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Overextending Partial Structures:
Idealization and Abstraction

Christopher Pincock†‡

The partial structures program of da Costa, French and others offers a unified frame-
work within which to handle a wide range of issues central to contemporary philosophy
of science. I argue that the program is inadequately equipped to account for simple
cases where idealizations are used to construct abstract, mathematical models of phys-
ical systems. These problems show that da Costa and French have not overcome the
objections raised by Cartwright and Suárez to using model-theoretic techniques in the
philosophy of science. However, my concerns arise independently of the more contro-
versial assumptions that Cartwright and Suárez have employed.

1. Introduction. The publication of da Costa and French’s Science and
Partial Truth: A Unitary Approach to Models and Scientific Reasoning
(da Costa and French 2003) offers an important chance to evaluate
the success of what they and their collaborators call the partial struc-
tures program in the philosophy of science.1 As the title of the book
suggests, the goal is to articulate a unified framework within which
the central philosophical issues surrounding scientific reasoning can be
clearly debated and perhaps even resolved. Two central examples are
their openness to both realist and constructive empiricist interpreta-
tions of the goals of science and their attempted explanations of data
from the history of science, especially those surrounding Kuhn’s work
and the pessimistic metainduction.

At the center of the partial structures program is a rather innocuous
sounding generalization of model-theoretic structures. Traditionally, a
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1. I also draw on French and Ladyman 1997, French and Ladyman 1998, and French
2003.
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model or structure is an ordered n-tuple, where the first position is a set
of individuals, known as the domain of the model, and the other positions
are occupied by the properties and relations defined on this domain. The
approach is of course thoroughly extensional, so that, for example, a two-
place relation is just the set of ordered pairs of objects drawn from the
domain that stand in this relation. A partial structure is a different type
of set-theoretic object that reduces to these more traditional structures as
special cases. Unlike a traditional or total structure, in a partial structure
each property and relation is identified with an ordered triple AR1, R2, R3S.
For a two-place relation R an ordered pair is in R1 when that ordered
pair stands in the relation R, the ordered pair is in R2 when it does not
stand in the relation R, and, finally, being in R3 indicates that it is “left
open” (da Costa and French 2003, 19) or indeterminate whether or not
the ordered pair stands in the relation R. Any given pair from the domain
of the partial model must be in exactly one of R1, R2, or R3 (and similarly
for properties and other kinds of relations). In the limiting case where
each R3 is empty, a partial structure becomes a total structure by replacing
the ordered triples AR1, R2, R3S by R1.

It is this widened perspective that puts partial models in place of total
models that forms the backbone of the unified framework for the phi-
losophy of science championed by the partial structures program. In par-
ticular, da Costa and French advocate the use of partial models in in-
vestigations of the dynamics of rational theory change over time as well
as in answering questions about what a scientific theory says about the
world at a given time. In the former diachronic case, the partiality of
partial structures is exploited to indicate how our knowledge can change
over time. Thus, when focused on these historical issues, da Costa and
French think of R1 as representing those pairs where we know R to obtain,
R2 where we know R not to obtain and, crucially, R3 to give those pairs
where we are as yet unsure. In the synchronic case of what a theory’s
commitments are at a given time, partial models are useful in indicating
what the theory remains silent about. So, for a given domain, my theory
may state that R obtains between some pairs, does not obtain between
others and remain silent about the remaining pairs. Such incomplete and
even inconsistent theories fall within the purview of the partial structures
framework.

This flexibility and broad scope is of course to be commended. Still,
its very ambitiousness leaves the entire project open to some very serious
objections. Da Costa and French clearly take as one of their targets
Cartwright’s approach to the philosophy of science, but it is far from
clear that they have the resources to deal with the problematic cases of
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scientific representation that Cartwright has herself focused on.2 These
cases involve both abstract mathematical laws and highly idealized sci-
entific models. Cartwright and Suárez, though in quite different ways,
have argued that in such cases any straightforward set-theoretic approach
to representation is bound to fail.3 In its place, Cartwright has offered an
involved picture of local and constrained ‘mediating’ causal models. Most
controversially, she has argued that because our theoretical laws apply
only to situations via these models, we have no good reason to think that
our laws are universal in scope.

I believe that da Costa and French are right to reject many of Cart-
wright’s more pessimistic conclusions about the scope of scientific results.
At its worst, they involve a kind of Aristotelian posit that the physical
world is too messy for mathematics, and so mathematics can only apply
if we distort the physical world in an unnatural way.4 This said, I want
to defend here what I take to be the core strength of Cartwright’s ob-
servations against the criticisms of da Costa and French. Da Costa and
French claim that an account of representation in terms of partial struc-
tures is sufficient to handle cases with abstract mathematical laws and
idealization. This is not the case. By arguing for this conclusion it should
be clear that I am not arguing that Cartwright’s positive account of rep-
resentation in these cases is correct. Instead, I am only agreeing with her
that such cases pose a serious problem for our understanding of scientific
representation.

2. Structures. I begin with a review of how the traditional total structure
approach to such cases fails. Consider, for example, a model of a simple
pendulum. Such a system is often treated as a simple harmonic oscillator,
and so it is said to obey the equations (Thornton and Marion 1995, 114):

v(t) p A sin (q t � d), (1)0

′v (t) p Aq sin (q t � d), (2)0 0

2 2 ′2 2 2v /A � v /(A q ) p 1. (3)0

2. See, for example, Cartwright 1999; Morgan and Morrison 1999. See Herfel et al.
1995 and Shanks 1998 for further discussion of some of these issues.

3. Mauricio Suárez has offered the most sustained treatment of these issues to date.
See Suárez 1999, 2003, 2004. His disagreements with Cartwright 1999 are most clearly
stated in Suárez forthcoming.

4. Here I draw on McMullin 1985.
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In the phase space with axes v and , equation (3) restricts the paths of′v

the pendulum to an ellipse determined by the length of the pendulum,
the gravitational constant and the initial state of the pendulum at t0. For
a specific case our model might just be a selection from the domain of
possible states at times, (v, , t), in which the initial state of the pendulum′v

is included as well as all other states that fit with it in accordance with
equation (3). In order to incorporate this kind of model into the frame-
work already given, we could say that these states are all SHO-related
by the complex relation set out in equation (3). Our most concrete model
would then consist of the domain of possible states and one relation
containing all those states that are in the SHO-relation to our initial state.

Clearly, this sort of concrete model is not likely to be too useful or
enlightening. In its place, we work with more general models that include
a wider variety of possible cases in their scope. This is easily accomplished
by including in our total model not only the trajectory that is SHO-related
to the initial state of that pendulum (which I will call a SHO-chain), but
also the trajectories for all possible initial states. That is, for every state
of the form (v, , 0), our model will have an appropriate SHO-related′v

trajectory. Equation (3) pares down the model from all the logically pos-
sible state-time pairings or trajectories to only those that satisfy the com-
plex relation imposed by the equation. For example, no trajectory in the
model will have the pendulum at and at and′v p 0 v p 0 t p 0 v p

and at . Rather, in a set with and at any′ ′1/2 v p 0 t p 1 v p 0 v p 0
time, all other entries must be and in order to be in the′v p 0 v p 0
model.5

By now most philosophers of science would agree that this focus on a
nonlinguistic entity, the model, is an improvement on the ‘syntactic’ focus
on statements in a specific, usually artificial, language. But shifting our
attention to models is not a panacea. In particular, once we think of
theories as collections of models it becomes much harder to say in virtue
of what a theory represents a given situation or state of affairs. In our
above example we say that our model is a model of a simple pendulum,
but it is harder to spell out why this is the case. At least the syntactic
view could draw on a more general story about how sentences represent
states of affairs. We seem to have less to go on with models.

Pressures arise from two directions when we try to say what our models
represent. On the one hand, we are inclined to tie a model to a situation
by putting the relevant constituents of the situation in the model itself.
We put the possible states of that pendulum in the domain of the model
and this seems to easily explain why the model is about that situation

5. For simplicity, I ignore the fact that (3) breaks down in this case. I here assume
that the units of v are radians and time is given in seconds.
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and what it ‘says’, as it were, about it. On the other hand, our models
are not just models of particular physical systems or even physical systems
of a definite type. Simple harmonic oscillators are found throughout na-
ture, including spring systems, strings, and even some electromagnetic
phenomena (Thornton and Marion 1995, 131). So if we are to use the
same model to represent all of these various types of systems, we cannot
get by with a model whose domain is too concrete, e.g., whose constituents
are possible physical states of the pendulum in my lab or even of an
arbitrarily chosen pendulum.

This tension is resolved by making our models more abstract and usu-
ally this is accomplished by making our models wholly mathematical.
That is, in the domain we will not have possible states of the pendulum,
but some mathematical substitute. In this case the substitute will be an
ordered triple of real numbers, with the first entry standing for the physical
magnitudes v, the second for and the third for time. Such mathematical′v

models are trivially available if we assume a rich enough background
mathematical theory. At the same time, something new must be said about
why this mathematical model represents our pendulum. That is, the ab-
stractness of the model complicates our account of its representational
powers. If we are to preserve the generality of the model, we also need
to leave open the possibility that the very same model represents a diverse
array of concrete, physical systems.

At this point the advocate of total structures can appeal to the existence
of isomorphisms from the physical state of affairs we are trying to rep-
resent to the elements of the model. Isomorphisms establish identity of
structure, and this is all that we need to cash out our representational
claims. Which isomorphisms exist needs to be specified in some way or
else all models will represent all situations that have the right cardinality.
So, again to revert to our example, we would require that the isomorphism
map the angles of pendulum displacement to v and the rate of change of
such displacement to at a given time. This specification, and not merely′v

the description of the mathematical model, is required for the model to
meaningfully represent the pendulum. Other physical magnitudes are in-
volved for other types of systems. For example, in a simple spring, the
distance of displacement from equilibrium is at issue, not the angle v.

Right away we have a problem because the above approach conflates
representational power with accuracy. We want some models to be false,
i.e., to represent a system inaccurately. But if we tie whether a model
represents at all to the existence of isomorphisms of the appropriate kind,
then whenever a model represents it will also represent truly. What, then,
is the difference between an inaccurate model and a model that fails to
represent at all? One option is to bring in the intentions of the agents
who employ the model. On this approach representational powers do not
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flow simply from the model itself, but result instead from how the model
is used. Then, we can say that the model represents a situation when
agents use it to understand the properties of that situation because they
believe that the right kind of isomorphism exists. Accurate or true rep-
resentations arise when these intentions are in place and when the required
isomorphism actually exists. In those cases where we take there to be an
isomorphism, but in fact there is no isomorphism, we have an inaccurate
or false representation.

Here I must disagree with Suárez when he claims that model-theoretic
approaches generally, and the partial structures program specifically, can-
not appeal to intentions of agents because they are attempts to ‘naturalize’
representation. On the contrary, da Costa and French often appeal to
heuristics that scientists use to pick out the structures they are interested
in. They offer no formal reduction of these heuristic techniques and it
seems fair to include the intentions of scientists in the range of resources
that a partial structures program can employ.6

3. Idealization. This proposal is considerably complicated by the exis-
tence of idealizations. In this paper I will call a mathematical model an
idealized model when it satisfies two conditions: (i) there is no isomorphism
relating it to the situation that it purportedly represents and (ii) the rel-
evant agents are aware of this. Based on what I have said so far it is
impossible for an idealized model to represent accurately. First, the agents
are aware that there is no isomorphism of the required kind, so the model
does not even represent the situation. Second, even if this problem can
somehow be overcome, the actual lack of an isomorphism means the
model will automatically be inaccurate or false. Here we are confronted
with a mismatch between this proposal and scientific practice. Idealized
models are often used to represent situations, and while scientists stop
short of calling such models true, there is still a clear sense in which some
idealized models are better representations than others. Our pendulum
case is in fact a case in point: our actual pendulum is not a simple harmonic
oscillator. It is dampened at least by air resistance and friction. Further-
more, in order to derive our equations (1)–(3), we have made use of the
small oscillation assumption, which tells us that , for small vsin v ≈ v

(Thornton and Marion 1995, 110–111). Both types of idealizing assump-
tions imply that no trajectory in the model will be isomorphic to the
actual trajectory. The crux of the problem, though, is that we seem to

6. Suárez 2003, 226, 235, 240; da Costa and French 2003, 28–36, 124. Suárez develops
other concerns about isomorphism-based accounts of representation that I cannot
address here.

https://doi.org/10.1086/508123 Published online by Cambridge University Press

https://doi.org/10.1086/508123


1254 CHRISTOPHER PINCOCK

have no other resources beyond isomorphisms to explain how abstract
models represent.

It is precisely here that partial structures are supposed to help. Rather
than requiring complete identity of structure between a total model and
a situation, we loosen our requirements on representation to allow partial
identity of structure between partial models and a situation. Partial models
are defined as above and ‘partial identity of structure’ is spelled out in
terms of the existence of partial isomorphisms. For partial models A p

and ,′ ′ ′AA,R S A p AA ,R Si i

A is partially isomorphic to A′ when a partial substructure of A is
isomorphic to a partial substructure of A′. The notion of a partial
structure (or substructure) is so conceived that a total structure (or
substructure) constitutes a particular case of a partial structure (or
substructure). In other words, we can say that, with regard to a partial
isomorphism, certain of the Ri—some subfamily—stand in a one-to-
one correspondence to certain of the . (da Costa and French 2003,′Ri

49)

When it comes to idealized models, then, we can still say that the idealized
model of the pendulum represents the pendulum because there will be a
partial isomorphism between the situation and the model (da Costa and
French 2003, 102).

As with isomorphisms, it is important to note that even in highly ide-
alized cases, partial isomorphisms will trivially obtain. Presumably,
though, it is not supposed to be trivial for there to be a partial isomor-
phism of the appropriate sort. Similarly, in order to allow for inaccurate
models, we can invoke the intentions and beliefs of agents using the model.
When these agents suppose there to be an appropriate partial isomor-
phism, the model will represent the situation. And, even when idealization
is involved, when a partial isomorphism really exists, then the model
represents accurately or truly to some degree.

Partial isomorphisms bring greater flexibility, but also a greater danger
of trivializing our representational relationships. To present the problem
in an especially vivid way, I introduce what I will call the full model F.
F has as its domain the ordered triples of real numbers that go proxy for
the possible states of a pendulum (v, , t). F is a full model because all′v

pairs definitely do stand in its one relation . Now for any trajectoryR � F
of an actual pendulum, we can find partial isomorphisms from the tra-
jectory to F. One of these partial isomorphisms will relate the right phys-
ical magnitudes to a trajectory in the model, but it seems like the full
model does not represent the pendulum in any interesting way. This shows
that once we allow partial isomorphisms it is no longer sufficient for a
model to represent for it to permit a mapping whose domain is restricted
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to the appropriate physical magnitudes. Additional constraints are needed
in specifying what the range of the mapping can be. Intuitively, we dis-
qualify this model because it takes no risks: however the actual pendulum
moves, we could find its trajectory in the model. This suggests a way to
disqualify the full model. When we have equation (3), we give the clearest
kind of description possible of the mathematical structure of the pairs
that fit in the model. In the full model, we have no description of what
the range of the mapping will be. We rule out the full model, then, if we
demand that we have some means to restrict what is in the range of the
mapping. Ideally this is done using a mathematical equation, but other
more qualitative means are no doubt also sometimes satisfactory. Without
this additional constraint we are forced to conclude that the full model
represents not only any pendulum, but any system with three physical
magnitudes measured by real numbers. More of course should be said
about how restrictive our requirements on the range must be in order for
a model to represent. Perhaps a ‘half model’ would not go far enough.
Still, something like this constraint on the mappings is needed for the
partial structures program to have a chance of success. To date I do not
believe da Costa and French have addressed this problem, although they
may think of it as subsumed under their informal treatment of heuristics
guiding scientific investigation.

4. A Problem. Assuming all of these restrictions are in place, a more
fundamental problem still arises. The partial structures program is forced,
I will argue, into thinking that all idealizations are treatable as a series
of approximations. This leaves them unable to rank or evaluate ideali-
zations in a way consonant with scientific practice. Approximation, even
when shifted to the vocabulary of the partial structures program, is too
coarse an instrument to discriminate among idealizations.

Reconsider the case where we had a total mathematical model of a
simple pendulum and we failed to cash out its representational power in
terms of an appropriate isomorphism with a concrete physical pendulum.
In order to introduce an analogous partial structure, imagine that we take
the equation to pick out not our original model, but instead a partial
model that acknowledged that the equation was only giving a partial
picture of what was going on in the actual world. There are many ways
this might be done. I will focus on just one because it seems that any
alternative will lead to essentially the same problem. According to this
procedure, we include not only the SHO-chains that are exactly related
to each (v, , t), but also allow in chains where there is some limited′v

variation. To include these trajectories we might just replace the ‘1’ on
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the right hand side of equation (3) by ‘ ’, where d was a contextually1 � d

determined term reflecting the looseness of the idealization:
2 2 ′2 2 2v /A � v /(A q ) p 1 � d. (3-APP)0

So, for example, SHO-linked to (0, 0, 0) would be not only all triples (0,
0, t) for all t, but all those trajectories where the values of v and fell′v

within the boundaries set by d. As it stands the model is not yet partial,
but this could also be introduced by stipulating that, in some area around
these boundaries, it is indeterminate whether or not the states form a
SHO-chain. A partial isomorphism will exist between the actual situation
and this model just in case the image of the actual trajectory is caught
by our more generous selection from all the possible trajectories.

Here we have found a way to incorporate more trajectories than the
ones that exactly satisfy equation (3), but have stopped short of the full
model F by using (3-APP) to specify what the range of our mapping must
look like. Do we have the resources needed to give an account of ideal-
izations using these sorts of approximating techniques? I claim the answer
to this question is no. When constructing and evaluating idealizations we
are interested in more than what this analysis of idealization says we are.
To see this consider the model picked out by our more generous equation
(3-APP). Instead of picking out ellipses in our phase space, we will instead
get a series of tubes in the phase space of width determined by our error
term d. If the actual trajectory of the pendulum begins and ends in one
such tube, then we will have a partial isomorphism between the system
and our model. The problem is that it is possible to pick out these same
tubes using a different and much less satisfactory series of idealizations.
Consider the exact equation:

2 2 ′2 2 2v /A � v /(A q ) p 1 � d. (3-d)0

A trajectory that satisfied (3-d) would be an ellipse whose major and minor
axes were d units too large. This exact equation with different idealizing
assumptions could lead to the very same partial model constructed using
(3-APP). To see this suppose we allowed only approximations ‘inward’,
up to a threshold of 2d and set as indeterminate any trajectories in the
immediate neighborhood of the resulting tubes. While in such a case we
again end up with a partial isomorphism, there is something defective
about this sort of idealization, both in its original equations that deliver
the ‘widened’ trajectories and in its approximating techniques.

I intend this case as a counterexample to the claim that idealization
can be suitably analyzed using the tools that the partial structures program
has employed to date. What is needed is some way of disqualifying
(3-d). Given that it generates the same model as our (3-APP), it is hard
to see how to do this. If we just focus on the models, we only have the
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resources to discriminate proposals based on the trajectories we end up
with. In cases of idealization, this pushes the proposal into a rather un-
satisfactory version of an instrumentalist approach to models. We are not
allowed to investigate how the class of trajectories was picked out. But
as our example shows, this can be crucial when evaluating idealizations.
(3-APP) was arrived at by a series of supposedly well motivated assump-
tions: the forces due to friction and air resistance are ignored and the
small angle substitution is used to replace by v. (3-d) might havesin v

resulted from some bizarre new ‘hidden variable’ proposal or it might be
completely unmotivated, and this is why we want to rule it out or at least
rate it very low as an idealization.7

My objection began with the claim that the partial structures program
is forced into thinking of idealizations as approximations. Da Costa and
French might challenge this assumption and go on to offer a different
way of accounting for the ‘looseness of fit’ in this case and others. I
concede that there are certainly other ways to think of the relation between
a simple harmonic oscillator model and a concrete system like our pen-
dulum. For example, one might stick with the exact equation (3) and
loosen our restrictions on what physical magnitudes the partial isomor-
phism must respect. That is, we loosen up the isomorphism, and not the
model, when we countenance idealizations.

I claim, however, that all such alternative strategies fail to distinguish
well motivated from poorly motivated idealizations when the two ideal-
izations agree on the models or isomorphisms at issue. In particular, there
will be many ways to pick out the looser kind of isomorphism required
on our second suggestion, and only a few of these ways will be related
to acceptable idealizations. The problem remains that the partial struc-
tures program only has the resources to focus on the results of these
moves.

What we see, then, is that we cannot ignore how or why a mathematical
model is introduced if we are to give a reasonable account of represen-
tation and accuracy in terms of partial isomorphisms. In particular, our
judgments about the appropriateness of an idealized model depend not
just on the trajectories that we end up with, but how we cooked up these
particular trajectories in the first place. Cartwright would point to the
ways in which (3-APP) gets the causal story right and how (3-d) is a
miserable failure in these respects. For her, this implies that models are
not abstract, mathematical entities, but rather a new type of entity that
mediates between our abstract mathematical theories and the messy phys-
ical world.

7. McMullin 1985 also emphasizes the need for idealizations to be well-motivated.
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5. Conclusion. Da Costa and French might respond by bringing in ele-
ments of their partial structures program that I have not yet mentioned.
They often invoke a hierarchy of wholly mathematical models. At the
bottom of this hierarchy are the data models that encode the observed
data from experiments. Above this we find increasingly rigorous and gen-
eral models that encode the more general laws appropriate for that kind
of situation. At the top it appears that we are meant to find models
satisfying the fundamental equations of our current best theory. The issue
becomes one of fitting our (3-APP) into a hierarchy of models that ter-
minates in the data model for this situation and of giving principled
reasons for excluding deviant cases like (3-d) from an analogous hierarchy.
As before, each link in this hierarchy is accomplished by appropriate
partial isomorphisms between partial models.

The example I have focused on this paper is of course a low-level one,
and so we might imagine a simple hierarchy with three levels: the data
model, the simple harmonic oscillator model and the theoretical model
for Newtonian classical mechanics. Given that (3-APP) and (3-d) are the
very same model, I do not see how any model-theoretic relations to other
models can distinguish the two. There will be partial isomorphisms from
(3-APP) ‘upwards’ to the theoretical model or ‘downwards’ to the data
model just in case the same mappings obtain for (3-d). Even though we
have seen that the intentions of agents must be appealed to in our analysis
of representation, these appeals do not distinguish the two cases either.
The same magnitudes are in the domain of the mappings and the ranges
are both restricted in the way that we saw was required to rule out the
full model.

In conclusion, then, it seems clear that something more is needed, but
I fail to see what more da Costa and French could appeal to without
making their models concrete. This shows that the partial structures pro-
gram as it currently stands cannot give an adequate account of abstract
and idealized models. Of course, it does not show that the only or best
way to resolve these issues is to invoke, along with Cartwright, causes or
capacities.
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