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PREDICATIVE COLLAPSING PRINCIPLES

ANTON FREUND

Abstract. We show that arithmetical transfinite recursion is equivalent to a suitable formalization of the
following: For every ordinal α there exists an ordinal � such that 1+� · (�+α) (ordinal arithmetic) admits
an almost order preserving collapse into � . Arithmetical comprehension is equivalent to a statement of
the same form, with � · α at the place of � · (� + α). We will also characterize the principles that
any set is contained in a countable coded �-model of arithmetical transfinite recursion and arithmetical
comprehension, respectively.

§1. Introduction. Well-ordering principles (of type one) are statements which
assert that “T (X ) is well-founded for any well-order X ,” for some transformation
T of linear orders. We will consider such statements from the viewpoint of reverse
mathematics (see [20] for a comprehensive introduction). In this setting X ranges
over ordered subsets of N. The fact that T is a transformation of linear orders can
usually be proved in RCA0, so that the entire strength of the well-ordering principle
lies in the preservation of well-foundedness.
The literature contains many results that characterize important Π12-statements
in terms of well-ordering principles. In order to explain our approach we focus on
the following equivalence (but further results will be covered below):

Theorem 1.1 (H. Friedman [unpublished]; M. Rathjen and A. Weiermann [18]).
The following are equivalent over RCA0:

(i) arithmetical transfinite recursion (i. e. the principal axiom of ATR0),
(ii) the statement that ϕ(1 + X )0 is well-founded for any well-order X .

The transformation in (ii) is related to the Veblen function, which iterates deriva-
tives of normal functions into the transfinite (cf. [14,19]). In the context of reverse
mathematics, the relevant values of this function can be represented by relativized
ordinal notation systemsϕ(1+X )0 (see [18,Definition 2.2] fordetails; our summand
1 corresponds to the minimal element 0Q in the cited definition).
The present article shows that complicated well-ordering principles can, in a
certain sense, be reduced to much simpler ones. In particular we will reduce the
well-ordering principle X �→ ϕ(1 + X )0 to the family of order transformations

Y �→ TϕX (Y ) := 1 + (Y + X )× Y,
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512 ANTON FREUND

indexed by the order X (unless stated otherwise, “order” will always mean “linear
order”). Here 1 denotes the order with a single element. Also recall that the sum of
two orders X = (X,<X) and Y = (Y,<Y) has underlying set

X + Y = {〈0, x〉 |x ∈ X} ∪ {〈1, y〉 | y ∈ Y}.
For x <X x′ and y <Y y′ we have 〈0, x〉 <X+Y 〈0, x′〉 resp. 〈1, y〉 <X+Y 〈1, y′〉,
and 〈0, x〉 <X+Y 〈1, y〉 holds for any x ∈ X and y ∈ Y . The product is given by

X × Y = {〈x, y〉 |x ∈ X and y ∈ Y},
where 〈x, y〉 <X×Y 〈x′, y′〉 holds if we have x <X x′, or x = x′ and y <Y y′.
Clearly the definition of sum and product is much simpler than the construction of
ϕ(1 + X )0 in [18, Definition 2.2]. The fact that sums and products of well orders
are themselves well ordered can be proved in RCA0, in contrast to Theorem 1.1.
So how can X �→ ϕ(1 + X )0 be reduced to the transformations TϕX ? The idea
is to consider fixed points of a certain type. Let us first observe that TϕX (Y ) ∼= Y
cannot hold for any well orders X and Y : If the latter have order types α resp. � ,
then TϕX (Y ) has order type 1 + � · (� + α) > � . The best we can hope for is an
“almost” order preserving function

ϑ : TϕX (Y )→ Y.
To make this precise we need some terminology: A transformation Y �→ T (Y ) of
linear orders is called inclusive if T (Y0) is a suborder of T (Y ) whenever Y0 is a
suborder of Y . This property allows us to introduce the following notion:

Definition 1.2. Let Y �→ T (Y ) be an inclusive transformation of orders. Given
any order Y , we define the support suppTY (�) ⊆ Y of an element � ∈ T (Y ) by

suppTY (�) =
⋂

{Y0 ⊆ Y | � ∈ T (Y0)}.
For the above transformationsTϕX , the supports have a concrete description: The
element of the summand 1 has empty support. The support of an element 〈〈0, y〉, y′〉
resp. 〈〈1, x〉, y′〉 in the other summand is equal to {y, y′} resp. {y′}. We can now
say what we mean by an “almost” order preserving function:

Definition 1.3. Consider an inclusive transformation Y �→ T (Y ) of linear
orders. A function ϑ : T (Y ) → Y is called a Bachmann–Howard collapse if the
following holds for all �, � ∈ T (Y ):
(i) � <T (Y ) � implies ϑ(�) <Y ϑ(�), under the side condition that y <Y ϑ(�)
holds for all y ∈ suppTY (�),

(ii) we have y <Y ϑ(�) for all y ∈ suppTY (�).
An order Y that admits such a function is called a Bachmann–Howard fixed point
of T . If Y can be embedded into any other Bachmann–Howard fixed point of T ,
then it is called a minimal Bachmann–Howard fixed point.

In Remark 2.4 wewill discuss a stronger notion ofminimality, whichmay bemore
appealing from a categorical standpoint. We can now state our characterization of
the transformationX �→ ϕ(1 + X )0, which will be proved in Section 3.
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PREDICATIVE COLLAPSING PRINCIPLES 513

Theorem 1.4 (RCA0). The orderϕ(1+X )0 is aminimal Bachmann–Howardfixed
point of the transformationY �→ 1 + (Y + X )× Y , for any linear order X .
Due to minimality, a descending sequence in ϕ(1 + X )0 propagates to any
Bachmann–Howard fixed point of TϕX . Hence ϕ(1 + X )0 is well-founded if, and
only if, the transformation TϕX has a well-founded Bachmann–Howard fixed point.
Together with Theorem 1.1 we obtain the following:

Corollary 1.5. The following principles are equivalent over RCA0:

(i) arithmetical transfinite recursion,
(ii) for every well-order X the transformation Y �→ 1 + (Y + X ) × Y has a
well-founded Bachmann–Howard fixed point.

As mentioned above, the literature contains several results that have the same
form as Theorem 1.1. In each line of the following table, the principle in the left
column is equivalent to the assertion that the transformation in the middle column
preserves well-foundedness (so the third line is Theorem 1.1). Precise definitions
and proofs can be found in the references that are given in the right column.

Arithmetical comprehension X �→ �X [12,13]

The �-jump of every set exists. X �→ εX [3, 14]

Arithmetical transfinite recursion X �→ ϕ(1 + X )0 [18]

Every set lies in an �-model of ATR. X �→ ΓX [15]

Note that the existence of �-jumps is equivalent to the statement that every set
lies in a (countable coded) �-model of ACA, over the base theory ACA0 (see [3,
Lemma 3.4]; �-models are explained in [20, Section 7.2]). We will characterize
all transformations from the previous table in terms of collapsing principles. In
each line of the next table, the order in the left column is a minimal Bachmann–
Howard fixed point of the transformation in the middle column, for any linear
order X . The right column refers to the corresponding theorem of the present
article.

��
X

Y �→ T�X (Y ) := 1 + (1 + X )× Y Theorem 2.2

εX Y �→ TεX (Y ) := 1 + Y 2 + X Theorem 2.6

ϕ(1 + X )0 Y �→ TϕX (Y ) := 1 + (Y + X )× Y Theorem 1.4

ΓX Y �→ T ΓX (Y ) := 1 + 2× Y 2 + X Theorem 3.5

As in Corollary 1.5, we obtain new characterizations of the (broadly) pred-
icative principles from above: arithmetical comprehension (Corollary 2.3), the
existence of �-jumps (Corollary 2.7), and the existence of �-models of ATR
(Corollary 3.6).
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514 ANTON FREUND

In the rest of this introduction we explain the wider context of our results: Let
us first recall that J.-Y. Girard [11] has singled out a class of particularly uniform
well-ordering principles, which are known as dilators. More precisely, a dilator
is an endofunctor on the category of well-orders that preserves direct limits and
pullbacks. In the inclusive case, these requirements correspond to the following
properties of the supports from Definition 1.2 (cf. [5, Remark 2.2.2]):

• each support suppTY (�) ⊆ Y is finite,
• we have � ∈ T (suppTY (�)) for any � ∈ T (Y ).
Girard has shown that dilators are determined by their restrictions to the category
of natural numbers (up to natural equivalence). This crucial property makes it
possible to represent dilators in second order arithmetic. For the purpose of the
present article we do not need this general representation, since our families of
order transformations come with an explicit parametrization.
The notion of Bachmann–Howard fixed point has been introduced in [5, 6],
for arbitrary (i. e. not necessarily inclusive) dilators. In the cited articles it was
shown thatΠ11-comprehension is equivalent to the statement that every dilator has a
well-founded Bachmann–Howard fixed point. Furthermore, aminimal Bachmann–
Howard fixed point of a given dilator can already be constructed inRCA0, as shown
in [7, 8]. Due to its minimality, that fixed point must be well-founded, but RCA0
cannot prove this fact. Applied to Corollary 1.5, this confirms that the strength of
statement (ii) does not lie in the existence of a Bachmann–Howard fixed point as
such, but rather in its well-foundedness.
The name “Bachmann–Howard fixed point” refers to the fact that our definitions
are inspired by the Bachmann–Howardordinal, in particular by the notation system
from [17, Section 1]. It is well known that values of the Veblen function also arise in
the construction of the Bachmann–Howard ordinal (see e. g. [4]). For this reason a
result such as Theorem 1.4 may not be entirely unexpected. Nevertheless, it seems
that the connection on the level of predicative well-ordering principles has not been
made before. The literature does contain an impredicative well-ordering principle
that is related to the Bachmann–Howard ordinal: As shown by M. Rathjen and
P. Valencia Vizcaı́no [16], the statement that every set lies in an �-model of bar
induction is equivalent to the principle that a relativized notation system ϑX is well-
founded for any well-order X . In contrast to our approach, the notation system ϑX
incorporates the collapsing function into the term structure.
In the present article we are concerned with “almost” order preserving collaps-
ing functions of transformations that do not have well-founded fixed points in the
usual sense. A class of transformations that correspond to normal functions has
been singled out by P. Aczel [1, 2]: these transformations have well-founded fixed
points of arbitrarily large order type. In [9, 10] it was shown that an appropri-
ate formalization of the statement that “every normal function has a derivative
(resp. at least one fixed point)” is equivalent to Π11-induction along arbitrary well-
orders (resp. along N). These induction principles are considerably weaker than
the principle of Π11-comprehension, which is equivalent to the existence of well-
founded Bachmann–Howard fixed points. The present article appears to show that
the great strength of Bachmann–Howard fixed points translates into particularly
simple characterizations of weaker principles.
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§2. Collapsing and ordinal exponentiation. In the present section we show how
the orders ��

X

and εX can be constructed as Bachmann–Howard fixed points.
As mentioned in the introduction, this yields characterizations of arithmetical
comprehension and the principle that the �-jump of every set exists.
Let us recall some definitions: Given an order X = (X,≤X ), the underlying set

�X = {〈x0, . . . , xn−1〉 |xn−1 ≤X · · · ≤X x0}
of the order�X = (�X ,≤�X ) consists of the finite decreasing sequences with entries
from X . The relation ≤�X is defined as the lexicographic order on this set (cf. [13,
Definition 2.2]). Intuitively, the elements of�X correspond toCantor normal forms.
To convey this intuition we will write �x0 + · · ·+ �xn−1 rather than 〈x0, . . . , xn−1〉,
and in particular 0 rather than 〈〉 ∈ �X . If X is a well-order of type α, then �X has
order type �α , in the usual sense of ordinal arithmetic.
Addition on�X can be defined in terms of Cantor normal forms:We agree that 0
is neutral and that we have

(�x0 + · · ·+ �xn ) + (�y0 + · · ·+ �ym ) = �x0 + · · ·+ �xi + �y0 + · · ·+ �ym ,
where i is maximal with y0 ≤X xi (note i = −1 if x0 <X y0). It is well known that
basic properties of ordinal addition can be proved in RCA0 (cf. e. g. [19,21]).
In order to define multiplication we must consider ��

X

rather than �X (note
that an ordinal of the form �α does not need to be multiplicatively principal). The
general definition of multiplication in terms of Cantor normal forms is somewhat
cumbersome, since ordinal arithmetic does not validate right distributivity. Luckily,
we will only need to multiply terms of a particular form: Given elements α ∈ �X
and �n−1 ≤�X · · · ≤�X �0, we can set

�α · (��0 + · · ·+ ��n−1 ) = �α+�0 + · · ·+ �α+�n−1 ,
where the exponents are added in �X . Since �X contains a minimal element 0 = 〈〉,
the order ��

X

contains a minimal non-zero element 1 = �0. This allows us to
distinguish between successor and limit elements. Again, basic properties of these
notions can be proved in RCA0. To avoid iterated superscripts we will abbreviate
�2(X ) := ��

X

, as well as �2(x) =: ��
x ∈ �2(X ) for x ∈ X .

On an intuitive level one would like to prove certain statements by induction
along the order ≤�2(X ), but this induction principle is not available in our setting.
Instead we argue by induction over the length of terms. For this purpose we define
functions l�X : �

X → N and L�X : �2(X )→ N by setting

l�X (�
x0 + · · ·+ �xn−1) = n,

L�X (�
α0 + · · ·+ �αn−1) = l�X (α0) + · · ·+ l�X (αn−1) + n.

The following observation will be crucial for our analysis of the order �2(X ).

Lemma 2.1 (RCA0). Let X be a linear order. Any limit element of �2(X ) can be
uniquely written as �2(x) · 
 with 0 <�2(X ) 
 <�2(X ) �2(x) · 
. Furthermore we have
L�X (
) < L

�
X (�2(x) · 
) for any such decomposition.

Proof. To establish existence we consider an arbitrary limit element

��0 + · · ·+ ��n ∈ �2(X ).
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Since we are concerned with a limit, the last exponent is different from 0 ∈ �X .
Hence there are elements x ∈ X and �n ∈ �X with

�n = �x + �n > �n.

Let us also record l�X (�n) < l
�
X (�n). Left subtraction is readily defined on the level

of Cantor normal forms. In view of �x ≤�X �n ≤�X · · · ≤�X �0 we can thus write
�i = �x + �i

for all i < n. One readily checks �i ≤�X �i and l�X (�i) ≤ l�X (�i) (note that the
inequalities may not be strict for i < n). Due to the monotonicity of addition we
must also have �n ≤�X · · · ≤�X �0. We can thus define


 := ��0 + · · ·+ ��n ∈ �2(X ).
By construction we have

�2(x) · 
 = ��x+�0 + · · ·+ ��x+�n = ��0 + · · ·+ ��n .
The above inequalities between �i and �i imply

0 <�2(X ) 
 <�2(X ) �
�0 + · · ·+ ��n = �2(x) · 
.

In view of l�X (�n) < l
�
X (�n) we also get

L�X (
) = l
�
X (�0)+· · ·+l�X (�n)+n+1 < l�X (�0)+· · ·+l�X (�n)+n+1 = L�X (�2(x)·
).

It remains to establish uniqueness. Due to the monotonicity of multiplication it
suffices to show that


 <�2(X ) �2(x) · 
 = �2(y) · � >�2(X ) �
implies x = y. Aiming at a contradiction, let us assume that we have x <X y. Then
we get �x + �y = �y and hence �2(x) · �2(y) = �2(y). We can deduce

�2(x) · 
 = �2(y) · � = �2(x) ·�2(y) · � = �2(x) ·�2(x) · 
,
which is incompatible with the assumption 
 <�2(X ) �2(x) · 
. �
Our goal is to characterize �2(X ) as a minimal Bachmann–Howard fixed point
of the order transformation

Y �→ T�X (Y ) = 1 + (1 +X )× Y.
Let us write ⊥ for the unique element of 1. The elements of T�X (Y ) will be written
as ⊥, 〈⊥, y〉 and 〈1 + x, y〉, rather than 〈0,⊥〉, 〈1, 〈〈0,⊥〉, y〉〉 and 〈1, 〈〈1, x〉, y〉〉,
respectively. Sometimes we also use x to denote an arbitrary element of 1 +X . The
supports from Definition 1.2 take the forms

supp�Y (⊥) = ∅ and supp�Y (〈x, y〉) = {y}.
In viewofDefinition 1.3, thismeans that a functionϑ : T�X (Y )→ Y is a Bachmann–
Howard collapse if, and only if, the following conditions are satisfied:
(i) we have ϑ(⊥) <Y ϑ(〈x, y〉) for any 〈x, y〉 ∈ (1 + X )× Y ,
(i′) 〈x, y〉 <(1+X )×Y 〈x′, y′〉 implies ϑ(〈x, y〉) <Y ϑ(〈x′, y′〉), under the side
condition that we have y <Y ϑ(〈x′, y′〉),

(ii) we have y <Y ϑ(〈x, y〉) for any x ∈ 1 + X and y ∈ Y .
We can now establish the promised characterization, improving [8, Proposition 3.3]:
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Theorem 2.2 (RCA0). The order��
X

is a minimal Bachmann–Howard fixed point
of the transformation T�X , for any order X .

Proof. In order to show that �2(X ) = ��
X

is a Bachmann–Howard fixed point
of T�X we must define a collapsing function

ϑ : 1 + (1 + X )× �2(X )→ �2(X ).
Using the successor operation and multiplication in �2(X ), we set

ϑ(⊥) := 0,
ϑ(〈⊥, 
〉) := 
 + 1,

ϑ(〈1 + x, 
〉) := �2(x) · (
 + 1).
The above Condition (i) is immediate. Condition (ii) is satisfied in view of


 <�2(X ) 
 + 1 ≤�2(X ) �2(x) · (
 + 1).
To verify Condition (i′) one needs to distinguish several cases. In the first interesting
case we are concerned with an inequality

〈⊥, 
〉 <(1+X )×Y 〈1 + x, 
′〉.
Due to the side condition in (i′) we may assume


 <�2(X ) ϑ(〈1 + x, 
′〉) = �2(x) · (
′ + 1).
The element on the right side is a limit (note that the last exponent in its Cantor
normal form is equal to �x �= 0). Hence we obtain

ϑ(〈⊥, 
〉) = 
 + 1 <�2(X ) ϑ(〈1 + x, 
′〉),
as required. Let us also consider the case of an inequality

〈1 + x, 
〉 <(1+X )×Y 〈1 + x′, 
′〉
with x <X x′. Yet again, the side condition yields 
 + 1 <�2(X ) �2(x

′) · (
′ + 1).
Also observe that x <X x′ implies �2(x) · �2(x′) = �2(x′), as in the proof of
Lemma 2.1. Using the monotonicity of multiplication we can deduce

ϑ(〈1 + x, 
〉) = �2(x) · (
 + 1) <�2(X ) �2(x) · �2(x′) · (
′ + 1) =
= �2(x′) · (
′ + 1) = ϑ(〈1 + x′, 
′〉).

So far we have shown that �2(X ) is a Bachmann–Howard fixed point of T�X . To
establish minimality we consider an arbitrary order Y that admits a Bachmann–
Howard collapse

ϑ : 1 + (1 + X )× Y → Y.
We need to construct an embedding f : �2(X )→ Y . In view of Lemma 2.1 we can
define f by recursion over the length of terms, by setting

f(0) := ϑ(⊥),
f(
 + 1) := ϑ(〈⊥, f(
)〉),

f(�2(x) · 
) := ϑ(〈1 + x,f(
)〉), where 0 <�2(X ) 
 <�2(X ) �2(x) · 
.
To show that � <�2(X ) �

′ implies f(�) <Y f(�′) we argue by induction on the
combined lengthL�X (�)+L

�
X (�

′) of � and �′ (note that this amounts to an induction
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over a Π01-statement, which is available in RCA0). In the first interesting case we
consider an inequality

� = 
 + 1 <�2(X ) �2(x) · 
′ = �′.
In view of⊥ <1+X 1+xwe clearly have 〈⊥, f(
)〉 <(1+X )×Y 〈1+x,f(
′)〉. Invoking
the induction hypothesis, we also see that 
 <�2(X ) �

′ implies

f(
) <Y f(�′) = ϑ(〈1 + x,f(
′)〉).
This is the side condition required in clause (i′) above. We can thus conclude

f(�) = ϑ(〈⊥, f(
)〉) <Y ϑ(〈1 + x,f(
′)〉) = f(�′).
Let us now consider an inequality of the form

� = �2(x) · 
 <�2(X ) 
′ + 1 = �′.
Using the induction hypothesis and clause (ii) above we get

f(�) ≤Y f(
′) <Y ϑ(〈⊥, f(
′)〉) = f(�′),
as required. To conclude the proof we consider an inequality of the form

� = �2(x) · 
 <�2(X ) �2(x′) · 
′ = �′.
We need to distinguish three cases: First assume that we have x <X x′. Then we
immediately get 〈1 + x,f(
)〉 <(1+X )×Y 〈1 + x′, f(
′)〉. In view of Lemma 2.1 we
have 
 <�2(X ) � <�2(X ) �

′ and L�X (
) < L
�
X (�). Hence the induction hypothesis

yields
f(
) <Y f(�′) = ϑ(〈1 + x′, f(
′)〉).

Hence the side condition from clause (i′) is satisfied, and we obtain

f(�) = ϑ(〈1 + x,f(
)〉) <Y ϑ(〈1 + x′, f(
′)〉) = f(�′).
Now assume x = x′. In view of � <�2(X ) �

′ we must have 
 <�2(X ) 

′. Then the

induction hypothesis yields 〈1 + x,f(
)〉 <(1+X )×Y 〈1 + x′, f(
′)〉, and we can
conclude as in the previous case. Finally assume x >X x′. In this case we observe
that

�2(x′) · � = � <�2(X ) �′ = �2(x′) · 
′
implies � <�2(X ) 


′. Using the induction hypothesis and clause (ii) we obtain

f(�) <Y f(
′) <Y ϑ(〈1 + x′, f(
′)〉) = f(�′),
just as needed. �
The statement that �X is well-founded for every well-order X is equivalent to
arithmetical comprehension, as shown by J.-Y. Girard [12, Section 5.4] (cf. also the
computability-theoretic proof by J. Hirst [13]). We can deduce the following:

Corollary 2.3. The following are equivalent over RCA0:

(i) arithmetical comprehension (which is the principal axiom of ACA0),
(ii) for every well-order X the transformationY �→ 1 +X ×Y has a well-founded
Bachmann–Howard fixed point.
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Proof. To deduce (ii) from (i) we consider an arbitrary well-order X . In view
of Girard’s result, we can invoke (i) to infer that �X and �2(X ) are well-founded.
Theorem 2.2 yields a Bachmann–Howard collapse

ϑ : 1 + (1 + X )× �2(X )→ �2(X ).
The restriction of ϑ to 1+X ×�2(X ) witnesses that�2(X ) is a Bachmann–Howard
fixed point of Y �→ 1 + X × Y , as one readily verifies. To show that (ii) implies (i)
we again invoke Girard’s result. Hence we must establish that �X is well-founded
for an arbitrary well-order X . Since 1 + X is still well-founded, we can use (ii) to
get a well-founded Bachmann–Howard fixed point Y of the transformation

Y �→ 1 + (1 + X )× Y = T�X (Y ).
From Theorem 2.2 we know that �2(X ) can be embedded into Y . Hence �2(X )
must be well-founded as well. In view of the embedding

�X � α �→ �α ∈ �2(X )
we can infer that �X is well-founded, as required. �
To conclude the first half of the present section we discuss a possible improvement
of Theorem 2.2:

Remark 2.4. The Bachmann–Howard collapse ϑ : T�X (�2(X )) → �2(X ) that
we have constructed in the proof of Theorem 2.2 does not look quite optimal: For
an element 
 ∈ �2(X ) with 
 <�2(X ) �2(x) · 
 it might have been more natural to
define ϑ(〈1 + x, 
〉) as �2(x) · 
 rather than �2(x) · (
 + 1). To make this intuition
precise we can observe the following: In the second half of the proof of Theorem 2.2
we have constructed an embedding f : �2(X ) → Y into an arbitrary Bachmann–
Howard fixed point Y of the transformation T�X . If we construct this embedding
with respect to the given Bachmann–Howard collapse for Y = �2(X ), then we
get

f(�2(x) · 
) = ϑ(〈1 + x,f(
)〉) = �2(x) · (f(
) + 1),
which means that f cannot be the identity on �2(Y ). In order to understand
this phenomenon in general we recall that the notion of Bachmann–Howard fixed
point was defined for dilators, i. e. for particularly uniform endofunctors on the
category of linear orders. Functoriality allows us to define the following notion:
Given Bachmann–Howard fixed points X and Y with fixed collapsing functions
ϑX : T (X ) → X and ϑY : T (Y ) → Y , we say that f : X → Y is a morphism of
Bachmann–Howard fixed points if we have

f ◦ ϑX = ϑY ◦ T (f).
Following the usual categorical terminology, an initial Bachmann–Howard fixed
point consists of an order X and a Bachmann–Howard collapse ϑ : T (X ) → X
that admit a unique morphism into any Bachmann–Howard fixed point of the
same dilator. The proofs of [7, Theorem 3.4] and [8, Theorem 4.5] reveal that
every dilator has an initial Bachmann–Howard fixed point, which is necessarily
unique up to isomorphism. Note that any initial fixed point is minimal in the sense
of Definition 1.3. The notion of initial fixed point is certainly more satisfactory
from a theoretical perspective. On the other hand, minimal fixed points are entirely
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sufficient to deduce Corollary 2.3 and similar results. We can also observe that the
order type of a minimal fixed point is necessarily unique in the well-founded case.
For these reasons we have decided to avoid the additional technicalities that would
be necessary to determine initial fixed points, rather than just minimal ones.

In the second half of this section we are concerned with the orders εX = (εX ,<εX )
that have been mentioned in the introduction. In contrast to the case of �X , the
set εX and the relation <εX have to be defined simultaneously. The underlying set
consists of the terms that are generated by the following clauses:

• The set εX contains a symbol 0, and a symbol εx for each element x ∈ X .
• If α ∈ εX is not of the form εx , then we have a term �α ∈ εX .
• Given n > 1 elements αn ≤εX · · · ≤εX α1 of εX , we get �α1 + · · ·+ �αn ∈ εX .
The order <εX reflects the intuition that any term of the form εx represents an
ε-number, i. e. an ordinal α that satisfies �α = α. We refer to [8, Definition 3.4] for
full details of the somewhat lengthy definition.
On the set εX one can define counterparts of addition, multiplication and expo-
nentiation to the base�, taking into account that ε-numbers are closed under these
operations (cf. [19]). In particular we have an operation

εX � α �→ �2(α) := ��α ∈ εX ,
which plays a similar (though somewhat less important) role as in the analysis of
the order �2(X ). To define a lenght function LεX : εX → N we recursively set

LεX (0) := L
ε
X (εx) := 0,

LεX (�
α1 + · · ·+ �αn ) := LεX (α1) + · · ·+ LεX (αn) + n.

We say that an element of εX is decomposable if it is neither equal to 0 nor of the
form εx . This terminology is justified in view of the following (cf. Lemma 2.1).

Lemma 2.5 (RCA0). Any decomposable element of εX can be uniquely written as
�α + � with α, � <εX �

α + � . Furthermore we have LεX (α), L
ε
X (�) < L

ε
X (�

α + �)
for any such decomposition.

Proof. We first establish existence: For a decomposable �α1 + · · · + �αn ∈ εX ,
we set α := α1 and

� :=

⎧⎪⎨
⎪⎩
0 if n = 1,
εx if n = 2 and α2 = εx,
�α2 + · · ·+ �αn otherwise.

By construction (and by the definition of addition and exponentiation on εX ) we
have �α + � = �α1 + · · ·+�αn . A straightforward induction on the term α1 yields

α1 <εX �
α1 + · · ·+ �αn ,

which amounts to α <εX �
α + � . In all cases it is straightforward to verify that we

have� <εX �
α+� aswell asLεX (α), L

ε
X (�) < L

ε
X (�

α+�). Due to themonotonicity
of addition, uniqueness reduces to the claim that

� <εX �
α + � = �� + 
 >εX 


https://doi.org/10.1017/jsl.2019.83 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.83


PREDICATIVE COLLAPSING PRINCIPLES 521

implies α = �. Aiming at a contradiction, we assume α <εX �. The latter yields

�α + � = �� + 
 = �α + �� + 
 = �α + �α + �,

which is incompatible with � <εX �
α + � . �

We now want to characterize εX as a minimal Bachmann–Howard fixed point of
the order transformation

Y �→ TεX (Y ) = 1 + Y 2 + X.
Elements of the summands 1, Y 2 and X will be written as ⊥, 〈y0, y1〉 and x,
respectively. The supports from Definition 1.2 amount to

suppεY (⊥) = suppεY (x) = ∅ and suppεY (〈y0, y1〉) = {y0, y1}.
Together with Definition 1.3, this means that a function ϑ : TεX (Y ) → Y is a
Bachmann–Howard collapse if, and only if, the following conditions are satisfied:

(i) ϑ(⊥) <Y ϑ(〈y0, y1〉) holds for all y0, y1 ∈ Y , and ϑ(⊥) <Y ϑ(x) <Y ϑ(x′)
holds for all x, x′ ∈ X with x <X x′,

(i′) 〈y0, y1〉 <Y 2 〈y′0, y′1〉 implies ϑ(〈y0, y1〉) <Y ϑ(〈y′0, y′1〉), under the side
condition that we have y0, y1 <Y ϑ(〈y′0, y′1〉),

(i′′) ϑ(〈y0, y1〉) <Y ϑ(x) holds for y0, y1 ∈ Y and x ∈ X with y0, y1 <Y ϑ(x),
(ii) we have y0, y1 <Y ϑ(〈y0, y1〉) for all y0, y1 ∈ Y .

We can now establish the desired characterization:

Theorem 2.6 (RCA0). The order εX is a minimal Bachmann–Howard fixed point
of the transformation TεX , for any order X .

Proof. To witness that εX is a Bachmann–Howard fixed point of TεX we need a
collapsing function

ϑ : 1 + εX × εX + X → εX .
Relying on the ordinal arithmetic that is available in εX , we set

ϑ(⊥) := 0,
ϑ(〈α, �〉) := �2(α + 1) · (� + 1),
ϑ(x) := εx.

It is straightforward to see that the above Conditions (i) and (ii) are satisfied (note
thatCondition (ii) could fail if wewere to replace�2(α+1)by�2(α), as the proof of
Theorem 2.2might suggest). Condition (i′) is verified as in the proof ofTheorem 2.2.
To establish Condition (i′′) we consider arbitrary α, � ∈ εX and x ∈ X with

α, � <εX ϑ(x) = εx.

Considering the order on εX (cf. [8, Definition 3.4]), it is straightforward to see that
the element εx behaves like an ε-number. Hence we obtain

ϑ(〈α, �〉) = �2(α + 1) · (� + 1) <εX εx = ϑ(x).
This completes the proof that εX is a Bachmann–Howard fixed point of TεX . Let us
now consider an arbitrary Bachmann–Howard collapse

ϑ : 1 + Y 2 + X → Y.
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We need to construct an embedding f : εX → Y . In view of Lemma 2.5 we can
recursively define

f(0) := ϑ(⊥),
f(�α + �) := ϑ(〈f(α), f(�)〉), where α, � < �α + �,

f(εx) := ϑ(x).

By induction on LεX (
) + L
ε
X (�) we can show that 
 <εX � implies f(
) <Y f(�).

The first interesting case concerns an inequality


 = εx <εX �
α + � = �.

Since εx behaves like an ε-number we must have εx ≤εX α. Using the induction
hypothesis and clause (ii) above we get

f(
) ≤Y f(α) <Y ϑ(〈f(α), f(�)〉) = f(�).
Let us now consider an inequality


 = �α + � <εX εx = �.

By Lemma 2.5 we get α, � <εX �, so that the induction hypothesis yields

f(α), f(�) <Y f(�) = ϑ(x).

Invoking clause (i′′) we can infer

f(
) = ϑ(〈f(α), f(�)〉) <εX ϑ(x) = f(�).
Finally, we consider an inequality


 = �α + � <εX �
� + 
 = �.

Considering the proof of Lemma 2.5, it is straightforward to see that we must
have α ≤εX �. If we have α = �, then we get � <εX 
. In any case we can use the
induction hypothesis to infer

〈f(α), f(�)〉 <Y 2 〈f(�), f(
)〉.
In view of α, � <εX 
 <εX � the induction hypothesis also yields

f(α), f(�) <Y f(�) = ϑ(〈f(�), f(
)〉).
By Condition (i′) we now obtain

f(
) = ϑ(〈f(α), f(�)〉) <Y ϑ(〈f(�), f(
)〉) = f(�),
as required. �
The statement that εX is well-founded for any well-order X is equivalent to
the assertion that the �-jump of any set exists, as shown by A. Marcone and
A. Montalbán [14] (see also the proof-theoretic argument due to B. Afshari and
M. Rathjen [3]). Together with Theorem 2.6 we obtain the following:

Corollary 2.7. The following are equivalent over RCA0:
(i) the �-jump of every set exists (which is the principal axiom of ACA+0 ),
(ii) for every well-orderX the transformationY �→ 1+Y 2 +X has a well-founded
Bachmann–Howard fixed point.
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§3. Collapsing and the Veblen hierarchy. In this section we show how the orders
ϕ(1 + X )0 and ΓX can be constructed as Bachmann–Howard fixed points. This
will yield characterizations of arithmetical transfinite recursion and of the principle
that every set lies in an �-model of ATR.
Let us begin by recalling the Veblen hierarchy: A function f from ordinals to
ordinals is called a normal function if it is strictly increasing and continuous at
limit stages. Equivalently, f is the unique increasing enumeration of a closed and
unbounded (club) class of ordinals. If f is a normal function, then the class

{α |f(α) = α}
of its fixed points is itself closed and unbounded. The normal function that enu-
merates these fixed points is called the derivative of f and is denoted by f′. The
Veblen hierarchy is a family of normal functions ϕα , indexed by the ordinals. The
first function in this hierarchy is usually given as

ϕ0(�) = ��.

Since the intersection of set-many clubs is itself a club, the function at stage α > 0
can be recursively defined by

ϕα := “the increasing enumeration of
⋂
�<α{� |ϕ�(�) = �}”.

In particular we have ϕα+1 = ϕα ′ at successor stages. Since the values of ϕα are
fixed points of all previous functions in the hierarchy, we obtain

ϕ� ◦ ϕα = ϕα whenever � < α.

It is straightforward to deduce that we have

ϕα(�) < ϕ�(
) ⇔

⎧⎪⎨
⎪⎩
either α < � and � < ϕ�(
),
or α = � and � < 
,
or α > � and ϕα(�) < 
.

(�)

Also note that the values of ϕα are additively closed; for α > 0 they are ε-numbers.
Relativized notation systems ϕ(1 + X )0 for values of the Veblen function have
been described in [18, Definition 2.2] (note that our summand 1 corresponds to the
minimal element 0Q that was required in the cited reference). As in the case of εX ,
the underlying set of ϕ(1 + X )0 needs to be defined simultaneously with the order
relation. The set ϕ(1 + X )0 and the auxiliary function h : ϕ(1 + X )0 → 1 + X
are recursively defined by the following clauses (recall that ⊥ denotes the unique
element of 1, which coincides with the minimal element of the order 1 +X ):
• We have an element 0 ∈ ϕ(1 + X )0 with h(0) = ⊥.
• Given elements x ∈ 1 + X and α ∈ ϕ(1 + X )0 with h(α) ≤1+X x, we get a
term ϕxα ∈ ϕ(1 + X )0 with h(ϕxα) = x.

• Given n > 1 elements ϕxnαn ≤ϕ(1+X )0 · · · ≤ϕ(1+X )0 ϕx1α1 of the indicated
form, we get α := ϕx1α1 + · · ·+ ϕxnαn ∈ ϕ(1 + X )0 with h(α) = ⊥.

The order on ϕ(1 + X )0 (which we will usually denote by < rather than <ϕ(1+X )0)
reflects equivalence (�), as well as the intuition that elements of the form ϕxα are
additively closed. Full details can be found in [18, Section 2]. Note that we write
ϕxα (without parentheses) for terms in ϕ(1 + X )0 but ϕ�(α) (with parentheses)
for values of the Veblen function on actual ordinals (an exception is made when
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parentheses in a term are needed to avoid ambiguity). In the sequel, we also write (�)
for the “term version” of this equivalence in ϕ(1 + X )0.
Similarly to the previous section, we define a length functionLϕX : ϕ(1+X )0→ N

by the recursive clauses

LϕX (0) := 0,

L
ϕ
X (ϕx1α1 + · · ·+ ϕxnαn) := LϕX (α1) + · · ·+ LϕX (αn) + n,

where the second clause includes the case n = 1. We will need the following fact:

Lemma 3.1 (RCA0). We have α < ϕxα for any element ϕxα ∈ ϕ(1 + X )0.
Before we prove the lemma, let us explain how it can be reconciled with the
intuition that we should have ϕy� = ϕx(ϕy�) in case x <1+X y. The point is that
ϕ(1 + X )0 does not even allow to form the “superfluous” term ϕx(ϕy�), which
violates the condition h(ϕy�) ≤1+X x.
Proof. We show the following stronger claim by induction on LϕX (α) + L

ϕ
X (�):

“if α is a proper subterm of � ∈ ϕ(1 + X )0, then we have α < �.”
Let us consider the most interesting case, in which we have α = ϕx� and � = ϕy
.
In view of equivalence (�) we need to distinguish three cases: First assume x <X y.
By induction hypothesis we get � < ϕy
, which does indeed imply ϕx� < ϕy
.
Now assume that we have x = y. Since � is a proper subterm of 
, the induction
hypothesis yields � < 
. Once again (�) yields the claim. Finally, assume that we
have y <X x. In view of

h(
) ≤X y <X x = h(ϕx�)
we see that ϕx� cannot be equal to 
; hence it must be a proper subterm. Then the
induction hypothesis yields ϕx� < 
, as needed to conclude by (�). �
Above we have used x to denote an arbitrary element of 1 + X . If we want to
distinguish the elements of the two summands, then we write them as⊥ and 1 + x.
Onϕ(1+X )0 one readily defines an operation of addition with the usual properties.
Exponentiation to the base � can be given by

�α =

{
α if α = ϕx� with ⊥ <1+X x,
ϕ⊥α otherwise.

This allows to develop a notion of Cantor normal form, which supports the usual
definition of multiplication. Let us observe that values of the form ϕ1+x(�) do
indeed behave like ε-numbers: In view of ⊥ <1+X 1 + x equivalence (�) reveals
that α < ϕ1+x� implies �α < ϕ1+x� . An element of ϕ(1 + X )0 will be called
decomposable if it is not equal to 0 and not of the form ϕ1+xα (hence ϕ⊥α is
considered as decomposable). Let us state an appropriate version of Lemma 2.5:

Lemma 3.2 (RCA0). Any decomposable element of ϕ(1 + X )0 can be uniquely
written as �α + � with α, � < �α + � . Furthermore LϕX (α), L

ϕ
X (�) < L

ϕ
X (�

α + �)
holds for any such decomposition.

Proof. Given a decomposable element ϕx1α1+· · ·+ϕxnαn ∈ ϕ(1+X )0, possibly
with n = 1 and x1 = ⊥, we set
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α :=

{
α1 if x1 = ⊥,
ϕx1α1 otherwise,

as well as � := ϕx2α2 + · · · + ϕxnαn (in particular we have � = 0 in case n = 1).
By construction we have �α = ϕx1α1 and hence �

α + � = ϕx1α1 + · · · + ϕxnαn.
It is straightforward to see that we have α, � < �α + � , except when we have
x1 = ⊥. In that case the claim reduces to α1 < ϕ⊥α1, which requires Lemma 3.1.
The condition LϕX (α), L

ϕ
X (�) < L

ϕ
X (�

α + �) is readily verified. Uniqueness follows
from basic properties of addition and exponentiation, as in Lemma 2.5. �
Our goal is to characterize ϕ(1 + X )0 as a minimal Bachmann–Howard fixed
point of the transformation

Y �→ TϕX (Y ) = 1 + (Y + X )× Y ∼= 1 +Y 2 + X × Y.
Elements of TϕX (Y ) will be written as ⊥, 〈y0, y1〉 and 〈x, y〉, with y0, y1, y ∈ Y
and x ∈ X . The supports from Definition 1.2 can be given as
suppϕY (⊥) = ∅, suppϕY (〈y0, y1〉) = {y0, y1}, suppϕY (〈x, y〉) = {y}.

Hence a function ϑ : TϕX (Y )→ Y is a Bachmann–Howard collapse if, and only if,
the following conditions are satisfied:

(i) we have ϑ(⊥) <Y ϑ(〈y0, y1〉) for arbitrary elements y0, y1 ∈ Y , as well as
ϑ(⊥) <Y ϑ(〈x, y〉) for arbitrary y ∈ Y and x ∈ X ,

(i′) 〈y0, y1〉 <Y 2 〈y′0, y′1〉 implies ϑ(〈y0, y1〉) <Y ϑ(〈y′0, y′1〉), under the side
condition that we have y0, y1 <Y ϑ(〈y′0, y′1〉),

(i′′) if we have y0, y1 <Y ϑ(〈x, y〉), then we have ϑ(〈y0, y1〉) <Y ϑ(〈x, y〉),
(i′′′) 〈x, y〉 <X×Y 〈x′, y′〉 implies ϑ(〈x, y〉) <Y ϑ(〈x′, y′〉), under the side

condition that we have y <Y ϑ(〈x′, y′〉),
(ii) we have y0, y1 <Y ϑ(〈y0, y1〉) for arbitrary y0, y1 ∈ Y ,
(ii′) we have y <Y ϑ(〈x, y〉) for arbitrary y ∈ Y and x ∈ X .
We can now prove the theorem that was stated in the introduction:

Proof of Theorem 1.4. In the first half of the proof we show that ϕ(1 + X )0 is
a Bachmann–Howard fixed point of the transformation TϕX . For this purpose we
must specify a Bachmann–Howard collapse

ϑ : 1 + ϕ(1 + X )0× ϕ(1 + X )0 + X × ϕ(1 + X )0→ ϕ(1 + X )0.
Above we have discussed basic ordinal arithmetic on ϕ(1 +X )0. As in the previous
section we abbreviate �2(α) := ��

α

, as well as 1 := �0. We can now set

ϑ(⊥) := 0,
ϑ(〈α, �〉) := �2(α + 1) · (� + 1),
ϑ(〈x, �〉) := ϕ1+x(� + 1).

Concerning the third clause, we observe thatϕ1+x(�+1) ∈ ϕ(1+X )0 holds because
of h(� + 1) = ⊥ (note that � + 1 cannot be of the form ϕy
 with y �= ⊥). Terms
of the form ϕ⊥
 are used implicitly, via the definition of exponentiation. We need
to verify the conditions stated above: Conditions (i) and (ii) are immediate, and
Condition (ii′) follows from Lemma 3.1. To verify Condition (i′) one argues just as
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in the proof of Theorem 2.2. For Condition (i′′) it suffices to recall that ϕ1+x(� +1)
behaves like an ε-number (cf. also the proof of Theorem 2.6). In order to establish
Condition (i′′′) we consider an inequality

〈x, �〉 <X×ϕ(1+X )0 〈y, 
〉.
If we have x = y and � < 
, then

ϑ(〈x, �〉) = ϕ1+x(� + 1) < ϕ1+y(
 + 1) = ϑ(〈y, 
〉)
follows from equivalence (�). It remains to consider the case where we have x <X y.
Due to the side condition in (i′′′) we may assume

� < ϑ(〈y, 
〉) = ϕ1+y(
 + 1),
which can be strengthened to �+1 < ϕ1+y(
+1). As we also have 1+x <1+X 1+y,
we can again infer ϕ1+x(� + 1) < ϕ1+y(
 + 1) by equivalence (�). In the rest of this
proof we show that the Bachmann–Howard fixed point ϕ(1 + X )0 is minimal. For
this purpose we consider an arbitrary order Y with a Bachmann–Howard collapse

ϑ : 1 + Y 2 + X × Y → Y.
Weneed to construct an order embeddingf : ϕ(1+X )0→ Y . In viewofLemma3.2
we can recursively define

f(0) := ϑ(⊥),
f(�α + �) := ϑ(〈f(α), f(�)〉), where α, � < �α + �,
f(ϕ1+x�) := ϑ(〈x,f(�)〉).

Note that elements of the form ϕ⊥α = �α +0 are covered by the second clause. To
show that 
 < � implies f(
) <Y f(�) we argue by induction on L

ϕ
X (
) + L

ϕ
X (�).

In most cases one argues just as in the proof of Theorem 2.6. The only case that is
essentially new concerns an inequality


 = ϕ1+x� < ϕ1+z
 = �.

In view of (�) we first assume that this inequality holds because we have x <X z
and � < �. Then we immediately get

〈x,f(�)〉 <X×Y 〈z, f(
)〉.
Due to the induction hypothesis we also obtain

f(�) <Y f(�) = ϑ(〈z, f(
)〉).
This is the side condition required by (i′′′) above. We can thus infer

f(
) = ϑ(〈x,f(�)〉) <Y ϑ(〈z, f(
)〉) = f(�).
Now assume x = z and � < 
. The induction hypothesis yields f(�) <Y f(
),
so that we obtain 〈x,f(�)〉 <X×Y 〈z, f(
)〉 once again. Using Lemma 3.1 we also
get � < 
 < �, which allows us to conclude as in the previous case. Finally, assume
that we have z <X x and 
 < 
. Using the induction hypothesis and Condition (ii′)
we obtain

f(
) <Y f(
) <Y ϑ(〈z, f(
)〉) = f(�),
just as required. �
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The statement that ϕ(1 + X )0 is well founded for any well-order X is equivalent
to the principle of arithmetical transfinite recursion, as shown by H. Friedman
(the first published proof seems to appear in [18], where a draft by Friedman,
Montalbán and Weiermann is cited as the original reference). Now that we have
proved Theorem 1.4, we immediately obtain Corollary 1.5 from the introduction.
In the rest of this section we show how the orders ΓX can be characterized in
terms of minimal Bachmann–Howard fixed points. To motivate the definition of
these orders we observe that the function α �→ ϕα(0) is normal. We write � �→ Γ�
for the derivative of this function. Its range is the club class

{Γ� | � an ordinal} = {α |ϕα(0) = α} = {α > 0 |ϕ�(�) < α for all �, � < α} (†)
of Γ-numbers. Note that any Γ-number is an ε-number.
A relativized notation system ΓX for all ordinals below the X -th Γ-number
has been described in [15, Section 2]. As for the notation system ϕ(1 + X )0, the
underlying set ΓX and the order relation are defined by a simultaneous recursion.
In the present case we must also specify a function h : ΓX → ΓX and a setH ⊆ ΓX
(hereH refers to the German “Hauptzahlen” for (additively) principal ordinals):
• We have an element 0 ∈ ΓX \H with h(0) = 0.
• For each x ∈ X we have an element Γx ∈ H ⊆ ΓX with h(Γx) = Γx .
• Given elements α, � ∈ ΓX , we get a term ϕα� ∈ H ⊆ ΓX with h(ϕα�) = α,
provided that the following conditions are satisfied:
• we have h(�) ≤ΓX α,
• if α is of the form Γx , then we have � �= 0.

• Given n > 1 elements αn ≤ΓX · · · ≤ΓX α1 from H ⊆ ΓX , we get a term
α := α1 + · · ·+ αn ∈ ΓX \H with h(α) = 0.

The order on ΓX is determined by (�) and (†), where the latter are to be read as
statements about terms from ΓX rather than actual ordinals. Full details of the
somewhat lengthy definition can be found in [15, Section 2].
Addition, multiplication and exponentiation on ΓX can be defined as in the case
of ϕ(1 +X )0. We point out that ϕ0α ∈ ΓX assumes the role of ϕ⊥α ∈ ϕ(1 +X )0.
Elements of the form Γx or ϕα� with α �= 0 behave like ε-numbers. To define a
length function LΓX : ΓX → N we set

LΓX (0) := L
Γ
X (Γx) := 0,

LΓX (ϕα�) := L
Γ
X (α) + L

Γ
X (�) + 1,

LΓX (α1 + · · ·+ αn) := LΓX (α1) + · · ·+ LΓX (αn) + n.
It will be convenient to use a somewhat different decomposition than before:
Lemma 3.3 (RCA0). Any non-zero element of ΓX \H can be uniquely written as
α + � with α, � <ΓX α + � and α ∈ H. Furthermore LΓX (α), LΓX (�) < LΓX (α + �)
holds for any such decomposition.
Proof. Given an element α1 + · · ·+ αn we set α := α1 and � := α2 + · · · + αn
(in particular � = α2 in case n = 2). It is straightforward to see that this satisfies
the desired properties. To establish uniqueness it suffices to observe that � + α = α
holds for any � <ΓX α ∈ H (cf. the proof of Lemma 2.5). �
We will also need the following variant of Lemma 3.1 (cf. the explanation after
the statement of that result):
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Lemma 3.4 (RCA0). We have α, � <ΓX ϕα� for any element ϕα� ∈ ΓX .
Proof. Yet again, the following stronger claim can be established by induction
on the joint complexity LΓX (
) + L

Γ
X (�) of 
 and �:

“if 
 is a proper subterm of � ∈ ΓX , then we have 
 <ΓX �.”
Let us consider the case of 
 = ϕα� and � = ϕ�
. In contrast to Lemma 3.1, we
must now distinguish two possibilities: If 
 is a subterm of 
, then one argues just as
before. Now assume that 
 is a subterm of �. Then the induction hypothesis yields
both α <ΓX � and � <ΓX ϕ�
. We can conclude ϕα� <ΓX ϕ�
 by (�). �
Our aim is to characterize ΓX in terms of the order transformation

Y �→ TΓX (Y ) = 1 + 2× Y 2 + X.
Elements ofTΓX (Y ) will be written as⊥, 〈i, y0, y1〉 and x, with i ∈ {0, 1}, y0, y1 ∈ Y
and x ∈ X . The supports from Definition 1.2 amount to

suppΓY (⊥) = suppΓY (x) = ∅ and suppΓY (〈i, y0, y1〉) = {y0, y1}.
In view ofDefinition 1.3 this means that a function ϑ : TΓX (Y )→ Y is a Bachmann–
Howard collapse if, and only if, the following conditions are satisfied:
(i) we have ϑ(⊥) <Y ϑ(〈i, y0, y1〉) for arbitrary i ≤ 1 and y0, y1 ∈ Y , as well
as ϑ(⊥) <Y ϑ(x) <Y ϑ(x′) for any x, x′ ∈ X with x <X x′,

(i′) 〈y0, y1〉 <Y 2 〈y′0, y′1〉 implies ϑ(〈i, y0, y1〉) <Y ϑ(〈i, y′0, y′1〉) for each i ≤ 1,
under the side condition that we have y0, y1 <Y ϑ(〈i, y′0, y′1〉),

(i′′) y0, y1 <Y ϑ(〈1, y′0, y′1〉) implies ϑ(〈0, y0, y1〉) <Y ϑ(〈1, y′0, y′1〉),
(i′′′) y0, y1 <Y ϑ(x) implies ϑ(〈i, y0, y1〉) <Y ϑ(x) for each i ≤ 1,
(ii) we have y0, y1 <Y ϑ(〈i, y0, y1〉) for each i ≤ 1.
We can now establish the promised characterization:
Theorem 3.5 (RCA0). The order ΓX is a minimal Bachmann–Howard fixed point
of the transformation TΓX , for each order X .
Proof. Let us first construct a Bachmann–Howard collapse

ϑ : 1 + 2× ΓX × ΓX + X → ΓX .
As before we abbreviate �2(α) := ��

α

. We then set

ϑ(⊥) := 0,
ϑ(〈0, α, �〉) := �2(α + 1) · (� + 1),
ϑ(〈1, α, �〉) := ϕ1+α(� + 1),

ϑ(x) := Γx.

To see that we haveϕ1+α(�+1) ∈ ΓX it suffices to observe that we have h(�+1) = 0
(as �+1 does not lie inH\{ϕ00}) and �+1 �= 0 (which is only relevant if α = Γx).
We need to show that the above conditions are satisfied. Condition (i) is immediate.
To establish Condition (i′) one argues just as in the proofs of Theorems 2.2 and 1.4.
Conditions (i′′) and (i′′′) hold because ϕ1+α(� + 1) behaves like an ε-number (due
to 1+α �= 0)while Γx behaves like a Γ-number (cf. equation (†)). Using Lemma 3.4,
one readily checks that Condition (ii) is satisfied. To show that ΓX is minimal we
consider an arbitrary order Y with a Bachmann–Howard collapse

ϑ : 1 + 2× Y 2 + X → Y.
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Relying on Lemma 3.3, we define f : ΓX → Y by the recursive clauses
f(0) := ϑ(⊥),

f(α + �) := ϑ(〈0, f(α), f(�)〉), where α, � < α + � and α ∈ H,
f(ϕ�
) := ϑ(〈1, f(�), f(
)〉),
f(Γx) := ϑ(x).

In order to show that 
 <ΓX � impliesf(
) <Y f(�) one argues by induction on the
number LΓX (
) + L

Γ
X (�). In the following we discuss the cases that are not already

covered by the proofs of Theorems 2.6 and 1.4 (where Lemma 3.4 assumes the role
of Lemma 3.1). Let us first consider an inequality


 = ϕα� <ΓX Γx = �.

By Lemma 3.4 we get α, � <ΓX 
 <ΓX �, so that the induction hypothesis yields

f(α), f(�) <Y f(�) = ϑ(x).

Using Condition (i′′′) from above we can infer

f(
) = ϑ(〈1, f(α), f(�)〉) <Y ϑ(x) = f(�).
The case of an inequality α+� <ΓX Γx is treated similarly. Let us now establish the
induction step for an inequality


 = Γx <ΓX ϕα� = �.

In view of equation (†) we must have Γx ≤ΓX α or Γx ≤ΓX � . In either case we can
invoke the induction hypothesis and Condition (ii) to get

f(
) ≤Y maxY {f(α), f(�)} <Y ϑ(〈1, f(α), f(�)〉) = f(�).
A similar argument covers the case of an inequality Γx <ΓX α + � (where we must
have Γx ≤ΓX α). Finally we consider an inequality


 = Γx <ΓX Γz = �.

Since x �→ Γx represents a normal function we have x <X z. By Condition (i) we
get f(
) = ϑ(x) <Y ϑ(z) = f(�), just as required. �
The statement that ΓX is well-founded for any well-order X is equivalent to the
assertion that every set lies in a countable coded �-model of arithmetical transfinite
recursion, as shown by Rathjen [15]. We can conclude with the following:

Corollary 3.6. The following are equivalent over RCA0:

(i) every set is contained in a countable coded �-model of ATR,
(ii) for every well-order X the transformation Y �→ 1 + 2 × Y 2 + X has a well-
founded Bachmann–Howard fixed point.
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