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Abstract

We investigate the conjugacy growth of finitely generated linear groups. We show that
finitely generated non-virtually-solvable subgroups of GLd have uniform exponential con-
jugacy growth and in fact that the number of distinct polynomials arising as characteristic
polynomials of the elements of the ball of radius n for the word metric has exponential
growth rate bounded away from 0 in terms of the dimension d only.

1. Introduction

Let � be a group which is generated by a finite set �. Let B�(n) = (���−1)n be the ball
of radius n in the Cayley graph Cay(�, �) of � with respect to �, i.e., the set of elements
in � that can be written as product of at most n elements of � � �−1. We denote by | · | the
cardinality of a finite set and define

α� := lim
n→∞

log |B�(n)|
n

. (1·1)

The group � is said to have exponential (word) growth if α� > 0 for some (hence every)
� and uniform exponential growth if inf � α� > 0 when � ranges over finite generating
subsets. It follows from the Tits alternative [28] and the Milnor–Wolf theorem [20, 30]
that non-virtually-nilpotent linear groups have exponential growth. Uniform exponential
growth of these groups was established by Eskin–Mozes–Oh [8] in characteristic zero and
by Breuillard–Gelander in arbitrary characteristic [5].

† The authors are grateful for grants from the ERC and the NSF.

https://doi.org/10.1017/S030500411200059X Published online by Cambridge University Press

https://doi.org/10.1017/S030500411200059X


262 E. BREUILLARD, Y. CORNULIER, A. LUBOTZKY AND C. MEIRI

A related question advertised by Guba and Sapir in [11] and also discussed in the book
[18] consists in determining the conjugacy growth of a group � generated by a finite set �.
Namely, we are interested in the asymptotics of the number c�(n) of conjugacy classes in �

intersecting the word ball B�(n) of radius n. This question can be seen as a combinatorial
analogue to the problem of counting the number of closed geodesics in a closed Riemannian
manifold according to length, a problem much studied in the literature (see [11] and the
references therein). Denote

γ� := lim inf
n→∞

log c�(n)

n

and say that � has exponential conjugacy growth if γ� > 0 and uniform exponential con-
jugacy growth if inf � γ� > 0.

Rivin [26, obs. 12·4, section 13] computed the asymptotics of c�(n) for free groups.
Ivanov [22, section 41·5] proved the existence of groups with exponential growth and finitely
many conjugacy classes; Osin [23] improved the result to get only two conjugacy classes.
The conjugacy growth can therefore be dramatically smaller than the word growth. Guba and
Sapir gave many examples of groups with exponential conjugacy growth and asked about
other families of groups. In this paper we answer their question for linear groups.

THEOREM 1·1. Let � be a linear group, i.e. isomorphic to a subgroup of GLd(F) for
some field F, and suppose that � is not virtually nilpotent. Then � has uniform exponential
conjugacy growth.

The case of virtually solvable groups, linear or not, was treated in [4] (and independ-
ently by M. Hull in [12] in the polycyclic case): such groups have uniform exponential
conjugacy growth unless they are virtually nilpotent. So in this paper we focus on non-
virtually-solvable linear groups. We actually consider the finer problem of counting, given a
finitely generated subgroup � in GLd(F), the number of GLd-conjugacy classes in the balls
of �, resulting in the following theorem, which immediately entails Theorem 1·1.

THEOREM 1·2. For every integer d, there exists a constant c(d) > 0 such that if F
is a field and � a finite symmetric subset of GLd(F) generating a non-virtually-solvable
subgroup, then

lim inf
n→∞

1

n
log χ�(n) � c(d),

where χ�(n) is the number of elements in F[X ] appearing as characteristic polynomials of
elements of �n.

Combining this with exponential conjugacy growth in the solvable case [4] and some fur-
ther simple remarks in the solvable case (Proposition 9·3), we get the following trichotomy.

COROLLARY 1·3. Let F be any field and let � be a finitely generated subgroup of
GLd(F). Then exactly one of the following holds:

(i) � is virtually nilpotent (so has polynomial growth);
(ii) � is virtually solvable but not virtually nilpotent; it has exponential conjugacy

growth, while χ�(n) is bounded above by a polynomial whose degree depends only
on the subgroup � and not �;

(iii) � is not virtually solvable and then χ�(n) grows exponentially with a rate bounded
below by a constant μ > 0 depending only on d.
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This is summarized in the following table.

� growth conjugacy characteristic poly-
|B�(n)| growth bc

�(n) nomial growth χ�(n)

v. nilpotent polynomial polynomial polynomial

v. solvable not v. nilpotent exponential exponential polynomial

not v. solvable exponential exponential exponential

Note that we have claimed here a strong form of uniformity, in which the rate of expo-
nential conjugacy growth γ� depends only on d and not on the subgroup � of GLd nor the
field F . We will make use here of the fact, proved by the first-named author in [3] building
on the earlier works [2, 5, 8] that non-virtually-solvable linear groups in GLd have a word
growth rate bounded from below by a positive lower bound depending only on d and not on
the field of definition. This used as a key ingredient the main result of [2] which solved a
semisimple analogue of the (still open) Lehmer conjecture from diophantine geometry. The
uniformity for the whole class of solvable non-virtually-nilpotent subgroups of GL2(C), for
which a positive answer would imply the validity of the classical Lehmer conjecture [1], is
still an open question.

About the proof. A standard specialization argument shows that it is enough to prove The-
orem 1·2 in the case where K is a global field, i.e. isomorphic to a finite extension of Q

or Fp(t). Besides, the proof essentially boils down to the case where the Zariski closure
G of 〈�〉 in GLd is semisimple. Then using strong approximation (Weisfeiler [29], Pink
[24]) for Zariski-dense subgroups of simple algebraic groups, the more recent Product The-
orem of Pyber–Szabó and Breuillard–Green–Tao [7, 25] on the classification of approximate
subgroups of simple algebraic groups over finite fields, and a pigeonhole argument using
classical results about the distribution of primes, we prove that for many prime ideals P of
the ring of integers OK whose norm |P| := |OK/P| is exponential in n, the reduction map
G(OK) → G(OK/P) is surjective when restricted to B�(Cn), where C is a constant depend-
ing on d only. At this point we use the fact that the number of distinct characteristic polyno-
mials of elements of G(OK/P) depends polynomially on |P| and thus is exponential in n.

In fact our methods can yield variants of Theorem 1·2, see Section 9. For example, if the
Zariski closure G of � is a connected simple algebraic group and P is an arbitrary non-
constant polynomial function on G, then P achieves exponentially many values on B�(n),
where the exponential rate of growth has a lower bound depending only on d. While it is
possible to extend this latter result to the semisimple case using the same method, we do
not include a proof in this paper for two reasons. Firstly some serious technicalities arise, in
particular when applying strong approximation in positive characteristic due to the presence
of Frobenius twists (see [24]). Secondly as shown to us by E. Hrushovski (private commu-
nication), it is possible to give a completely different treatment of this theorem (including an
extension of Theorem 9·1 to semisimple groups). His approach avoids any appeal to strong
approximation nor to the product theorem, but uses instead ideas from model theory and still
reduces the counting problem to the ordinary word growth, hence to [3], as in Theorem 7·1
below.

Outline of the paper. The paper is organized as follows. In Section 2, we give a sketch of
proof in the particular case of Zariski dense subgroups of SLd(Z). In Section 4 we give
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a quantitative version of the fact that reduction modulo a large prime is injective on finite
subsets. In Section 6, we derive a fast generation result for the mod p quotients of � using
the strong approximation theorem and the results on approximate groups mentioned above,
which we recall in Section 5. In Section 7, we show that the ball of radius n in � cannot
be covered by less than an exponential number of proper hypersurfaces of G of bounded
degree. There we elaborate slightly more than what is needed for the immediate application
to Theorem 1·2. Some of these further applications are described in Section 9. The proof of
1·2 is completed in Section 8.

2. Sketch of proof: a particular case

We provide here a sketch of proof in the particular case of Zariski dense subgroups of
SLm(Z). It contains the highlights of the proof of the general case, although the latter is
technically more involved.

THEOREM 2·1. For every m � 2, there exists a constant c = c(m) > 0 such that for
every symmetric set � in SLm(Z) generating a Zariski-dense subgroup of SLm, there exists
N = N (�, m) ∈ N such that for every n � N (�, m) the number of traces of elements of
the ball B�(n) is at least ecn.

The proof will use the following three theorems. We state each one here in the case of
our specific situation. The first theorem asserts that SLm(Z) and its Zariski-dense subgroups
have uniform exponential growth in a uniform way:

THEOREM 2·2 (Eskin–Mozes–Oh [8]). For every m � 2, there exists α = α(m) > 0
such that |B�(n)| � eαn for every n ∈ N and every symmetric subset � in SLm(Z) generat-
ing a Zariski-dense subgroup.

Although Eskin–Mozes–Oh only state their theorem in [8] for a fixed subgroup of SLm(Z),
their proof carries over without any changes to yield the above result uniformly over the
Zariski-dense subgroups of SLm(Z). For the general case of our Theorem 1·1, we will require
the more general uniformity result established in [3], where it is shown that the rate of growth
can be bounded below by a uniform constant independently of the ring of definition.

The second is the recently established Product Theorem:

THEOREM 2·3 (Breuillard–Green–Tao [7], Pyber–Szabó [25]). For every δ > 0 there ex-
ists a number Nδ = Nδ(m) > 0 such that for every prime number p and every symmetric
generating subset A of SLm(Z/pZ) of size at least pδ we have ANδ = SLm(Z/pZ).

The third is the Strong Approximation Theorem:

THEOREM 2·4 (Matthews–Vaserstein-Weisfeiler [19]). If � is a Zariski-dense subgroup
of SLm(Z), then for all but finitely many primes p, we have πp(�) = SLm(Z/pZ), where πp

is the reduction mod p map.

Let � be as in the statement of Theorem 2·1 and define C := max s∈� ‖s‖ where ‖T ‖
denotes the operator norm of a matrix T . For every n ∈ N large enough, choose a symmetric
subset Bn of B�(n) of size eαn containing �, where α is given by Theorem 2·2.

We claim that there is k0 ∈ N such that for k � k0 there exists a prime number p in the
interval [e2αk, e4αk] such that the restriction of the map πp : SLm(Z) → SLm(Z/pZ) to Bk

is injective.
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If k is large enough, by the distribution of the prime numbers (e.g. Chebyshev’s estimate,
see Theorem 3·3), there exist at least e3αk prime numbers in the interval [e2αk, e4αk]. For each
(g, h) ∈ Bk × Bk , each nonzero entry of the matrix gh−1 − Im is at most C2k , so the number
of its prime divisors greater than e2αk is at most log (C2k)/log (e2αk) = log C/α. We have
m2 entries for each gh−1, and � e2αk possible pairs (g, h), so the number of primes greater
than e2αk dividing at least one nonzero entry of gh−1 − Im for some (g, h) ∈ Bk × Bk is
� (log C/α)m2e2αk , which is less than e3αk for k large enough. Thus, by the pigeon-hole
principle, if k is large enough, there exists a prime p in [e2αk, e4αk] not dividing any nonzero
coefficient of gh−1 − Im for any (g, h) ∈ Bk × Bk . This means that Bk maps injectively into
SLm(Z/pZ).

Let N = N1/4 be the constant in Theorem 2·3. Let n � N (k0 + 1) and k = 	n/N
; by
the above we can fix a prime p so that πp|Bk is injective. By Theorem 2·4, πp(Bk) generates
SLm(Z/pZ) as soon as n is large enough. Moreover, we have |πp(Bk)| � eαk � p1/4, so
Theorem 2·3 implies that πp(B�(n)) = SLm(Z/pZ). Since m � 2, every element of Z/pZ

is a trace of some matrix in SLm(Z/pZ); accordingly the number of traces of elements which
belong to B�(n) is at least p � e2αk � eαn/N , and this yields the assertion of Theorem 2·1.

3. Preliminaries and notation

3·1. Functions

For real-valued functions, we write f (x) � g(x) or f (x) = O(g(x)) if for some constant
C > 0 we have f (x) � Cg(x) for all large x . If f (x) � g(x) � f (x) we write f (x) ≈
g(x).

3·2. Global fields

The letter K will always denote a global field, that is either a number field, i.e. a finite
extension of Q, or a function field, i.e. a finitely generated field of transcendence degree
one over a finite field. We denote by K an algebraic closure of K. A place on K is the
norm induced by the embedding of K into a nondiscrete locally compact field. We identify
equivalent places, i.e. places inducing the same topology on K.

Let S be a nonempty finite set of places on K including all Archimedean ones. The ring
of S-integers of K, defined as OK(S) = {a ∈ K : ∀v � S, v(a) � 1} is a subring of K

whose field of fractions is K. Moreover, OK(S) is a finitely generated Dedekind domain.
Let Spec (OK(S)) be the set of its prime ideals, consisting of {0} along with infinitely many
maximal ideals of finite index. If P ∈ Spec (OK(S)) is nonzero, the size of the residue field
|P| = |OK(S)/P| is called the norm of P . If P = {0} we set |P| = 0.

Let VK be the set of all places of K. For every v ∈ VK, let Kv be the completion of K with
respect to v. Let A = ∏

v∈S Kv. If v is a place associated to a prime ideal P of OK, we may
choose for | · |v the absolute value |x |v = q−νP (x), where q is the size of the residue field
OK/P and νP(x) the P-valuation of x , so that the product formula holds for all x ∈ K×,∏

v∈VK
|x |v = 1. Let ‖ · ‖v be the standard norm on Kd

v relative to | · |v, i.e. the Euclidean
(or Hermitian) norm if v is Archimedean and the supremum norm if v is non-Archimedean
(i.e. |x |v = max |xi |v). We also denote by ‖ · ‖v the associated operator norm on GLd(Kv)

and we let ‖(gv)v‖ = max ‖gv‖v for all g = (gv)v ∈ GLd(A) and |a| = max |av|v for all
a = (av)v ∈ A.

If S ⊂ S′ then OK(S′) is a localization of OK(S) and Spec (OK(S′)) is the complement of
a finite subset of Spec (OK(S)). Moreover, for any P ∈ Spec (OK(S′)) there is a canonical
field isomorphism between residual fields OK(S)/(P � OK(S)) → OK(S′)/P . We thus
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write KP = OK(S)/P . In particular, apart from finitely many primes, Spec (OK(S)) and its
norm function do not depend on S and we thus speak of “primes of K” whenever this finite
indeterminacy is irrelevant. For instance we will use

THEOREM 3·3 (Chebyshev, Landau [27, theorem 5·12], [9, theorem 7]). Let K be a
global field. Let π(x) be the number of primes of K of norm � x. Then

π(x) ≈ x

log (x)
(x → +∞).

This is a weak form of the prime number theorem, which asserts that π(x)/(x/ log (x))

actually tends to 1. Theorem 3·3 has the following consequence.

LEMMA 3·4. Let K0 ⊂ K be an extension of global fields. Then the number of primes P
of K of norm � x such that fP > 1, where fP = [OK/P : OK0/(P � OK0)] is the residual
degree, is o(

√
x). In particular, the number of primes of K of norm � x and with fP = 1 is

≈ x/ log (x).

Proof. Let p = P � OK0 be the prime below P . We have |P| = |p| fP . If fP � 2 and
|P| � x it follows that |p| � √

x . Since there are at most [K : K0] primes P above any
given prime of OK0 , by Chebyshev’s theorem there are at most O(

√
x/ log (x)) primes P of

K with fP � 2 and |P| � x . We are done.

3·5. Reduction modulo a prime

Let K be a global field. Let G be a linear algebraic group defined over K. We want to
define “reduction modulo P” for G. Let A be a finitely generated subdomain with K as field
of fractions. We can write the ring of functions as K[G] = M ⊗Ab K, where Ab is a suitable
localization of A and M ⊂ K[G] a Hopf algebra over Ab. This choice being made, we
write Ab[G] instead of M . Thus for any Ab-algebra B we can define functorially G(B) =
Hom (Ab[G], B) which is naturally a group. In particular G(A/P) is well-defined for every
P ∈ Spec (Ab), and the reduction mod P map is the group homomorphism G(Ab) →
G(Ab/P).

This depends on the choice of the Hopf algebra structure M over Ab; if two different
choices Mi over Abi are made giving rise to forms Gi of G over Abi , the identity induces
an isomorphism M1 ⊗Ab1

K � M2 ⊗Ab2
K; such an isomorphism is actually defined over

a suitable common localization Ab, and in particular, restricted to the class of Ab-algebras,
the functors B �→ Hom (Mi , B) are equivalent for i = 1, 2. Given two fixed choices Mi

over Abi , i = 1, 2, the group scheme structures will coincide for all but finitely many P’s.
Similarly, if � is a finitely generated subgroup of G(K), then for P large enough, we can
talk about the homomorphism � → G(KP), where KP = OK(S)/P .

Moreover, Ab[G]⊗Ab K is a reduced ring and is a domain if G is connected. This continues
to hold modulo P for P large enough, namely G is reduced over KP , and is connected if
G is connected. Indeed, since Ab[G] is a flat Ab-module (if we suppose as we may that
Ab is Dedekind, then flat means torsion-free), “geometrically reduced” and “geometrically
integral” are open properties on Spec (Ab) [10, 12·1·1].

Finer arguments of the same flavour show that if G is semisimple and simply connected,
then this still holds over KP for large P .
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4. Finding many good prime ideals

In this section, we describe a pigeonhole argument (Corollary 4·2 below). In combination
with Chebyshev’s weak version of the prime number theorem for global fields, this will yield
many good prime ideals modulo which the “ball” �n will be preserved.

As above K denotes a global field and S a finite set of places including all Archimedean
ones. Let {Bn}n be a family of finite subsets of GLd(OK(S)) such that:

(i) Bn ⊂ W n(= W · . . . · W ) for some finite subset W of GLd(OK(S));
(ii) |Bn| � eαn for some fixed α > 0.

The reader interested in a proof of Theorem 1·2 under the assumption that the Zariski
closure of 〈�〉 is connected semisimple, can always suppose, in the forthcoming results, that
Bn = �n . This is, in particular, enough in order to obtain Theorem 1·1 (that is exponential
conjugacy growth without the uniformity in the field claimed in Theorem 1·2), because every
non-virtually solvable linear group has a finite index subgroup with a quotient isomorphic
to a Zariski-dense subgroup of a simple algebraic group.

Given a prime ideal P not in S, let πP be the reduction mod P map from GLd(OK(S)) to
GLd(Fq), where Fq = OK/P .

PROPOSITION 4·1. Suppose that Bn ⊂ W n are sets as above. There exists a constant
C = C(W, S) > 0 such that for all n, all γ ∈ B−1

n Bn and ρ > 1 we have

κρn (γ ) � C

log (ρ)
,

where κρn (γ ) is the number of primes P with |P| � ρn such that πP(γ ) = 1.

Proof. We make use of the following easy consequence of the product formula: if P is a
prime ideal in OK(S), then |x ||S| � |P| for any x ∈ P \ {0}. Similarly, if g ∈ GLd(OK(S)),
g � 1, and g − 1 ∈ Md(Pi) for k distinct primes ideals P1,. . . ,Pk not in S, then ‖g −
1‖|S| � |P1| . . . |Pk |. So if πPi (γ ) = 1 for each P1,. . . ,Pk , then ‖γ − 1‖|S| � ρnk . But
‖γ − 1‖ � 1 + M2n � M3n , where M := max {‖g‖, g ∈ W }. Hence the result.

We then derive:

COROLLARY 4·2. With probability tending to 1 as n tends to infinity, a prime P of K

whose norm |P| lies in the interval [e3αn, e4αn] must satisfy |πP(Bn)| � |P| 1
4 .

Proof. Let Pn be a subset of Bn of size eαn . If πP is not injective on Pn , then there must
exist γ ∈ P−1

n Pn such that πP(γ ) = 1 while γ � 1. However by the last proposition,
there are at most κ := C/3α such primes P with norm |P| � e3αn . Hence there are at
most κ|Pn|2 = O(e2αn) possibilities for such a prime. However, by Chebyshev’s theorem
(Theorem 3·3 above), there are ≈ e4αn/n primes with norm in [e3αn, e4αn]. Hence for most
such primes πP is injective on Pn , and thus |πP(Bn)| � eαn � |P| 1

4 .

5. Approximate subgroups and fast generation in semisimple algebraic groups

One of the key ingredients in the proof of our main theorem, is the following recent result
regarding approximate subgroups of simple algebraic groups over finite fields.

Let G ⊂ GLd be an algebraic group defined over an algebraically closed field k. We
will say that a closed algebraic subvariety V of G has bounded complexity (say bounded by
M � 1) if it is defined as the set of zeros of at most M polynomial maps on G of degree
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at most M . We will also say that a subset of G is M-sufficiently Zariski dense if it is not
contained in a proper closed algebraic subvariety of G of complexity at most M . For more
details about this definition, we refer the reader to [7] especially Section 3 and Appendix A
therein.

The following was obtained in [7].

THEOREM 5·1 (Product Theorem). Let G be a (connected) almost simple linear algeb-
raic group of dimension d defined over an algebraically closed field k. There exist constants
ε, C > 0, depending only on d and not on k, such that the following holds. Let A be a finite
subset of G(k), then:

(i) either 〈A〉 is not C-sufficiently Zariski-dense in G, that is A is contained in a proper
algebraic subgroup of G of complexity at most C;

(ii) or |AAA| � min {|〈A〉|, |A|1+ε}.
The above was obtained independently by Pyber and Szabó ([25]) in the case when k =

Fp and A generates G(Fq), which is the hardest case and the only one we will use in this
paper.

As a direct consequence, we get:

COROLLARY 5·2. Let H be a simple algebraic group defined over a finite field Fq , of
dimension at most d. Let β > 0. Then there is D = D(β, d) > 0 such that the following
holds: if A is a finite generating subset of H(Fq) such that |A| � qβ , then AD = H(Fq).

6. Strong approximation

To apply Corollary 5·2, we need to know that � maps onto many mod P quotients. This
is a consequence of the so-called “strong approximation”, a result due to Weisfeiler [29],
except some tricky cases due to the existence of “non-standard isogenies” in characteristic
two or three, and the general result is due to Pink [24]. We have:

THEOREM 6·1. Let K be a global field of characteristic p (possibly p = 0) and G ⊂ GLd

be a simply connected absolutely simple K-subgroup. Let � be a finitely generated Zariski
dense subgroup of G contained in G(K). Then with probability tending to one when x → ∞,
if P is a prime of K with norm � x, then πP(�) = G(KP).

Proof. By Weisfeiler’s theorem [29, theorem 1·1] (or Pink’s version [24] in case of char-
acteristic 2 and 3) there exists a finitely generated subfield K0 of K (namely the subfield
generated by the traces of Ad(�) in characteristic 0) and a K0-structure on G such that
� ⊂ G(K0) and for all p ∈ Spec(OK0) large enough we have πp(�) = G((K0)p). Let
P be a prime of OK of norm � x , with residual degree fP = [OK/P : OK0/p], where
p = P �OK0 . We can suppose that fP = 1, since this holds with probability tending to one
by Lemma 3·4. Hence

πP(�) ⊇ πp(�) = G(OK0/p) = G(OK/P).

Combining Theorem 6·1, Corollary 5·2 and Corollary 4·2, we obtain

COROLLARY 6·2. For every d and α > 0 there exists D = D(d, α) such that the follow-
ing holds. Let K be a global field and H be a simply connected absolutely simple K-group.
Let � be a finitely generated Zariski-dense subgroup of H(K) and W ⊂ GLd(K) a finite
subset. Let (Bn)n be a family of subsets of H(K) such that:
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(i) Bn ⊂ W n for every n � 1;
(ii) � ⊂ 〈Bn〉 for all n large enough;

(iii) |Bn| � eαn.
Then, with probability tending to one as n → ∞, if P is a prime of K of norm in [e3αn, e4αn],
we have

πP(B D
n ) = H(KP).

Proof. By Corollary 4·2, with probability tending to one as n tends to +∞, a prime P
with norm |P| ∈ [e3αn, e4αn] satisfies |πP(Bn)| � |P| 1

4 . By Corollary 5·2, there exists D > 0
depending only on d such that, provided πP(�) = H(KP) for all i , we have πP(B D

n ) =
H(KP). Finally, the condition πP(�) = H(KP) holds with probability tending to one by
Theorem 6·1.

7. Covering balls by subvarieties

The following theorem indicates that in a simple algebraic group, large balls cannot be
covered by a small number of subvarieties of bounded complexity. Let G be a connected
simple algebraic group defined over a global field K with d = dim G. We fix a linear
embedding G � GLd . Suppose that � is a Zariski dense subgroup of G(K). Let W ⊂
GLd(K) be a finite subset. Now let (Bn) be a family of finite sets of G(K) such that:

(i) Bn ⊂ W n for every n � 1;
(ii) � ⊂ 〈Bn〉 for all n large enough;

(iii) |Bn| � eαn for some fixed α > 0.

THEOREM 7·1. Given Bn and α > 0 as above and M > 0 there exist D = D(d, α) � 1
(independent of M) and n0 = n0(d, α, M) � 1, such that the following holds. Let �n be
the smallest k � 1 such that there are proper subvarieties V1, . . . ,Vk of G with complexity
bounded by M such that

B D
n ⊂

⋃
1�i�k

Vi .

Then �n � eαn for every n � n0.

Remark 7·2. Upon hearing of the above theorem E. Hrushovski (personal communica-
tion) supplied an alternative argument for it using the methods of model theory. While our
proof makes use of [7] (which in turn is inspired by [14]), his derivation uses the Larsen-Pink
estimates [14] more directly.

We will use the following estimate on the number of points on a variety over a finite field.

PROPOSITION 7·3. Let d, m be positive integers. There exists a constant c = c(d, m)

such that for every finite field Fq and every closed r-dimensional subvariety X of the d-
dimensional affine space over Fq of complexity � m we have

#X (Fq) � cqr .

This is probably well known to experts (modulo the definition of complexity), but in a
lack of reference we provide a proof based on the Lang–Weil estimates, although they are
probably also not needed for this upper bound.
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Proof. A much more precise asymptotic behavior with upper and lower bounds is given
by the Lang-Weil theorem [13], but it requires the assumption that the variety is absolutely
irreducible. As we will see below, there is no asymptotic lower bound by qr in case the
variety is irreducible but not absolutely irreducible.

Let us check however that the theorem follows from the original statement in [13]. We
argue by induction on the integer r ∈ [0, d]. Let us suppose that the theorem is proved for
all r ′ < r and let X have dimension r . First, because of the bound on the complexity, we
have a bound on the number of irreducible components [7, Lemma A.4], and therefore it is
enough to prove the theorem when X is irreducible over Fq and r -dimensional.

(i) Suppose that X is absolutely irreducible. Then the Lang-Weil Theorem (as stated in
[13]) directly provides the desired upper bound.

(ii) Suppose that X is not absolutely irreducible. Let X1, . . . , Xk be the irreducible com-
ponents of X . By [7, lemma A·4] the integer k can be bounded in terms of d, m. The
components Xi are defined over some finite extension of Fq . This is a Galois exten-
sion, and X is irreducible over Fq , so the action of the Galois group on these compon-
ents is transitive. Moreover, X (Fq) is contained in Y = ⋂

Xi . By assumption, k � 2,
so Y = ⋂

Xi has dimension < r and is defined over Fq and has complexity bounded
by some constant depending only on m and k, hence of d and m. So by induction we
get #Y (Fq) � c′qr−1 for some constant c′ = c(m, d) and

#X (Fq) � #Y (Fq) � c′qr−1 � c′qr .

Note that the induction has only d steps, hence the constant c eventually remains controlled
by (d, m).

Proof of Theorem 7·1. To apply Corollary 6·2, we need to assume that G is simply con-
nected. So first assume that the theorem is proved when G is simply connected and let us
prove it in general. Let κ : G̃ → G be the simply connected covering of G; it is defined
over K; its kernel has cardinality bounded by some number only depending on d, and it has
bounded degree. Now κ−1(Bn) is also a family of generating subsets of κ−1(�) satisfying the
required assumptions, and a covering of Bn by k proper subvarieties pulls pack to a covering
of κ−1(Bn) by k proper subvarieties. We can therefore assume that G is simply connected.

Let S be some non-empty finite set of valuations on K including the Archimedean ones
and such that W ⊂ GLd(OK(S)). By Lemma 7·4 below, if we choose S large enough, then
A = OK(S) is a principal ideal ring.

Enlarging S again if necessary, we can ensure that A[G] ⊗A A/P is a reduced ring for all
primes P (a priori this holds for all but finitely many P’s, see section 3·5). We may also fix
an A-structure on G, i.e. we fix an isomorphism K[G] = A[G] ⊗A K, where A[G] ⊂ K[G]
is a Hopf A-subalgebra.

Now suppose that B D
n ⊂ ⋃kn

i=1 Xi with Xi of complexity � M . We can suppose without
loss of generality that Xi is given as a proper hypersurface { fi = 0} in K[G].

Now multiplying by a suitable nonzero element of K we can even assume that fi ∈ A[G].
Moreover, if fi ∈ a A[G] for some a ∈ A − {0} then we can replace fi by a−1 fi without
changing its set of zeros. Since A[G] is Noetherian, we can suppose that fi � a A[G] for any
a ∈ A not invertible in A[G] (or equivalently in A: because of the co-unity A[G] → A, if
a ∈ A is not invertible then it remains non-invertible in A[G]).

We have the following claim: for every prime ideal P of A, fi defines a proper hypersur-
face XP

i of KP [G].
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Let us first finish the proof of Theorem 7·1, granting the claim for a moment. For all P’s
we have

πP(B D
n ) ⊂

kn⋃
i=1

XP
i (KP).

By Corollary 6·2, with probability tending to one as n tends to +∞, if P is has norm in
[e3αn, e4αn], then πP(B D

n ) = G(KP). For such a prime, we get

|G(KP)| � kn sup
i

|XP
i (KP)|.

If d is the dimension of G, and we use the shorthand q := |P|, then the Lang-Weil upper
bound in Theorem 7·3 gives |XP

i (KP)| � cqd−1; while the Lang-Weil theorem in its original
form (using that G is absolutely irreducible) yields |G(KP)| � c′qd ; here c, c′ are positive
constants depending only on d and M . Thus c′qd � kncqd−1, hence kn � c′

c q � c′
c e3αn and

this ends the proof of the theorem modulo the claim.
Let us verify the claim. If fi = 0 is all of G modulo P , this means that fi is nilpotent in

A[G]⊗A A/P . Since the latter is a reduced ring, this means that fi is zero in A[G]⊗A A/P =
A[G]/PA[G], i.e. that fi ∈ PA[G]. But A is a principal ideal ring, so we can write P = p A,
so fi ∈ p A[G]. By our choice of fi , this implies that p is invertible in A, a contradiction.

We made use of the following classical lemma. Since we did not find a reference, we
include a proof.

LEMMA 7·4. There exists a finitely generated principal ideal subring A of K containing
OK(S).

Proof. Recall that if B is a domain with field of fractions K , a fractional ideal of B is
by definition a nonzero finitely generated B-submodule of K . Under multiplication, they
form a commutative semigroup with unity; if this is actually a group, B is called a Dedekind
domain and the quotient of this group by its subgroup consisting of nonzero principal ideals
is called the class group of B and is denoted by Cl(B).

Observe that if B is a Dedekind domain and D any multiplicative subset of B−{0}, D−1 B
is a Dedekind domain and the natural homomorphism Cl(B) → Cl(D−1 B) is surjective.
Moreover, if I is a (finitely generated) ideal of B and D � I �∅ then the image D−1 I of I
in Cl(D−1 B) is trivial.

Now assume that B = OK(S), so K = K. Then B is a Dedekind domain and Cl(B) is
finitely generated (it is finite in characteristic zero [21, theorem I·6·3] and finite-by-cyclic in
positive characteristic [27, lemma 5·6]). Pick ideals I1, . . . , Ik of B which are representatives
of generators of Cl(B), and let s j ∈ I j \ {0} for each j = 1, . . . , k and s = s1 · . . . · sk . Then
it follows from the remarks above that the image of each I j in Cl(B[1/s]) is trivial and
since Cl(B) → Cl(B[1/s]) is surjective, we deduce that Cl(B[1/s]) is the trivial group, i.e.
A = B[1/s] is a principal ideal domain.

8. Proof of uniform exponential conjugacy growth

In this section, we prove Theorem 1·2, relying on Theorem 7·1. First, we show that
without loss of generality, we may assume that the field of definition F is a global field
(specialization step). Then we reduce to the reductive case and finally prove the theorem by
intersecting the ball with the semisimple part using Theorem 7·1 to count conjugacy classes
inside the semisimple part.
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Specialization step. In proving Theorem 1·2, the first step is to reduce the proof to the
case when the field F is a global field K. Since � is a finite set, the ring generated by
the matrix entries of the elements of � is a finitely generated commutative ring R. Such
rings have lots of homomorphisms to global fields K. The proposition below says that we
can choose such a ring homomorphism with the property that the image of 〈�〉 under the
induced homomorphism on 〈�〉 into GLd(K) remains non-virtually solvable. This process is
traditionally called specialization, because the ring homomorphism from R to K is defined
by specializing the values of a transcendence basis for R to algebraic values.

PROPOSITION 8·1 (Specialization). Let F be any field and R be a finitely generated sub-
ring of F. Let � be a finite symmetric subset of GLd(R), which generates a non-virtually
solvable subgroup 〈�〉. Then there exists a global field K, with char(K) = char(F) and a
ring homomorphism ϕ : R → K inducing a group homomorphism ϕ : 〈�〉 → GLd(K) such
that ϕ(〈�〉) is non-virtually solvable.

Proof. This is now classical. See for example [16, proposition 2·2], [15, theorem 4] and
also [8, section 4] or [5, lemma 3·1].

This proposition allows us to assume that the field F is a global field K in the proof of
Theorem 1·2, because if g ∈ 〈�〉, then the characteristic polynomial χϕ(g) coincides with
ϕ(χg), so there are at least as many distinct characteristic polynomials arising from elements
in �n as there are from elements in ϕ(�)n .

Reduction to a reductive group. Let G be the Zariski-closure of 〈�〉 in GLd . Recall, by
definition, that a reductive algebraic group is an algebraic group with no non-trivial unipotent
normal subgroup. Note that we do not require reductive groups to be connected here. We
have:

LEMMA 8·2 (Going to the reductive part). Let G ⊂ GLd be an algebraic group defined
over a field K. There is a homomorphism of algebraic groups ρ : G → GLd defined over a
finite extension K′ of K, and with unipotent kernel, such that ρ(G) is a reductive algebraic
subgroup of GLd defined over K′ and such that χ(ρ(g)) = χ(g), for every g ∈ G(K), where
χ(g) is the characteristic polynomial of g in GLd .

Proof. Let U be the maximal normal unipotent subgroup of G. It is a K-closed algebraic
subgroup and is thus defined over a finite extension K′ of K. Let V = K′d . Being unipotent,
U admits a non-trivial subspace of fixed points V1 in V , and in fact stabilizes a flag V1 �
V2 � . . . � Vr = V , such that Vi/Vi−1 consists of the U-fixed points in V/Vi−1. Then G
leaves each Vi invariant and its action on Vi/Vi−1 factors through G/U. Replace the original
representation by its semi-simplification, i.e. the representation ρ on V = ⊕i Vi/Vi−1. It is
easy to see that the new representation consists of the diagonal blocks of the old one and
gives rise to the same characteristic polynomial as the old one, and that the kernel of ρ is
unipotent.

Accordingly, to prove Theorem 1·2, it is enough to do it under the additional assumptions
that the field F is a global field, and the Zariski closure of � is reductive (possibly not
connected): indeed applying Lemma 8·2 to the Zariski closure of the subgroup generated by
�, since the kernel of ρ is nilpotent, the image of � still generates a non-virtually-solvable
subgroup. What we actually show is the following. Recall that α� was defined in (1·1).

https://doi.org/10.1017/S030500411200059X Published online by Cambridge University Press

https://doi.org/10.1017/S030500411200059X


On conjugacy growth of linear groups 273

PROPOSITION 8·3. For every d, there exists a constant η(d) > 0 such that if K is a
global field and � a finite symmetric subset of GLd(K) generating a non-virtually-solvable
subgroup with (not necessarily connected) reductive Zariski closure G, then

lim inf
n→∞

1

n
log χ�(n) � η(d)α�.

According to the uniform exponential growth of linear groups [3], α� can be bounded
below by a positive constant c(d), not depending on K nor on the subgroup generated by
�. Therefore, in view of the reductions above, Theorem 1·2 follows from Proposition 8·3,
which we now proceed to prove.

Proof of Proposition 8·3. Let G0 be the connected component of the identity in G, and
let H := [G0, G0] be the commutator subgroup of G0. Then H is a connected semisimple
algebraic group. Let π : G → G/H be the quotient homomorphism; we have ker π = H.
Let also Si be the absolutely simple factors of H and πi : G0 → Si the canonical projections.
Up to passing to a finite extension of K if necessary, we may assume that the Si and the
projection maps πi are defined over K.

Since G/H is virtually abelian, the growth of |π(�n)| is at most polynomial, say � Cnκ .
By the pigeonhole principle, there must exist a coset of H whose intersection with �n has at
least |�n|/Cnκ elements. It follows that |�2n �H| � |�n|/Cnκ . Moreover, setting α�(i) :=
lim inf n→∞(1/n) log |πi (�

2n � H)|, we have,

d max
i

α�(i) �
∑

i

α�(i) � lim inf
n→∞

1

n
log |�2n � H| � α�.

Let j be an index such that α�( j) = max i α�(i). Let Bn = π j (�
2n � H). We have:

lim inf
n→∞

1

n
log |Bn| � 1

d
α�

We are going to apply Theorem 7·1 to the simple group S j , the Bn’s and the subvarieties
of S j defined by V f := π j ({g ∈ H, χg = f }), where f ∈ K[X ] is an arbitrary polynomial
and χg denotes the characteristic polynomial of g. Let α < 1

d α� . We now check that the
assumptions of that theorem do hold.

The V f are subvarieties of S j whose complexity is bounded in terms of d only and in
particular independently of f . Let us check that they are proper subvarieties too. Let T be a
maximal torus of H and λi ’s be characters of T in the ambient linear representation of H, so
that for every t ∈ T , χt(X) = ∏

i(λi(t) − X). Write T = T1T2, where T1 � T2 is finite and
T1 is isogenous via π j to a maximal torus of S j . If V f were not proper, then for a dense set
of t1 ∈ T1, there would exist a t2 ∈ T2 such that χt1t2(X) = f = ∏

i(λi − X). We would thus
have λi(t1t2) = λi for all i . But recall that if t ∈ T , then λi(t) = 1 for all i implies t = 1.
Since T1 � T2 is finite, this implies that T1 is finite, which is impossible. We conclude that
the V f ’s are proper subvarieties of S j .

The Bn’s form an increasing family of symmetric subsets of S j with |Bn| � eαn for
all n large enough. Moreover, observe that � := 〈�〉 � G0 is finitely generated since G0

has finite index in G. It follows from the Reidemeister–Schreier rewriting process (see [17,
section 2·3]) that there exists a finite set of generators W0 of � such that for every γ ∈ �

one has �W0(γ ) � ��(γ ), where �W0 and �� denote the word length with respect to the
generating sets W0 and �. Taking W := W0W0, we get a finite set W ⊂ 〈�〉 � G0 such that
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�2n �G0 ⊂ W n , and hence Bn ⊂ π j (W )n . It now only remains to check that 〈Bn〉 eventually
contains some fixed Zariski-dense subgroup � of S j . We require the following lemma:

LEMMA 8·4. Let H be a connected semisimple algebraic group defined over a global
field K and � be a Zariski-dense subgroup of H(K). Then � contains a finitely generated
Zariski-dense subgroup �.

Proof. The argument is standard. For each simple factor Si of H, one can find an element
σi in � whose projection to Si has infinite order (note that K has only finitely many roots
of unity). If the connected component L of the Zariski closure of the subgroup generated
by the σi is normal in H we are done, because it maps nontrivially on all Si’s. If not, then
one can find γ j ∈ � such that the Zariski closure of 〈L, γ j Lγ −1

j 〉 has dimension > dim L.
This process must stop after at most dim H steps, and the σi ’s together with the γ jσiγ

−1
j ’s

generate a Zariski dense subgroup of H.

Note that 〈�〉 � H is Zariski-dense in H because 〈�〉 � G0 is Zariski-dense in G0 and the
commutator map is surjective from G0 ×G0 to H. Thus the lemma applied to � := 〈�〉�H
implies that 〈�〉 � H contains a finitely generated Zariski dense subgroup in H, and hence
π j (〈�〉 � H) contains a finitely generated subgroup � which is Zariski dense in S j . Hence
〈Bn〉 will eventually contain �. We have now checked that the assumptions of Theorem 7·1
hold in our situation and we can conclude that

χ�(2Dn) � �n � eαn,

as soon as n is large enough. This implies

lim inf
n→∞

1

n
log χ�(n) � α

2D
;

since this holds whenever α < α�/d. This completes the proof of Proposition 8·3.

Remark 8·5. It would have been more elegant to reduce to the semisimple case by finding
a subset �′ ⊂ �N � H such that �′ generates a Zariski-dense subgroup of H. Unless
the characteristic is zero, we cannot afford doing this here, because G/G0 and hence N
cannot be uniformly bounded in terms of d only and proceeding in this way would ruin the
uniformity in Theorem 1·2.

9. Concluding remarks and suggestions for further research

Images of balls under regular maps

In this subsection, we give some further applications of the method of this paper. Using
Theorem 7·1 and working directly with subvarieties of the simple group G, the proof of
Theorem 1·2 generalizes straightforwardly to yield:

THEOREM 9·1. Let d � 1. There exists a constant c = c(d) > 0 such that the following
holds. Let F be a field, G a d-dimensional absolutely simple algebraic group defined over F
and � a Zariski-dense subgroup of G generated by a finite set �. Let f be a regular function
on G defined over F. Assume that f is nonconstant on G. Then the image of the �n under
f grows at an exponential rate at least c, i.e.

lim inf
n→∞

1

n
log | f (�n)| � c.
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Proof. Applying [15, theorem 4], we may specialize as in Proposition 8·1 to a global
field K with the additional property that the image of � under the specialization map is still
Zariski-dense in G. Then the conditions of Theorem 7·1 are fulfilled with Bn = �n , W = �,
the Vi being level sets of the regular map f , and α > 0 gotten from uniform exponential
growth [3]. Setting c = α/D, where D is the constant obtained in Theorem 7·1, we are
done.

This can be applied for example to the trace function:

COROLLARY 9·2. Assume G � GLd is a connected simple algebraic group over a field
F on which the restriction of the trace function g �→ Trace(g) is not constant. Then for
every finite � ⊂ G(F) generating a Zariski dense subgroup in G, we have

lim inf
n→∞

1

n
log |{Trace(g); g ∈ �n}| � c,

for some constant c > 0 depending only on d (and not on F nor �).

It can happen that the trace function is constant on some simple groups, e.g. if the char-
acteristic is p and G = SLn is embedded diagonally in SLnp. But one can show that if G is
any Zariski connected algebraic subgroup of GLd , which is not unipotent, then if the char-
acteristic of F is either 0 or finite and more than d, then the trace function is not constant on
G.

Solvable groups

In [4] it was proved that virtually solvable groups have exponential conjugacy growth
unless they are virtually nilpotent. By way of contrast, this does not hold when we look at
GLd-conjugacy classes.

PROPOSITION 9·3. Let � be a finite subset of GLd over any field, generating a virtually
solvable group �. Then the number of characteristic polynomials χ�(n) is polynomially
bounded. Moreover, it is bounded if and only if � is virtually unipotent.

Proof. It will be convenient to prove the following equivalent statement. Let � be a group
with a finite generating subset � and let ρ : � → GLd be a linear representation over
any field with virtually solvable image. Let χ

ρ

�(n) be the number of distinct characteristic
polynomials in ρ(B�(n)). Then χ

ρ

�(n) is polynomially bounded with respect to n. Moreover,
it is bounded if and only if ρ(�) is virtually unipotent.

Let us prove the latter statement. First, let π be the semisimplification of ρ (see the proof
of Lemma 8·2). Then χ

ρ

� = χπ
� and π has virtually solvable image (since ker π ⊃ ker ρ).

Now let G be the Zariski closure of π(�); since its action is semisimple, G is reductive, and
since G is virtually solvable, it is therefore virtually abelian. So π(�) is virtually abelian
and hence has polynomial growth. It follows that χ

ρ

� is polynomially bounded.
For the last statement of the proposition, observe that if ρ(�) is virtually unipotent then

π(G) has finite image; conversely if ρ(�) is not virtually unipotent, then � contains some
element with an eigenvalue which is not a root of unity, hence χ

ρ

� is unbounded.

Since in GLd there are at most Od(1) conjugacy classes with a given characteristic poly-
nomial, we deduce

COROLLARY 9·4. If � is a virtually solvable subgroup of GLd then the number of GLd-
conjugacy classes met by the n-ball in � is polynomially bounded.
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New questions arise if we ask about the number of G-conjugacy classes in �n , especially
when G is the Zariski closure of �. Let us provide two examples where different phenomena
appear.

Example 9·5. Let G be the group of upper triangular 3 × 3 matrices (ai j ) with a11 =
a33 = 1. Set � = G(Z[1/2]). Then the reader can check that � is finitely generated and

Zariski dense in G. Moreover, its conjugacy growth is exponential, as the elements

(
1 0 k
0 1 0
0 0 1

)
,

for k = 0, 1, . . . , 2n , have word length O(n) but are pairwise non-conjugate in G.

Example 9·6. We present an example where the type of conjugacy growth depends on the
field. Let G be either SL2 or its subgroup consisting of upper triangular matrices. Let � be

the subgroup generated by
(

2 0
0 1/2

)
and

(
1 1
0 1

)
. Then the elements

(
1 p
0 1

)
for p prime in [0, 2n]

(there are exponentially many such elements) have word length O(n) and are pairwise non-
conjugate in G(Q). On the other hand, every element in the n-ball is conjugate in G(C) to(

1 1
0 1

)
or

(
2k 0
0 2−k

)
for some k with −n � k � n. So � has exponential G(Q)-conjugacy

growth but linear G(C)-conjugacy growth.

On the rate of exponential growth

We record here a related open problem. Let � be a group and � a symmetric generating
subset. In general, we have

γ� := lim inf
n→∞

log c�(n)

n
� lim sup

n→∞
log c�(n)

n
� lim

n→∞
log |B�(n)|

n
= α�.

As we saw in the introduction, Osin’s groups provide examples for which the inequality on
the right-hand side is strict. We are not aware of any example for which inequality on the
left-hand side is strict but constructions of the same spirit might provide examples. On the
other hand, for non-virtually-solvable linear groups, does γ� = α� hold? in fact we do not
know if any of those two inequalities can be sharp. For instance, in a free group over �, it is
easy to check that both are equalities.

In case K is a global field and � is a non-virtually-solvable subgroup of GLd(K) whose
Zariski closure is reductive, Proposition 8·3 implies that γ� � η(d)α� , where η(d) > 0
only depends on d. It would be interesting to investigate if these assumptions (i.e. K be a
global field, the Zariski closure be reductive) could be relaxed.
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