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The dynamics of a turbulent plasma not only manifests the transport of energy from
large to small scales, but also can lead to a tangling of the magnetic field that
threads through the plasma. The resulting magnetic field line wander can have a large
impact on a number of other important processes, such as the propagation of energetic
particles through the turbulent plasma. Here we explore the saturation of the turbulent
cascade, the development of stochasticity due to turbulent tangling of the magnetic
field lines and the separation of field lines through the turbulent dynamics using
nonlinear gyrokinetic simulations of weakly collisional plasma turbulence, relevant
to many turbulent space and astrophysical plasma environments. We determine the
characteristic time t2 for the saturation of the turbulent perpendicular magnetic energy
spectrum. We find that the turbulent magnetic field becomes completely stochastic at
time t. t2 for strong turbulence, and at t& t2 for weak turbulence. However, when the
nonlinearity parameter of the turbulence, a dimensionless measure of the amplitude of
the turbulence, reaches a threshold value (within the regime of weak turbulence) the
magnetic field stochasticity does not fully develop, at least within the evolution time
interval t2 < t 6 13t2. Finally, we quantify the mean square displacement of magnetic
field lines in the turbulent magnetic field with a functional form 〈(δr)2〉 = A(z/L‖)p
(L‖ is the correlation length parallel to the magnetic background field B0, z is the
distance along B0 direction), providing functional forms of the amplitude coefficient
A and power-law exponent p as a function of the nonlinearity parameter.
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1. Introduction
Turbulence in space and terrestrial laboratory plasmas remains one of the most

active research areas in plasma physics. Space and fusion plasmas are turbulent,
weakly collisional and magnetized. Plasma turbulence governs particle and energy
transport and describing such transport is a key goal of the plasma physics community.
Turbulence in space plasmas likely plays an important role in several observed
phenomena, such as solar coronal heating, solar wind heating and the acceleration of
solar particles in the heliosphere. Furthermore, the turbulence also affects how solar
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energetic particles and cosmic rays propagate through space. In terrestrial laboratories,
turbulence may reduce the confinement for plasma fusion by enhancing transport
across the confining magnetic field.

Iroshnikov (1963) and Kraichnan (1965) independently developed an isotropic
theory for incompressible magnetohydrodynamics (MHD) turbulence suggesting that
the nonlinear interactions of the large-scale Alfvén waves lead to a turbulent energy
cascade down to smaller scales. Years after, it was demonstrated that anisotropy is
an important characteristic in incompressible MHD turbulence, i.e. the anisotropic
turbulent cascade transfers energy to smaller scales in the perpendicular direction with
respect to the background magnetic field (Sridhar & Goldreich 1994; Goldreich &
Sridhar 1995; Montgomery & Matthaeus 1995; Ghosh & Goldstein 1997; Matthaeus
et al. 1998; Cho & Vishniac 2000; Maron & Goldreich 2001). The phenomenon
of turbulent cascade due to the nonlinear interactions between counterpropagating
Alfvén waves, which is the fundamental building block of plasma turbulence, has
been experimentally tested (Howes et al. 2012; Drake et al. 2013; Howes & Nielson
2013; Howes et al. 2013; Nielson, Howes & Dorland 2013).

One significant effect of the turbulence is the tangling of the magnetic field lines, or
magnetic field wander. Due to plasma turbulence, the magnetic field lines may become
stochastic and get separated from each other leading to the spreading of particles that
travel along the field lines. The magnetic field wander in turbulent plasmas impacts
the propagation of the energetic particles in astrophysical space as well as the heat
and particle transport in fusion plasmas. The problem of field line wandering and
its impacts on other physical processes is one of the unresolved problems of plasma
physics. For instance, understanding the wandering of magnetic field lines in solar
wind turbulence will enable the prediction of the scattering of the solar energetic
particles – arising from coronal mass ejections and flares that may occur on the Sun’s
surface – determining the energetic particle fluxes near the Earth, where they can
potentially damage communication satellites or harm astronauts in orbit.

Models of the propagation of the cosmic rays and the solar energetic particles
through a stochastic magnetic field were first proposed by Jokipii (1966) and Jokipii
& Parker (1968). The authors describe the transport of the energetic particles in
the context of the field line random walk (FLRW) theory using a quasilinear
statistical calculation of the motion of charged particles in a spatially random
magnetic field. Advanced models implementing nonlinear calculations of FLRW
theory were developed later to estimate the diffusion of the field line wandering
(Matthaeus et al. 1995). Recently, several models were developed to study the
separation of the magnetic field lines, implementing various models of turbulence,
including slab turbulence (Schlickeiser 1989; Shalchi & Kourakis 2007a,b; Shalchi
2010b), two-dimensional turbulence (Shalchi & Kourakis 2007a,b; Guest & Shalchi
2012), composite models including slab plus two-dimensional components (Bieber,
Wanner & Matthaeus 1996; Shalchi & Kourakis 2007a,b; Qin & Shalchi 2013) and
other three-dimensional models including MHD turbulence (Zimbardo et al. 1995;
Zimbardo, Veltri & Pommois 2000; Maron, Chandran & Blackman 2004; Zimbardo,
Pommois & Veltri 2006; Shalchi 2010a; Ragot 2011; Beresnyak 2013; Ruffolo &
Matthaeus 2013; Shalchi & Kolly 2013). In the latter works, the superdiffusive
behaviour of the magnetic field lines has been confirmed in three-dimensional MHD
simulations for scales comparable to or less than the injection scale l0, but for scales
much larger than l0 the field lines follow a diffusive law.

The magnetic field line wander may also impact the process of magnetic
reconnection. For instance, it has been shown that the rate of magnetic reconnection
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can be enhanced due to magnetic field line wandering (see e.g. Lazarian & Vishniac
1999; Lazarian, Vishniac & Cho 2004).

In fusion plasmas, it has been suggested that the destruction of the magnetic flux
surfaces in a tokamak can be caused by magnetic field wander arising due to the
turbulent fluctuations in the confining magnetic field (Rechester & Rosenbluth 1978).
Many subsequent works investigated the role of the magnetic field line wander in
enhancing heat transport in fusion plasmas (Krommes, Oberman & Kleva 1983;
Haas & Thyagaraja 1986; Laval 1993; Spatschek 2008). Advanced direct numerical
simulations of weakly collisional plasma turbulence using nonlinear gyrokinetic
simulations were used to explore the role of the wandering of the magnetic field
lines in fusion plasmas (Nevins, Wang & Candy 2011; Wang et al. 2011; Hatch
et al. 2012, 2013). For example, it is found that the wandering of the magnetic field
lines does occur in fusion plasmas, but that it does not significantly enhance the heat
transport in the plasma (Nevins et al. 2011; Wang et al. 2011). Additionally, it has
been shown that the stochasticity of the magnetic field lines in gyrokinetic turbulence
may induce the non-zonal transition – proposed as an explanation of the high-β
runaway – in CYCLONE base case plasmas once a certain threshold of electron
normalized plasma pressure is exceeded (Pueschel, Terry & Hatch 2014).

Previous studies of magnetic field wander estimated what is called the mean square
displacement, 〈(δr)2〉, to describe the spread of the stochastic magnetic field lines. It is
found that the quantity 〈(δr)2〉 is fit to a power-law function, ∝ lp

B, (lB is the distance
along the magnetic field line), however, the value of p was found to vary from a
model to another. For example, analytic modelling of anisotropic three-dimensional
turbulence (Shalchi & Kolly 2013) shows that the wandering of the magnetic field
lines is diffusive, i.e. p= 1. Non-diffusive transport (p 6= 1) of the field line wandering
has also been found in other analytical as well as numerical works (see e.g. Lazarian
& Vishniac 1999; Shalchi & Kourakis 2007a,b; Beresnyak 2013; Lazarian & Yan
2014).

In this present work, we focus on the development of magnetic field wander
using nonlinear gyrokinetic simulations of weakly collisional plasma turbulence. We
will study how small-scale turbulence (turbulent fluctuations having scales ranging
between ion and electron scales) affects the stochasticity and the separation of the
magnetic field lines. In figure 1 we sketch the magnetic power spectrum of solar
wind turbulence (Sahraoui et al. 2009; Alexandrova et al. 2012). The cascade of the
energy starts to occur near the outer scale l≈ 106 km down to the electron scale. The
gyrokinetic simulation considered in our study describes turbulence between ion and
electron scales (see red box in figure 1). Within these scales it has been shown that
the turbulent energy cascade is controlled by kinetic Alfvén wave turbulence (Howes
et al. 2006). It is worth noting that a steeper magnetic power spectrum ∼ k−7/3 below
the proton gyroscale was first obtained within electron MHD turbulence (see, e.g.
Biskamp, Schwarz & Drake 1996; Biskamp et al. 1999; Cho & Lazarian 2004). As a
consequence of applying critical balance conditions at subproton scales the anisotropy
k‖ ∼ k1/3

⊥ (k‖ and k⊥ are the parallel and perpendicular wavenumber components
with respect to the local magnetic field) was obtained in electron MHD turbulence
(Cho & Lazarian 2004, 2009). Furthermore, Cho & Vishniac (2000) argued that this
scale-dependent anisotropy can be measured only with respect to the local magnetic
field direction rather than the global mean field.

We investigate two features that characterize the wandering of the magnetic field
lines as a function of the amplitude of the turbulence: (i) the stochasticity of the
field lines and (ii) the spreading of the magnetic field lines. Developing a simple
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FIGURE 1. Schematic of the magnetic energy wavenumber spectrum in the solar wind
showing the form of the spectrum in the energy containing inertial and dissipation ranges.
Ranges for the typical Larmor radius scales for protons ρEP,p and electrons ρEP,e from
solar energetic particle events are depicted. The area of the spectrum indicated by red line
is the range of gyrokinetic (GK) turbulence scale considered in this study.

model of the spreading of magnetic field lines as a function of the amplitude of
the turbulence is a critical step in constructing a reliable predictive model for the
propagation of solar energetic particles in the heliosphere. The amplitude of the
turbulence is characterized in our study by computing the nonlinearity parameter
χ , a dimensionless measure of the ratio of the magnitude of the nonlinear to the
linear terms in the equations of motion. Alternatively, the nonlinear parameter may
be interpreted as χ ' tl/tn, the ratio of the linear wave period tl to the nonlinear time
scale tn. A unique aspect of this study is the use of nonlinear gyrokinetic simulations
of turbulence – in which the microphysics of collisionless turbulent cascade and
small-scale magnetic reconnection near the electron scales is resolved – to quantify
the separation of the stochastic magnetic field lines.

2. Simulations and results
We use the astrophysical gyrokinetics code AstroGK to study the magnetic field

line wander in gyrokinetic turbulence. The AstroGK code, which is described in detail
in Numata et al. (2010), solves the gyrokinetic equation coupled to the gyro-averaged
Maxwell equations (Frieman & Chen 1982; Howes et al. 2006). AstroGK computes
the time evolution of the perturbed gyro-averaged distribution function hs for each
species s and the fluctuating electromagnetic fields, defined by the scalar potential
φ, parallel vector potential A‖ and the parallel magnetic field perturbation δB‖. Here,
‖ refers to the parallel direction with respect to the background magnetic field
B0 = B0ẑ. The simulation domain is assumed to be a periodic box elongated along
the equilibrium magnetic field with size L‖ × L2

⊥, where L⊥ (L‖) is the size of the
simulation box along x and y (along z direction) directions perpendicular to B0, and
L⊥� L‖. We assume two plasma species, protons and electrons with a real mass ratio
mi/me = 1836.

The numerical code AstroGK has been used in early studies to investigate solar
wind turbulence (Howes et al. 2008b, 2011b). Nonlinear gyrokinetic simulations
(TenBarge & Howes 2013; TenBarge, Howes & Dorland 2013) have been found
to reproduce the scaling of the turbulence magnetic energy spectrum waves down
to the scales of the electron Larmor radius ρe, (Alexandrova et al. 2012). For our
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Simulation χ ± δχ t1/tl t2/tl tf /tl

Run 1 4.9 ± 0.8 0.064 0.27 1.1
Run 2 3.4 ± 0.6 0.10 0.21 2.2
Run 3 1.6 ± 0.2 0.15 0.29 3.6
Run 4 1.3 ± 0.2 0.3 0.40 4.7
Run 5 0.83 ± 0.06 0.28 1.3 8.2
Run 6 0.44 ± 0.05 0.28 1.4 15
Run 7 0.14 ± 0.01 0.31 2.2 29

TABLE 1. For simulation Runs 1–7, time-averaged nonlinearity parameter χ with its
standard deviation δχ . Interaction time t1, saturation time t2 and final simulation time tf

normalized to the linear kinetic Alfvén wave period tl = 1.74ω−1
A0 for the domain-scale

waves at k⊥ρi = 5.

study, we choose fixed plasma parameters for the proton-to-electron temperature
ratio Ti/Te = 1 and the proton plasma βi = 1, where βi = v2

thi
/v2

A, vthi = (2Ti/mi)
1/2

is the ion thermal speed and vA is the Alfvén speed. The spatial resolution of the
simulation domain is nx × ny × nz = 64× 64× 32, representing the number of points
along x, y and z directions, and velocity space resolution is a polar grid of 32
pitch angles by 16 energy levels. Also, we choose ε = L⊥/L‖ = 0.0163. We use an
oscillating Langevin antenna (TenBarge, Howes, Dorland & Hammett 2014) to drive
four counterpropagating wave modes at the domain perpendicular scale k⊥ρi = 5,
where k⊥ is the perpendicular wavenumber component and ρi is the proton Larmor
radius. To investigate how the tangling of the magnetic field lines is affected by the
amplitude of the turbulence we consider seven simulation runs differing only by the
amplitude of the driving. The average value of the nonlinearity parameter for each of
these runs is presented in table 1.

The specific definition used for the nonlinearity parameter in this paper is

χ = b
k⊥δB⊥(k⊥)

k‖B0
, (2.1)

where b is an order-unity dimensionless parameter, B0 is the equilibrium magnetic
field amplitude, δB⊥(k⊥) is the amplitude of fluctuations at a particular perpendicular
Fourier wavenumber, k⊥ =

√
k2

x + k2
y and k‖ is the average parallel wavenumber

associated with magnetic field fluctuations having that particular perpendicular
wavenumber. The strength of the nonlinearity in kinetic Alfvén wave turbulence
is characterized by the nonlinearity parameter χ given in (2.1) and it is estimated
in analogy to the one considered in incompressible MHD, i.e. the ratio of the
magnitude of the nonlinear to the linear terms, χ ∼ (k⊥δv⊥)/(k‖vph), where δv⊥ is
the fluctuating bulk velocity and vph is the phase speed of kinetic Alfvén waves (or
Alfvén waves in case of incompressible MHD). First, we choose a value b = 1 for
the order-unity parameter in our calculation of χ . Because the oscillating Langevin
antenna (TenBarge et al. 2014) yields a finite-time correlated driving, the power
input into the plasma varies with time, meaning that the amplitude of the turbulence,
which determines the nonlinearity parameter, varies in time. Therefore, we specify
here how to determine the nonlinearity parameter based on turbulent magnetic
field at a single point in time. To avoid any direct influence of the driving at
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k⊥ρi = 5 in our computation of the nonlinearity parameter for each run, we compute
the nonlinearity parameter using the average amplitude of the seven perpendicular
Fourier modes with k⊥ρi = 10 and k⊥ρi = 25/

√
5 to obtain a value δB⊥(k⊥) at a

mode-weighted average 〈k⊥ρi〉 ' 10.67. Here, three modes correspond to k⊥ρi = 10
and four modes correspond to k⊥ρi = 25/

√
5. We also estimate the weighted-average

value of δB⊥ in the expression (2.1) as (3δB⊥(k⊥= 10)+ 4δB⊥(k⊥= 25/
√

5))/7. It is
widely acknowledged that the turbulent cascade in magnetized plasma turbulence is
anisotropic (Zweben, Menyuk & Taylor 1979; Montgomery & Turner 1981; Shebalin,
Matthaeus & Montgomery 1983; Oughton, Priest & Matthaeus 1994; Sridhar &
Goldreich 1994; Goldreich & Sridhar 1995; Cho & Vishniac 2000; Galtier et al.
2000; Boldyrev 2006), with energy transferred to smaller perpendicular scales more
rapidly than to smaller parallel scales, leading to fluctuations with the characteristic
anisotropy k⊥ � k‖ at small scales. The estimation of the wavenumber parallel
to the local total magnetic field (as opposed to the equilibrium magnetic field) is
numerically challenging (TenBarge & Howes 2012), so we use the scaling expected
for a kinetic Alfvén wave cascade k‖∝ k1/3

⊥ , giving a value k‖(k⊥ρi= 10.67)' 1.29k‖0
with k‖0 = 2π/L‖. With these specific choices, the nonlinearity parameter for each
simulation can be computed as a function of time, χ(t). Table 1 lists the average
value of the nonlinearity parameter χ and its standard deviation δχ for Runs 1–7,
taken over the period over which each simulation is saturated, t2 < t< tf , as discussed
in § 2.1.

The characteristic linear time scale tl is estimated from the linear frequency of
a kinetic Alfvén wave at the domain scale, k⊥ρi = 5. A numerical solution of the
collisionless linear gyrokinetic dispersion relation (Howes et al. 2006) for the kinetic
Alfvén wave frequency of these domain-scale waves gives ω0 = 3.6ωA0 where ωA0 =
k‖0VA, or a linear kinetic Alfvén wave period tl = 1.74ω−1

A0 .
The turbulence is initially driven by four counterpropagating kinetic Alfvén wave

modes with (k⊥0ρi, k⊥0ρi, k‖0ρi/ε)= (5, 0,±1) and (0, 5,±1), where k⊥0= 2π/L⊥ and
ε = ρi/(2πL‖).

Coulomb collisions in the gyrokinetic simulations are included (Abel et al. 2008;
Barnes et al. 2009) to smooth out the small-scale structures that develop in velocity
space, enabling irreversibility of the plasma heating process (Howes et al. 2006). We
specify ion and electron collision frequencies νi = 0.2ωA0 and νe = 0.5ωA0, leading to
weakly collisional dynamics with νs/ω0� 1. The numerical convergence of the power
spectrum was already tested for simulation run 3 by doubling the spatial resolution
of the simulation and verifying that the saturated magnetic energy spectrum was
unchanged, and it is reported in TenBarge & Howes (2013) (see figure 1).

2.1. Development and saturation of the turbulent magnetic power spectrum
As modes driven at the scale of the simulation domain rise in amplitude, they
begin to interact nonlinearly, leading to a cascade of their energy to smaller
scales. After sufficient time has passed, the turbulent energy dissipated by kinetic
mechanisms rises to match the energy input into the turbulence by the driving,
causing the turbulent energy spectrum to reach a statistically steady state. In
figure 2, we display the one-dimensional perpendicular magnetic power spectrum,
E⊥(k⊥)=

∫
dkz

∫
dθk⊥|δB⊥(k)|2/8π, where the wavevector components are expressed

in cylindrical coordinates (k⊥, θ, kz). The spectra shown in figure 2 range from
over-strong turbulence with χ > 1 (Run 1, blue), critically balanced, strong turbulence
with χ ' 1 (Run 4, red) to weak turbulence with χ < 1 (Run 6, yellow). The E⊥(k⊥)
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FIGURE 2. The time-averaged one-dimensional perpendicular magnetic energy spectrum
E⊥(k⊥) computed for three kinetic Alfvén wave turbulence simulations: Run 1 (blue)
with χ = 4.9, Run 4 (red) with χ = 1.3 and Run 6 (yellow) with χ = 0.44. Fits to
C(k⊥ρi)

α exp(−k⊥ρe) are overplotted.

spectra plotted here are obtained through averaging over the full time interval from
the saturation of the turbulent cascade (at time t2, as defined below) until the end
of the simulation at tf . These time averaged E⊥(k⊥) spectra are fit to the function
C(k⊥ρi)

α exp(−k⊥ρe) (Alexandrova et al. 2012; TenBarge et al. 2013), where C and
α are fitting parameters and ρe = vthe/Ωe is the electron Larmor gyroradius.

We evaluate the time scale of the saturation of the turbulent magnetic energy
spectrum by following the evolution of the amplitude of the spectrum at k⊥ρi = 20.6,
a position in the middle of the dynamic range of the simulation, as a function of the
normalized time t/tl. Figure 3(a) displays the time evolution of the one-dimensional
perpendicular magnetic spectrum E⊥(k⊥ρi = 20.6) for Run 1 (χ = 4.9), Run 2
(χ = 3.4) and Run 3 (χ = 1.6), left to right. These runs correspond to a range
of turbulent amplitudes, from over-strong turbulence (above critical balance) with
χ > 1 to approximately critically balanced, strong turbulence with χ ' 1. These plots
demonstrate the existence of two time scales that characterize the evolution of the
turbulent magnetic field when driving by counterpropagating kinetic Alfvén waves
from uniform magnetic field conditions. First, the energy in Fourier modes with
k⊥ρi = 20.6 rises as a steep power law in time ∝ tb1 for times t < t1, denoted by
the first vertical blue line in figure 3. Next, the rate of increase of energy in mode
k⊥ρi = 20.6 decreases to less steep approximate power law ∝ tb2 , with b2 < b1, over
the time interval t1 < t < t2. For times t > t2, the energy in modes with k⊥ρi = 20.6
remains approximately constant, indicating that the region of the turbulent cascade
has reached a statistically steady state.

We interpret these two time scales in the following way. At times t < t1, the
energy of the modes with k⊥ρi = 20.6 is dominated by the energy input from
nonlinear interactions among lower wavenumber modes, leading to simple power-law
increase in amplitude. At t = t1, the amplitude of the modes with k⊥ρi = 20.6 has
risen to a sufficient level that these modes are able to interact nonlinearly with
counterpropagating fluctuations to transfer their energy to yet higher wavenumber
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(a)

(b)

(c)

FIGURE 3. The time evolution of (a) the perpendicular magnetic energy spectrum
E⊥(k⊥ρi= 20.6), (b) the spectral index α from the fit to the function A(k⊥ρi)

α exp(−k⊥ρe),
(c) the normalized total heating rate, Ĥ=H/Pin, the normalized rate of change of energy
of turbulent fluctuations Ŵ = Ẇ/Pin (Ẇ =−dW/dt) and the sum Ĥ+ Ŵ, where Pin is the
power input into the plasma by the Langevin antenna driving. Columns from left to right
are for Run 1 (χ = 4.9), Run 2 (χ = 3.4) and Run 3 (χ = 1.6).

modes; therefore, the rate of energy increase for the k⊥ρi = 20.6 modes diminishes
for t1 < t< t2. The second time scale t2 signifies the time when this nonlinear energy
loss to higher wavenumber modes increases sufficiently to balance the nonlinear
energy input from lower wavenumber modes, effectively marking the saturation of a
fully developed turbulent cascade.

To further illuminate the physical significance of these two time scales, we present
two more measure of the turbulent cascade as a function of time. First, in figure 3(b),
we present the time evolution of spectral index α of the one-dimensional perpendicular
magnetic spectrum when fit to the functional form C(k⊥ρi)

α exp(−k⊥ρe) with free
adjustable parameters α for the spectral exponent and C as an arbitrary amplitude.

Figure 3(c), we plot diagnostics of the global power balance in each of the
simulations. Further details of the power balance diagnostics in AstroGK are
described in the Appendix of TenBarge et al. (2013), so here we present only a
brief description. Energy conservation dictates that the rate of change total fluctuating
power (Howes et al. 2006; Schekochihin et al. 2009) in the turbulent plasma in
AstroGK, Ẇ = −dW/dt, is given by Ẇ = Pin − H, where Pin is the power input
into the plasma by the Langevin antenna driving and H is the energy lost from the
fluctuations due to collisional (and numerical) dissipation. Note that the heating H > 0
because collisional dissipation can only heat the plasma, removing energy irreversibly
from turbulent field and plasma fluctuations and leading to thermal heating of the
plasma species (which is not contained in W). In a statistically steady state, one
has a time averaged 〈Ẇ〉 ' 0, so therefore the time-averaged antenna power input
into the plasma is 〈Pin〉 ' 〈H〉> 0, meaning that, on average, all of the input power
is collisionally dissipated by the plasma. For plotting convenience, we choose to
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normalize the power balance by dividing by Pin, leading to a normalized expression
for instantaneous energy conservation, Ŵ + Ĥ, where Ŵ = Ẇ/Pin and Ĥ = H/Pin.
Energy is not conserved exactly by the AstroGK code due to a small amount of
numerical dissipation, but the energy is typically conserved within a few per cent
(TenBarge et al. 2013), as seen by the small departures of this sum from 1 in
figure 3(c). Note that although the slope of the magnetic energy spectrum (figure 3b)
has reached a steady value at t2, the normalized heating rate Ĥ (figure 3c) does
continue to increase after this time. Although the definition of t2 as the saturation
time of the turbulent cascade agrees qualitatively with the expected scaling with
turbulent amplitude, the slight increase of energy (manifesting an increasing heating
rate) after t2 suggests that the turbulence does experience a slow evolution beyond t2.
Investigating how this slow evolution alters the properties of the turbulence will be
explored in future works.

Figure 3(b), it is clear that second time scale t2 is the saturation time for the
development of the turbulent energy spectrum. This is the time required for the
turbulent energy input at large scales to be transferred nonlinearly down to sufficiently
scales that the turbulent energy is dissipated by kinetic mechanisms, irreversibly
converted into plasma heat. It is interesting to note that, when normalized to the
linear period tl of the kinetic Alfvén waves that are driven at the domain scale,
we generally find t2/tl < 1, in contrast to the typical time scale assumed for strong
turbulence that the saturation time t2 ∼ tl. The likely explanation is the dispersive
nature of kinetic Alfvén waves is that in the limit k⊥ρi� 1, the kinetic Alfvén wave
frequency scales as ω ∝ k⊥ρik‖vA, meaning that smaller-scale kinetic Alfvén waves
have increasingly short period when normalized to the parallel wavenumber. Therefore,
the full turbulent cascade develops more rapidly than the usual expectation from the
non-dispersive inertial range. This result also demonstrates that driving turbulence
simulations by counterpropagating kinetic Alfvén waves is a very efficient means of
generating a turbulent spectrum.

Looking at the third row of figure 3, we see that the point at which the normalized
rate of energy increase in the plasma due to driving Ẇ/Pin is overtaken by the rate of
heating due to dissipation H/Pin falls within the time interval t1 < t< t2. By the time
t2 is reached, the rate of heating H/Pin dominates over the rate of energy increase in
the turbulent plasma. At t > t2, eventually the time-averaged change of the turbulent
plasma energy 〈Ẇ/Pin〉→ 0, leaving H/Pin' 1, indicating that all of the input power
is collisionally dissipated, heating the plasma irreversibly.

The same qualitative behaviour of the development and saturation of the turbulent
cascade is also found for cases of weak turbulence, χ < 1, as shown in figure 4. Here,
we plot the same rows of information as in figure 3 for Run 5 (χ = 0.83) and Run 6
(χ = 0.44). Again, two time scales are observed, a first time scale t1 where the power-
law increase of the k⊥ρi = 20.6 decreases to a slower rate and the saturation time
scale t2 where spectral index of the perpendicular magnetic energy spectrum reaches
a statistically steady value and the rate of heating H/Pin dominates over the rate of
energy increase in the turbulent plasma Ẇ/Pin.

For all of the Runs 1–7, the times t1 and t2, normalized to the linear kinetic
Alfvén wave period at the domain scale (effectively the outer time scale of the
turbulent cascade), are presented in table 1. For the cases of over-strong turbulence
χ > 1, the saturation time t2 is relatively constant, with a value between one-quarter
and one-third of the domain-scale kinetic Alfvén wave period. As the turbulence
weakens in the regime χ < 1, the saturation time t2 increases monotonically as the
strength of the turbulence χ decreases, as expected theoretically (Sridhar & Goldreich
1994; Howes, TenBarge & Dorland 2011a).
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(a)

(b)

(c)

FIGURE 4. The time evolution of: (a) the perpendicular magnetic energy spectrum E⊥ at
k⊥ρi= 20, E⊥ (a,b) the spectral index α that corresponds to function C(k⊥ρi)

α exp(−k⊥ρe)

fit to E⊥(k⊥), (c) the normalized total heating rate, Ĥ = H/Pin, the normalized rate of
change of energy of turbulent fluctuations Ŵ = Ẇ/Pin (Ẇ =−dW/dt) and the sum Ĥ+ Ŵ,
where Pin is the power input into the plasma by the Langevin antenna driving. Columns
from left to right are for Run 5 (χ = 0.83) and Run 6 (χ = 0.44).

2.2. Stochasticity of magnetic field lines
Here we describe the development of the stochasticity of the magnetic field lines in
gyrokinetic turbulence as a function of the time-averaged nonlinearity parameter χ . To
study the magnetic field stochasticity, we employ Poincaré recurrence plots derived
from snapshots of the magnetic field at different chosen times in the evolution of the
turbulence simulations listed in table 1.

To construct the Poincaré plot, we begin with the magnetic field B(x) at some time
t. On the perpendicular plane at one end of the simulation domain at z= 0, we specify
a sparse pattern of points with the colour of each point creating a bullseye pattern, as
shown in figure 5. The magnetic field line passing through each point is traced through
the domain to the far end of the simulation domain at z= L‖, and a point is plotted
there, with colour matching that of the original field line position. That field line is
periodically wrapped to z = 0, and the process is continued, with a coloured point
plotted at each crossing at z= L‖. We trace through the box 20 times for each field
line, thereby plotting 20 coloured points on the plane for each field line. A fourth-
order Runge–Kutta method with adaptive step size is used to trace each field line by
integrating the ordinary differential equation dr/dl = b̂(x), where b̂(x) = B(x)/|B(x)|.
If the field line passes through the boundaries of the simulation domain in the x or y
directions, it is periodically wrapped to the opposite boundary.

The Poincaré plots for Runs 1–4 are presented in figure 6 and for Runs 5–7
in figure 7. Stochasticity of the magnetic field is qualitatively assessed by the
appearance of the Poincaré recurrence plots: a regular pattern of colours indicates
a non-stochastic field, whereas a scrambling of the different colours indicates a
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FIGURE 5. Coloured points represent the coordinates of the starting points in the z= 0
plane for tracing field lines to generate Poincaré recurrence plots.

stochastic field. In some cases, regions of the domain display a stochastic field while
other regions appear more well ordered.

From the Poincaré plots presented in figures 6 and 7, we make the following
observations. Early in the evolution at t � t2, when the turbulence is still not well
developed and little energy has cascaded to small scales to generate a broadband
turbulent spectrum, the Poincaré plots for all cases show a well-ordered pattern with
no indication of stochasticity. After the turbulent cascade has saturated, at times t> t2,
the over-strong and strong turbulence cases in Runs 1–4 with χ & 1 all show that
the magnetic field lines have become completely stochastic throughout the domain.
For the weaker turbulence cases of Runs 5–7 with χ < 1, a remnant of order persists
in the Poincaré plots even at t ∼ t2 when the turbulent cascade has saturated. At
sufficiently long times t� t2, one sees the eventual development of a fully stochastic
magnetic field throughout the domain for Run 5 with χ = 0.83 and Run 6 with
χ = 0.44. In contrast, the very weakest turbulence case with χ = 0.14 in Run 7
shows persistent regions of order, even at long times t > 10t2. Therefore, it seems
that there is indeed a minimum amplitude threshold χthresh for the development of a
completely stochastic magnetic field within the saturation time interval t2 < t < 13t2,
with order persisting for cases with nonlinear parameters χ . χthresh ∼ 0.1.

2.3. Separation of the magnetic field lines
The stochasticity is not the only feature that characterizes the magnetic field line
wander in plasma turbulence. Two adjacent magnetic field lines may also separate
from one another as we follow along one of the field lines. This magnetic field
line separation may significantly impact the propagation of energetic particles in a
turbulent plasma. Here we investigate the separation of stochastic magnetic field lines
caused by plasma turbulence as a function of the nonlinearity parameter χ using
gyrokinetic simulations (listed in table 1). We consider only Runs 1–6, excluding
Run 7 as the magnetic field lines are not fully stochastic at the saturation phase of
that simulation run.

To explore the separation of magnetic field lines, we assume an extended domain
built up from the periodic extension of the single gyrokinetic simulation domain of
size L⊥ × L⊥ × L‖. The magnetic field is initially defined by simulation over the
ranges 06 z6 L‖ and 06 x, y6 L⊥. To track the magnetic field lines in the extended
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(a)

(b)

(c)

(d)

FIGURE 6. Poincaré recurrence plots for over-strong and strong turbulence in Runs 1–4 at
the times indicated. The corresponding time-averaged nonlinearity parameters are χ = 4.9
(a), χ = 3.4 (b), χ = 1.6 (c) and χ = 1.3 (d).

spatial domain beyond these limits, we begin at a point in the z = 0 plane and
trace along the magnetic field line passing through that point (using the fourth-order
Runge–Kutta method with adaptive step size) in the +ẑ direction. When the field
line reaches the end of the single simulation domain at z= L‖, it enters an identical
domain periodically extended to z > L‖, as depicted in figure 8. If the magnetic
field line exits through the side of the domain at x, y < 0 or x, y > L⊥, it is not
periodically wrapped to the opposite side but instead extended into a periodically
continued extended domain in the same direction, as shown in figure 8. To be clear,
the vector magnetic field in each of the six rectangular black boxes in figure 8 is
identical, derived from a single time snapshot of the gyrokinetic simulation.

To investigate the separation of magnetic field lines, we initially select a large
number of field lines uniformly distributed within a circular region in (x, y) plane at
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(a)

(b)

(c)

FIGURE 7. Poincaré recurrence plots for weak turbulence in Runs 5–7 at the times
indicated. The corresponding time-averaged nonlinearity parameters are χ = 0.83 (a), χ =
0.44 (b) and χ = 0.14 (c).

FIGURE 8. Sketch describing how field lines pass through an extended domain built of
six simulation boxes, showing the tracing of several wandering magnetic field lines up to
distance z= 2L‖.

z = 0, (their uniform distribution is depicted in side projection in figure 9c). These
field lines are each followed through the extended simulation box (figure 9b), after
which their distribution appears to be well fit by a Gaussian distribution (figure 9a,
blue line) at z = 3L‖. The full width at half-maximum (FWHM) of the Gaussian
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(a) (b) (c)

FIGURE 9. An initially uniform distribution of field lines within a small circle in the plane
at z= 0 (c) wanders through the simulation domain in Run 3 (b) to generate a Gaussian
distribution at z= 3L‖ (a).

FIGURE 10. For Run 3 with χ =1.6, the binned distribution of the field lines (asterisks) at
z= 12L‖ versus the normalized separation length r/ρi, where r=√

x2 + y2. The separation
distance is divided into 11 bins. The distribution is fit to a Gaussian function with a
FWHM 〈δr〉.

function represents the mean separation 〈(δr)〉 of the field line at given distance
z= n× L‖. For example, in figure 10 we plot the distribution of the field lines (stars)
in (x, y) plane at z= 12L‖ for Run 3 (at time t/tl= 3.6), showing that the distribution
of the field lines is well fit by a Gaussian function (blue solid line). Here it is worth
mentioning that the centre of the ensemble of the field lines in the x–y plane is
changing with distance z. The centre position of the field lines at a given distance z
can be calculated as the average of all field line positions in x–y plane at distance
z. The distributions of the field lines (see, e.g. figures 9 and 10) are estimated with
respect to this moving centre. In our analysis we focus only on the spread of the
magnetic field lines.

Using this method to trace the magnetic field line separation for Runs 1–6 in table 1,
we compute directly the mean square displacement 〈(δr)2〉 as a function of z/L‖ at
different evolution times within the saturation phase of each simulation run. Note
the we do not fit the FWHM of the best fit Gaussian, but rather calculate directly
the mean square displacement 〈(δr)2〉 of the magnetic field line distribution in order
to account for any skewness in the resulting distribution that may prevent a good
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Gaussian fit. We fit the computed mean square displacement 〈(δr)2〉 by the power-law
function

〈(δr)2〉 = A(z/L‖)p, (2.2)

where we expect the amplitude factor A(χ) and the power-law exponent p(χ) both
to be a function of the nonlinearity parameter χ . Note that an exponent of p = 1
corresponds to a diffusive behaviour of the field line separation, while p> 1 indicates
a superdiffusive process and p< 1 indicates a subdiffusive process.

In figure 11, we plot the results of this analysis of the magnetic field line separation,
including the values of the fitting parameters A and p. For each simulation run,
we plot the results of 〈(δr)2〉 as a function of the distance along the equilibrium
magnetic field z/L‖ at four different representative times after the turbulent cascade
has saturated. Note that, in addition to the time-averaged nonlinearity parameter
χ given for each run in table 1, we also compute the instantaneous nonlinearity
parameter χ at each of the chosen times in figure 11.

From the results in figure 11, we find the following general properties about the
separation of magnetic fields lines as a function of the turbulence amplitudes χ .
First, the amplitude of the field line separation, parameterized by the coefficient
A, generally increases monotonically with the time-averaged nonlinearity parameter
χ . However, it does not always follow that a larger instantaneous value of the
nonlinearity parameter χ will yield a larger value of the coefficient A. This finding
suggests that the amplitude of the field line separation may indeed depend not only
on the nonlinearity parameter, but also on the history of the turbulent tangling of the
magnetic field. Therefore, to determine the functional forms of the amplitude A(χ)
and the power-law exponent p(χ) requires a statistical approach, effectively leading
us to determine averaged values of these parameters as a function of the averaged
nonlinearity parameter, A(χ) and p(χ).

Another important conclusion regards the power-law scaling exponent p of the field
line separation as a function of the nonlinearity parameter χ . Again, in general, we
find a larger exponent p for larger values of the time-averaged nonlinearity parameter
χ . For the cases of over-strong and strong turbulence in Runs 1–4 with χ > 1, the
field line separation appears to follow a superdiffusive scaling, p> 1, as a function of
z; in contrast, for the weak turbulence cases Runs 5 and 6, it follows a subdiffusive
scaling, p< 1.

To quantitatively describe the field line separation as a function of the time-averaged
nonlinearity parameter χ , we compute the mean values of the amplitude coefficient A
and the exponent p for each of the simulation Runs 1–6. We compute the mean and
standard deviation for A and p by averaging over the four values of p and A shown
in figure 11. We plot in figure 12 the average values A (a) and p (b) as a function
of the time-averaged nonlinearity parameter χ . Uncertainties in figure 12 are given by
the standard deviation of each of these averaged quantities.

Figure 12(a) clearly shows that A nonlinearly increases with increasing χ indicating
more spreading of magnetic field in strong turbulence than in weak turbulence. The
data are fit to an exponential form

A(χ)= a0 exp (b0χ), (2.3)

with best fit values a0 = 0.3 and b0 = 1.1.
Figure 12(b) displays the dependence of the mean exponent p on the time-averaged

nonlinearity parameter χ . We fit this behaviour to the functional form

p(χ)= p0 − p1 exp C1χ, (2.4)
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FIGURE 11. For Runs 1–6, plots of the mean square separation 〈δr2〉 versus distance z/L‖
at four different evolution times. The solid curves are the corresponding power-law fitting
functions, with coefficients denoted.
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(a) (b)

FIGURE 12. (a) The mean value of the amplitude coefficient A versus the time-averaged
nonlinearity parameter χ . The blue line is the corresponding power-law exponent fitting
curve A(χ)= 0.3 exp (1.1χ). (b) The average value of exponent p versus the time-averaged
nonlinearity parameter χ . The red line is the corresponding fitting curve p = 1.46 −
0.82 exp (−0.80χ). The green horizontal line corresponds to value p = 1 which is
associated with a standard diffusive process. Vertical and horizontal error bars correspond
to standard deviations.

where the best fit yields values p0 = 1.46, p1 = 0.82 and C1 =−0.80. Based on this
statistically averaged functional form, we conclude that the diffusion approximation is
a reasonable model for turbulence with a nonlinearity parameter χ = 1.± 0.15.

3. Discussion and conclusions

In this investigation, we have explored the saturation of the turbulent cascade, the
development of stochasticity due to turbulent tangling of the magnetic field lines
and the separation of field lines through the turbulent dynamics using nonlinear
gyrokinetic simulations of weakly collisional plasma turbulence, relevant to many
turbulent space and astrophysical plasma environments. We focus on the sub-ion
range of kinetic Alfvén wave turbulence, corresponding to the dissipation range of
turbulence in the solar wind, over the range 5 6 k⊥ρi 6 105, or 0.12 6 k⊥ρe 6 2.5.
The motivation for beginning this methodical investigation of magnetic field line
wander in plasma turbulence with the small-scale end of the turbulent spectrum is
that the kinetic physical mechanisms, including collisionless damping and collisionless
magnetic reconnection, are resolved properly by our gyrokinetic simulations as long
as we resolve wavenumbers k⊥ρe ∼ 2 (Howes et al. 2006; Numata et al. 2010;
TenBarge et al. 2013). Our focus is to understand the properties of magnetic field
line wander as a function of the amplitude of the turbulence, parameterized here
by the dimensionless nonlinearity parameter χ , approximately a measure of the
linear wave period to the nonlinear energy transfer time scale. We perform here a
set of seven simulations with time-averaged nonlinearity parameter χ varying from
over-strong turbulence with χ = 4.9, to critically balance, strong turbulence with
χ = 1.3 to weak turbulence with χ = 0.14.

First, we have investigated the development and saturation of the turbulent cascade,
beginning with uniform, straight magnetic field conditions driven by an antenna
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that creates counterpropagating kinetic Alfvén waves at the domain scale. Nonlinear
interactions between the counterpropagating kinetic Alfvén waves efficiently transfer
energy to small scales, generating a broadband turbulent cascade of magnetic field
and plasma bulk flow fluctuations. For all values of χ , we find the development of
the cascade is characterized by two time scales t1 and t2. At time t1, the small-scale
modes reach sufficient amplitudes to interact nonlinearly and transfer their energy to
yet smaller-scale modes. In the time interval, t1< t< t2, the normalized rate of energy
increase in the plasma due to driving Ẇ/Pin is overtaken by the rate of heating due
to dissipation H/Pin, indicating the approach to saturation. At the saturation time
t2, the spectral index of the perpendicular magnetic energy spectrum α reaches a
statistically steady value and the rate of heating H/Pin dominates over the rate of
energy increase in the turbulent plasma Ẇ/Pin, indicating that all of the input power
is collisionally dissipated, heating the plasma irreversibly.

Next, we have studied the development of stochasticity of the magnetic field
lines as a function of the time-averaged nonlinearity parameter χ using Poincaré
recurrence plots. We find that for over-strong and strong turbulence cases with χ & 1,
the magnetic field lines have become completely stochastic throughout the domain
for t > t2. For weaker turbulence cases with χ < 1, a remnant of order persists in
the Poincaré plots even at t ∼ t2 when the turbulent cascade has saturated. Over a
much longer time t � t2, the turbulent magnetic field lines become fully stochastic
if the turbulent amplitude exceeds a threshold value χthresh ∼ 0.1. For yet weaker
turbulence with χ . 0.1, ordered regions of simulation domain persist, indicating that
a fully stochastic magnetic field does not arise below this amplitude threshold over
the course of the saturation time interval t2 < t< 13t2.

Finally, we quantified the mean square displacement of magnetic field lines in the
turbulent magnetic field with a functional form 〈(δr)2〉 = A(z/L‖)p, where we expect
the amplitude factor A(χ) and the power-law exponent p(χ) both to be a function of
the nonlinearity parameter χ . Statistical determinations of these two parameters yield
the best fit results for the amplitude coefficient A(χ)= a0 exp (b0χ) for 0.146χ 6 4.9
(with a0= 0.3, and b0= 1.1) and the power-law exponent p(χ)= p0− p1 exp C1χ with
p0 = 1.46, p1 = 0.82 and C1 =−0.80, as shown in figure 12.

The analysis of magnetic field stochasticity using Poincaré plots for the magnetic
field tracing has been also used in plasma fusions (Wang et al. 2011; Pueschel et al.
2013). For example, Pueschel et al. (2013) have implemented the radial displacement
of the field lines as a function of the number of poloidal turns to estimate the field
line diffusivity. The authors found that the magnetic field lines follow a diffusive law
after a few tens of poloidal turns. Although the geometry of the background field in
our analysis is different from the one used in the work of Pueschel et al. (2013), we
also found that the field lines may obey a diffusive law in gyrokinetic turbulence if
the nonlinearity parameter is approximately 1 as shown in figure 12.

Furthermore, studies of the effect of magnetic field stochasticity on zonal flows
in plasma fusion have shown that the normalized critical value βNZT

crit of the electron
normalized plasma pressure for non-zonal transition (NZT) depends on the amplitude
of the magnetic field fluctuations (see e.g. Pueschel et al. 2014). The authors
found that a strong driving (or higher background gradients) leads to higher radial
displacement of magnetic field lines as a result of magnetic field stochasticity. As a
consequence, the NZT can occur for relatively smaller values of βNZT

crit . The increase
in the turbulence amplitude will cause more separation of the magnetic field lines in
gyrokinetic turbulence as found in our paper.

The nonlinearity parameter was also found to be a crucial for development of the
magnetic field wander in MHD turbulence. It has been demonstrated that the magnetic
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stochasticity in weak MHD turbulence (when the nonlinearity parameter is less than 1)
does not fully develop (Eyink, Lazarian & Vishniac 2011). However, as the turbulent
cascade proceeds and the nonlinearity parameter is close to unity, the spontaneous
stochasticity of magnetic field lines is induced in MHD turbulence and the rate of
magnetic reconnection is altered (Eyink 2011).

As mentioned above, to better describe the energetic particle propagation we need
a realistic model of turbulence and an accurate transport theory. If we assume that
the gyrocentres of the energetic charged particles follow magnetic field lines then
the cross-field transport of these particles is governed by the perpendicular spread of
magnetic field lines. In this limit, if the magnetic field lines are diffusive, then the
perpendicular diffusion coefficient of the energetic particles can be given as κ⊥= vDFL
(Jokipii 1966), where DFL = 〈(δr)2〉/2z is the magnetic field diffusion coefficient and
v is the velocity of the energetic particles. For instance, in our analysis we found
that the magnetic field lines are nearly diffusive in critically balance gyrokinetic
turbulence (when χ = 1), and we get DFL = 〈(δr)2〉/2z' ρ2

i A(χ = 1)/L‖, and thus the
particle cross-field transport coefficient κ⊥' vρ2

i A/2L‖. In this case, the value of DFL
is approximately 0.3 in units of L2

⊥/L‖ (with L⊥= 2πρi/5) when χ = 1 in gyrokinetic
turbulence simulation. This value is close to the one of DFL ' 0.33 estimated for
critically balance reduced MHD turbulence (Ruffolo & Matthaeus 2013; Snodin et al.
2013).

In heliospheric plasma, the diffusion of the solar energetic particles in the
interplanetary medium is affected by solar wind turbulence. During their transit
from the Sun’s atmosphere to the outer heliosphere the solar energetic particles go
through varying conditions of solar wind plasma, for example, the plasma β and the
ratio ion-to-electron temperature Ti/Te vary with heliocentric distance. The variation
of these plasma parameters can be crucial for the amount of the perpendicular
displacement of the magnetic field lines. For instance, in fusion plasmas, it has been
shown that the related stochasticity parameter varies with respect to the plasma β in
gyrokinetic turbulence in CYCLONE base case plasmas Pueschel et al. (2013).

In the future work, we will employ direct numerical simulations of plasma
turbulence to determine how the properties of the magnetic field line wander vary with
the plasma parameters, such as the plasma β and Ti/Te (as the turbulence dissipation
and magnetic reconnection strongly depend on these plasma parameters), and with the
parameters of the turbulence, such as the length scale range characterized by k⊥0ρi.
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