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Abstract We study Van den Bergh’s non-commutative symmetric algebra Snc(M) (over division rings)
via Minamoto’s theory of Fano algebras. In particular, we show that Snc(M) is coherent, and its proj
category Pnc(M) is derived equivalent to the corresponding bimodule species. This generalizes the main
theorem of [8], which in turn is a generalization of Beilinson’s derived equivalence. As corollaries, we
show that Pnc(M) is hereditary and there is a structure theorem for sheaves on Pnc(M) analogous to
that for P1.
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1. Introduction

The symmetric algebra S(V ) on a finite-dimensional vector space V is a fundamental
object in algebra that can be used to study the projective space P(V ). Replacing the
vector space V with a fairly general finite bimodule over a pair of division rings (see § 2
for precise conditions), one can form the non-commutative symmetric algebra S

nc(M)
as defined by Van den Bergh [16]. In the case when M is two-dimensional on the left
and right, we studied the non-commutative symmetric algebra via classical techniques
in non-commutative algebraic geometry in [4]. In this case, its associated proj category
P
nc(M), defined as the quotient of the category of graded right Noetherian S

nc(M)-
modules modulo the subcategory of Noetherian right-bounded modules, behaves much
like the category of coherent sheaves over P

1. Indeed, S
nc(M) is Noetherian and coherent

sheaves on P
nc(M) are direct sums of their torsion part and line bundles.

In this note, we study the non-commutative symmetric algebra for higher-dimensional
M , extending the results of [10]. The resulting algebra diverges sharply from the clas-
sical symmetric algebra and is in fact non-Noetherian. For example, when M is an
n-dimensional vector space over a field k, then S

nc(M) is the Z-indexed incarnation
of the graded algebra k〈x1, . . . , xn〉/(Σx2

i ) and its proj category behaves more like a
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projective line, which Piontkovski dubs the nth projective line P
1
n. Furthermore, it has

been observed by Minamoto [8], Piontkovski [13] and Van den Bergh that P
1
n is derived

equivalent to the finite-dimensional algebra
(
k M
0 k

)
, a result generalizing Beilinson’s clas-

sic derived equivalence for P
1. These results suggest that a more fruitful way to study

non-commutative symmetric algebras is to first prove a version of Beilinson’s derived
equivalence in this context, and then extract desirable properties of S

nc(M) as byprod-
ucts of the representation theory of (not necessarily finite-dimensional) bimodule species.
The purpose of this note is to pursue this line of thought and hence show that S

nc(M) is
coherent, P

nc(M) is hereditary and there is a Grothendieck splitting theorem. This recov-
ers many of the results of [4], in a more general context, by much simpler means. Thus,
although the new representation-theoretic results here are quite modest, the implications
for the non-commutative symmetric algebra are rather significant.

Finally, we remark that Van den Bergh’s original motivation for introducing the non-
commutative symmetric algebra was to study non-commutative ruled surfaces such as the
2-generator three-dimensional Sklyanin algebras, where the most interesting cases occur
when the corresponding bimodule species is not finite dimensional. We hope this paper
will illuminate the study of non-commutative ruled surfaces.

2. Non-commutative symmetric algebras

Let k be a field, assumed to be central throughout, and let D0 and D1 be division rings
over k. In this section, following [16], we define the non-commutative symmetric algebra
of certain D0 −D1-bimodules.

2.1. Bimodules

Let M be a D0 −D1-bimodule. The right dual of M , denoted M∗, is the D1 −D0-
bimodule HomD1(MD1 ,D1), while the left dual of M , denoted ∗M , is the D1 −
D0-bimodule HomD0(D0M,D0)

We need to iterate these duals and so introduce the following notation.

M i∗ :=

⎧⎪⎨
⎪⎩
M if i = 0,
(M i−1∗)∗ if i > 0,
∗(M i+1∗) if i < 0.

As in [6], we need to impose a condition on the bimodule to ensure it is well behaved
(see § 3 for why this is so).

Definition 2.1.1. We say that M has symmetric duals if M,M∗ are finite dimensional
on the left and right, and there is a bimodule isomorphism M ∼= M∗∗.

In this case, all the M i∗ are finite dimensional on both sides and ∗M �M∗, hence the
terminology. If M has finite left dimension m and finite right dimension n, we say M has
left-right dimension (m,n). The next proposition gives some instances of when bimodules
have symmetric duals.

Proposition 2.1. Suppose M has left-right dimension (m,n). Then M has symmetric
duals if:

https://doi.org/10.1017/S0013091518000871 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091518000871


Non-commutative symmetric algebras 877

(1) D0 and D1 are finite dimensional over k and char k does not divide either [D0 : k]
or [D1 : k];

(2) D1 is a commutative subring of D0 such that [D0 : D1] = m <∞, char k does not
divide m, and M = D0D0D1 ; or

(3) D0 and D1 are commutative, M is simple of left and right dimension (m,n), and
the characteristic of k does not divide m or n.

Proof. To prove the first result (which appeared in [5]), one shows that there are
D1 −D0-bimodule isomorphisms

HomD1(MD1 ,D1) → Homk(M,k)

and
HomD0(D0M,D0) → Homk(M,k).

The first one takes ψ : MD1 → D1 to trD1/k ◦ψ, and the second is similar.
The proofs of the second and third results follow the proof of [4, Lemma 3.2]. �

2.2. The definition of S
nc(M)

For i ∈ Z, we let Di = Dī where ī is the residue class of i modulo 2. In what follows,
all unadorned tensor products will be over Di, the context determining uniquely which i
is required.

We fix a D0 −D1-bimodule M with symmetric duals and left-right dimension (m,n)
satisfying mn ≥ 4. For each i, the following pairs of functors have canonical adjoint
structures:

(−⊗Di
M i∗,−⊗Di+1 M

i+1∗). (2.1)

In particular, adjunction gives a natural map ηi : Di →M i∗ ⊗Di+1 M
i+1∗ whose image we

denote by Qi. If {φ1, . . . , φn} is a right basis for M i∗ and {φ∗1, . . . , φ∗n} is a corresponding
dual left basis for M i+1∗, then ηi(1) =

∑
i φi ⊗ φ∗i . In particular, the latter element is

Di-central. We will employ this fact without comment in the sequel.
We briefly recall Van den Bergh’s definition of a non-commutative symmetric algebra,

in the context we need. For further details, the interested reader should refer to the
original paper [16], or look at the gentler treatment in [10, § 3]. The non-commutative
symmetric algebra of M , denoted S

nc(M), is the positive Z-indexed algebra S = ⊕
i,j∈Z

Sij

defined via generators and relations as follows.

• In degree zero we set Sii = Di.

• S is generated (over ⊕Sii) in degree one by Sii+1 = M i∗ (our convention for
multiplication is that SijSjk ⊆ Sik).

• The relations are generated in degree two by Qi ⊂M i∗ ⊗Di+1 M
i+1∗.

Remark 2.2. Since we are assuming M ∼= M∗∗, we have an isomorphism of
indexed algebras S

nc(M) ∼= S
nc(M∗∗) and, in particular, S

nc(M)ij = S
nc(M∗∗)ij =

S
nc(M)i+2,j+2. We say, consequently, that S

nc(M) is 2-periodic.
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In what follows, we will often write S instead of S
nc(M), and, where no confusion will

arise, we will write Q instead of Qi. Finally, we will let εi ∈ Sii denote the unit.
The above definition for S makes perfect sense even when mn < 4. However, in this

case, S degenerates and we no longer have Euler exact sequences as per Theorem 4.3 (see
[10] for further details).

3. Canonical complexes for Artinian rings

In this section, we look at an analogue of the Serre functor for Artinian hereditary rings
A which are not necessarily finite-dimensional algebras. The non-derived versions have
been studied briefly in [1] and [6]. The vast majority of the literature, however, assumes
finite dimensionality.

When A is a finite-dimensional hereditary k-algebra, the k-linear dual of A is an
A-bimodule which is injective on the right (and left) and contains all the simple modules.

Definition 3.0.1. Suppose DA is a right injective A-module such that (i) there is an
isomorphism EndA((DA)A) ∼= A, and (ii) DA contains all the simple modules of A. Then
we say the complex of A-bimodules ω = (DA)[−1] is a canonical complex for A, and that
A has a canonical complex.

Unfortunately, the bimodule structure of DA depends on the choice of isomorphism
A ∼= EndA((DA)A).

For applications to the non-commutative symmetric algebra S
nc(M) associated with

theD0 −D1-bimoduleM with symmetric duals, we need Ringel’s bimodule species AM =(
D0 M
0 D1

)
. The case where M is an n-dimensional vector space over a field k corresponds

to the path algebra of the n-Kronecker quiver. We let e0 and e1 denote the diagonal
idempotents of A corresponding to D0,D1. We will usually write right AM -modules N
as row vectors N = (Ne0 Ne1). Now, by [2, III Proposition 2.1], AM is an Artinian ring,
which is not usually a finite-dimensional algebra. Furthermore, the Jacobson radical of
AM is

rad AM =
(

0 M
0 0

)
� (0 D1)dimD1 M .

This is projective, so [2, I Corollary 5.2] ensures that AM is hereditary.
We introduce the following AM -bimodule DAM : as a group, DAM =

(
D0 0
M∗ D1

)
, with

left action defined by (
α m
0 β

)
·
(
a 0
δ b

)
:=

(
αa+m(δ) 0

βδ βb

)

and right action defined by(
a 0
δ b

)
·
(
α m
0 β

)
:=

(
aα 0
δα δ(m) + bβ

)

where we have used the identification M ∼= M∗∗ in our definition of the first action.
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Lemma 3.1. The bimodule DAM is the injective hull of the semisimple right
A-module (D0 0) ⊕ (0 D1) and ω = (DAM )[−1] is a canonical complex for AM .

Proof. Note that DAM is an A-bimodule so there is an induced morphism AM →
End(DAM )AM

which is easily checked to be an isomorphism. It thus suffices to show that
the direct summands (D0 0) and (M∗ D1) are injective. This is clear in the former case,
so we check the latter using Baer’s criterion. Since e0 and e1 are the diagonal idempotents
of AM , it suffices to show that if N = (N0 N1) is a submodule of the projective module
eiAM , where i = 0 or i = 1, and if φ : (N0 N1) → (M∗ D1) is AM -linear, then we can
lift φ to φ′ : eiAM → (M∗ D1). Now e1AM = (0 D1) is simple, so when i = 1 we are
done, as (N0 N1) is either 0 or all of e1AM . Suppose now that N ≤ e0AM . We are
done if N = e0AM , so we may assume that N0 = 0. Thus φ is given by a D1-linear
map N1 → D1, which we can lift to a linear map φ′ ∈M∗. This defines the required lift
(D0 M) → (M∗ D1). �

Returning to the general setup of a hereditary Artinian ring A, we immediately have
the following.

Proposition 3.2. Any canonical complex ω for A is a tilting complex inducing an
auto-equivalence of Db

fg(A). In particular, there is a complex ω−1 of bimodules, such
that

−⊗LA ω−1 = RHomA(ω,−)

is inverse to −⊗LA ω.

We now assume that A has a canonical complex ω.

Definition 3.0.2. A finitely generated A-module N is said to be regular if

N ⊗LA ωn ∈ modA

for all n ∈ Z. We let R denote the full subcategory of regular A-modules.

The following result is standard, but is invariably stated with a finite dimensionality
hypothesis, so we include the proof in order that the reader may easily check that the
hypothesis may be relaxed.

Lemma 3.3. Let A be an hereditary Artinian algebra with a canonical complex
ω = (DA)[−1].

(1) If N is a finitely generated indecomposable A-module such that N ⊗LA ω−1 is not
a module, then N is a direct summand of DA, in which case N ⊗LA ω−1 ∼= P [1] for
some projective module P .

(2) Any finitely generated indecomposable A-module which is not regular has the form
I ⊗LA ωn for some injective module I and n ∈ N or the form P ⊗LA ω−n for some
projective module P and n ∈ N.

(3) HomDb
fg(A)(R, ωn) = 0 for all n ∈ Z.
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Proof. We assume the hypotheses in part (1) and recall that, since A is hereditary,
every indecomposable in Db

fg(A) has the form L[j] for some indecomposable A-module L
and j ∈ Z. Now ω lives in cohomological degree 1 andN ⊗LA ω−1 is indecomposable too, so
the only possibility is that N ⊗LA ω−1 ∼= P [1] where P = HomA(DA,N) �= 0. Picking any
non-zero homomorphism φ : DA→ N , we see that injectivity of DA implies injectivity
of imφ. Indecomposability of N ensures that N = imφ. Now DA contains all the simple
modules, so the indecomposable injective module N must be a direct summand of DA.
We also see P is projective since A[1] ⊗LA ω ∼= DA. This completes the proof of (2.1), from
which part (2) readily follows.

Suppose now that N is a regular module, so the same is true of N ⊗LA ω−n. Part (3)
thus follows if we can show that HomA(N,A) = 0. If not, let φ : N → A be a non-zero
homomorphism. Now A is hereditary, so P := imφ is a non-zero projective summand of
N . But P ⊗LA ω = P ⊗LA (DA)[−1] has non-zero cohomology in degree 1, contradicting
the regularity of N . �

4. Preprojective and preinjective objects

In this section, we consider the bimodule species A =
(
D0 M
0 D1

)
, where M is a D0 −D1-

bimodule with symmetric duals and ω is the canonical complex DA[−1] introduced in
Lemma 3.1. As usual, we assume the left-right dimension (m,n) of M satisfies mn ≥ 4.
The main purpose of this section is to describe the indecomposable ‘preprojective’
objects (e0A) ⊗LA ω−i, (e1A) ⊗LA ω−i (i ∈ N) and indecomposable ‘preinjective’ objects
(e0A) ⊗LA ωi, (e1A) ⊗LA ωi (i ∈ N) in terms of the non-commutative symmetric algebra
S := S

nc(M). As in the classical theory, these will give analogues of the line bundles on P
1.

The preprojective objects were also essentially computed in [6], but their definition of
preprojective objects was slightly different (ours is potentially a complex), and our cal-
culation is also different, being an elegant direct computation based on the technology of
Euler exact sequences in the theory of non-commutative symmetric algebras.

We compute −⊗LA ω−1 = RHom(DA,−)[1] using the following bimodule right projec-
tive resolution of DA, which is a mild generalization of that constructed in [3].

0 → (DA)e0 ⊗M ⊗ e1A→ ((DA)e0 ⊗ e0A) ⊕ ((DA)e1 ⊗ e1A) → DA→ 0 (4.1)

where the indicated tensor products are over appropriate Di, and the maps are induced
by multiplication. This sequence equals

0 →
(
D0

M∗

)
⊗M ⊗ e1A→

((
D0

M∗

)
⊗ e0A

)
⊕

((
0
D1

)
⊗ e1A

)
→ DA→ 0.

Given a right A-module P , we wish to apply HomA(−, P ) to the above resolution. The
following lemma will assist us in this regard.

Lemma 4.1. Let N be a finite-dimensional right Di-module. Let f1, . . . , fn denote
a right basis for N , and let f∗1 , . . . , f

∗
n denote the dual left basis for N∗. For any right
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A-module P , the function

HomA(N ⊗ eiA,P ) → HomA(eiA,P ) ⊗N∗ (4.2)

defined by

ψ �→
∑
j

ψ(fj ⊗−) ⊗ f∗j

is a group isomorphism natural in both P and N . In particular, if N is a Di+1 −Di-
bimodule, (4.2) is an isomorphism of right Di+1-modules.

Proof. We describe a map (4.2) and leave it to the reader to check it is the map
indicated. We have isomorphisms

HomA(N ⊗ eiA,P )
∼=−→ HomDi

(N,HomA(eiA,P ))
∼=−→ HomA(eiA,P ) ⊗N∗

by adjointness and the Eilenberg–Watts theorem. �

Consider an A−Di-bimodule N =
(
N0
N1

)
. So Nj is a Dj −Di-bimodule and there is

a multiplication map μ : M ⊗N1 → N0. Taking the right dual of μ and using adjunc-
tion properties gives a new multiplication map N∗

0 ⊗M → N∗
1 and hence an A-module

structure on (N∗
0 N∗

1 ). We of course have

Lemma 4.2. There is an isomorphism of Di −A-bimodules N∗ ∼= (N∗
0 N∗

1 ).

To be able to invoke the theory of non-commutative symmetric algebras, we define the
right A-modules

Pi =

{
(S−i0 S−i1) for i ≥ −1,
(S∗

0,−i−2 S
∗
1,−i−2) otherwise,

with A-module multiplication induced by multiplication (or its dual) in the non-
commutative symmetric algebra.

It follows from Lemmas 4.1 and 4.2, and from (4.1), that RHomA(DA,Pi) is quasi-
isomorphic to the complex

Pie0 ⊗ (D0 M) ⊕ Pie1 ⊗ (0 D1)
φ−→ Pie1 ⊗M∗ ⊗ (D0 M). (4.3)

In order to explicitly compute RHomA(DA,Pi) (in Corollary 4.6), we will need the Euler
exact sequence, which we recall from [10, Theorem 3.4 and Corollary 3.5].

Theorem 4.3. For i ∈ Z, multiplication in S induces an exact sequence of right
S-modules

0 → Qi−2 ⊗ εiS → Si−2,i−1 ⊗ εi−1S → εi−2S → εi−2S/εi−2S≥i−1 → 0.

Furthermore, for all i ≤ j, the canonical complex

0 → Sij ⊗Qj → Si,j+1 ⊗M j+1∗ → Si,j+2 → 0

is exact.
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Proposition 4.4. If i ≥ −1, then the map φ from (4.3) is injective and its cokernel is
Pi+2.

Proof. We first check that φ0 = φ⊗A Ae0 is injective with cokernel Pi+2e0. It suf-
fices to prove that the adjoint of multiplication, S−i0 → S−i1 ⊗M∗, is injective and has
cokernel S−i−2,0. This follows from Theorem 4.3, which gives the exactness of

0 → S−i0 ⊗Q→ S−i1 ⊗M∗ → S−i2 → 0.

We now examine φ1 = φ⊗A Ae1. By definition of (4.3), the kernel of multiplication
S−i1 ⊗M∗ ⊗M → S−i3 contains imφ1.

In addition, by Theorem 4.3, we have short exact sequences

0 → S−i0 ⊗Q⊗M → S−i1 ⊗M∗ ⊗M → S−i2 ⊗M → 0 (4.4)

and
0 → S−i1 ⊗Q→ S−i2 ⊗M → S−i3 → 0. (4.5)

The sequence (4.4) gives an isomorphism

S−i1 ⊗M∗ ⊗M/S−i0 ⊗Q⊗M ∼= S−i2 ⊗M.

Since the kernel of multiplication

S−i2 ⊗M → S−i3 ∼= S−i−2,1

is S−i1 ⊗Q by (4.5), φ1 is injective with cokernel S−i−2,1 = Pi+2e1. Note that we have
used the 2-periodicity of S above (see Remark 2.2).

Thus, we conclude that the cokernel has the form (S−i−2,0 S−i−2,1), and it is
straightforward to show that the module structure on the cokernel agrees with Pi+2. �

Proposition 4.5. For i ≤ −4, the map φ in (4.3) is injective and its cokernel is Pi+2.

Proof. In this case, our map φ is

S
∗
0,−i−2 ⊗ (D0 M) ⊕ S

∗
1,−i−2 ⊗ (0 D1)

φ−→ S
∗
1,−i−2 ⊗M∗ ⊗ (D0 M).

We first establish that φ⊗A Ae0 is injective with cokernel isomorphic to Pi+2e0. By
Theorem 4.3, the sequence induced by multiplication

0 → Q⊗ S2,−i−2 →M ⊗ S1,−i−2
π−→ S0,−i−2 → 0

is exact. By naturality of the isomorphism in Lemma 4.1, φ⊗A Ae0 = π∗, which is
injective with cokernel S

∗
2,−i−2

∼= S
∗
0,−i−4 = Pi+2e0.

Now we analyse φ⊗A Ae1. Consider the commutative diagram

M∗ ⊗ Q ⊗ S2,−i−2
ν1−−−−−→ M∗ ⊗ M ⊗ S1,−i−2

φa−−−−−→ M∗ ⊗ S0,−i−2

ψ

⏐⏐�∼=
⏐⏐�φb

Q ⊗ S3,−i−2
ν2−−−−−→ M∗ ⊗ S2,−i−2 −−−−−→ S1,−i−2

(4.6)
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whose rows are induced by multiplication and whose verticals are canonical. By
Theorem 4.3 again, the rows are short exact sequences (with zeros at the end omitted).

This time, φ⊗A Ae1 = (φ∗a φ∗b). Dualizing the above commutative diagram and using
the fact that ψ is an isomorphism shows that φ⊗A Ae1 is injective with cokernel
isomorphic to (Q⊗ S3,−i−2)∗ ∼= S

∗
3,−i−2

∼= S
∗
1,−i−4 = Pi+2e1.

To complete the proof, we must show that cokerφ is isomorphic to Pi+2 as A-modules.
This amounts to showing that the following diagram is commutative

S
∗
1,−i−2 ⊗M∗ ⊗M

coker(φ⊗AAe0)⊗M−−−−−−−−−−−−→ S
∗
2,−i−2 ⊗M∥∥∥ ⏐⏐�

S
∗
1,−i−2 ⊗M∗ ⊗M

coker(φ⊗AAe1)−−−−−−−−−−→ S
∗
3,−i−2

However, in the notation of diagram (4.6), we see that coker(φ⊗A Ae0) ⊗M = ν∗1 while
coker(φ⊗A Ae1) is given by ν∗2 (ψ∗)−1ν∗1 , so we are done. �

We define a sequence Li in the bounded derived category of right A-modules by

Li =

{
Pi if i ≥ −1,
Pi[−1] if i < −1.

Corollary 4.6. In Db
fg(A), we have an isomorphism Li ⊗LA ω−1 ∼= Li+2 for all i ∈ Z.

Proof. Propositions 4.4 and 4.5 cover all cases except i = −2,−3, when we have

Li+2 ⊗LA ω = e−i−2A⊗LA DA[−1] = e−i−2DA[−1] = Pi[−1] = Li. �

5. Beilinson equivalence and consequences

In this section, we establish the main results of this paper, a version of Beilinson’s
derived equivalence, coherence of the non-commutative symmetric algebra and a version
of Grothendieck’s splitting theorem.

We will invoke (a mild generalization of) Polishchuk’s theorem [14, Proposition 2.3,
Theorem 2.4] below. Let C be an abelian category and {Li}i∈Z a sequence of objects
in C such that Di := EndLi is a right Noetherian ring and HomC(Li,M) is a finitely
generated Di-module for every M ∈ C. We say that {Li} is ample if

• for every surjection f : M → N , the map HomC(Li, f) is surjective for i� 0; and

• for every M ∈ C,m ∈ Z, there exists a surjection of the form

⊕sj=1Lij −→M

for some ij < m.

We also recall (from [14]) that if E is a coherent Z-indexed algebra, then cohproj E
is defined to be the full subcategory of graded right E-modules consisting of coherent
modules modulo the full subcategory consisting of coherent right-bounded modules.

https://doi.org/10.1017/S0013091518000871 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091518000871


884 D. Chan and A. Nyman

Theorem 5.1. Let {Li}i∈Z be an ample sequence of objects in C. Then the Z-indexed
algebra

E = ⊕i,j HomC(L−j , L−i)

is coherent and C ≡ cohproj E.

Remark. The original statement in [14] has more restrictive hypotheses, namely,
Hom-finiteness. However, Polishchuk in [14, Remark 2 to Theorem 2.4] conceded that
a generalization like the one above should hold, and indeed one readily verifies that it
holds with the same proof.

We need to invoke Minamoto’s theory of Fano algebras [9]. To this end, we consider
an Artinian ring A of finite global dimension and let σ ∈ Db

fg(A) be a two-sided tilting
complex. Minamoto defines the following full subcategories of Db

fg(A).

Dσ,≥0 = {M ∈ Db
fg(A)|M ⊗LA σn ∈ D≥0(A) for all n� 0},

Dσ,≤0 = {M ∈ Db
fg(A)|M ⊗LA σn ∈ D≤0(A) for all n� 0}.

Theorem 5.2. Suppose that σn is a pure A-module for all n� 0 and that Hi(σ) = 0
for i > 0. If A is hereditary, then the pair (Dσ,≤0,Dσ,≥0) defines a t-structure on Db

fg(A).
Its heart H contains the objects {σn}, and the sequence {σn} is ample in H. Furthermore,
Db(H) is triangle equivalent to Db

fg(A) and the global dimension of H is at most one.

Proof. This is merely a combination of several of the main results of [9, § 3]. The
statements there include an additional assumption that A is a finite-dimensional algebra
over some field. However, this hypothesis is only used to ensure that the Hom-finiteness
hypotheses in Polishchuk’s theorem above hold. As we have seen, this is superfluous.

In detail, [9, Theorem 3.15] ensures that (Dσ,≤0,Dσ,≥0) defines a t-structure
on Db

fg(A). By the definition and purity of σn, σn ∈ H. Ampleness follows from
[9, Lemma 3.5], while the triangle equivalence is [9, Theorem 3.7(1)]. Finally, the bound
on the global dimension is given by [9, Corollary 3.13]. �

We now apply the theory above to non-commutative symmetric algebras. Let A =(
D0 M
0 D1

)
as in § 3, where M is a bimodule with symmetric duals, whose left-right dimen-

sion (m,n) satisfiesmn ≥ 4. We saw that A is Artinian and hereditary. Let {Li ∈ Db
fg(A)}

be the sequence defined in the paragraph preceding Corollary 4.6. Let S = S
nc(M).

Lemma 5.3. Consider the Z-indexed algebra

E := ⊕i,j HomDb
fg(A)(L−j ,L−i).

There is a natural isomorphism S ∼= E.

https://doi.org/10.1017/S0013091518000871 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091518000871


Non-commutative symmetric algebras 885

Proof. It suffices to show that we have compatible isomorphisms of Z≤l-indexed
algebras

S
≤l :=

⊕
i,j≤l

Sij
∼=

⊕
i,j≤l

HomDb
fg(A)(L−j ,L−i) =: E

≤l

for all l. Note first that ⊕
i≤1

L−i =
( ⊕
j≥−1

S−j0
⊕
j≥−1

S−j1

)

is naturally a S
≤1 −A-bimodule, so there is a natural algebra morphism

S
≤1 −→

⊕
i,j≤1

HomDb
fg(A)(L−j ,L−i),

which we claim is an isomorphism. Since this morphism sends x ∈ Sij to left multiplication
by x, in order to prove the claim we must show that every element of HomA(P−j , P−i) is
induced by left multiplication by a unique element of Sij . We first show that every element
φ ∈ HomA(P−j , P−i) extends uniquely to an element φ̃ ∈ HomS((εjS)≥0, εiS). To do so,
we construct φn : Sjn → Sin inductively, the case n = 0, 1 being the components of φ.
Consider the commutative diagram below, whose rows are exact by Theorem 4.3.

0 −−−−→ Sjn ⊗Qn −−−−→ Sj,n+1 ⊗Mn+1∗ −−−−→ Sj,n+2 −−−−→ 0

φn

⏐⏐� φn+1⊗1

⏐⏐� φn+2

⏐⏐�
0 −−−−→ Sin ⊗Qn −−−−→ Si,n+1 ⊗Mn+1∗ −−−−→ Si,n+2 −−−−→ 0

Commutativity of the right-hand square defines φn+2 given φn, φn+1; furthermore, by
construction, the resulting morphism φ̃ is compatible with right multiplication by S.

Consider now the induced morphism

Ψ: Sij � HomS(εjS, εiS) → HomS((εjS)≥0, εiS).

We know from [10, Theorem 7.1 and Lemma 6.5] that Extp
S
(εjS/(εjS)≥0, εiS) = 0 for

p = 0, 1. The long exact sequence then shows that Ψ is an isomorphism and the claim
follows.

As noted in Remark 2.2, the Z-indexed algebra S is 2-periodic, while Corollary 4.6
ensures that E is also 2-periodic, so by induction S

≤l ∼= E
≤l for all l. �

Theorem 5.4. Consider a D0 −D1-bimodule M with symmetric duals, whose
left-right dimension (m,n) satisfies mn ≥ 4. Let S = S

nc(M) be the corresponding
non-commutative symmetric algebra.

(1) The Z-indexed algebra S is coherent.

(2) There is a triangle equivalence Db
fg(cohproj S) ∼= Db

fg(A) where the projective εiS
corresponds to Li.

(3) The category cohproj S is hereditary.
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Proof. Note that A ∼= L−1 ⊕ L0, so Corollary 4.6 shows that ω−i = L2i−1 ⊕ L2i. For
i ≥ 0, this is always a pure module, so we may apply Theorem 5.2 to obtain an abelian
subcategory H of Db

fg(A), such that (i) {ω−i} is ample in H, (ii) Db(H) ∼= Db
fg(A) and

(iii) H has global dimension ≤ 1. The definition of ampleness immediately implies that
{Li} is also an ample sequence in H, so Polishchuk’s theorem 5.1, together with Lemma
5.3, yields parts (1) and (2). Part (3) now follows immediately from Theorem 5.2. �

The theory of coherent sheaves on P := cohproj S can now easily be broached by examin-
ing the heart H arising in the proof of Theorem 5.4. Note that H contains the subcategory
R of regular modules defined in § 3. Our point of view is that the corresponding subcate-
gory T of cohproj S comprises the torsion sheaves on P. Of course, the torsion-free sheaves
correspond to the additive subcategory F generated by εiS. The next result generalizes
Grothendieck’s splitting theorem and clarifies in what sense T is like the subcategory of
torsion coherent sheaves on P

1.

Corollary 5.5. With the above notation, the following hold.

(1) The indecomposable objects of cohproj S are εiS and the indecomposable objects of
T.

(2) (T,F) is a torsion pair in cohproj S, i.e.

T = ⊥F := {N ∈ cohproj S|HomP(N ,F) = 0},
F = T⊥ := {N ∈ cohproj S|HomP(T,N ) = 0}.

(3) (Grothendieck splitting) In particular, F is closed under extensions.

(4) Every object in cohproj S is a direct sum of εiS and its torsion subsheaf, that is, the
maximal subobject in T.

(5) Given an indecomposable N ∈ cohproj S, N ∈ T if and only if the Hilbert function

hN : i �→ dimDi
HomP(ε−iS,N ) − dimDi

Ext1P(ε−iS,N )

is non-negative.

Proof. To prove parts (1) and (2), it suffices to prove the analogous results about
H. Part (1) follows from Lemma 3.3 (1),(2). This, together with Lemma 3.3(3), gives
part (2). Part (4.2) follows from (4.1) and the left exactness of Hom. Part (4) is now
a standard result in torsion theory. Part (5) follows from (4.1) and the classical Serre
duality Theorem 5.6 below. �

We remark here that wild behaviour means that T is usually not closed under
subobjects and the Hilbert functions of torsion sheaves are usually exponential.

Theorem 5.6. For M ∈ cohproj S and p = 0, 1, there is a natural isomorphism

Ext1−p
P

(εiS,M) ∼= ∗ Extp
P
(M, εi+2S).
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Proof. The proofs in the cases p = 0 and p = 1 are similar. In each case, one first
notes that when M = εjS, there exists an isomorphism that is natural with respect to
morphisms between objects of the form εlS, by [10, Corollary 7.5]. One then proves the
result for arbitrary M by using the fact that cohproj S is hereditary and M has a finite
presentation. �

Acknowledgements. We thank the referee for correcting a missing hypothesis in
Theorem 5.2.
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