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Abstract

The central nervous system (CNS) has been recognized as an immunologically specialized
microenvironment, where immune surveillance takes a distinctive character, and where deli-
cate neuronal networks are sustained by anti-inflammatory factors that maintain local homeo-
stasis. However, when a foreign agent such as a parasite establishes in the CNS, a set of
immune defences is mounted and several immune molecules are released to promote an
array of responses, which ultimately would control the infection and associated damage.
Instead, a host–parasite relationship is established, in the context of which a close biochemical
coevolution and communication at all organization levels between two complex organisms
have developed. The ability of the parasite to establish in its host is associated with several
evasion mechanisms to the immune response and its capacity for exploiting host-derived
molecules. In this context, the CNS is deeply involved in modulating immune functions,
either protective or pathogenic, and possibly in parasitic activity as well, via interactions
with evolutionarily conserved molecules such as growth factors, neuropeptides and hormones.
This review presents available evidence on some examples of CNS parasitic infections indu-
cing different morbi-mortality grades in low- or middle-income countries, to illustrate how
the CNS microenvironment affect pathogen establishment, growth, survival and reproduction
in immunocompetent hosts. A better understanding of the influence of the CNS microenvir-
onment on neuroinfections may provide relevant insights into the mechanisms underlying
these pathologies.

Introduction

Several pathogens are capable of entering the human central nervous system (CNS).
Particularly in resource-limited settings, protozoan and helminth parasites can infiltrate the
CNS and/or other organs or tissues. Pathogens taking the CNS as its primary target of infec-
tion (i.e. exhibit neurotropism) require a successful dissemination from an entry point
(respiratory or intestinal) to the CNS, either crossing or disrupting the blood–brain barrier
(BBB) or the blood–cerebrospinal fluid barrier (BCSFB), evading both peripheral and CNS
immune system responses. The mechanical barriers in the CNS (BBB and BCSFB) are char-
acterized by a selective permeability to macromolecules and hydrophilic molecules. These
properties are due to tight junctions, which are prominent in the BBB. Parasites crossing
these barriers are contended by the local immune response.

A trophic or coevolution relationship between pathogens and hosts is very plausible.
Extensive studies on various parasite species, along with recent data on parasitic genome/tran-
scriptome and proteome, have singled out molecules and strategies that parasites developed to
deal with the CNS specialized immune response (Perry, 2014). While complex, the host–para-
site relationship seems to be prone to a ‘fine-tuned balance’ (because of its low metabolic and
proliferative activity) that permit ‘transient silent’ neurological symptoms after the initial inva-
sion, then leading to a chronic infectious process, a fragile quasi-commensal relationship
(Adamo, 2013) that ultimately can translate into significant morbidity and mortality.

Host factors such as hormones, neuropeptides, cytokines and chemokines may be signifi-
cant parasite exploitation targets since they can be used to favour parasite growth. In this
review, we will compile available evidence highlighting how four parasites (protozoan and hel-
minths) can exploit components of the CNS microenvironment to establish, survive and/or
growth therein.

Although parasitic agents such as Amoebozoa (Acanthamoeba spp., Balamuthia spp.,
Entamoeba histolytica, etc.), fungi (Blastomyces dermatitidis, Coccidioides spp., Cryptococcus
spp., etc.), worms (Angiostrongylus cantonensis, Lagochilascaris minor, Strongyloides stercora-
lis, Toxocara spp.) and flagellates (Trypanosoma spp.) can effectively infiltrate and infect the
CNS, we will focus on four key parasitic agents (Toxoplasma gondii, Taenia solium,
Plasmodium falciparum and Schistosoma spp.) that are known to attack CNS and cause
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high worldwide morbidity and mortality (John et al. 2015) to
illustrate this complex host–parasite relationship.

Life cycle

Toxoplasma gondii
Toxoplasma gondii (phylum Apicomplexan) is an obligate intra-
cellular parasite, infecting over one-third of the world population.
The parasite life cycle is complex, consisting of two stages, the
sexual one, which occurs in felines (the definite host), and
the asexual one, which can befall in any homeotherm animal
(the intermediate host). Felines become infected by ingesting
meat containing oocysts; in most cases, the infection is asymp-
tomatic. After 7–15 days, felines release oocysts in feces.

Humans and other intermediate hosts become infected by
ingesting oocysts (containing infective sporozoites). Parasites
invade the gastrointestinal epithelium and differentiate into tachy-
zoites. The sustained tachyzoite replication and dissemination
through blood or lymphatic stream to muscles, heart, brain, ret-
ina, testes and other organs lead to tissue damage and the lysis
of infected cells (through endodyogeny), which correlates with
the acute phase of the infection. In the presence of a vigorous cell-
mediated immunity, parasite replication is contained and tachy-
zoites turn into bradyzoites within parasitic vacuoles (dormant
intracellular cysts) (Mercier and Cesbron-Delauw, 2015).

Taenia solium
Taenia solium is a platyhelminth whose life cycle requires two
hosts. The adult tapeworm lives in the small intestine of humans
(definite host); there, gravid proglottids and infective eggs are
released with feces into the environment. Several mammals, but
particularly pigs (intermediate host) become infected by ingesting
T. solium eggs. Eggs hatch in the intestinal tract to release onco-
spheres, which traverse the intestinal wall and disseminate
through the bloodstream to several tissues (muscle, heart, brain
and retina). In those tissues, oncospheres evolve into metaces-
todes (cysticerci), which cause neurocysticercosis (Del Brutto,
2014).

Plasmodium falciparum
Plasmodium life cycle starts when an anopheles mosquito bites a
vertebrate host and inoculates sporozoites. Parasites disseminate
through the bloodstream and reach the liver (asexual cycle)
were they actively replicate (schizonts).

When hepatocytes are lysed, merozoites are released from the
schizont into the bloodstream. In each replication cycle, a few
amount of asexual parasites progress to sexual stages (female or
male gametocytes). The sexual stage is the only form transmitted
to the mosquito vector. The next target are red blood cells (RBC),
in which several stages occur (ring trophozoites and new mero-
zoites), completing the erythrocytic cycle. The destruction of
RBC is associated with febrile peaks (Meibalan and Marti, 2017).

Schistosoma spp.
Schistosoma spp. are digenetic blood trematodes, causative agents
of schistosomiasis. The main species infecting humans are
Schistosoma haematobium, S. japonicum and S. mansoni.
Schistosoma life cycle begins when eggs are released with feces
or urine, and less frequently with sputum by the human infected
host (definitive host). In water, miracidia are released from
hatched eggs. In this environment, miracidia penetrate a specific
kind of snail (first intermediate host) were they turn into sporo-
cysts (successive generations) and migrate to hepatic and pancre-
atic tissues in the snail, producing cercariae.

Most cercariae die within the first 24 h, but some of them are
released from the snail and either penetrate the human skin,

evolving into schistosomula, or adopting a cyst form (metacercar-
iae) to infect a second intermediate host (crustacean or mammals
that eat contaminated aquatic vegetation). Schistosomula migrate
to several tissues and finally located in the veins. The specific ven-
ule location seems to depend on species: S. japonicum is fre-
quently found in the superior mesenteric (drains in the small
intestine), S. mansoni in the inferior mesenteric and hemor-
rhoidal plexus (drains in the large intestine), while S. haemato-
bium is frequently lodged at the venous plexus of the bladder
and rectal venules. Female worms deposit fertilized eggs in the
small venules of the portal and perivesical system. Schistosoma
mansoni and S. japonicum eggs can move to the intestine
lumen, while S. haematobium eggs move into the bladder and
ureters. Finally, they are released in feces or urine (Colley et al.
2014).

How do parasites reach the CNS?

To enter the CNS, parasites must evade the host immune
response. The bloodstream (which is used as a vehicle by both
extracellular and intracellular parasites) plays an important role
in parasite dissemination. Then, parasites need to cross the mech-
anical barriers (BBB or BCSFB) (Kristensson et al. 2013) that pro-
tect the CNS.

The CNS is a highly specialized microenvironment, often con-
sidered as an immune-privileged site due to brain topography
[widely reviewed and discussed by (Ousman and Kubes, 2012;
Ransohoff and Engelhardt, 2012)]. It is noteworthy that blood
vessels in the leptomeninges are more permeable than those in
the brain parenchyma; nevertheless, there exist regions lacking
such barriers (choroid plexus, brain circumventricular organs
and peripheral nerve root ganglia). Additionally, the immune
response in the meninges is stronger than that in the brain paren-
chyma (Galea et al. 2007).

Parasites profit these characteristics of host CNS in their inva-
sion strategies. Apicomplexan parasites, Toxoplasma spp. and
Plasmodium spp., possess particular mechanisms.

During active or acute infection by Toxoplasma, tachyzoites
and sporozoites attach and invade host cells. Tachyzoites exhibit
a high metabolic rate and a tremendous demand for nutrients.
Tachyzoites live intracellularly in parasitophorous vacuoles,
which are particularly resistant to lysosome fusion, avoiding para-
site degradation in monocytes, spreading by the bloodstream and
gaining access to tissues through infected monocytes (Trojan
horse mechanism); additionally, tachyzoites may directly breach
intercellular junctions and transmigrate between endothelial
cells (transcytosis) after egressing from infected leucocytes
(Barragan and Sibley, 2003; Tardieux and Ménard, 2008;
Lambert and Barragan, 2010; Gregg et al. 2013). The actin-myosin
machinery takes part in this invasive process, following the expul-
sion of microneme and rhoptry proteins from the apical complex.
Toxoplasma gondii can invade any nucleated host cell. After
invading neurons, its replication drops markedly, but bradyzoites
persist in a ‘quiescent state’ during the host lifespan.

In the case of Plasmodium, although the entry mechanism is
not fully understood, the parasite is able to modify host erythro-
cytes. When carried into red cells, mature parasites express pro-
teins to attach endothelial cells of brain vessels, inducing
erythrocyte sequestration. In fact, while infected erythrocytes
may not enter brain tissue, uninfected erythrocytes can spontan-
eously bind them, forming a rosette and leading to blood flow
obstruction, hypo-perfusion and hypo-oxygenation; in turn,
these may contribute to BBB breakdown and vascular leakage
(Ueno and Lodoen, 2015; Pal et al. 2016). The parasites use
both mechanisms to evade splenic clearance and obtain nutrients
from the host.
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For neurocysticercosis, once the eggs hatch in the small intes-
tine of infected humans, the hooked oncospheres into the gut are
released. Thereafter, oncospheres penetrate the epithelium of the
intestine and migrate to various tissues, including CNS through
BBB (through a not fully understood mechanism). However, in
a murine model, BBB disruption was a consequence of the
inflammatory response to parasites (Alvarez and Teale, 2007). It
has also been suggested the oncospheres can penetrate the brain
through those regions lacking the BBB. At the CNS, oncospheres
can locate and transform into the larvae stage or cysticerci, in
brain parenchyma, in the subarachnoid space, or in the ventricles,
the last two being the ones that most compromise human health.

For Schistosoma, schistosomula enter the vascular system
after infiltrating the skin; then, they can spread to lung or mesen-
teric vessels. Eggs can reach the CNS by embolization through
the Batson’s plexus. Several proteins surrounding the parasite
induce granuloma formation and necrosis in the vascular walls
(Scrimgeour and Gajdusek, 1985).

Experimental and human immunopathology

Toxoplasma gondii infection
In the CNS, T. gondii infection may lead to severe complications,
especially in immunosuppressed patients. The disease is becom-
ing a global health issue since 30–50% of human population is
infected (Flegr et al. 2014).

Parasites reach the immunologically protected CNS through a
‘Trojan horse mechanism,’ entering monocytic cells, dendritic
cells (DCs) and neutrophils (Flegr et al. 2014). Macrophages, nat-
ural killer (NK) cells and lymphocytes have also been observed to
carry tachyzoites into the CNS (Persson et al. 2009; Lambert and
Barragan, 2010; Unno et al. 2010; Lachenmaier et al. 2011;
Lambert et al. 2011; John et al. 2015). Once inside the CNS, para-
sites disperse and can invade astrocytes, microglia and neurons,
forming cysts and establishing a latent infection in immunocom-
petent hosts. A combination of several pathways may be utilized.

Brain infection: experimental studies. Transmigration of infected
leucocytes across the BBB and cerebrospinal fluid barrier (CSFB)
has been shown to be due to a regulation of cell migratory properties
by Toxoplasma and may account by both the paracellular or trans-
cellular pathways (Trojan horse) to traverse the epithelial layer or
penetrate immune cells (particularly monocytes), An upregulation
in the expression of adhesion molecules, particularly intercellular
adhesion molecule 1 (ICAM-1), which interacts with parasite adhe-
sin MIC2 (Barragan et al. 2005), may also be involved. For instance,
infected monocytic cells upregulate CD44 and ICAM-1 expression
to adhere and extravasate cells (Unno et al. 2010).

It has been observed that both human and murine DCs
infected by Toxoplasma tachyzoites exhibit a dramatic change in
their phenotype; in fact, they become ‘hypermigratory’ cells
characterized by rapid cytoskeletal changes (Lambert et al.
2011). The requirement of a live tachyzoite for these changes
(Lambert and Barragan, 2010) may indicate a tightly regulated
control of this hypermotility that has being proposed to be
promoted by the expression of functional GABAA receptors and
gamma-aminobutyric acid (GABA) secretion (Fuks et al. 2012).
GABAergic signalling seems to modulate parasite dissemination;
in fact, pre-treatment of infected DCs with GABAergic inhibitors
(a mouse model of toxoplasmosis) reduced parasite dissemination
(Fuks et al. 2012).

Other observed phenotypic CD changes are a redistribution of
the CD11c and CD18 integrins (Weidner et al. 2013) and selective
chemotaxis given by an upregulation of CCR7 expression and the
regulation of CCR5 (Fuks et al. 2012; Weidner et al. 2013); para-
sitized neutrophils and lymphocytes expressing CD11b can be

found in the brain, although the amount of these cells seems to
be very small, being DCs the largest population of CD11b +
cells in the CNS (Courret et al. 2006).

Also in infected macrophages phenotypic changes have being
observed, i.e. they exhibit an increased expression of MT1-
MMP and ADAM10 matrix metalloproteinases (MMPs), as well
as the αvβ3 integrin (Seipel et al. 2010); additionally, the secretion
of a multi-protein complex containing MMP9 suggests its pos-
sible cleavage to the CD44 integrin (Schuindt et al. 2012). All
these changes of infected macrophages may help in their brain
migration, nevertheless, further reports regarding the interaction
of macrophages, MMPs and integrins expressed in brain endothe-
lial cells during toxoplasmosis are needed.

NK cells have been proposed also as parasite reservoirs since
they lack intracellular killing pathways and especially, considering
that mature CD11b + high NK cells can cross brain barriers to
performing CNS immunosurveillance. Thus, infected NK cells
have been proposed to reach the CNS and disseminate the para-
site in situ (Persson et al. 2009; Ransohoff and Engelhardt, 2012).
A recent report demonstrated that CD11b + leucocytes, either
expressing CD11c or not, participate in T. gondii intracellular
transport through the BBB (Lachenmaier et al. 2011).

During CNS invasion, tachyzoites invade astrocytes, microglial
cells and neurons, forming cysts. Parasite-release mechanisms are
not known, but it is likely that the inflammatory response against
the infection promotes the lysing of infected cells, and thus tachy-
zoite spread. Parasites are dispersed throughout the brain, but
they locate especially in the cerebral cortex, hippocampus, basal
ganglia and amygdala (Melzer et al. 2010). Astrocytes and micro-
glia become parasitized, although protection mechanisms help
minimize parasite load; particularly interferon (IFN)γ, alone or
in combination with TNFα, interleukin (IL)1 and IL6, inhibits
T. gondii replication. This mechanism does not seem to be
mediated by nitric oxide production (Halonen et al. 1998).

Brain infection: human studies. Toxoplasma is able to form cysts
in CNS target cells (astrocytes and microglial cells). As shown in a
microarray analysis of fibroblasts infected by the type-II strain, a
significant change in the abundance of transcripts, particularly
those associated with the immune response, were observed in
1% of the genome within the first 2 h (Blader et al. 2001).
These findings suggest that host cells activate some kind of
‘alarm signal’ even before CNS invasion. In another similar
study on human fibroblasts, an autoantigen [human cell division
autoantigen-1 (CDA-1)] was found to be crucial for bradyzoite
development, since its overexpression in CDA1 slowed parasite
growth (Radke et al. 2006).

Copious evidence links human infection by Toxoplasma with
an increased incidence of schizophrenia (Cetinkaya et al. 2007;
Dickerson et al. 2007; Hinze-Selch et al. 2007; Mortensen et al.
2007; Lindgren et al. 2017) and neurodegenerative diseases
(Coccaro et al. 2016). In fact, increased anti-T.gondii IgG anti-
body levels have been reported in patients with first-onset schizo-
phrenia (Wang et al. 2006; Torrey et al. 2007) and with
behavioural changes (aggression/impulsivity traits) in chronically
infected subjects (Flegr et al. 1996, 2003; Havlícek et al. 2001).
More recently, susceptibility genes for congenital toxoplasmosis
were identified in a cohort of infected children, being all target
genes expressed in the brain; effects of the infection on neurode-
velopment and on plasticity of the neural, immune and endocrine
networks have also been described, identifying associations
between parasite–brain interactions and epilepsy, movement dis-
orders, Alzheimer dementia and cancer (Ngô et al. 2017).

Factors involved in host infection. Toxoplasma gondii virulence
seems to be associated with genetic factors, such as strain type
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(being type-II the most prevalent in immunosuppressed patients)
and rhoptry type. Additionally, the parasite possesses two genes
encoding for tyrosine hydroxylase (a rate-limiting molecule for
dopamine synthesis). It has been demonstrated in vivo and
in vitro that toxoplasma cysts inside neurons can express tyrosine
hydroxylase and dopamine (DA); actually, DA release is increased
in infected cells (Gregg et al. 2013). This important neuro-
transmitter interferes with locomotion, cognition, memory and
mood, and may directly influence the host’s behaviour
(Lachenmaier et al. 2011). Interestingly, DA can also modulate
the adaptive human immune response (Lambert and Barragan,
2010). Indeed, DA may regulate T cell activation and differenti-
ation (Lambert et al. 2011), and T regulatory cells (Tregs) are
able of synthesizing and storing DA (Persson et al. 2009).

On the other hand, it has been demonstrated that T. gondii
influences the expression of the transforming growth factor beta
(TGFβ), an important immune modulator. In fact, soluble T. gon-
dii extract can upregulate TGFβ1 and TGFβ2 mRNA levels,
favouring the secretion of both molecules in human retinal pig-
ment epithelial (HRPE) cells. Similarly, TGFβ can affect HRPE,
enhancing T. gondii replication (Nagineni et al. 2002; Unno
et al. 2010). Despite these shreds of evidence, many questions
remain unanswered. Other studies to evaluate how the key host
cell–parasite relationship acts during Toxoplasma infection are
needed to clarify the mechanisms of immune response evasion
of this parasite.

Plasmodium falciparum infection
Cerebral malaria (CM) is a potentially life-threatening disease
caused by the intracellular protozoon P. falciparum, which
induces a severe and diffuse encephalopathy. About 212 million
new cases were reported worldwide in 2015. The African region
accounted for 90% of cases, followed by South-East Asia and
Eastern Mediterranean regions (Malaria, 2017). CM due to
sequestration of infected erythrocytes is characterized by a high
mortality and post-recovery neurocognitive disorders in children,
leading to metabolic disturbances, neuroinflammation and altera-
tions in the human immune response (Wassmer et al. 2003). The
specific mechanism of brain injury is poorly understood, but cur-
rent evidence is compiled below.

Brain infection: experimental studies. Sequestration of the brain
microvasculature by Plasmodium seems to be the main patho-
genic factor, promoting several tissue changes in the parasite’s
vicinity. In the acute phase of infection, CM involves an increase
in circulating levels of cytokines and chemokines such as IL1β,
IL6, IL17 and TNFα (Wu et al. 2010; Keswani et al. 2016), asso-
ciated with leucocyte accumulation and a breakdown of the BBB,
as well as oxidative stress (NO), endothelial cell activation
(expression of ICAM-1, VCAM-1, P-selectin and E-selectin)
and endothelial cell apoptosis. Platelet binding to endothelial
cells probably involves the tumour necrosis factor receptor super-
family member 5 (CD40), which is upregulated in brain endothe-
lial cells after TNFα stimulation (Piguet et al. 2001).

It was recently demonstrated that the uptake of parasite-
derived vesicles by astrocytes and microglia induce these cells to
produce and release IFNγ, lL-12 and the inducible protein 10
(IP-10) (Shrivastava et al. 2017). In correlation to the proinflam-
matory response during CM, there is an anti-inflammatory
response characterized by the presence of Tregs and immunomo-
dulatory cytokines like TGFβ and IL10 (Wu et al. 2010; Keswani
et al. 2016). In malaria-infected pregnant mice, parasitaemia was
closely associated with increased IL17 levels and lower levels of
IL10 and TGFβ. In malaria-infected BALB/c mice, increased
TGFβ levels were associated with the resolution of infection

(Omer et al. 2003). These observations suggest that the parasite
induces immunological changes to favour its establishment.

Brain infection: human studies. In humans, Plasmodium infec-
tion has been demonstrated to alter brain endothelial cells and
platelets, inducing the production of chemokines, cytokines and
other signalling molecules. In fact, CM patients show a high pro-
portion of platelet-filled vessels, which induce cytoadhesion of
Plasmodium-infected erythrocytes to microvascular endothelial
cells through the Platelet glycoprotein 4 (CD36) (Wassmer et al.
2003). In addition, sequestration of infected erythrocytes in the
brain microvasculature also participates in BBB disruption. An
interesting study in an in vitro CM model using microarray tech-
nology demonstrated that platelets alter the gene expression pro-
file in human brain endothelial cells, favouring the expression of
chemokines, cytokines and other signalling molecules that pro-
mote platelet adhesion to the brain microvasculature. In CM,
platelet activation is induced by the platelet-activating factor
(PAF), an inflammation mediator, which seems to orchestrate
several inflammatory processes, including leucocyte recruitment
and the increase of vascular permeability, all processes mediated
by the PAF receptor. This receptor is also crucial for the cascade
of events leading to changes in vascular permeability, T cell accu-
mulation and activation in blood vessels, and apoptosis of leuco-
cytes and endothelial cells. Besides PAF, adhesion molecules like
ICAM-1, E-selectin, CXCR3, LT-α, ELAM-1 (endothelial-
leucocyte adhesion molecule 1) and VCAM-1 are crucial in CM
development, since they have been found in cerebral microvascu-
lar endothelial cells from patients who died from CM (Armah
et al. 2005; Togbe et al. 2008; Almelli et al. 2014; Madkhali
et al. 2014; Van Den Ham et al. 2015). Cytokines like TNFα
may also be involved in pathology and ICAM-1 overexpression
(Clark et al. 1989; Gimenez et al. 2003; Armah et al. 2005), as
well as in leucocyte chemotaxis and activation through CCL18,
CXCL10, CCL2 and CCL5 (Barbier et al. 2011).

On the other hand, several immune alterations accompany
CM; the marked sequestration of parasitized erythrocytes results
in endothelial activation of the capillary and post-capillary
venules, reducing the vascular lumen and leading to mechanical
obstruction. This process induces prostaglandin (PGD) synthesis;
PGD2, the major brain prostanoid produced, is involved in the
regulation of sleep and pain responses. In vitro studies in a
human astrocyte cell line with PGD2 significantly increased the
expression levels of haeme oxygenase 1 (HO-1) mRNA (Kuesap
and Na-Bangchang, 2010). The expression of HO and TGFB2
genes in a paediatric population in Angola was related to specific
risk factors for CM (Sambo et al. 2010). Higher TGFβ levels were
also associated with severe/complicated malaria (Lourembam
et al. 2013). These data suggest that CM modifies the expression
of several host proteins, and these alterations may favour the
parasite.

Factors involved in host infection. The balance between pro- and
anti-inflammatory responses, as well as the specific pharmaco-
logic treatment, determines the outcome of the disease and
leads to parasite elimination or persistence in the CNS. Under
these conditions, the parasite has developed mechanisms to per-
sist within the host, taking advantage of its location by exploiting
hormones and other host-produced molecules. As reported in
various in vitro studies, hormones like cortisol, estradiol, proges-
terone and even insulin increase the number of gametocytes,
while treatment with 16-α bromoepiandrosterone decreased div-
ision rates (Maswoswe et al. 1985; Lingnau et al. 1993). While
no further in vitro observations have been reported, pregnant
infected women showed higher cortisol levels (Vleugels et al.
1989; Bayoumi et al. 2009). Besides, uncomplicated malaria
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patients showed higher steroid [cortisol, dehydroepiandrosterone
(DHEA)] levels correlating with parasitaemia in a Brazilian study
(Libonati et al. 2006). These data suggest that the parasite can
exploit host-produced hormones to survive.

In view of these findings, it seems that Plasmodium exploits
host’s immune, vascular, endocrine and nervous system to estab-
lish an effective infection. This complex interaction may require
extensive use of massive genomic and transcriptomic platforms
to be understood, aiming to design diagnosis, treatment and con-
trol strategies.

Taenia solium infection
In its larval stage, T. solium can infect pigs and humans and when
parasite establishes in the CNS causes neurocysticercosis (NC).
The mechanisms that mediate cysticercus establishment in the
CNS are not well known. It has been proposed that T. solium
oncospheres enter the CNS and may establish in different loca-
tions (Sciutto et al. 2000). In this regard, it should be noted
that in India cysticerci establish predominantly in skeletal muscle,
while neurocysticercosis is more prevalent in Latin America
(Sciutto et al. 2000; White, 2000). It is evident that cysticerci
exhibit different tissue tropism in America than in Asia or
Africa. The evidence also suggests that the parasite can take
advantage of the CNS local immune response, and probably
drive host sexual hormones to promote its own growth and
survival.

Brain infection: experimental studies. A model of neurocysticer-
cosis in rodents uses Mesocestides corti as the challenge agent
instead of T. solium. In spite of its limitations, this model allowed
researchers to describe some of the main mechanisms of CNS
infection. M. corti metacestodes are intracranially injected.
Initially, metacestodes are found in the leptomeningeal space,
and then they bind and traverse the arachnoid–pia complex to
penetrate the parenchyma. The number of immune cells infiltrat-
ing the CNS and surrounding the parasites in the first weeks after
infection is low, considering the size of the parasite. It has been
demonstrated that the parasite exhibits structural changes in sur-
face molecules to evade the immune response. In addition,
asymptomatic individuals show viable encysted parasites with lit-
tle or no evidence of surrounding inflammation; early granulomas
also show little inflammatory infiltrate. With respect to the
immune response, a Th1 (IL2, IL12, IFNγ and TNFα) is initially
observed, later switched to a Th2 response (IL4 and -10).
Infection by T. solium downregulates APC maturation and the
expression of MHC-II in infiltrating myeloid cells; furthermore,
infiltrating macrophages express markers associated with an alter-
natively activated phenotype [Fizz-1 (found in inflammatory
zone-1) and Arginase-1] (Alvarez et al. 2010).

In addition, an experimental encephalitis model of in mice
using brain inoculation of Taenia crassiceps cysticerci has been
reported. This work demonstrated that susceptible BALB/c mice
show severe neuroinflammation, characterized by infiltration of
polymorphonuclear cells associated to oedema, perivasculitis,
and meningitis, in clear contrast with non-susceptible C57BL/6
mice. In BALB/c mice, polymorphonuclear cells predominated
in the inflammatory cell infiltrate, while mononuclear cells predo-
minated in C57BL/6 mice. These findings point out marked dif-
ferences in the immune response according to susceptibility in
mouse strains (Matos-Silva et al. 2012).

Histopathological findings in a T. solium neurocysticercosis
model in rats showed inflammatory infiltrates surrounding the
cysts. These infiltrates were composed of eosinophils, neutrophils,
macrophages, microglia, plasmocytes and lymphocytes. In the
case of ventricular cysts, infiltrate was less abundant than that sur-
rounding parenchymal ones. These findings suggest that cysticerci

location is determinant in the host–parasite relationship, strongly
influencing the immune response (Verastegui et al. 2015).

With respect to other neurocysticercosis models [extensively
reviewed by (Arora et al. 2017)], induced infection in pigs
seems to be the most natural model. Immunopathological studies
in infected pigs reported astrogliosis, neuronal degeneration and
altered BBB permeability. BBB disruption allowed an influx of
peripheral blood immune cells like eosinophils, macrophages,
CD3 + T cells, B lymphocytes and plasma cells into the lesion
(Sikasunge et al. 2009). In pigs, the granulomatous reaction is
characterized by an abundance of eosinophils, the relative paucity
of plasma cells, the presence of lymphocytes and macrophages,
and a discrete deposition of collagen (Alvarez et al. 2002). With
respect to the host–parasite relationship, it is likely that cysticerci
controlled the immune response to survive during infection.
Furthermore, other studies have demonstrated an exacerbated
immune response after anti-parasite treatment (Guerra-Giraldez
et al. 2013; Mahanty et al. 2015; Cangalaya et al. 2016).

Brain infection: human studies. The human immune response
against cysticerci is closely associated with the parasite stage and
location. When cysticerci lodge in the subarachnoid space of the
base or in the ventricles (extra-parenchymal location) they induce
a severe clinical picture (hydrocephalus, intracranial hypertension
and/or vasculitis) and the patient exhibits increased cerebrospinal
fluid (CSF) IL5, IL6 and IL10 levels. In contrast, lower inflamma-
tory cytokine levels are observed when cysticerci lodge in the sub-
arachnoid sulci or in the parenchyma (Chavarría et al. 2005).
Additionally, parenchymal parasites are frequently damaged,
with low CSF inflammation and mild or moderate clinical symp-
tomatology (Chavarría et al. 2005).

Cysticerci can be found in three main stages: (a) vesicular,
when they are viable; (b) colloidal, partially damaged cysticerci;
and (c) calcified when they are dead. Vesicular extraparenchymal
parasites are associated with a strong inflammatory response
(Chavarría et al. 2005), with increased CSF L1β, IL5, IL6 and
IL10 levels (Sáenz et al. 2012). Additionally, vesicular parasites
are associated with the presence of regulatory T cells in CSF
(Adalid-Peralta et al. 2012), probably induced by excretion/secre-
tion parasite products (Adalid-Peralta et al. 2013). The parasite
entices a low inflammatory response by releasing immunomodu-
latory factors that induce alternatively activated monocytes. These
macrophages could also mediate neuroinflammation control
(Gundra et al. 2011). A plausible hypothesis is that during NC,
viable parasites drive the immune system to a suppressive envir-
onment that favoured their survival, evading the host immune
response (Vignali et al. 2008; Arce-Sillas et al. 2016). In vitro stud-
ies have shown that, in the presence of cysticerci, monocyte-
derived dendritic cells acquire a tolerogenic phenotype, promot-
ing Treg proliferation (Adalid-Peralta et al. 2013). NC patients
exhibit higher levels of IL10, a Treg-secreted immunomodulatory
cytokine (Arce-Sillas et al. 2016).

Factors involved in host infection. Taenia solium and T. crassiceps
cysticerci can modulate the host immunoendocrine system to
favour their own survival (Table 1). Sexual dimorphism has
been reported in a mouse model of T. crassiceps infection, being
female mice more permissive to parasite growth than males
(Larralde et al. 1989). In concordance, gonadectomy equalizes
parasite susceptibility between sexes (Huerta et al. 1992). In add-
ition, 17β-estradiol administration increases parasite numbers in
infected males (Terrazas et al. 1994). Most interestingly, cysticer-
cosis lead to feminization of male hosts, since the parasite
increases oestrogen synthesis (200 times the normal values) and
reduces testosterone production (90%) (Larralde et al. 1995).
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Table 1. Parasite products that modulate the host immune–endocrine system.

Parasite Biological components
Effect on the host–parasite

interactions Commentary References

Taenia
solium

Human

Secretion and excretion
products

Induce regulatory T cells (Tregs) Cysticerci drive dendritic cells to
induce Tregs to evade
immune response

Adalid-Peralta et al. (2012,
2013)

Cysts Reduce dehydroepiandrosterone
(DHEA) levels.
Reduce testosterone levels

Cysts may modify host hormone
levels

Cárdenas et al. (2012)

Animal models

TGFβ-like receptor Probably binds host TGFβ Cysticerci seem to use host TGFβ
to promote their growth and
survival

Adalid-Peralta et al. (2017)

Cysts Lead to the feminization of male
hosts

The parasite modulates the host
immunoendocrine system to
favour parasite survival

Morales et al. (2002), Peña
et al. (2007)

Plasmodium
spp.

Human

Parasitaemia Induces TGFβ release and
activation

Parasites promote an
immunosuppressive
microenvironment

Omer et al. (2003)

Parasitaemia Higher steroid (cortisol,
dehydroepiandrosterone) levels

Modulates host endocrine
molecules

Omer et al. (2003)

Parasitized
erythrocytes

Induce prostaglandin (PGD)
secretion.
Increase haeme oxygenase and
TGFB2 expression

Probably favours parasitaemia Kuesap and Na-Bangchang
(2010), Sambo et al.
(2010)

Animal model

Parasitaemia Induces endothelial activation and
chemokine expression. ICAM-1,
VCAM-1, P-selectin, and
E-selectin

Promotes attachment of infected
erythrocytes to endothelial
cells of brain vessels

El-Assaad et al. (2013)

Parasite vesicles Dynamic transfer of vesicles from
the parasite to astrocytes and
microglia

Drive neuroinflammation Shrivastava et al. (2017)

Toxoplasma
gondii

Human

Cyst, genes encoding
for tyrosine
hydroxylase

Increase DA release in infected
cells.
DA interferes with locomotion,
cognition, memory, mood, and
may directly influence the host’s
behaviour

Toxoplasma gondii exerts a
direct effect on neuronal
functions; it also induces
activation of glial cells,
particularly astrocytes, which
could be associated with
schizophrenia and other
neurological diseases

Basu and Dasgupta (2000),
Cosentino et al. (2007),
Golcu et al. (2014),
Pacheco et al. (2009),
Prandovszky et al. (2011)

Toxoplasma extract Induces in vitro secretion of TGFβ1
and TGFβ2 in human retinal
pigment epithelial cells

May enhance T. gondii
replication in the host

Nagineni et al. (2002)

Animal model

Tachyzoites Infect several cells (dendritic cells,
astrocytes, and neurons). In
dendritic cells, it promotes a
‘hypermigratory’ phenotype

Promotes parasite dissemination Lambert and Barragan
(2010), Lambert et al.
(2011)

Parasitaemia Modify monocyte adhesion and
transvasation

The Trojan horse mechanism of
infection promotes parasite
dissemination

Barragan et al. (2005)

Schistosoma
spp.

Human

Parasitaemia
(granulomatous
mass)

Induces a strong Th2 response,
with high IL4, IL5, IL6, CCL3 and
IL13 levels

Favours parasite persistence Ferrari et al. (2008), Rezende
et al. (1993)

Biogenic amines
synthetized by the
flatworm

Control parasite muscle
contraction and movement

Favours parasite establishment
and regulates metabolic
activity.

El-Shehabi and Ribeiro
(2010), Hamdan and
Ribeiro (1999), Nishimura
et al. (2007), Pax et al.

(Continued )
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Several reports on T. solium infections have described endo-
crine alterations in pig hosts (Morales et al. 2002; Peña et al.
2007). A significant reduction in testosterone levels was found
in NC pigs with respect to healthy animals, with no differences
in other hormones (Peña et al. 2007). Previously, it was reported
that castration and pregnancy increased cysticercosis prevalence
and parasite load in rural pigs (Morales et al. 2002). While
these observations show a marked endocrine modification in
the host, several in vitro studies have reported that T. solium is
able to process progesterone and other corticosteroids and sex
steroids as metabolites (Valdez et al. 2014). Progesterone is also
important for inducing scolex evagination, possibly by binding
a specific receptor (Escobedo et al. 2010). On the other hand, it
has been reported that human neurocysticercosis triggers changes
in the endocrine status; patients showed lower DHEA levels, as
well as lower 17β-estradiol and testosterone levels, particularly
in males. All patients with clinically severe presentation (hydro-
cephalus and subarachnoid parasites) had lower progesterone
and androstenedione levels, particularly females. Significant cor-
relations between estradiol and IL10 in males and between
DHEA and IL1β and androstenedione and IL17 in females were
also observed. These findings are relevant to human pathology
not only because human brain cells are able to produce progester-
one and other neurosteroids, but also because these hormones can
exert immunomodulatory effects (Tan et al. 2015) which would
favour parasite development and persistence.

Additionally, TGFβ, another Treg-produced cytokine, is aug-
mented in patients unresponsive to cysticidal treatment, suggest-
ing it could play a role in parasite persistence (Adalid-Peralta et al.
2017). Considering that both T. solium and T. crassiceps cysticerci
express a TGFβ-like receptor that probably binds TGFβ, it its feas-
ible that through this strategy the parasite may modulate its own
physiological processes, favouring growth and survival, as it has
been observed (Adalid-Peralta et al. 2017).

Schistosoma spp. infection
About 218 million people required preventive treatment for schis-
tosomiasis, and 66·5 million were treated for the infection in 2015;
over 90% of human cases are caused by S. mansoni (schistosom-
iasis, 2017).

Besides mesenteric veins, worm pairs can reside in ectopic
sites, being CNS the most severe location. Both the brain and
the spinal cord can be affected (Ross et al. 2012). Schistosoma
japonica, S. haematobium and S. mansoni have been reported as
the most frequent species infecting the brain, causing neuroschis-
tosomiasis (Ferrari and Moreira, 2011).

Schistosoma eggs can get trapped in the spinal cord, brain,
cerebellum, leptomeninges and choroid plexus, either from in
situ deposition after aberrant adult worm migration to sites

close to the CNS or by blood-mediated dissemination (Ferrari
and Moreira, 2011). Eggs are complex structures, able to secrete
immunogenic substances that elicit a strong inflammatory
response, resulting in the granuloma, fibrosis and a destructive
disease, seriously compromising the CNS integrity.

Brain infection: experimental models. Both parasite stages (adult
and egg) can establish particular host–parasite relationships. It
is well known that adult worms express tegumental receptors to
several host-derived growth factors, exploiting them for their
own development. Indeed, growth factor receptors and signalling
pathways for the TGFβ family, epidermal growth factor (EFG)
and insulin were conserved among several helminth parasites,
including Schistosoma spp. Each of these receptors and signalling
pathways controls several processes in cellular and organismic
function [revised in (Livneh et al. 1985; Rajaram et al. 1997;
Shi and Massagué, 2003)]. Their expression in Schistosoma spp.
favors the parasite development and survival into the host [thor-
oughly reviewed and discussed by Dissous (Dissous et al. 2006).
However, the relevance of such host-derived molecules in neu-
roschistosomiasis has not been demonstrated, being parasite
eggs the major causative agents of the strong neuroinflammatory
response. Nevertheless, adult worms that migrate to the CNS
could exploit host-derived growth factors to modulate their
metabolism and differentiation and survive for years in the
brain. It is important to consider that several virulence factors
and immunomodulatory molecules are released or tegument-
expressed by adult mature worms or by eggs (Wilson, 2012);
therefore, it is likely that a long permanence of worms or eggs
in host tissues, including brain, may be due to its ability to
evade the immune response, including the induction of Th2
cells (Fairfax et al. 2012); an increase in Treg levels is observed
once the parasite has established and deposited eggs, causing
the immune suppression that characterizes chronic schistosomia-
sis (Sun et al. 2012).

A wholly different scenario is the deposition of eggs in the
CNS since eggs not only can induce strong inflammatory and cel-
lular immune responses but also mechanically disrupt the spinal
cord, causing neurological dysfunction.

Schistosoma eggs are particularly interesting, being mature
structures that actively secrete proteins. Two major egg-secreted
glycoproteins, IPSE/alpha-1 and Omega, are very immunogenic
and strong inducers of IL4 production by basophils and therefore
of the characteristic Th2 response (Schramm et al. 2007; Everts
et al. 2009) that ultimately will be responsible for granuloma
formation.

Brain infection: human studies. Neurological symptoms in neu-
roschistosomiasis, due to the cellular inflammatory response to

Table 1. (Continued.)

Parasite Biological components Effect on the host–parasite
interactions

Commentary References

Favours miracidium
transformation into sporocyst

(1984), Ribeiro et al.
(2005), Taft et al. (2010),
Taman and Ribeiro (2009)

Animal models

TGFβ receptor,
epidermal growth
factor (EFG) receptor,
and insulin receptor
(in adult parasites)

Favour parasite development and
survival into the host

These receptors may induce
immunomodulatory
molecules in the tegument of
the adult parasite, which
favours immune evasion

Dissous et al. (2006), Shi
and Massagué (2003),
Wilson (2012)

Egg shell antigens
(S. japonicum)

In vivo and In vitro Treg induction Promotes immune suppression
in the host

Sun et al. (2012), Zhou et al.
(2015)
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Schistosoma eggs, range from a minimal inflammatory reaction
(with no neurological manifestations) to a severe reaction result-
ing in a space-occupying granulomatous mass and nervous tissue
necrosis. The granulomatous response is suspected to confer
protection to eggs from the host immune response, by sequester-
ing soluble egg antigens (Ferrari et al. 2008). It is well known
that an early and transient Th1 immune response is established
after egg deposition, switching to a strong and sustained Th2 spe-
cific response, characterized by high IL4, IL5, IL6, CCL3 and IL13
levels (Sousa-Pereira et al. 2006; Ferrari et al. 2008). Additionally,
high IL10 levels are observed, which may protect the host from
the detrimental inflammatory response in the brain. Immune
complexes containing schistosomal antigens have been found in
cerebral spinal fluid from patients; although the relevance of
these immune complexes in the pathogenesis of the disease is
still unknown, they could be involved in the genesis of the
immune-mediated vascular lesions and/or in the down-
modulation of granuloma formation (Rezende et al. 1993).

Factors involved in host infection. Several proteins are secreted by
the larval stage (miracidium) within the eggshell. This latter struc-
ture has also an important interaction with the host immune
response. The eggshell composition was recently elucidated by
proteome analysis of free host-attached proteins from purified
Schistosoma eggshells (Dewalick et al. 2014). Approximately 45
structural and non-structural proteins were identified, which
seem to be involved in energy metabolism, protein folding and
stress response, and protein synthesis, or to be part of the cyto-
skeleton or of the membrane and nuclear structures. Besides the
potential immunogenic properties of some eggshell proteins
[such as GST (glutathione S-transferase) and GAPDH], the mem-
brane low-density lipoprotein receptor may have an important
role in exploiting host factors, since eggs could take low-density
lipoprotein (LDL) from the host, considering that the genome
of this parasite shows no metabolic pathways for lipid synthesis
(Berriman et al. 2009; Consortium, 2009; Dewalick et al. 2011;
2014).

The Von Willebrand factor (VWF) and other host plasma pro-
teins involved in healing and blood clotting (fibrinogen and fibro-
nectin) were found attached to eggs; they seem to promote egg
binding to the endothelium, initiating and facilitating egg extrava-
sation to their final destination, mainly the intestinal wall (Long
et al. 1980; Dewalick et al. 2014). The potential role of these
attached proteins in the capacity of Schistosoma eggs to reach
the brain has not been studied. Other relevant eggshell-attached
proteins are apolipoprotein-IV and apolipoprotein E, which
could bind LDL through the LDL-receptor-like protein. The
importance of this receptor and its host ligands has not been stud-
ied, although LDL binding could help the parasite to mask anti-
gens, avoiding recognition by the immune system (Everts et al.
2009; Dewalick et al. 2011; 2014).

Biogenic amines (BAs) such as catecholamines, serotonin and
histamine have been reported to play an important role in con-
trolling parasite muscle contraction and movement (Ribeiro
et al. 2005) which ultimately would favour parasite establishment;
for example, serotonin is myoexcitatory in all flatworm species
and can be synthetized by the parasites (Hamdan and Ribeiro,
1999). Additionally, both dopamine and histamine have a func-
tion in the flatworm nervous system (Nishimura et al. 2007;
El-Shehabi and Ribeiro, 2010). Dopamine has important neuro-
muscular activities, either excitatory or inhibitory, depending on
the flatworm species. In S. mansoni, dopamine causes body wall-
muscle relaxation (Pax et al. 1984), possibly through a receptor
associated with neuromuscular structures (Taman and Ribeiro,
2009). In addition to motor effects, BAs have been shown to regu-
late metabolic activity in several flatworms (Ribeiro et al. 2005). In

addition, recent in vitro evidence indicates that serotonin and
dopamine are both involved in S. mansoni miracidia transform-
ation into sporocysts (Taft et al. 2010), suggesting a role in para-
site development.

Concluding remarks

As shown in this review, each parasite infecting the CNS has
developed unique strategies to infect its host, survive within it
and reach its niche. The evasion of the immune response stands
out among these strategies, either by disarming some specific
responses like in antibody degradation/cellular apoptosis, or by
exerting a strong immunomodulation, e.g. switching an inflam-
matory environment to an anti-inflammatory milieu, or replacing
the effective Th1 response by an ineffective Th2 one.

While several works describe general pathogenic mechanisms
in parasitic diseases, there is still little information focusing on
how parasites exploit host molecules for successfully establishing
in it. Being the CNS a tightly regulated microenvironment,
parasites have evolved and developed strategies to make use of
growth factors, host proteins, and hormones, to favour their
establishment. The specific nature of the host molecules used
depends on the intrinsic requirements of the infective parasite,
especially on whether they are intracellular or extracellular para-
sites, and on their metabolic demands. However, and despite
these differences, their shared need for host molecules could
also provide general approaches to cope with them.

A neuroscience-oriented research of CNS parasites could pro-
vide a deeper understanding on how parasites induce cognitive
and behavioural disorders in humans. These findings could facili-
tate the design of new therapeutic strategies, including novel drugs
or vaccines that may block some of these targets to inhibit parasite
establishment in the CNS, impacting parasite survival and
improving the outcome of the disease.
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