriving equality from impartiality and
rationality – is unrealizable. It is even impossible to derive equality from
impartiality, rationality and risk aversion. Something more is required,
like solidarity, reciprocity (as in Kolm 2008) or community (as in Cohen
2009). As the veil of ignorance is a device for insuring impartiality, it does
not suffice to determine egalitarian outcomes (see Roemer 2002), unless
some degree of solidarity or community is postulated to motivate the
souls cogitating behind it. But if that degree of solidarity is assumed, who
needs the veil of ignorance or original position? One can proceed more
directly to an egalitarian conclusion.

Thus, egalitarians might be deflated, because Rawls’s hope, of
deriving an egalitarian political philosophy from almost nothing (that is,
impartiality and the moral arbitrariness of the birth lottery) fails. We
are left with a more modest agenda, of arguing for equality conditional
upon humans’ caring about each other, that is, having solidaristic
preferences or values. We might further argue with non-egalitarians
either that people should care about each other or that they do, but we
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cannot maintain, so I believe, that totally self-interested, risk averse agents
would advocate equality in the appropriate environment for rational
reflection.

In the next section, I describe some simple economic environments
which I’ll use to formulate the economic approaches to equality of
opportunity, or in Fleurbaey’s (2008) language, responsibility-sensitive
egalitarianism. In the sections after that, I will propose a generalization
of Roemer’s (1998) algorithm, and then describe Fleurbaey’s egalitarian-
equivalent allocation rule. I will offer some reflections upon the
philosophical differences in the approaches along the way.

1. ECONOMIC ENVIRONMENTS

We have a society whose members’ welfare is described by a function
v(x, e, j), where x is consumption of a resource, e is effort and j is the
person’s type. The type summarizes all aspects of the person’s social and
biological environment that influence his behaviour and realization of the
outcome, for which society deems him to be not responsible. Effort is a
measure of the chosen actions the individual takes, which influence the
outcome in a positive way: thus v is an increasing function of x and e. In
particular, v must be distinguished from the subjective utility function that
represents a person’s preference order, which is normally construed to be
decreasing in effort. It is incorrect to say, however, that a person is (fully)
responsible for his effort. For the distributions of effort will generally be
different in different types, and the characteristics of those distributions
are therefore an aspect of the type – a circumstance. An individual is
only partially responsible for his effort: to wit, I say he is responsible
for his rank on the distribution of effort of his type. Denote the set of
types by J = {1, 2, . . . , J }. The fraction of type j individuals in the society
is f j .

Consider, first, the pure resource allocation problem. There is an amount
of a good, x̄ per capita, to be distributed among the individuals. A feasible
allocation is a distribution of this resource to the population as a function
of their types and their effort. Denote such an allocation by X. In general
the distributions of effort in the types are themselves functions of the
allocation of the resource: thus, we denote the distribution of effort in type
j if the allocation is X by G j (e; X). The effort expended by an individual of
type j who sits at rank y ∈ [0, 1] of the distribution of effort of his type is
denoted (G j )−1(y; X). Because y, not e, is the ethically relevant quantity in
our theory, we will denote an allocation as

X = {x j (y)}, that is X : J × [0, 1] → �+}.
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Thus, a feasible allocation satisfies:

x̄ =
∑

f j

∫ 1

0
x j (y)dy.(1.1)

Let me reiterate the important point, which develops a statement made
in the Introduction, that we measure effort by the rank of a person’s
effort on the effort distribution of his type, rather than by his absolute
effort. I pointed out that Cohen criticized Dworkin for holding persons
entirely responsible for their preferences (unless, Dworkin said, these
preferences were compulsions or addictions), because preferences are
in part determined by one’s environment. For example, think of ‘years
of school attendance’ as a measure of effort, where the objective of
interest is ‘wage earning capacity’. The distribution of effort in a type is
a characteristic of the type, not of any individual within it, and as such,
if a person is not to be held responsible for his type, he should not be
responsible for characteristics of his type’s distribution of effort. Now one
major reason that a person of disadvantaged circumstances may choose
to drop out of secondary school is that that behaviour is frequent in his
type – in other words, it is because he belongs to a type with an effort
distribution that has a low mean. He should not be held responsible for
that low mean, and so we require a measure of effort which sterilizes out
the size of the mean. The obvious choice is to measure a person’s effort not
by the years of school he attended but by the rank of his years of school
attended in the distribution of years of school attended of his type. That is
the purpose of the formalism above.

To simplify and make concrete the discussion, I will study a special
case, which satisfies:

Assumption A

A1. The distributions G j (e) are independent of X.
A2. v(x, e, j) = xa eb K j , for some a , b ∈ (0, 1).

Assumption A1 is important and restrictive, for it says that the
distributions of effort are not influenced by the state’s policy – and,
hopefully, that is not true in reality, because we would like state policy
to influence effort. However, for the purposes of the present paper, the
simplifying assumption is acceptable. Assumption A2 posits a simple
form for the interaction of effort and resources.
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We may write the welfare1 of an individual at an allocation X =
{x j (.)| j = 1, . . . , J ; y ∈ [0, 1]} as

v(x j (y), (G j )−1(y), j) ≡ ṽ j (y; X).(1.2)

Note that there are two conduits through which a person’s type affects
his outcome: the direct effect, through the third argument of v (i.e. Kj), and
the indirect effect, through the second argument of v (i.e. the effect on the
distribution of effort). Empirically, as will be noted below in section 7, the
indirect effect is often very important, and so for policy purposes, it is
important to use a notation which helps us to remember this.

Here are several examples. v measures a worker’s wage at age 30,
x is the amount of public resource per annum devoted to his education
as a child, e is the amount of education he acquires, and j summarizes
the effect of his family background on both the years of education he
acquires and perhaps, through other channels, on his wage. It is well
known that individuals from poorly educated parents in general acquire
less education than individuals from highly educated parents. Thus, the
family background (j) affects the distribution of effort, as well as having
a direct effect on the development of the child.2 A second example: v is
health status, e is lifestyle quality, j is family background and x is medical
resources. Here, I believe the model is too simple: I would rather say
that circumstances and effort determine education, education and another
effort determine lifestyle, and lifestyle and medical resources determine
health. Thus, there are two loci at which effort enters.3 A third example:
‘individuals’ are countries, v is GDP per capita, j summarizes the level of
development and other physical characteristics and endowments of the
country, e is the quality of governance in the country’s institutions and x
is a level of international aid.4

Note that in these three applications, v is not a utility function
that represents an individual’s subjective preference order. In economics,
we model education as being costly (a disutility) for the individual,
and good governance in a country requires costly effort by politicians
and bureaucrats. But, by hypothesis, effort here enters positively into
the realization of the outcome. In most of the applications that interest
me, v measures some outcome that is objective and observable about
individuals, and the function v is not a representation of their subjective
preferences. This reflects my intention that the theory be useful for

1 I will generally refer to the outcome v as welfare, although, as I said, it should in general
be distinguished from subjective utility.

2 For an application, see Betts and Roemer (2007).
3 For an application, see Jones et al. (2011).
4 For a study of this application, see Llavador and Roemer (2001).
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policy makers. The Ministry of Health is interested in maximizing
some distribution of life expectancy or quality-years of life, not
subjective utility (e.g. it will try to discourage smoking, even though
individuals may derive subjective pleasure from smoking); the Ministry
of Education is interested in producing students who are well-educated,
not happy students; and international lending institutions are interested
in maximizing GDP per capita in countries, not the subjective utility of the
country’s politicians.

The standard economic hypothesis is that the choice of effort by
the individual reflects the maximization of some subjective preference
order. But that assumption is not necessary for the approach I propose: my
approach takes as data not preference orders of individuals, but observed
distributions of effort and circumstances. I contend that the theory, as I
present it, does not require those who wish to use it to accept the rational-
choice explanation of effort. Now it is certainly possible to take a more
restrictive approach, which derives effort as the result of the maximization
of a person’s preference order over goods and effort, in which effort is
costly. In this case, one would begin not with the objective functions v,
but rather utility functions u, in which differential effort was due to a
varying cost parameter in utility functions representing the psychic cost
of effort expenditure to the individual. Effort would decrease utility in
that formulation, and a person would be held responsible for the rank of
his idiosyncratic cost parameter in the distribution of that cost parameter
in his type. Although I will take this approach in the tax problem that I
describe later in this section, I generally eschew it, as a less desirable and
more restrictive approach than the one based on the outcome functions v.

This posture also reflects my preference to apply the theory to
problems where outcomes are observable, for I believe that in all policy
applications, planners will be concerned to deliver equity (here, equal
opportunity) with respect to the achievement of a particular objective,
which is the concern of their ministry.5

That having been said, let me now describe a second economic
environment, one designed for treating the optimal tax problem. In this
case, I will begin, as students of optimal taxation do, with subjective
preferences. Let the preferences of an agent over consumption (x) and
years of education (s) be given by u(x, s) = x − s2

2γ
, some γ ∈ �++. Call

γ the agent’s degree of ambition. There is a set of types J = {1, 2, . . . , J } and
the distribution function of γ in type j is G j . The frequency of type j in
the population is f j . The wage a person earns is w = βs, some β > 0. The
policy space is the set of affine tax policies, (t,b), where a person’s after-tax

5 Calsamiglia (2009) has shown that pathologies can arise as a consequence of this kind of
myopia: the ‘local’ pursuit of equal opportunity can harm equality of opportunity in a
global sense. This will not concern me here.

https://doi.org/10.1017/S0266267112000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0266267112000156


172 JOHN E. ROEMER

consumption will be (1 − t)w + b. The tax policies are budget-balanced, so
the per capita demogrant (or transfer) b is equal to per capita tax revenues.

Facing a tax policy (t,b), the individual chooses a level of education,
the solution of

max
s

(1 − t)βs + b − s2

2γ

which is s(t, γ ) = (1 − t)βγ . It follows that per capita tax revenues, and b,
are given by:

b =
∑

f j

∫
t(1 − t)β2γ dG j (γ ) = β2t(1 − t)γ̄ ,(1.3)

where γ̄ is the average degree of ambition in the population.
We take people to be in part responsible for their degrees of ambition.

As indicated, I define the degree of responsibility of an individual as the
rank at which his degree of ambition lies, on the distribution of degrees of
ambition of his type; that is, it is y where γ = (G j )−1(y). Therefore we may
write the utility of an individual as a function of the policy t and effort
as:

v(t, (G j )−1(y)) = (1 − t)2β2(G j )−1(y)
2

+ t(1 + t)β2γ̄

∼= (1 − t)2(G j )−1(y) + 2t(1 − t)γ̄ ,(1.4)

where at the end I have taken a ratio-scale transformation of v (that is,
I have transformed it by the multiplicative factor 2/β2). Note that, while
effort (s) enters negatively into utility, the effort rank (y) enters positively
into the indirect utility v. The less ‘costly’ a person views effort (the
larger his γ ), the higher his eventual welfare v. However, recall that v is
not the preference order over income and effort that directs a person’s
choices: that is summarized by u. A person is not free to choose his
cost parameter – that is something that we view him as responsible for,
although we do not provide the reason why we do. In this sense, the
classical economic approach, of beginning with preferences, is a sort of
Procrustean bed into which we can force the theory of equal opportunity,
but it is not as natural, so I think, as beginning with the data of observed
effort, circumstances and outcomes. Tradition requires, however, that in
the optimal tax problem, we take the preference-based approach.

Finally, I remark that, like almost all the literature to date, I here ignore
dynamic issues with regard to implementing equality of opportunity.
Presumably, if an equal-opportunity policy succeeds, it will change the
distribution of types in the next generation. A policy maker should be

https://doi.org/10.1017/S0266267112000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0266267112000156


ON SEVERAL APPROACHES TO EQUALITY OF OPPORTUNITY 173

sensitive to this issue, and therefore be concerned with the long-run
consequences of policy. Burak Ünveren and I (2012) have recently studied
this problem, but I will not review that work here.

2. A GENERALIZATION OF THE EQUALITY-OF-OPPORTUNITY
APPROACH

I next summarize the theory of equal opportunity, as expounded in
Roemer (1998). The ethical premise is that an individual is not responsible
for his type, but is responsible for the rank of the distribution of effort
at which he sits, within his type. The resource allocation is intended
to compensate individuals for their disadvantageous circumstances, while
allowing those who expended higher degrees of effort to benefit vis-à-vis
others. Let us call the second feature rewards-to-effort.

I define the following function, associated with an allocation X =
{x j (y)| j ∈ {1, . . . , J }, y ∈ [0, 1]}:

θ (y; X) = min
j

v(x j (y), (G j )−1(y), j) ≡ min
j

ṽ j (y; X).(2.3)

The difference between the welfares of individuals at the same value of
y, but in different types, is ethically unjustifiable, according to the theory.
In choosing an allocation, we desire to eliminate these differences. This
is what Fleurbaey (2008) calls the compensation principle. On the other
hand, it is perfectly all right if those who expend higher effort should do
better. After Fleurbaey (2008), this is called the rewards-to-effort principle.

The compensation principle says we should make the function θ as
‘large’ as possible – thus, maximizing the welfare that the individuals
who are the worst-off across types at any degree of effort achieve – while
rewards-to-effort says that θ should be an increasing (or non-decreasing)
function. There is, however, no unique way to make precise the idea
that θ should be as large as possible. I proceed as follows. Let � = {θ :
[0, 1] → �+} be the set of non-negative, weakly increasing functions on
the unit interval. Let � : � → �+ be an increasing operator on �, that
is, θ ≥ θ ′ ⇒ �(θ ) > �(θ ′), where θ ≥ θ ′ means that θ dominates θ ′ and is
strictly greater on a set of positive measure. Then we can write the general
equal-opportunity program as:

max �(θ )
subject to
(∀y, j)v(x j (y), (G j )−1(y), j) ≥ θ (y) (G E Op)

x̄ ≥ ∑
f j

∫
x j (y)dy

θ ∈ �
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The point to be chosen is (θ, X). Notice that if � is a concave operator on
� and v is concave in x, then (GEOp) is a concave program, and can be
solved with standard methods.6

In this article, I will often take � to be a member of the family:

�ρ(θ ) =
(∫

θ (y)ρdy
)1/ρ

, 1 ≥ ρ > −∞(2.4)

with the convention that �0(θ ) = ∫
log(θ (y))dy.7 �ρ is a concave operator

for all ρ ∈ (−∞, 1]. Notice that if ρ = 1, we can write (GEOp) as:

max
∫

min
j

ṽ j (y; X)dy

subject to

x̄ ≥
∑

f j

∫
x j (y)dy

θ (·; X) ∈ �

(EOp)

where we define θ (y, X) = min j ṽ j (y, X). Program (EOp) is what I have
defined previously (Roemer 1996, 1998) as the equal-opportunity program.
The objective of (EOp) is what Fleurbaey (2008) calls ‘the mean of mins’,
and program (EOp) is an instance of what he calls utilitarian reward.

We can summarize (GEOp) verbally. We associate the following value
to a feasible allocation X. Compute the distributions of welfare for each
type at X. The function ṽ j (y; X) (see its definition in eqn. 2.3) gives the
welfare of those in type j, at the yth degree of effort, at the allocation X.
Graph these functions for each j. The lower envelope of these functions is
the function θ (·; X) associated with this allocation. We measure the ‘size’
of θ using the mapping �. The program says: choose the feasible allocation
X that makes the associated function θ as large as possible. The function
θ gives us the welfare of the worst-off individuals at each degree of effort
y, across types. Our concern is to maximize the welfare of these worst-
off individuals – but since there is a whole interval of them, we need to
maximize some function of their welfares. That is the role of �.

This presentation shows that it is the function θ , induced by an
allocation, which is of normative interest, and the objective of (EOp)
emerges as a natural choice, because our aim is to make θ as large as
possible. Of course, the family of evaluation functions {�ρ} is a natural
one. Decreasing the value of ρ will flatten out the optimal function θ

in (GEOp). As ρ approaches negative infinity, the objective of (GEOp)
approaches min j ,y ṽ j (y, K ), which would be the ‘extremist’ maximin

6 In particular, � is a convex set.
7 Indeed, lim

ρ→0
�0(θ ) = exp

[∫
log θ (y)dy

]
, but since only ordinal properties of �ρ matter, we

may write �0(θ ) = ∫
log θ (y)dy.
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objective, where individuals are taken to be not responsible for either their
effort or their circumstances.8

The solution of (GEOp) under Assumption A is given by:

Proposition 1. Assume A. Let � = �ρ , some −∞ < ρ ≤ 1.

Then the optimal solution to (GEOp) satisfies:

a. θ (y) ∝
(

J∑
1

f j

K 1/a
j ((G j )−1(y))b/a

)a/(ρa−1)

b. x j (y) = θ (y)1/a (K j (G j )−1(y)b)−1/a ,

where ‘∝’ means ‘is proportional to.’
(Proofs are given in the appendix.)

Because there are no incentive effects on effort induced by the allocation
due to assumption A1, it is obvious that at the solution, the (j,y) constraints
in (GEOp) are all binding: that is, at every y, welfare is equalized across
j. Notice that θ is strictly increasing, assuming that the distributions of
effort are strictly increasing functions, since ρa − 1 < 0 for all values of
ρ ∈ (−∞, 1].

We say that:

Definition. Type j strongly dominates type i if K j > Ki and G j FOSD9 Gi .

Strong domination is a feature of many applications. Indeed, if the types
are completely ordered by strong dominance, we can say that the society
is stratified with respect to the kind of welfare measured by v.

Notice that x j (y) in Proposition 1 is the product of two terms: the first,
θ (y), is increasing in y, while the second term, in the special case that
the environment is stratified, is decreasing in j, assuming that the most
disadvantaged type is type 1. Thus, the first term implements the rewards-
to-effort principle, while the second implements the compensation
principle.

We now turn to a second problem that is often more appropriate on
these environments. It is often, perhaps usually, not desirable to allow
allocations X which are predicated on y as well as j. Consider the following
example of the allocation of medical resources. There are two social
classes, the Rich and the Poor, who suffer from various diseases: the Poor
are susceptible to cancer and tuberculosis, while the Rich suffer only from

8 Rawls did not advocate this formulation. His ‘difference principle’ was meant to apply to
‘four to six’ classes of individuals – perhaps ‘types’ in the present locution.

9 This means: distribution G j first-order stochastic dominates distribution Gi .
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cancer. In all cases, an unhealthy lifestyle increases the probability of the
disease. Here, a general allocation policy would prescribe how much to
spend on the treatment of disease d in a person of type j whose lifestyle
quality was y. But we do not want medical personnel to be compelled
to triage patients on the basis of what their lifestyles have been. So the
policy should be at most predicated on d and j. In fact, I would argue that,
in this case, we want the policy to be predicated only on the disease –
not even on the type. That is, ‘horizontal equity’, a desirable feature in
this problem, means that anyone with a given disease should be given
the same treatment! The equal-opportunity program – which cannot be
formulated as a special case of the problem in this section – will allocate
medical expenditures to cancer and tuberculosis across the society so as
to compensate the Poor. (Thus, relatively more will be spent on TB vis-à-
vis cancer, than would be spent with a utilitarian objective.) A person’s
effort (lifestyle) will be positively related to his expected health outcome,
although policy will not explicitly treat people differently as a function of
their lifestyles. (For detailed discussion of this example, see Roemer 2007.)

Often it is the case that predicating the policy on effort violates other
social values that we hold – including values of privacy. In the health
example, we do not want to compromise the relationship between health
providers and patients by forcing the former to triage the latter based
upon their lifestyles. Therefore, it is important to study the pure allocation
problem when the policies can only be predicated on types: that is, a
policy is a vector (x1, . . . , xJ ) such that everyone in type j receives xj .
Philosophers, in criticizing the theory of equal opportunity, sometime
make the mistake of assuming that policy must be predicated on effort –
so that (in the health case) we would spend fewer medical resources on
those with unhealthy lifestyles (see, for instance, Anderson 1999). But this
is a fallacy. If we believe that ‘horizontal equity’ is important – and in this
case, we do, for at least the reason I have given – then we can define the
domain of policies to require it. Thus, if we do not want to discriminate in
treatment against those who have expended low effort, we define problem
as:

max �(θ )
subject to
(∀y, j) v(x j , (G j )−1(y), j) ≥ θ (y) (G E Op2)
x̄ ≥

∑
f j x j

θ ∈ �

where � = �ρ , some ρ ∈ (−∞, 1].
Notice that, in (GEOp2), we restrict the policy to being constant for each
type – that is, it requires horizontal equity within a type with respect to
different effort levels.
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Although the policy space is much simpler in (GEOp2) than in the
problem (GEOp), the solution is more complicated to describe. This is
because it is generally impossible to achieve the result that the (j,y)
constraints in (GEOp2) are all binding. In the solution of the problem
(GEOp), the welfare profiles within types, the functions ṽ j , when graphed
in the (y, ṽ) plane, coincide (for all j). But in the solution of (GEOp2), this
is not so: their graphs will cross each other in myriad ways. Therefore the
function θ (y), at the solution, will be the lower envelope of the functions
ṽ j , which will coincide with every function ṽ j for some values of y. (It is
easy to see this must be the case. For suppose not, and some function ṽ j

lies entirely above the lower envelope. Then we can increase the value of
the program by taking some resource away from type j and distributing it
to the other types.) A description of the solution to (GEOp2) must describe
the sets in [0,1] for which each function ṽ j coincides with θ , which in
general can be complicated.

We therefore present a result for a special case only.

Proposition 2. Assume A. Assume that there are two types, and type 2 strongly

dominates type 1. Further assume that the function ψ2(y) =
(

(G2)−1(y)
(G1)−1(y)

)
is

strictly monotone increasing. Then the solution (x1, x2, y∗) of the following three
equations characterizes the solution of (GEOp2):

(
x2

x1

)1−aρ

= f1

f2

(
K1

K2

)ρ

⎛
⎜⎜⎜⎝

∫ y∗

0
(G2)−1(y)ρbdy∫ 1

y∗
(G1)−1(y)ρbdy

⎞
⎟⎟⎟⎠

(
x2

x1

)a

= K1

K2

(
(G1)−1(y∗)
(G2)−1(y∗)

)b

x̄ = f1x1 + f2x2.

The function θ (·) coincides with ṽ2 on the interval [0, y∗] and with ṽ1 on the
interval [y∗, 1].

It is obvious in this case that the function θ is strictly increasing at the
solution. Notice it follows from the second equation in the proposition’s
statement that x2 < x1. Indeed, we see that the right-hand side of this
equation is the product of two terms, each of which is less than one. The
first term implements compensation for the direct effect of circumstances,
while the second term implements compensation for the indirect effect.
Indeed, the second equation merely states that the welfare of the two types
must be equal at the rank y∗ at which the two functions {ṽ j | j = 1, 2} cross;
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so we might say that the content of the optimization is primarily expressed
in the first equation of the three.

Let us note there is an asymmetry in the two principles of
compensation and rewards-to-effort. With respect to compensation, we
have a definitive rule: at each effort degree y, attempt to maximize
the welfare of the type which is worst-off. We have no comparable,
definitive instruction for implementing the rewards-to-effort principle.
This corresponds to there being many possible choices for the mapping
�. I do not believe this is a weakness in the theory – rather, it reflects
the fact that there is no natural or focal answer to the question, ‘how much
reward does effort deserve?’ I use ‘desert’ explicitly, for I believe the equal-
opportunity ethic is predicated upon the view that those who expend
(costly) effort deserve to be rewarded; more precisely, they deserve to be
rewarded for the effort they voluntarily choose which is not determined
by their circumstances, and this is measured by their degree of effort in
comparison to efforts of others of their type (hence, their rank on the effort
distribution of their type).

Fleurbaey expresses a similar point, when he writes:

Compensation for unequal circumstances cannot be the only goal of social
policy; it must be supplemented by a reward principle telling us whether
and how redistribution should be sensitive to responsibility characteristics
as well and, eventually, how final well-being should relate to responsibility
characteristics. (Fleurbaey 2008: 20)

There is another, independent reason to allow a degree of freedom in
the choice of �. In policy applications, the typology is always a finite
partition of the set of individuals, and effort is usually measured as the
residual explanandum of the objective outcome v after type has been
accounted for. Now in reality, we are often unsure about what the actual
set of circumstances is. Even if we take a political approach, that I have
advocated, and say that circumstances are those aspects of the person’s
environment that the society views as ones it wishes not to hold persons
responsible for, the set of circumstances may be too sparse, because
society may be ignorant of some causes of behaviour which, were they
understood, would have been deemed to be circumstantial. Thus, the
variation in welfare outcomes within types that we observe with a given
typology may not be properly described as fully due to variations in effort.
This is a reason to be flexible on the choice of �. As we choose smaller
values of ρ, �ρ reduces the rewards to effort, corresponding to a view
that there may be more circumstances than we have delineated. So it may
be useful to compute solutions to the programs (GEOp) and (GEOp2) for
various values to ρ, and take note of the sensitivity of the optimal solution
to this parameter.
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Indeed, I now believe the equal-opportunity ethic treats the principles
‘compensation for disadvantage’ and ‘rewards to effort’ asymmetrically.
With regard to compensation for disadvantage, the theory has an explicit
ideal: render the distributions of the outcome identical across types. But
with regard to rewarding effort, the ethic is vague, because we have no
clear view of how much reward effort deserves. The incompleteness of
equality of opportunity as an ethical doctrine takes its formal form, in the
present approach, in the availability of many mappings or operators �

that may be used to pin the policy recommendation down. My current
view is that we must apply some additional principle to determine the
degree of acceptable inequality due to effort – such as, after Cohen (2009),
the desire to foster community, which is incompatible with large degrees
of inequality.

There is, of course, a long history in political philosophy of
proposing theories of rewards to effort. Famously, Aristotle proposed
‘proportionality’. But that proposal is poorly defined: obviously,
proportionality depends upon the units in which effort and the relevant
welfare are measured. I originally (that is, in Roemer 1996, 1998) resolved
the problem of rewards-to-effort with a ‘utilitarian’ principle: in case there
is just one type, EOp should maximize the average welfare. This is equivalent to
choosing the function �(θ ) = ∫ 1

0 θ (y)dy – in other words, choose ρ = 1. (To
repeat, this is how program (EOp) is a special case of program (GEOp).)
Fleurbaey’s (2008) solution is to say: in the case there is only one type, assign
the resource equally to everyone, a principle he calls ‘liberal reward’. I have
become, however, more agnostic as to what comprise the right rewards to
effort, and prefer to leave the theory open on that account.

In this section, we have computed optimal policies according to the
EOp view. Note, however, that we can easily apply the EOp approach to
create a complete ordering over feasible allocations, for any choice of �. Let
X and X′ be two allocations. Compute θ (·; X) and θ (·; X′), where θ (y; X) =
min

j
ṽ j (y; X). We say that X � X′ ⇔ �(θ (·; X)) ≥ �(θ (·; X′)).

I wish to remark on the measurability properties that are necessary
for the approach taken here to make sense. If we use the family of
evaluation operators {�ρ}, the function v must be taken to be ratio-
scale measurable: that is we assume that v is specified up to a positive
multiplicative constant. The solutions to the programs discussed in this
section will be invariant with respect to multiplying the function v by a
positive constant, but not with respect to more general transformations.
I do not view the measurability restriction on welfare, however, to be
a limitation of the present approach because, as I said earlier, in policy
applications v is virtually always an objective measure which is indeed
ratio-scale measurable. Thus life expectancy can be measured in years or
months, wages can be measured per annum or per month, and GDP can
be measured in dollars or yen.
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3. THE REPRESENTATION OF EOP RULES

To re-state, the key function of interest is θ : [0, 1] × X → R, where X is the
policy domain, defined by:

θ (y; X) = min
j

v(x j (y), (G j )−1(y), j)

for any feasible allocation X = {x j (y)| j ∈ {1, . . . , J }, y ∈ [0, 1]}. An equal-
opportunity rule is an increasing operator � : � → �+. The � − E Op
program is:

max �(θ (·; X))
s.t.X ∈ X
θ ∈ �

(GEOp)

I now argue that the representation of an EOp rule as an increasing
operator � on the domain � is, formally, virtually equivalent to the
compensation principle. Exactly what does the compensation principle
say? After all, it is a somewhat vague statement – that individuals should
be compensated for the disadvantages inherent in their circumstances. Let
(R, P, I ) be an ordering10 of the set of feasible allocations X. I take the
compensation principle to be an undefined requirement on R which at least
satisfies the following necessary condition:

Axiom. An ordering R on X satisfies the compensation principle only if it
satisfies Dom.

Principle Dom.

A. For any two allocations X, X′ such that XP X′ there exists a set of
positive measures Y ⊆ [0, 1], θ X(y) > θ X′

(y). (Notation: θ X(·) ≡ θ (·; X).)
B. For any X, X′ ∈ X such that XI X′, either θ X = θ X′

[which means θ X(y) =
θ X′

(y) except possibly on a set of measure zero] or there is a set of positive
measure Y such that θ X(y) > θ X′

(y) and a set of positive measure Y′ such
that θ X′

(y) > θ X(y).
The motivation for the axiom is seen by supposing it were not true: if

the first part of Dom were violated, it would be the case that there exists
X, X′ such that XPX’ but for almost all y ∈ [0, 1], θ X′

(y) ≥ θ X(y). It would
be strange to say that this rule satisfies the compensation principle. For
clearly for every y ∈ [0, 1], X′ compensates those at effort tranche y at least
as well as X does, and there are some y whom it compensates better. On

10 As usual, R is the full binary relation, P is the strict preference relation and I is the
indifference relation.
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the other hand, suppose part B of Dom were violated. Then R deems two
allocations X and X’ to be indifferent, yet (it follows that) either θ X′ ≥ θ X

or θ X ≥ θ X′
. If so, why be indifferent between X and X′?

Let � be an operator on the set of functions �. � trivially induces an
order on �, which we denote R� , by:

θ R�θ ′ ⇔ �(θ ) ≥ �(θ ′).

Definition. An operator � on � represents an order R on X if

XRX′ ⇔ θ X R�θ X′
.

The question is: If an order R on X satisfies principle Dom, is it represented
by an increasing order � on the space of functions �∗ which are induced
by the allocations on the economy?

Proposition 3. Let R be an order on X satisfying Dom. Let �∗ = {θ X(·)|X ∈ X}.
Then R is represented by an increasing operator � on �∗. Furthermore, if R is
a continuous order, then � can represented by a continuous increasing operator
�∗ : �∗ → �.

Now consider the optimization problem: Maximize the order R on X. If R
satisfies the compensation principle, then the proposition says there is an
increasing operator � on � such that the solution is equivalent to:

maximize the operator � on �.

We now study the opposite direction. Suppose that we are given an
increasing operator, �, on �, the set of functions derived from an
environment from its feasible allocations. Given two allocations X, X′ ∈ X
we define the order R by:

XRX′ ⇔ θ X R�θ X′
.

R is well-defined, complete, reflexive and transitive. (R is obviously well-
defined, since the mapping X �→ θ X is well-defined.)

It is clear that if we begin with an order R on X which is represented by
an operator � on �, then � in turn induces the order R, as here described.
Thus R and � can legitimately be considered dual.

We have:

Theorem 1. Given a dual pair (R, �), the order R on X satisfies Dom if and only
if the operator � on � is increasing.

Informally, this says that if we are interested in rules satisfying the
compensation principle, and we accept the axiom DOM to capture
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this principle, then we can restrict ourselves to studying the various
increasing operators on �.11 In other words, if one disagrees with my
characterization of the equal-opportunity problem as the maximization
of some function of the lower envelope θ , then one must object to
axiom DOM. As the latest footnote explains, there is at least one possible
objection to DOM.

4. THE OPTIMAL TAX PROBLEM

We continue from equation (1.4). Let us now assume that there is one type,
number 1, the most disadvantaged type, whose distribution of effort is
first-order-stochastic-dominated (FOSD) by the distributions of effort of
all other types. As before, we define the lower envelope function by:

θ (y; t) = min
j

v(t, (G j )−1(y)) = v(t, (G1)−1(y)),(4.1)

where the second equality follows by FOSD. Therefore, the program
(GEOp) becomes:

max �(v(t, (G1)−1(·)))
subject to
0 ≤ t ≤ 1

(GEOp)

We have:

Proposition 4. Let �ρ be the EOp rule. Then the solution of (GEOp) is the tax
policy t which solves:∫ 1

0
θ (y, t)ρ−1(γ̄ (1 − 2t) − (G1)−1(y)(1 − t))dy = 0.(4.2)

11 Fleurbaey disagrees with this conclusion (personal communication). Suppose there are
two allocations X and X′ for which θ X = θ X′

, yet some individuals who are not on the
lower envelope of the indirect welfare functions are better off under X′ than under X.
Should we not prefer X′? I agree that we should. Fleurbaey’s point is akin to the one saying
that ‘maximin’ is an inferior theory to ‘leximin’. ‘Maximin’ looks only at how the worst
off are doing, and ignores the welfare of those who are better off. Leximin is a refinement
of maximin which looks at how everybody is doing (if need be). In like manner, Part A
of Dom only allows us to prefer an allocation X to an allocation X′ if some of the worst
off do better under X. But Fleurbaey would allow X to be preferred to X′ if the worst
off (lower envelope) were identical in the two allocations, but some individuals not on
the lower envelope (i.e. in more advantaged types) are better off under X than under
X′. However, to replace maximin with leximin in my approach would preclude us from
using mappings � : � → R, which would have to be replaced by preference relations on
allocations. Computational simplicity would be sacrificed for the sake of a distinction
which almost never matters in applications.
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FIGURE 1. The optimal tax rate approaches 0.5 as ρ → −∞

If ρ = 1, the solution is

tE Op = γ̄ − γ 1

2γ̄ − γ 1 , where γ 1 =
∫

γ dG1(γ ).

It is not possible to compute the optimal tax rate analytically for values of
ρ other than one. In Figure 1, I display the optimal tax rates as a function
of ρ, for the case where γ = γ̄ /2, and G1 is the uniform distribution on
[0, 2γ 1]. As ρ approaches negative infinity, the optimal tax rate approaches
one-half, which is the optimal tax rate for the worst off individual in the
economy, whose effort is zero.

What happens if there is only one type? It is easy to check that if ρ = 1
the optimal tax rate is zero. (Just verify that (t, ρ) = (0, 1) solves equation
(4.2) in this case.) This is not a general fact, but is due to the quasi-linearity
of utility. However, if ρ < 1, the optimal tax rate will be positive. The
explanation is – recall – that we are agnostic about the degree of reward
due to effort. In the case of one type, all differences in welfare are due
to effort plus the action of the competitive market which sets equilibrium
wages proportional to skill. Taking an evaluation function �ρ with ρ < 1
is tantamount to saying that the laissez-faire solution delivers too much
inequality, that it rewards effort too much. Hence, with such a choice of ρ,
the optimal tax rate will be positive, implementing some redistribution of
income.

There is nothing sacrosanct about the market allocation, even in
the case of one type. From an ethical viewpoint, all that can be said
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for the laissez-faire allocation is that (under the usual Arrow-Debreu
assumptions) it is Pareto efficient. Ethically speaking, it is on a par with
any other Pareto efficient allocation, and it may well be normatively sub-par
with respect to some non-Pareto-efficient allocations, if we believe that
redistribution away from laissez-faire is worth at least the efficiency cost.
Of course, to be definitive on this question, one requires a theory of just
reward to effort, which we do not possess.

As I have been harping on our not possessing a theory of the just
rewards to effort, let me remind readers of the solution that many
economists offer to the problem: they say that just rewards to effort are
determined by the market, in the case that the original endowments are
just. And so it follows that rewards to effort are equal to the value of the
marginal product of one’s effort (in the usual general-equilibrium model,
the value marginal produce equals the wage). Indeed, this is the view
that Dworkin (1981) endorses. But it is a difficult view to justify. Dworkin
attempts to do so by saying that ‘. . . people should pay the price of the life
they have decided to lead, measured in what others give up in order that
they can do so. That was the point of the auction as a device to establish
initial equality of resources’ (Dworkin 1981: 294). But that claim follows
for any Pareto efficient resource allocation: that is, at any Pareto efficient
allocation of labour and resources there exist ‘supporting prices’ at which
‘each is paying the price of the life she has decided to lead, measured in
what others give up in order that she can do so’. This fact is known as
the second theorem of welfare economics. The virtue of the market is that
(under the usual assumptions of no externalities, complete information,
no public goods or bads, etc.) it ‘finds’ one Pareto efficient allocation with
decentralized information. But it does not follow from this that the market
properly measures how much compensation effort deserves.

5. FLEURBAEY’S APPROACH

A. The pure allocation problem

We assume the same economic environment as in section 1. Suppose that
type 1 is strongly dominated by all other types. We study the egalitarian
equivalent (EE) allocation rule, introduced in Fleurbaey (2008: 65).

For any two allocations X = {x j (y)} and X̂ = {x̂ j (y)} we say that X �lex

X̂ if X is weakly preferred to X̂ according to the lexicographic minimum
ordering. The wrinkles we must add to the usual definition – since in
this case, we are comparing functions, not countable sequences – involve
taking measures and derivatives. Thus, the first test in comparing X and X̂
is to ask whether the minimum value X is greater than the minimum value
of X̂. If it is, we are done; if the minimum values are the same, compare
the measures of the sets on which the minimum value is attained. If they
are not the same, we are done. If they are the same, then we have to look
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at derivatives to see which allocation increases faster. To give a precise
definition of leximin for functions requires some care, but in the examples
that we study here, the orderings will be obvious.

To compare two allocations X and X̂ according to EE, we first
construct two fictitious allocations, X̃ and ˜̂X, defined as follows:

v(x̃ j (y), (G1)−1(y), 1) = v(x j (y), (G j )−1(y), j)

and v( ˜̂x j (y), (G1)−1(y), 1) = v(x̂ j (y), (G j )−1(y), j)(5.1)

and we say that X �E E X̂ iff X̃ �lex
˜̂X. What is the allocation X̃? It is

the (generally infeasible) allocation which renders each individual just as
well off as he is in the actual allocation X, but under the (counterfactual)
condition that he were to have been a member of the most disadvantaged
type, and expended the same degree of effort as he actually did. In
other words, if he is in fact a member of a more advantaged type, his
resource under X̃ will be larger than it is under X. X̃ is a counterfactual
allocation which compensates persons for the disadvantage inherent
in their circumstances, but continues to reward them (and hold them
responsible) for their effort. Consider an individual in an advantaged
type, j. Then K j > K1 and (G j )−1(y) > (G1)−1(y). Therefore, to achieve the
welfare equality of (5.1), we must have x̃ j (y) > x j (y).

Thus, the EE-optimal allocation is the X whose shadow allocation X̃
leximin-dominates all other shadow allocations. We have:

Proposition 5. Assume A. In the EE-optimal allocation:

x j
E E (y) ∝

(
((G1)−1(y)b

K j ((G j )−1(y)b

)1/a

.

An instructive way of comparing the EE solution to the GEOp solution
is to compute the function θ associated with the EE solution, and then
to compare it with the function θ for the GEOp solution. Let us consider
the special case that G j is uniformly distributed on the interval [0, Aj ] so
(G j )−1(y) = yAj . Then we can compute from Proposition 5 that:

θ E E (y) ∝ yb,

while from Proposition 1 we have that:

θG E Op(y) ∝ yb/(1−ρa ).

It follows that θG E Op(y)
θ E E (y) ∝ ybaρ/(1−aρ). From this we have:
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Corollary

A. For ρ > 0, θGEOp is steeper than θEE, thus GEOp rewards effort at a greater
rate than EE;
B. For ρ < 0, θEE is steeper than θGEOp, thus EE rewards effort at a greater rate
than GEOp;
C. For ρ = 0, θEE = θGEOpand the policies are identical.

Proof: Follows from observing whether the function yba ρ/(1−aρ) is
increasing, decreasing or constant. �

The coincidence of the EE and GEOp allocation rules (for ρ = 1) in part
C is an artefact of the special case. In the more general case that we have
been studying, EE does not coincide with �ρ for any ρ.

This raises a more general question: Is EE a special case of GEOp for
some operator �? The answer is, perhaps surprisingly, affirmative.

To demonstrate this, it is costless to work on a more general space of
environments than is specified in assumption A1, and so we do so. Let
v(x, (G j )−1(y), j) denote the outcome and define:

R(·; y) = v−1(·, (G1)−1(y), 1);

this makes sense because, fixing y and the type 1, v is a strictly increasing
function of x and so the inverse function exists. The space of allocations is
arbitrary. As usual, we define:

θ (y, X) = min
j

v(x j (y), (G j )−1(y), j).

We have:

Theorem 2. Define �EE(θ ) = min
y

R(θ (y), y). If the solution of (GEOp) is unique

for � = �EE, then the associated allocation is the EE allocation.

The operators �ρ were defined on the domain �. The operator �EE

is defined on the domain � × E , where E is the set of environments E =
{e|v, {G j }, { f j }}. Furthermore, �EE is only weakly increasing as an operator,
in contrast to �ρ .

The distinction between leximin and maximin dissolves on the full
space of allocations of the resource allocation problem. On other domains,
this may not occur: that is, the premise of theorem 2 may be false. To cope
with this, instead of the above formulation, we define an order on � by
θ � θ ′ ⇔ {R(θ (y), y)}leximin dominates {R(θ ′(y), y)}.
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This order is (strictly) increasing in θ , and we can write the (GEOp)
program with the objective of maximizing � on �. The solution is the EE
allocation.

This is unsurprising. Resorting to the leximin refinement of maximin
in the Fleurbaey definition of EE corresponds to not being able to
characterize the EE allocation as the maximization of an operator on �.
But we can still characterize it as the maximization of an order on �.

We next calculate the EE solution when we are restricted to the policy
space of proposition 2, where allocations are not predicated upon effort.

Proposition 6. Assume A. Assume that G j (0) = 0 for all j, and that

� the functions ψ j (y) =
(

(G j )−1(y)
(G1)−1(y)

)b/a
for j �= 1 are monotone increasing in y,

and
� the derivatives dψ j (0)

dy = q j exist and are positive.

Then on the policy space {X = (x1, . . . , xj )|
∑

f j x j ≤ x̄}, the EE optimal

solution is given by xj ∝ q−1
j K −1/a

j .

Next, let us calculate the EE solution in the optimal affine tax problem.
There is ambiguity with regard to how to define the EE solution for the
tax problem: Fleurbaey offers at least three alternative definitions (see
Proposition 5.2, p. 140).

I will proceed as follows, motivated by the discussion thus far. For any
tax policy, we define the lower envelope function:

θ (y; t) = min
j

(1 − t)2(G j )−1(y) + 2t(1 − t)γ̄ = (1 − t)2(G1)−1(y) + 2t(1 − t)γ̄ .

If I am correct that we should view the EE rule as a special case of
(GEOp), then we can observe the following: regardless of the choice of
the operator �, we must have t ∈ [0, 1/2]. For note that θ (y; t) is a strictly
decreasing function of t for t > 1/2. So, unambiguously, to make θ ‘as large
as possible’ means to choose t ∈ [0, 1/2].

To compute the EE solution, we must construct a shadow policy
where each individual expends the same degree of effort as at the actual
policy, and receives the same utility. I propose to take the shadow policy
as a tax policy of t = 0 plus a transfer. Thus, for any tax policy (t, b(t)), we
first compute the ‘shadow allocation’ X = {x j (y)} satisfying:

x j (y) + (G1)−1(y) = (1 − t)2(G j )−1(y) + 2t(1 − t)γ̄ ,

or x j (y) = (1 − t)2(G j )−1(y) − (G1)−1(y) + 2t(1 − t)γ̄ .
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The shadow allocation renders every individual as well off as he is at the
tax rate t, were he to have been a member of the most disadvantaged
type, taken to be type 1, with his own effort y, but with a lump-sum
compensation combined with a tax rate of zero. (Note that his utility
before the compensation at a tax rate of zero would have been (G1)−1(y).)
We next choose that tax policy which produces the shadow allocation X
that dominates all other such allocations according to the leximin order.12

Proposition 7. The EE-optimal solution in the affine tax problem is given by

tEE = γ̄ − (G1)−1(0)
2γ̄ − (G1)−1(0)

.

Note the difference/similarity between this policy and the optimal tax
policy of proposition 4.

6. THE ‘MIN-OF-MEANS’ RULE

Another popular rule, originally published by Van de gaer (1993), chooses
the policy that solves:

max
X

min
j

∫ 1

0
ṽ j (y; X)dy.(6.1)

Fleurbaey (2008) calls this the ‘min-of-means’ rule, because it maximizes
the minimum mean welfare across types. Note that this rule commutes
the ‘min’ operator and the integral operator from program (EOp).

The obvious appeal of the min-of-means rule is that it is a simple
way of rendering the distribution functions of the outcome across types
as ‘close’ as possible. Furthermore, it has the attraction of often being
an easy rule to compute. But unfortunately, this rule does not maximize
any operator � on the space of functions �. Because I believe, as argued,
that responsibility-sensitive egalitarianism must comprise some theory of
choosing a maximal θ , this is a demerit of the min-of-means rule.

Theorem 3. There is no operator � : � → � which ‘represents’ the min-of-means
rule on the domain of environments specified by assumption A.

12 I believe this formulation of the EE rule for the tax problem coincides with Fleurbaey’s
formulation.
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Theorem 3 is proved by constructing an environment, with two types, and
finding two allocations, call them X1 and X2, such that the following hold:

θ (·; X2) < θ (·; X1), and

min
j

[∫ 1

0
ṽ j (y; X2)dy

]
> min

j

[∫ 1

0
ṽ j (y; X1)dy

]
.

This means there can be no increasing operator on � whose solution is
the allocation recommended by the min-of-means. The details are found
in the appendix.

Despite theorem 3, there is a class of environments on which the
min-of-means rule and the mean-of-mins rules coincide. This occurs,
for example, in the affine-tax problem. The general feature of these
environments is that, under all feasible policies, there is a particular type
which is worse off than all other types at every degree of effort. It is often
the case that on the set of feasible policies, this is true, and so the min-
of-means rule may appear to be a good one, although from the deeper
standpoint, I believe theorem 3 shows that it is inadequate.

The conditional equality rule (Fleurbaey 2008: 61) is also not
representable.13

7. FURTHER DISCUSSION

I will review three topics:

• the importance of the effect of circumstances on effort,
• the liberal reward principle, and
• the central focus of responsibility-sensitive allocation rules.

A. The ‘indirect effect’ of circumstances on effort

Recently, A. Björklund, M. Jantti and I (2012) have worked with a
large Swedish dataset (approximately one-third of Swedish males), in
which we have computed the effect of circumstances on the income
of Swedish males. The circumstances are parental income, parental
education, number of siblings, IQ, family type and body-mass index, and
we also calculate the indirect effect of circumstances on the distribution of
effort. Each of these circumstances is partitioned into three or four levels,
yielding 1152 types. We have attempted to allocate the degree of inequality
to the direct effect of each of the six circumstances, the indirect effect of

13 I thank Francois Maniquet and Marc Fleurbaey for pointing this out. Indeed, in Fleurbaey
and Maniquet (2010), the authors point out that the mean-of-mins rule and the conditional
equality rule do not satisfy the compensation principle. The proof of theorem 3 comprises
a concrete example of this fact.
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circumstances on effort, and autonomous effort, using a Shapley-value
decomposition of the Gini coefficient of income. We find that the largest
relative contribution by far to the Gini in Sweden is autonomous effort
(73.8%); among the circumstances, the largest contribution is from IQ
(11.8%), the next largest from Parental Income (7.4%), and the third largest
from the effect of circumstances on effort (3.4%). The other circumstances
are each responsible for under 1% of the effect, except for Family Type,
which is 1.4%.

Sweden is an egalitarian society, so we should not be surprised that
it has succeeded in rendering quite small the effect of circumstances
on income – even though our outcome is pre-tax income. But among
circumstances, the indirect effect of circumstances on effort is significant.

For this reason, I believe that we must keep the indirect effect clearly
in the picture. Dworkin was wrong, I believe, to assert that people should
be held responsible for the effect of their preferences on their choices. One
must ask to what extent preferences are formed as a defensive response to
poorly resourced environments. To the extent that this is so, people should
be compensated for their preferences.14

B. The liberal reward principle

This principle states, according to Fleurbaey, that no more compensation
should be made than is needed to rectify inequalities due to
circumstances. It is characterized by the axiom that, if there is only one
type, then the resource should be equally divided among individuals.
(Versions of laissez-faire are required if the policy is not a division of
resources.) Although this principle has a certain elegance, I hesitate to
support it. In many problems to which we wish to apply responsibility-
sensitive egalitarianism, outcomes are determined in part by markets. As I
said earlier, the market allocation, from the ethical viewpoint, has only one
thing to recommend it: under classical assumptions, it is Pareto efficient.
(The market functions with decentralized information, which is surely a
virtue, but I do not think this comprises an ethical argument for the market
allocation rule.)

I am therefore wary of the liberal reward principle. To champion it
as an aspect of freedom is incorrect, for non-interference by the state
does not maximize freedom. Every property right, whether established
by market trades or by legislative ruling, interferes with the freedom of
many people: to presume that freedom is monotone decreasing in the
degree of state intervention is to fall prey to a right-wing shibboleth.
The liberal reward principle in fact states: do not amend the current

14 See Cohen (2007) for a rebuttal of Dworkin’s view that a person should be held entirely
responsible for his preferences, if he identifies with them.
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property rights any more than is necessary to compensate persons for
disadvantageous circumstances. But why should the current property
rights be the benchmark? The point that there is no such thing as no
intervention was made forcefully by the legal positivists at the beginning
of the twentieth century (see Fried 1998). The liberal reward principle
recommends laissez-faire in the case of one type, and I worry that this pins
down the theory in the wrong way. To return to my earlier discussion, it
may recommend too much inequality.

C. The central focus of responsibility-sensitive egalitarianism

I have argued that the focus of the allocation problem should be the lower-
envelope function θ (·; X). I believe this follows from the compensation
principle: that equalizing opportunities requires annihilating differences
in expected fortune due to differential circumstances. Focusing on the
lower envelope is a ‘maximin’ approach, and it is radical or extreme, in
the same sense that maximin is radical or extreme in standard social-
choice theory. The ambiguity, here, concerns what it means to ‘maximize’
a function subject to the constraint that it be non-decreasing, with respect
to the given policy space. Every proposal of the equal-opportunity type,
I have argued, must choose a function θ which is maximal with respect
to some order on �. The reason it is difficult to be less ambiguous than
this is that we do not have an ethical theory of what comprise the proper
rewards to effort. Aristotle proposed ‘proportionality’, but we know that
approach is indefensible because of ambiguity with respect to the proper
choice of units: there is no reason that outcomes should be proportional to
efforts.

It may be useful to put this another way. Equality of opportunity, or
responsibility-sensitive egalitarianism, comprises an equalizing principle,
and a disequalizing principle: the former is to equalize fortunes over types,
and the latter is to disequalize fortunes over efforts. Indeed, the left-
wing attacks on the equal opportunity theories reviewed in this article
are largely of the form that they permit too much inequality. I am
sensitive to this critique, and that is why I have proposed to treat the two
principles asymmetrically. I am militant on annihilating inequality due to
circumstances; I am uncertain about how much inequality to allow due to
differential effort.

I have said that we must impose a monotone increasing order
on �. My claim is that a satisfactory ethical justification for such
a choice needs to invoke some consideration outside the realm
of equalizing opportunities. I have shown that, at least for an
important family of resource-allocation problems, Fleurbaey–Maniquet’s
egalitarian-equivalent rule can also be formulated in this manner. It is not,
however possible to find an order on � which the ‘mean of mins’ rule
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maximizes, nor one that the ‘conditional equality’ rule maximizes, and
this, in my view, is a mark against these allocation rules. In particular,
according to theorem 1, these rules violate axiom DOM.

APPENDIX: PROOFS OF PROPOSITIONS

Lemma For any functions θ, h ∈ �, define 	(ε) = �ρ(θ + εh). Then

d	(0)
dε

= �ρ(θ )1−ρ

∫
θ (y)ρ−1h(y)dy.

Proof: Evaluate the derivative from its definition, using l’Hôpital’s rule. �

Proof of Proposition 1

1. It is obvious that in the optimal solution all of the (j,y) constraints in (GEOp)
will bind. And of course the budget constraint will bind. Therefore at the
optimum we must have

x j (y) = θ (y)1/a (
K −1

j ((G j )−1(y)−b)1/a
,

and we may write (GEOp) as:

max �(θ )

s.t. x̄ ≥
J∑
1

f j K −1/a
j

∫
θ (y)1/a ((G j )−1(y))

−b/a

dy
. (GEOP∗)

2. Let θ be a feasible point at which the constraint in (GEOp∗) binds. Let θ ′ be
any other point in �I , and define h(y) = θ ′(y) − θ (y). Then we may write (1 −
ε)θ + εθ ′ = θ + εh. By convexity, θ + εh ∈ �I is a feasible point for (GEOp∗),
for ε ∈ [0, 1].

3. Define the ‘Lagrangian’ function

�(ε) = �ρ(θ + εh) + λ

(
x̄ −

∑
f j K −1/a

j

∫
(θ (y) + εh(y))1/a ((G j )−1(y))−b/a dy

)
.

Suppose we can find a value λ ≥ 0 and a function θ such that �′(0) ≡ d�(0)
dε

= 0
for any choice of h. Since � is a concave function on [0, 1], it will follow that
� is maximized at zero. In particular, this implies that �(0) = �(θ ) ≥ �(1) ≥
�(θ ′), and hence θ is the solution of (GEOp∗).

4. Using the Lemma, evaluate:

�′(0) = �ρ(θ )1−ρ

∫
θ (y)ρ−1h(y)dy

− λ
∑

f j K −1/a
j

1
a

∫
θ (y)1/a−1h(y)((G j )−1(y))−b/a dy.
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Regardless of what the function h is, we can render this expression equal to
zero by choosing:

θ (y)ρ−1/a = λ�ρ(θ )ρ−1
∑

f j K −1/a
j ((G j )−1(y))−b/a/a .

But this just says that

(∀y) θ (y)(ρa−1)/a ∝
∑

f j K −1/a
j ((G j )−1(y))−b/a ;

the constant of proportionality is determined by the budget constraint. The
proposition follows immediately. �

Proof of Proposition 2

1. We conjecture a solution to (GEOp2) of the following form: for y ∈ [0, y∗], the
constraints ( j, y) bind for j = 2, and for y ∈ [y∗, 1], the ( j, y) constraint binds
for j = 1. Let (θ, x1, x2, y∗) be defined as in the statement, and let (θ ′, x′

1, x′
2) be

any feasible solution to (GEOp2). Denote

h = θ ′ − θ, �x1 = x′
1 − x1, �x2 = x′

2 − x2.

2. Define the Lagrangian function:

�(ε) = �(θ + εh) +
∫ y∗

0
r2(h)(v(x2 + ε�x2, (G2)−1(y), 2) − (θ (y) + εh(y))dy

+
∫ 1

y∗
r1(h)(v(x1+ε�x1, (G1)−1(y), 1) − (θ (y) + εh(y))dy + λ(x̄−

∑
fi (xi + ε�xi ).

� is a concave function on [0,1]. If we can produce non-negative functions
{r1, r2} and λ ≥ 0 and a tuple (θ, x1, x2, y∗) such that �′(0) = 0, then we have
found a solution to (GEOp2).

3. We evaluate �′(0), again using the Lemma:

�′0 = �ρ(θ )1−ρ

∫
θ (y)ρ−1h(y)dy +

∫ 1

y∗
r1(y)

(aθ (y)
x1

�x1 − h(y)
)

dy

+
∫ y∗

0
r2(y)

(aθ (y)
x2

�x2 − h(y)
)

dy − λ
∑

f j�xj . :

In this expression, the coefficient of h(y) will be zero if we define:

r1(y) = �ρ(θ )1−ρθ (y)ρ−1 for y ∈ [y∗, 1],

r2(y) = �ρ(θ )1−ρθ (y)ρ−1 for y ∈ [0, y∗].
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The coefficients of �xi for i = 1, 2 will be zero if:

a
∫ 1

y∗
r1(y)θ (y)dy = λ f1x1

a
∫ y∗

0
r2(y)θ (y)dy = λ f2x2.

Employing the definitions of ri (y), these last two conditions mean that

fi xi ∝
∫

Yi

θ (y)ρdy, where Y1 = [y∗, 1], Y2 = [0, y∗]

But by hypothesis, we have:

θ (y) = xa
i ((Gi )−1(y))b Ki on Yi ,

and so we must choose xi so that:

fi xi ∝ (
xa

i Ki
)ρ

∫
Yi

((Gi )−1(y))bρdy,

or fi x
1−aρ

i ∝ (Ki )ρ
∫

Yi

((Gi )−1(y))bρdy.

This formula gives us the first equation in the statement of Prop. 2. The second
equation follows from the fact that the two types have the same utility at
effort y∗.
Finally, we must verify that

v(x2, (G2)−1(y), 2) ≤ v(x1, (G1)−1(y), 1) on [0, y∗),

with the reverse inequality holding on (y∗, 1]. This immediately follows
from the monotonicity hypothesis on the function (G1)−1(y)

(G2)−1(y) , which proves the
proposition. �

Proof of Proposition 3
1. Define the indifference classes of X induced by R to be {Cα}. The meaning

of Cα PCα′ is obvious: we say in this case that Cα is ‘higher than’ Cα′ . Define for
any indifference class Cα the set �α = {θ |θ = θ X, some X ∈ Cα}.

2. We first note that α �= α′ ⇒ �α ∩ �α′ = ∅. For suppose not, and θ ∈
�α ∩ �α′ . Then there exists X ∈ Cα and X′ ∈ Cα′ such that θ = θ X = θ X′ . W.l.o.g.,
suppose that Cα is higher than Cα′

. Then XP X′. It follows by Dom, part A, that
θ X �= θ X′

, a contradiction which proves the claim.
3. We now propose the following order � on �: given θ ∈ �α and θ ′ ∈ �α′ we

say θ R�θ ′ ⇔ Cα RCα′
. � is well-defined by part 2 of this proof, which says that

any function θ belongs to a unique class �α . It immediately follows that θ I �θ ′ ⇔
α = α′; so � is reflexive. � is obviously complete, and inherits transitivity from the
transitivity of R.
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4. Next we note that � is an increasing order. Suppose θ ≥ θ ′ (i.e.
(∀y)(θ (y) ≥ θ ′(y)) and θ (y) > θ ′(y) on a set of positive measure). Suppose to the
contrary that θ ′�Rθ . Pick X′, X ∈ Xs.t.θ ′ = θ X′ and θ = θ X. Then X′ RX. If X′ P X, we
have a contradiction to DomA; if X′ I X we have a contradiction to DomB. Hence
� is increasing.

5. Now suppose that the order R is continuous on X (that is upper and lower
contour sets are closed). Then R can be represented by a utility function U : X → �.
But this induces a utility function representing � in the obvious way. �

Proof of Theorem 1
Prop. 3 is one direction of the theorem. Conversely, we wish to show that

the dual preference order R to an increasing operator � satisfies Dom. Case 1:
Given X, X′ ∈ X such that XP X′. Then θ X P�θ X′ . Since � is increasing, it cannot
be that θ X′ ≥ θ X; therefore, there is a non-null set Y such that y ∈ Y ⇒ θ (y) > θ ′(y).
Case 2: X, X′ ∈ X such that XI X′. Then, if θ X �= θ X′

, since � is increasing, it follows
that θ X′ ≥/ θ X, and so there is a non-null set Y such that y ∈ Y ⇒ θ X(y) > θ X′ (y).
The same argument holds while reversing the roles of X and X′. This proves that
R satisfies Dom.

Proof of Proposition 4

1. As is derived in equation (3.2), and from the fact that type 1 is strictly
dominated by all other types, we have:

θ (y) = (1 − t)2(G1)−1(y)β2

2
+ γ̄ t(1 − t)β2.

Our problem is to choose t to maximize �ρ(θ ). The function is concave in t. The
first-order condition is condition (4.2) in the proposition’s statement. �

Proof of Proposition 5

1. Let x j (y) be an allocation and let x̃ j (y) be its shadow allocation defined in

equation (4.1). Then x̃ j (y) = x j (y)
(

(G j )−1(y)
(G1)−1(y)

)b/a (
K j
K1

)1/a
. We desire to find the

feasible allocation X which leximins the shadow allocation. This is achieved
when

x j (y)
(

(G j )−1(y)
(G1)−1(y)

) (
K j

K1

)1/a

= constant,

which proves the proposition. �
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Proof of Theorem 2

1. Notice that

x̂ j (y) = R−1(v(x j (y), (G j )−1(y), j), y)

is the associated allocation that is defined for the allocation X = (x j (y)) according
to the EE rule. Therefore, solving the program (GEOp) for � = �E E is equivalent
to solving the following program:

max
X

min
j,y

R(v(x j (y), (G j )−1(y), j), y),

which can be re-written:

max �

s.t.
(∀ j, y) R(v(x j (y), (G j )−1(y), y) ≥ �

,

which in turn can be written:

max �

s.t.
(∀y) θ (y; X) ≥ v(�, (G1)−1(y), 1)

,

and yet again, as:

max �

s.t.
R(θ (y; X), y) ≥ �

,

which is the same as:

max
θ

min
y

R(θ (y; X), y),

which proves the claim. �

Proof of Proposition 6

1. In this case, we leximin the shadow allocation which is

x̃ j (y) = xj

(
(G j )−1(y)
(G1)−1(y)

)b/a (
K j

K1

)1/a

= xjψ
j (y)

(
K j

K1

)1/a

.

Our problem is to choose the allocation {xj } which leximins the function x̃ j (y).
Since the functions ψ j are increasing, for any j, the minimum of ψ j (y)( K j

K1
)1/a occurs

at y = 0 and j = 1. Therefore the problem is to leximin {xjψ
j (0)K 1/a

j }. But since by
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hypothesis (G j )−1(0) = 0 for all j, this requires us to equalize xj q j K 1/a
j . The claim

follows. �

Proof of Proposition 7
The problem is to:

max
t

min
y, j

(1 − t)2(G j )−1(y) + 2t(1 − t)γ̄ − (G1)−1(y),

which is equivalent to solving:

max
t

min
y

(t2 − 2t)(G1)−1(y) + 2t(1 − t)γ̄ ,

whose solution (as long as (G1)−1(0) < 2γ̄ ) is given by

t = (G1)−1(0) − γ̄

(G1)−1(0) − 2γ̄
. �

Proof of Theorem 3
We construct an example that was described in the text after the statement

of theorem 3. There are two types, each comprising one-half the population. We
assume x̄ = 1, and

vi = xhi (y), i = 1, 2, where hi are increasing.

We shall prove the theorem ‘backwards’, by constructing the functions ṽi (y; X)
which have desired properties, and then deducing what the functions hi and the
allocations must be.

To this end, we desire to construct functions V1(y), Ṽ1(y), V2(y), Ṽ2(y) having
the properties of the functions graphed in Figure 2.
V1(y) = ay, 0 ≤ y ≤ 1

V2(y) =
⎧⎨
⎩

ay, 0 ≤ y ≤ y1

b(y − y1) + ay1, 1 ≥ y > y1

with a > b.

Ṽ1(y) =
⎧⎨
⎩

cy, 0 ≤ y ≤ y1

a (y − y1) + cy1, 1 ≥ y > y1

with c < a .

y2 is defined as the intersection of V2 and Ṽ1 : y2 = ( 2a−b−c
a−b

)
y1; finally,

Ṽ2(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dy, 0 ≤ y ≤ y3

dy3, y3 < y ≤ y2

e(y − y2) + dy3, y2 < y ≤ 1

,

where y3 is defined as the intersection of Ṽ2 and V2 : y3 = ay2+(c−a )y1
d .
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FIGURE 2. The counter-example in the proof of Theorem 3.

The constraints we require are d > a > c > b > e.
Allocation I is given by x1 = x2 = 1. At this allocation, the outcome as a

function of y should give V1 and V2; it immediately follows that

h1(y) = ay

h2(y) =
{

ay, 0 ≤ y ≤ y1

b(y − y1) + ay1, y1 < y ≤ 1

Now we must produce an allocation which generates the graphs of Ṽ1 and Ṽ2. By
construction, we see from Figure 2 that if we do this, then θ I (y) > θ I I (y), except at
the point y2, where these two functions are equal. Thus, if we can produce feasible
allocation X̃ which generates the functions Ṽ1 and Ṽ2 and

min
[∫ 1

0
Ṽ1(y)dy,

∫ 1

0
Ṽ2(y)dy

]
>

∫ 1

0
V2(y)dy, (++)

then we are done.
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We must define the second allocation by:
x̃1(y) = Ṽ1(y)/h1(y), x̃2(y) = Ṽ2(y)/h2(y).

If we can produce numbers (a , b, c, d, e, y1, y2, y3) as described, such that (++)
holds and

1
2

(∫ 1

0
(x̃1(y) + x̃2(y))dy

)
≤ 1,

then we are done. The answer is (a , b, c, d, e, y1, y2, y3, resource) = {1, 0.829763,
0.97458, 1.02134, 0.0717169, 0.497087, 0.5, 0.390259, 0.990549},
where ‘resource’ = 0.9905 is the total resource used in the second allocation. The
four means are:∫

V1 = 0.5,

∫
V2 = 0.4358,

∫
Ṽ1 = 0.4527,

∫
Ṽ2 = 0.4834. �
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