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Compton scattering of gamma rays propagating in a pair plasma can drive the formation
of a relativistic electron positron beam. This process is scrutinized theoretically and
numerically via particle-in-cell simulations. In addition, we determine in which conditions
the beam can prompt a beam-plasma instability and convert its kinetic energy into
magnetic energy. We argue that such conditions can be met at the photosphere radius
of bright gamma-ray bursts.
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1. Introduction

The interaction of gamma rays with a pair plasma is a fundamental problem in
astrophysics. For instance, it is present in the context of gamma-ray bursts (GRBs). The
latter involve the explosion of a stellar mass object, where energy is expelled in the
form of a relativistic ejecta. As this ejecta propagates, its interaction with the ambient
medium generates a strong emission which is detected by satellites as well as ground-based
observatories. Recent efforts demonstrated emission over a large range of frequencies
including the radio, optical, X-ray and gamma-ray bands, up to TeV energies (Acciari
et al. 2019).

For most GRBs, the temporal evolution of the observations shows that their spectra
consist of two parts, a prompt emission followed by an afterglow. The prompt emission of
a GRB is defined as an initial emission phase in the keV–MeV band, which lasts for a few
milliseconds to several minutes. The afterglow is a counterpart of the prompt emission
extending in the optical and radio ranges and its duration can span from a few hours to
several days. While it is acknowledged that a large part of the afterglow can be attributed
to a forward external shock driven by the ejecta propagating in the ambient medium
(Meszaros & Rees 1997), the origin of the prompt emission is not fully understood yet.
The main reason is that there remains unanswered questions related to the composition of
the ejecta, how its energy is dissipated and how particles are accelerated.

All models agree that there is an ejecta formed by a compact object of radius ∼ 107 cm.
This ejecta is a relativistic plasma in expansion. Most of its energy comes from photons,
but it also contains pairs, an unknown fraction of baryons that may even be magnetized.
At this early stage of expansion the relativistic plasma is so dense that photons cannot
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escape. At the photospheric radius ∼ 1012 cm, its density has decreased enough to enable
a fraction of the gamma rays to propagate in the ambient medium (Cavallo & Rees 1978).
One of the pending questions related to GRBs is how does the ejecta dissipate its energy
above such a large distance of ∼ 1012 cm? This question has been addressed in two ways,
as detailed in a recent review on GRBs (Kumar & Zhang 2015).

First, researchers proposed models that describe the overall evolution of the ejecta. The
most used is the hot fireball model which assumes that the energy of the ejecta is dissipated
at the photosphere radius and in internal/external shocks (Narayan, Paczynski & Piran
1992; Rees & Meszaros 1994; Piran 2005). However, it should be mentioned that some
GRB spectra are better explained with a model assuming a magnetized ejecta, where
the energy is dissipated via current-driven instabilities (Lyutikov 2006; Zhang & Yan
2010). The gamma-ray emission processes are manifold and are widely discussed in these
models. The processes are usually synchrotron (Meszaros & Rees 1993; Rees & Meszaros
1994), inverse Compton (Gruzinov & Mészáros 2000) or inverse Compton up-scattering
of synchrotron photons by high-energy electrons (synchrotron–self-Compton). In the
Klein–Nishina regime, the Compton process is also held responsible for a bulk plasma
acceleration called Compton drag or radiative acceleration (Madau & Thompson 2000;
Thompson & Madau 2000). Our work here goes beyond these, by assuming that collective
plasma processes can be triggered as the energetic photons propagate through the plasma.
On another hand, some hadronic processes (Bethe–Heitler and photopion) are discussed as
possible sources of high-energy positrons, which then radiate gamma rays via synchrotron.
Pair production processes are also proven to play a significant role in the development of
key features of GRBs such as their high radiative efficiency (Stern 2003) or their flat
spectrum from the infrared to the ultraviolet (Beloborodov 2005).

Second, researchers also performed numerical simulations of basic plasma processes
in the extreme conditions of GRBs using particle-in-cell (PIC) simulations. Employing
this framework enables one to account for collective plasma dynamics, radiative processes
and, more importantly, for any dynamical feedback between the two. The first example
relevant in the context of GRBs (Medvedev & Loeb 1999) is the simulation of relativistic
collisionless shock formation by the Weibel instability (Silva et al. 2003) and the
subsequent Fermi-type particle acceleration (Spitkovsky 2008; Martins et al. 2009). The
second example is particle acceleration in magnetic reconnection regions (Mehlhaff et al.
2020),which is known to be of interest for GRBs (Uzdensky 2011). The third example is
electron acceleration in Compton-driven plasma wakefields during the GRB interaction
with its circumburst medium (CBM) (Frederiksen 2008; Del Gaudio et al. 2020a).

In his study, Frederiksen considers the interaction of a Planckian photon distribution
with a tenuous plasma (Frederiksen 2008). The photon energy lies between 30 keV and 3
MeV and he observes electron acceleration in a plasma wakefield. According to the author,
this wakefield is excited by an electrostatic force acting to restore the charge separation
induced by Compton deflections. In contrast to this work, our investigation focuses on
a regime where the Compton cross-section is beamed above 10 MeV. In addition, we
consider a range where Compton scattering prevails over the Bethe–Heitler pair production
(γ e → e+e−e) for energies below 100 MeV. Formulae for all these processes can be found
in the paper by Lightman (1982). For this gamma-ray range of 10–100 MeV, one expects
Compton scattering to deflect electrons mainly forward such that they form a relativistic
beam (Del Gaudio et al. 2020a).

In light of these previous results, we investigate the interaction of gamma rays (10–100
MeV) with a background pair plasma. In § 2, with the support of a one-dimensional (1-D)
theoretical model and PIC simulations, we clarify how a gamma-ray beam (10–100 MeV)
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propagating in a pair plasma can drive the formation of a relativistic and dense electron
positron beam via Compton scattering. In § 3, we specify under which conditions the pair
beam can trigger a beam-plasma instability, thus generating a small-scale magnetic field
whose extent is discussed. Section 4 confirms the robustness of this process for various
photon sources. Finally, we argue in § 5 that these conditions can be met for radii r such
that r ≥ rph, with rph the photospheric radius of a GRB.

2. Pair beam formation

We first discuss a simplified physical picture. Let us consider a semi-infinite gamma-ray
beam of density nω0 with a monoenergetic distribution. We denote the photon energy
normalized by the electron rest mass as ε = �ω/mc2. The photon beam propagates along
the x direction in an infinite cold pair plasma at rest, with density np0 associated with
an angular frequency ωp. In the frame of this work, we focus on the energy range
1 � ε < 1/αf = 137, where αf denotes the fine structure constant. In this range, Compton
scattering prevails over the two-photon Breit–Wheeler process and pair creation in the
Coulomb field of an electron or positron (Lightman 1982).

The formation process of the pair beam relies on the beaming of the Compton
cross-section for high-energy photons. Let us consider an electron at rest experiencing
Compton deflection from a gamma ray of energy ε, with dσkn/dΩ and σkn(ε) the
angular-differential and total Compton cross-sections (Klein & Nishina 1928), and θ the
polar angle associated with Ω , the photon angle after one scattering. The Lorentz factor
of the electron after the deflection γ can be deduced from the energy and momentum
balance as γ /ε = 1 + 1/ε − 1/[1 + ε(1 − cos θ)]. We introduce φ the angle between the
deflected electron momentum and the incident photon direction and obtain cotan(φ) =
(1 + ε) tan(θ/2). Averaging these quantities over the Compton angular cross-section, we
obtain for ε � 1, 〈γ 〉Ω 	 ε and 〈sin2 φ〉Ω 	 4/ε (Blumenthal & Gould 1970). This shows
that there is a simultaneous beaming of photons, electrons and positrons centred on the
direction of the incident gamma ray. We will discuss later the effects induced by a more
realistic gamma-ray beam distribution.

We assume that the longitudinal momentum of the pair beam (px) can be approximated
by its average over the Compton cross-section px 	 √〈p2

x〉Ω , and we define the transverse
momentum spread induced by Compton scattering as Δp⊥ =

√
〈p2

⊥〉Ω . For ε � 1,

px

mc
	 ε and

Δp⊥
mc

	
√

7ε

6 ln ε
. (2.1a,b)

Equation (2.1a,b) shows that the deflected electron energy can be as high as the incoming
photon energy and that the transverse momentum spread of the pair beam is typically a
few percent of its longitudinal momentum Δp⊥/px 	 5–20 % for 1 � ε < 1/αf .

The density of the photons decreases as they are scattered at a frequency τ−1
ω =

2np0cσkn. It thus follows that dnω/dt = −nω/τω. The solution reads nω/nω0 = exp(−t/τω).
In the high-energy limit ε � 1, one has σkn(ε) 	 πr2

e ln(ε)/ε, where re is the classical
electron radius. As a result, the photon density can be approximated as constant nω/nω0 	
1, where in fact ωpτω ∝ r−3/2

e n−1/2
p0 ε/ ln(ε) � 1011 for any plasma density np0 ≤ 1018 cm−3,

a conservative upper bound for astrophysical systems.
We now consider a more detailed model for the pair beam formation. Let us denote

np(x, t) as the background plasma density. The electrons (and positrons) of the beam are
those experiencing at least one Compton scattering. Their density is denoted as nb(x, t) and
they have a velocity vb. At the initial time t = 0, we assume that the photons are located
in the x < 0 half-space and propagate toward the background plasma at rest in the other
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half-space x > 0. The evolution of the background plasma density (beam density) is given
by the continuity equation with a source term accounting for a depletion (loading) at the
Compton frequency ν = σkncnω

∂tnp + ∇ · (npvp) = −σkncnωnp

∂tnb + ∇ · (nbvb) = σkncnωnp

}
. (2.2)

We introduce the Heaviside function H, along with the variables ξ, τ defined as ξ =
ct − x and τ = t. The background plasma is assumed to be at rest during the interaction
(vp = 0), and the beam to have a constant velocity vb = vxx = cβxx. The evolution of the
background plasma and beam densities simplifies to

[c∂ξ + ∂τ ]np(ξ, τ ) = −νnp(ξ, τ )[H(ξ) − H(ξ − ct)], (2.3)

[(c − vx)∂ξ + ∂τ ]nb(ξ, τ ) = νnp(ξ, τ )[H(ξ) − H(ξ − ct)]. (2.4)

We first solved (2.3) by assuming the solution is of the form f (ξ)g(τ ). As far as (2.4) is
concerned, its solution was derived using the method of Laplace transform. The solutions
are obtained for all ξ ≤ cτ as

np(ξ, τ ) = np0 e−νξ/c[H(ξ) − H(ξ − cτ)], (2.5)

nb(ξ, τ ) = np0

1 − βx
[(1 − e−νξ/c)H(ξ)

+ (e−(ν/vx)(ξ−cτ(1−βx)) − 1)H(ξ − cτ(1 − βx))]. (2.6)

The normalized beam velocity βx can be estimated as βx 	 √〈β2
x 〉Ω . In the high-energy

limit ε � 1, βx 	 1 − 1/(2ε ln ε). For large times t � 1/[ν(1 − βx)], (2.6) implies that
the beam cannot exceed the maximum density np0/(1 − βx) 	 2np0ε log ε. Because we
expect collective processes for such time scales, we underline that this limit is unlikely
to be reached and should be considered as an upper bound of the maximum achievable
density. This maximum density could however be achieved in cases where collective
effects are damped on large distances, for example, either with a high magnetic field
oriented in the flow direction or a large background plasma temperature.

To clarify some of the properties of this solution, we recast it with (x, t) variables and
in the limits νt � 1 and βx 	 1 and therefore get, for all 0 ≤ x ≤ ct,

np(x, t) = np0(1 + νx/c − νt), (2.7)

nb(x, t) = np0νx/c. (2.8)

The result in (2.7) illustrates that the background plasma density evolves linearly with the
position x = 0 → ct, increasing from np0(1 − νt) to its maximum value np0. Equation (2.8)
clarifies that the beam density is expected to grow linearly with the propagation distance,
starting from 0 and increasing to its maximum value np0νt at the position of the photon
front x = ct.

We stress this model is valid whatever the photon and plasma densities. It remains
applicable as long as collective plasma effects do not play a significant role. In terms of
photon energies, the model is strictly limited to the range 1 � ε < 1/αf = 137. However,
we will discuss in § 4 why it can be extended to a larger range of 20 � ε � 200. To account
for photons in the energy range 1 � ε � 20, one would need to account for the much larger
energy spread induced by the Compton cross-section and also to include the two-photon
Breit–Wheeler pair creation.
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(a3) (b3) (c3) (d2)

(d1)(c1)(b1)(a1)

(a2) (b2) (c2)

FIGURE 1. (a1,b1,c1) The two-dimensional (2-D) electron beam density profile at three
instants: (a1) ωpt = 0; (b1) ωpt = 90; and (c1) ωpt = 130. (a2,b2,c2) The 2-D electron
background density profile for the same three instants. (a3,b3,c3) One-dimensional projections
along propagation direction x for the same instants. The orange curve is the background plasma
density np, the green thick curve is the total density np + nb and the black curves are the
theoretical estimates from (2.5) and (2.6). The gamma-ray beam propagates from left to right
and its front is marked by the dashed red line. (d1,d2) f ( px) and f ( p⊥) Distributions of
electrons scattered by Compton at the beam front for time ωpt = 130. For the plasma density
np0 = 1 cm−3, one has c/ωp = 5.3 × 105 cm.

We have reported how a pair beam can be created when gamma rays propagate in a
background pair plasma via Compton scattering. This process is corroborated by theory
and is now confronted to simulation results. We have run 2-D PIC simulations with OSIRIS
(Fonseca et al. 2002). These simulations were recently enriched with a Compton scattering
module (Del Gaudio et al. 2020b), similar to earlier work (Haugbølle, Frederiksen &
Nordlund 2013). The simulation proceeds through two key steps: first a random pairing of
macro particles at every time step and in every cell and second a Monte Carlo sampling of
the angle-resolved Klein–Nishina cross-section (Klein & Nishina 1928). For every binary
collisions treated, the cross-section is evaluated in the electron rest-frame, an energy
and momentum balance is ensured, and a splitting technique is employed to handle the
varying weight of macro particles. This implementation relies on macro particle pairing
and therefore stands out from other works (Levinson & Cerutti 2018) where the Compton
cross-section is evaluated from the intensity of the ambient radiation field.

We detail the relativistic pair beam formation from an illustrative simulation in figure 1.
We consider a cold pair plasma (1 eV) with a uniform density np0 = 1 cm−3, as displayed in
figure 1(a1–a3). In this pair plasma, we propagate a monoenergetic (ε = 100) gamma-ray
beam along the x direction from left to right. This presents a uniform density nω0 =
1017 cm−3 with a front indicated by the red dashed line in figure 1(a3,b3,c3). Periodic
boundary conditions are assumed in the transverse direction y for all species and fields,
and open boundary conditions are employed in the longitudinal x direction. The domain
extends to (160c/ωp)

2 with 20002 cells. The cell dimensions are δx = δy = 0.08c/ωp
and the time step is δt = δx/2. We initialize 80/80/160 particles per cell for electrons,
positrons and photons.

The process of pair beam formation is illustrated in figure 1. Figure 1(a1,b1,c1) exhibit
2-D profiles of the electron beam density nb at three instants ωpt = 0, 90 and 130.
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FIGURE 2. Pair beam density nb/np0 versus the photon density nω0 in units of
√

np0/r3
e for

plasma densities np0 = 1 cm−3 (X) and np0 = 1018 cm−3 (O) at two times in the simulations.
The plasma angular frequency is ωp.

The profiles correspond to electrons which experienced at least one Compton scattering.
Figure 1(a2,b2,c2) represent 2-D profiles of the electron background density np for the
same three instants ωpt = 0, 90 and 130. Figure 1(a3,b3,c3) shows the averages of
theses 2-D densities along y the transverse direction. To clarify the plot, only the total
density nb + np (green thick curve) and background density np (orange thin curve) are
represented. Based on these figures, we can observe the formation and propagation of an
electron beam (positrons are superimposed by symmetry). We found excellent agreement
of the simulations with the theoretical estimates (black lines) of (2.5) and (2.6). The
simulation times considered here (ωpt ≤ 130) lie within the limit νt � 1 where we derived
(2.7) and (2.8). For such early times, the beam and background densities have profiles
increasing linearly with the propagation distance, which explains the triangular shape of
the total density profile in figure 1(b3,c3). The momenta distributions f ( px) and f ( p⊥) of
deflected electrons are exemplified in figure 1(d1,d2) at time ωpt = 130. The distribution
f ( px) exposes a peak at px/mc 	 100 = ε, exactly as our theoretical estimate in (2.1a,b).
The transverse momentum profile f ( p⊥) includes both directions py and pz. The two
distributions are centred and characterized by a 	 3mc standard deviation, in agreement
with (2.1a,b). This is conducted in the range of validity of the theoretical model with
periodic conditions in the transverse direction, and does not provide evidence for collective
plasma processes with a significant impact on the beam formation.

Another set of 2-D simulations was run to assert the relevance of this process of beam
formation. Our goal is to check the range of validity of the scaling inferred for its peak
density in (2.6). We consider two sets of simulations. The first set is characterized by
a pair plasma of density np0 = 1018 cm−3, with photon densities nω0 = 1025–1027 cm−3.
The second presents a pair plasma density of np0 = 1 cm−3, with photon densities nω0 =
1016–1018 cm−3. Connections of these parameters to laboratory or astrophysical parameters
will be discussed in § 5. Given the symmetry of our problem, we reduce the domain size to
(24c/ωp)

2 and follow the photon beam in a moving window with a velocity equal to c. The
domain has 6002 cells with dimensions δx = δy = 0.04c/ωp and a time step δt = δx/2.

Figure 2 represents the pair beam density as a function of the incident photon density
for two instants, ωpt = 46 and 184. The normalization by the quantity (np0/r3

e)
1/2 comes

from a factor ν/ωp in (2.8). This reveals a general scaling of the normalized pair beam
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density nb/np0, independent of the initial plasma density np0. Despite such a wide gap of
initial plasma densities considered in figure 2, simulations clarify that the normalized pair
beam density at a given time t remains exactly the same as long as nω0(r3

e/np0)
1/2 (or ν/ωp)

is constant. This scaling matches exactly with the prediction of (2.6), illustrated as a black
line in figure 2.

We have generalized the validity of the results obtained in figure 2 to account for
baryon loading in the background plasma. First, we ran all the simulations presented
before with a fraction f of proton density up to f = 0.1np0 in the pair plasma. As the
initial electron and positron plasma densities are not equal, the beam driven by Compton
now presents a non-uniform charge and current densities. This initiates the start of the
two-stream instability. The growth rate of such instability is much lower than the oblique
instability (Bret, Firpo & Deutsch 2005b) by a factor γ

2/3
b , with γb as the Lorentz factor

of the beam. As a consequence, the exponential growth of the oblique modes we report
in the next section still takes place, but is initiated in a slightly perturbed plasma. Second,
we ran one three-dimensional (3-D) simulation, which confirmed our previous findings.
We performed the simulation for a plasma density of np0 = 1 cm−3 and photon density of
nω0 = 1018 cm−3. The domain size was (24c/ωp)

3 and the photon beam was followed in
a moving window with a velocity equal to c. The domain had 6003 cells of dimensions
δx = δy = δz = 0.04c/ωp and the time step was δt = δx/2. We initialized 2/2/4 particles
per cell for electrons, positrons and photons. The transverse boundary conditions for
particles and fields were all periodic. For this 3-D simulation (not shown here), the
evolution of the peak beam density was the same as for the 2-D simulation with the same
parameters. While we will discuss this in detail in § 3, we add that the growth rate of the
beam plasma instability in this 3-D simulation is also the same as in the corresponding
2-D simulation.

3. Onset of a beam-plasma instability

The normalized pair beam density nb/np0 increases with time and is expected to
trigger an electromagnetic beam-plasma instability when nb/np0 � 1. Two types of modes
can compete and lead to an exponential growth of magnetic fields (Bret, Firpo &
Deutsch 2005a). The first type is the modes associated to the current filamentation
instability (CFI), with growth rate ω−1

p ΓCFI = (nb/np0γb)
1/2. The second type is the modes

corresponding to the oblique filamentation instability (OBI), with growth rate ω−1
p ΓOBI =√

3(nb/np0γb)
1/3/24/3. We can predict that our prevailing modes will be oblique because

we consider Lorentz factors 1 � γb � 1/αf and densities nb/np0 ≤ 1. Above some critical
angle in k space, such modes are expected to be damped like CFI modes arising from
thermal effects (Bret et al. 2005a). The physical reason is that a transverse thermal
expansion of filaments competes with the magnetic pinching force maintaining them
(Silva et al. 2002). The latter theoretical work provides a density threshold above which
the instability can still be set off despite this initial spread. It reads αth = nb/np0 	
γb( p⊥/mcγb)

2. Using the estimates from (2.1a,b), we get nb/np0 	 7/(6 ln ε) and

ω−1
p Γ 	 (7

√
3/16)1/3[ε log(ε)]−1/3. (3.1)

The minimum density required to trigger the instability is reached after a propagation time
of 1/(ν ln ε). Using (2.6), this implies the photons should propagate through a plasma of
length greater than rmin ≥ c/(ν ln ε). This condition can be recasted as

rmin[cm] ≥ 1.6 × 1025n−1
ω [cm−3]. (3.2)
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The beam density threshold αth = 6/(7 ln ε) is independent from the initial plasma
density, and so is the plasma length rmin given in (3.2). It is worthwhile to stress that
provided the photon density and the background plasma length satisfy the condition
in (3.2), the instability will take place. As far as the effect of the background plasma
temperature is concerned, we can rely on previous investigations (Bret et al. 2005b). For
the non-relativistic background plasma temperature considered here (1 eV), we do not
expect any mitigation effect on the onset of CFI-like modes.

In addition, it seems meaningful to evaluate the energy conversion efficiency from the
incident photons to magnetic fields. We define η = EBz/Eω0, the ratio between the magnetic
energy EBz 	 ∫

c2B2
z/8π dx and the incident photon energy. For a semi-infinite beam (and

1-D), the ratio η is also the ratio of the energy densities. For the sake of simplicity,
we estimate an upper bound for the magnetic field energy EBz �

∫
c2|Bz|2/8π dx. Using

Parseval theorem, this can be expressed as EBz �
∫

c2|Bz|2/8π dk. The value of the
saturated magnetic field can be approximated by equating the bounce frequency of trapped
particles to the growth rate of the instability (Yang, Arons & Langdon 1994). This
maximum is eBz(k)/mωp 	 (γ 2

b /px)(ω
−1
p Γ )2ωp/kc. The energy conversion efficiency is

then deduced by introducing the incident photon energy density εnω0

η � 1
4π

(
7
√

3
16

)4/3
np0

nω0

1
(ε ln4(ε))1/3

. (3.3)

It is important to underline that this inequality only expresses an upper bound for the
conversion efficiency. For any given plasma of density np0, (3.3) predicts that η can be
maximized for smaller incident photon densities nω0. However, decreasing the photon
density limits the growth of the beam density through Compton scattering and therefore
increases the propagation distance required to trigger the instability, as evidenced in (3.2).
As a consequence of this low conversion efficiency η, the generation of magnetic fields
can, in principle, take place over long distances. For a perfectly collimated photon source
emerging from the photosphere (	 1012 cm), this length can be as high as the Compton
mean free path Lω [cm] = cτω 	 1025n−1

p0 [cm−3]. In fact, the typical opening angle of the
GRB ejecta is in the range θ ≤ 20◦, as estimated by Racusin et al. (2009). With this more
realistic assumption, the photon density and the beam density are expected to decrease
with the propagation distance as 1/r2 owing to this transverse dilution effect. We estimate
under which condition this depletion of the beam may remain negligible compared with
the loading via Compton scattering as

ν

c
(r − rph)

(rph

r

)2
≥ 1 → r ≤ σknnω0r2

ph = rmax. (3.4)

The inequality (3.4) states that the density increase owing to the Compton loading between
rph and r is ν(r − rph)/c and remains larger than the density decrease between rph and
r owing to the transverse dilution, which is (rph/r)2. The inequality (3.4) provides a
maximum distance, denoted as rmax, over which the instability can be sustained.

Given a gamma-ray density between 1014 cm−3 and 1022 cm−3 that we inferred at the exit
of the photosphere of GRBs (see § 5), the condition (3.4) is fulfilled for distances ranging
from a few photospheric radii ∼ 1012 cm up to larger values of 1020 cm. We did not verify
this estimate in simulations owing to the computational cost for very long propagation
lengths L [cm] ≥ 108n−1/2

p0 [cm−3].
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FIGURE 3. Magnetic field energy EBz , normalized by the incident photon energy Eω0. We
denote η = EBz/Eω0 and derive an upper bound in (3.3). Simulation for a monoenergetic photon
distribution (blue solid curve), a Maxwell–Jüttner transverse profile (orange dashed curve), a
front density gradient (red dotted curve) and a synchrotron distribution (green dash–dotted
curve). The growth rate of the field is determined from the slope of the black dashed curves.
Inset: typical Bz field profile during the linear phase.

4. Generalization for various photon distributions

In the previous section, we have considered idealized photon distributions. We now
examine more realistic photon distribution functions.

We investigate a simulation with plasma density np0 = 108 cm−3 and photon density
nω0 = 1022 cm−3. We employ the δ notation for a Dirac delta function, and can write the
momentum distribution of the photons as f = fx = δ( px − 100mc). Figure 3 reports the
energy of the Bz field, denoted by EBz and normalized by the incident photon energy Eω0
(blue solid curve). We first focus on the monoenergetic photon distribution (blue solid
curve). The growth rate for all modes k is ω−1

p Γ = 7.4 × 10−2. The Bz field profile is
displayed during the linear phase of the instability (see the inset) and shows that the
dominant mode is oblique: k = (kx, ky) 	 (1.8, 1.4)ωp/c. Its growth rate is ω−1

p Γ = 0.12
close to ω−1

p Γ 	 0.118, which is the theoretical prediction from (3.1). The linear stage
of the instability starts after a propagation distance 	 90c/ωp, which is consistent with
the minimum inferred theoretically of 34c/ωp in (3.2). The theoretical upper bound
of the energy conversion efficiency given by (3.3) is η � 1.5 × 10−17, which is of the
order of the simulation result η = 5 × 10−18. We also checked that the pair beam density
rises slowly (+30 %) on the instability time scale for ωpt = 90–150. This legitimates a
posteriori the use of estimates from linear theory. However, during the saturation stage,
for ωpt = 150–500, the front beam density increases from np0 up to ∼ 4np0, a value which
is in agreement with that from (2.8). As a consequence, the beam keeps on filamenting
and the magnetic field energy keeps increasing.

The aforementioned discussions are focused on a monoenergetic gamma-ray beam. We
intend to extend these results for more complex distributions. First, we consider a photon
distribution f = fxfy with fx = δ( px − 100mc) and fy a Maxwell–Jüttner distribution of
temperature Tγ,⊥. In the case where Tγ,⊥/mc2 � Δp⊥/mc, with Δp⊥/mc = √

7ε/(6 ln ε)
given by (2.1a,b), the results we have discussed before are not changed because the
transverse momentum spread of the beam only arises from the Compton scattering
kinematics. In the other limit Tγ,⊥/mc2 �

√
7ε/(6 ln ε), the transverse momentum spread
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FIGURE 4. Relevance of the pair beam formation and magnetization in the frame of the
GRB–CBM interaction at the photospheric radius rph ∼ 1012 cm. On the left side of the
continuous line (area I): one expects only pair beam formation. Between the continuous and
dash–dotted lines (area II), one also expects the beam-plasma instability. On the right side of the
dash–dotted (area III), the instability is shutdown owing to the transverse dilution of the beam.

of the beam is determined by Tγ,⊥. Because the Compton cross-section is beamed for
gamma rays, the pair beam presents a similar transverse momentum spread as the photon
beam, which is known to lower the growth rate of the OBI (Bret, Gremillet & Bénisti
2010). The latter behaviour is confirmed in figure 3 where we choose Tγ,⊥ = 3mc2. This
implies a transverse momentum spread of Δp⊥/mc = 6 for the photon source, while the
Compton-induced spread is Δp⊥/mc = √

7ε/(6 ln ε) = 5. As expected, this leads to a
reduction of the growth rate ω−1

p Γ = 7.4 × 10−2 → 4.5 × 10−2, see the orange dashed
curve. Second, we consider that the photons have a monoenergetic distribution f = fx with
fx = δ( px − 100mc) but their density profile has an exponential shape ∝ exp(−x/100) of
scale length 100c/ωp, followed by a flat profile of density nω0. Because the pair beam
density is proportional to the photon density, its profile first presents a density gradient
and then the triangular shape, as observed in figure 1(b3,c3). As a result, the growth of
the OBI is delayed in time, and is slightly lower but noticeable (ω−1

p Γ 	 1.0 × 10−2).
This time delay is comparable to the gradient length, as can be seen by the red dotted
curve in figure 3. Third, we model a synchrotron distribution for the incident photon
beam. We set up this energy distribution as a longitudinal momentum distribution for
the photons f = fx = F(η, χ) (Klepikov 1954). The function F represents the synchrotron
spectra of an electron with a quantum parameter η, χ being the photon quantum parameter.
It has a peak at an energy of �ω/mc2 = 100. Photons with an energy of 10–100 MeV
are Compton scattered and contribute to increase the pair beam density compared with
the monoenergetic case. Indeed, the Klein–Nishina cross-section is a decreasing function
of photon energy. As a result, the growth of the Bz field energy is faster: ω−1

p Γ =
7.4 × 10−2 → 1.2 × 10−1, as seen by the green dash–dotted curve in figure 3.

5. Relevance for astrophysics and laboratory environments

We now discuss under which conditions this process can be observed in astrophysics
and in the laboratory.

Figure 4 covers a large range of photon densities nω0 and distances r − rph, with rph
the photospheric radius of a GRB. It reports whether the propagation distance is large
enough to enable the instability to be triggered, see (3.2). The latter limit is plotted by the
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continuous line in figure 4 and enables the distinction of two regimes of interaction. The
first interaction regime is represented by all the area on the left side of the continuous line
and is denoted as I. In this case, the photons are expected to form a relativistic electron
positron beam via Compton scattering. However, the pair beam density is too low and its
transverse momentum spread is too high to enable the onset of the instability, as detailed
in § 3. The second interaction regime is depicted by the area between the continuous and
dash–dotted lines and is denoted as II. In this regime, the pair beam density grows high
enough to allow the instability to develop. The dash–dotted line illustrates the maximum
length of the filament, as estimated in (3.4). This corresponds to the radius above which the
beam density is depleted by dilution effects faster than it is loaded via Compton scattering.

For the photospheric radius of a GRB, we evaluated a range of relevant gamma-ray
densities. With estimates from the fireball model, this gamma-ray density (10–100 MeV)
is determined to be nω ∈ (1014, 1022) cm−3. From this order of magnitude, we observe
in figure 4 that such conditions can trigger the instability and its development at large
distances. To be more precise, the instability can be expected for GRBs whenever their
gamma-ray density at the photosphere radius is above 1014 cm−3, which corresponds to a
GRB with an isotropic equivalent luminosity above 3 × 1050 erg s−1. The second important
result is that the beam density remains high enough to sustain the instability at large
distances, despite its transverse dilution. For example, the instability can be maintained
at distances ≥ 1017 cm for gamma-ray densities ≥ 1019 cm−3, and this corresponds to an
isotropic equivalent luminosity ≥ 1052 erg s−1.

We now detail the estimates to infer what is the gamma-ray density at the photosphere
radius, following Kumar & Zhang (2015). Let us consider a compact object with a radius
∼ 107 cm and an isotropic equivalent luminosity L in erg s−1. For simplicity we provide
the estimate in the compact object frame, thus neglecting the red shift of its host galaxy.
The fireball emerges from the compact object and experiences an adiabatic expansion. At
the photospheric radius ∼1012 cm, the emergent thermal radiation from the photosphere
has a luminosity which is equivalent to a blackbody temperature of [1.3 MeV] × L1/4

52 .
The notation L52 is defined as L52 = L/(1052 erg s). We assume typical GRBs have an
isotropic equivalent luminosity in the range L ∈ (1047–1054) erg s−1, in line with data
recently gathered (Abbott et al. 2017). This leads to the conclusion that this blackbody
equivalent temperature for the luminosity at the photospheric radius ranges from 70 keV
up to 4 MeV. However, the isotropic equivalent luminosity is defined for photons in the
standard energy band 1 keV up to 10 MeV. We then deduce the fraction of photons in the
energy range 10–100 MeV, where our results are valid, by assuming a black body energy
distribution. For instance, this ratio of photons (10–100 MeV) becomes � 5 % if the GRB
isotropic equivalent luminosity is � 1052 erg s−1. The final step is to deduce a gamma-ray
density from this total luminosity in gamma rays. To this purpose, we assumed the GRB
ejecta is a spherically expanding shell and its thickness is the GRB duration, typically
ranging between 0.1 and 100 s.

We now discuss the role of an external magnetic field that can be expected in an
astrophysical scenario. It is expected that an external and strong enough magnetic field
aligned with the flow will prevent the development of the current filamentation instability
(Molvig 1975). It was however demonstrated that if the field is not strictly aligned
with the flow, then the instability is ensured to take place with a reduced growth rate
for a non-relativistic beam temperature (Bret & Alvaro 2011). This growth rate is a
fraction of the growth rate without any magnetic field. Its detailed value in the low- and
high-magnetization limits can be found in (8) and (10) of the paper by Bret & Alvaro
(2011).
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It is worth questioning whether this Compton-driven beam formation and magnetization
can take place in the laboratory. Despite the ongoing worldwide efforts, no large size and
confined pair plasmas have been formed in a laboratory environment yet. One can still
mention that pair jets of high density np0 ∼ 1016 cm−3 can be generated by fast electrons
going through mm-sized high-Z targets. The fast electrons can be generated by an intense
laser (Chen et al. 2015; Liang et al. 2015) or by a plasma wakefield accelerator (Sarri
et al. 2015; Xu et al. 2016). Recent numerical work has brought forward a new scheme
to create dense pair jets np0 ∼ 1013 cm−3 with size of several skin-depths in all directions
from the interaction of relativistic protons (400 GeV c−1) with a solid beryllium/lead target
(Arrowsmith et al. 2020). Regarding gamma-ray sources (10–100 MeV), we estimated a
density nω0 ∼ 1017 cm−3 for the experimental photon source recently obtained by nonlinear
inverse Compton scattering (Cole et al. 2018; Poder et al. 2018). For such a photon density,
one would need a plasma length of 108 cm to witness the instability, which cannot be
achieved in a laboratory environment. We also consider the results of a recent simulation
from an extremely dense gamma-ray source obtained during the interaction of a dense
electron beam with multiple micron-sized foils (Sampath et al. 2021). Although it remains
a numerical result and its experimental realization may lie far in the future, it achieves a
record gamma-ray density of nω0 ∼ 1023 cm−3 with a distribution peaked at 100 MeV. One
can see in figure 4 that even this high gamma-ray density might be enough to witness the
onset of the Compton-driven instability in a laboratory frame. One would need a plasma
length of 150 cm to observe it. Overall, our results indicate that exploration of the process
of beam formation and magnetization in the laboratory is unlikely in the short term owing
to the combined requirements of plasma length and gamma-ray densities.

6. Conclusions

To summarize, we reported a study of gamma-ray propagation in a background pair
plasma. We showed that it can lead to the formation of a relativistic pair beam, thanks
to the beaming of the Compton cross-section for photons above 10 MeV. A theoretical
model to describe the formation of the beam driven by Compton scattering has been
developed, and compared with PIC simulations. We showed the pair beam can achieve
a relativistic Lorentz factor with a density comparable to the background plasma. In
addition, we quantified the transverse momentum spread of the beam, which is induced
by the Compton cross-section. We demonstrated that the pair beam, as it propagates, can
convert its kinetic energy to magnetic energy via the oblique instability, although limited
by its transverse momentum spread. The conversion efficiency of this process is low, but
it can occur over long distances. We extrapolated from PIC simulations that it could lead
to the generation of magnetic fields on distances larger than a parsec (up to 	 1025 cm) for
a perfectly collimated GRB ejecta. For a less collimated one (θ ≤ 20◦), we estimated the
instability can be sustained over long distances 1012 → 1017 cm for GRBs with an isotropic
equivalent luminosity ranging from 3 × 1050 to 1052 erg s−1. We showed that these results
can be used to address the energy dissipation of gamma rays at the photospheric radius of
GRBs. We checked the robustness of our results for various types of photon sources, with
non-uniform density profiles and transverse and longitudinal spreads in their momentum
distribution. The simulations done in the frame of this study are performed for the typical
orders of magnitude for plasma and photon densities expected at the photospheric radius
of a GRB, using estimates from the hot fireball model as well as data recently gathered on
GRBs.

This work offers two directions to explore in the future. The first could be to consider
photon distributions with energies below 10 MeV to connect with previous works on
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Compton-driven plasma wakes (Frederiksen 2008; Del Gaudio et al. 2020a). The second is
to understand the impact of the beam formation and magnetization on global GRB models.
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