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The discrete-time G/GI/∞ queue model is explored. Jobs arrive to an infinite-server
queuing system following an arbitrary input process X; job sizes are general inde-
pendent and identically distributed random variables. The system’s output process
Y (of job departures) and queue process N (tracking the number of jobs present
in the system) are analyzed. Various statistics of the stochastic maps X �→ Y and
X �→ N are explicitly obtained, including means, variances, autocovariances, cross-
covariances, and multidimensional probability generating functions. In the case of
stationary inputs, we further compute the spectral densities of the stochastic maps,
characterize the fixed points (in the L2 sense) of the input–output map, precisely deter-
mine when the output and queue processes display either short-ranged or long-ranged
temporal dependencies, and prove a decomposition result regarding the intrinsic L2

structure of general stationary G/GI/∞ systems.

1. INTRODUCTION

Infinite-server queuing systems have attracted considerable interest in the scientific
literature, the quintessential example being the M/GI/∞ model. In this fundamental
model, jobs arrive, in a Markovian fashion, to a service system with an infinite service
workforce (i.e., an infinite number of servers). Each job, upon arrival, is attended by
a server, admits service, and then leaves the system. The sizes of incoming jobs are
independent and identically distributed (IID) random variables, drawn from a general
distribution on the positive half-line.
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The M/GI/∞ model can be considered either in discrete-time or continuous-time
settings. In the discrete-time setting, job arrivals follow an IID sequence of Poisson-
distributed random variables, and job sizes are integer-valued. In the continuous-time
setting, job arrivals follow a Poisson process and job sizes are positive valued.

The origins of the continuous-time M/GI/∞ model come from physics; specifi-
cally, from the analysis of data recorded by Geiger–Müller counters. Particles “hit” a
Geiger–Müller counter following a standard Poisson process. A particle, after hitting
the counter, blocks it for a random duration of time. The blocking durations “carried
in” by the hitting particles are IID random variables. The counter records particles
hitting it only when it is unblocked. These types of Geiger–Müller systems were
referred to as “Type II counters” [22]. The first studies of such counters, conducted
in the 1930s and 1940s, considered deterministic blockings [8,12,18]. Subsequent
studies, conducted in the 1950s, considered random blockings [10,16,23].

The pioneering works mentioned earlier focused on the analysis of the sequence
of “recording epochs,” rather than on the analysis of the system’s “queue process”—
the fluctuating number of particles present in the system. The latter was investigated in
[5,6], in the context of a mathematical model for either a textile yarn, an immigration-
death process, or an infinite-server queuing system.

One particularly important feature of the M/GI/∞ model is that its queue process
can display both short-ranged and long-ranged temporal dependencies [4]: The queue
process is short-range dependent (SRD) if the job sizes are of finite variance and is
long-range dependent (LRD) if the job sizes are of infinite variance. This important
feature, as well as the analytical tractability of the M/GI/∞ model, led researchers to
use the M/GI/∞ queue process as an input-process model in the modeling of networks
with LRD inflows [9,13–15]. Moreover, this modeling approach was supported by the
development of efficient algorithms for the simulation of M/GI/∞ queue processes
displaying LRD [20,21].

Recently, generalizations of the “classic” M/GI/∞ model were proposed and
investigated. In [2], a discrete-time model considering stationary ergodic inflows and
phase-type distributed job sizes was studied, using stochastic recursive equations.
In [7], a continuous-time model considering Poisson point process inflows (with infi-
nite arrival rates) was studied, focusing on issues such as heavy-tailed stationary
distributions, LRD, and “reverse engineering”.

This research is devoted to the exploration of the discrete-time G/GI/∞ model;
namely we consider the case of arbitrary inflows and general IID service times and
analyze the system’s departure process and queue process. Informally, if X denotes
the input process of job arrivals, Y denotes the output process of job departures, and
N denotes the system’s queue process (counting the number of job present in the
system), then the following stochastic maps are investigated:

X �→ Y and X �→ N .

Closed-form formulas for various statistics of these stochastic maps are derived
explicitly, including means, variances, autocovariances, cross-covariances, multidi-
mensional probability generating functions, and, in the case of stationary inputs,
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spectral densities. Moreover, in the case of stationary inputs, we characterize the
fixed points (in the L2 sense) of the stochastic map X �→ Y , precisely determine when
SRD/LRD is displayed by the output and queue processes, and prove an L2 decomposi-
tion result regarding the intrinsic L2 structure of general stationary G/GI/∞ systems.
An application of this research to the analysis of “source-medium-sink flows” appeared
recently [25].

The sequel is organized as follows: The discrete-time G/GI/∞ model is formally
defined in Section 2; analysis of systems with general input processes is conducted in
Section 3; L2 analysis of systems with general stationary input processes is conducted
in Section 4; and the case of stationary Cox-type input processes is treated in Section 5.

Notation: Throughout the article, Z := {0, ±1, ±2, . . .} denotes the integers, Z+ :=
{0, 1, 2, . . .} denotes the nonnegative integers, and, N := {1, 2, . . .} denotes the positive
integers. Also, I{S} denotes the indicator function of the set S and δ(t) := I{t = 0}.

2. MODEL SETTING

Time is considered discrete t ∈ Z, and three Z+-valued random processes are
defined:

1. The input process X = (X(t))t∈Z, where X(t) denotes the number of jobs
arriving to the system at time t.

2. The output process Y = (Y(t))t∈Z, where Y(t) denotes the number of jobs
departing the system at time t.

3. The queue process N = (N(t))t∈Z, where N(t) denotes the number of jobs
present in the system at time t.

The service time required by the kth job arriving at time t is denoted ξ(t; k),
k = 1, 2, . . . , X(t) (provided that X(t) ≥ 1). The service times are N-valued random
variables.

The output process and queue process admit the following “integral
representations”:

Y(t) =
∑
s≤t

X(s)∑
k=1

I {ξ(s; k) = t − s} (1)

and

N(t) =
∑
s≤t

X(s)∑
k=1

I {ξ(s; k) > t − s} (2)

(using the convention that X(s) = 0 implies that the sum
∑X(s)

k=1 is empty).
Equations (1) and (2) define the stochastic maps X �→ Y and X �→ N , which trans-

form the input process X into respectively the output process Y and the queue process
N . The inherent randomness of these maps stems from the nonlinear “interaction”
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between the input process X and the jobs’ service times ξ(t; k). Our aim, in the sequel,
is to explore the statistical properties of these stochastic maps, under the following
model assumptions:

1. Input: The input process X is an arbitrary random sequence.

2. Service: The service times ξ(t; k) are IID random variables, independent of
the input process X .

Henceforth, let ξ denote the duration of a generic service time, and set

g(n) := P(ξ = n) , g(n) := P(ξ 	= n) ,

G(x) := P(ξ ≤ x) , G(x) := P(ξ > x)
(3)

(n ∈ N and x ≥ 0).

3. ANALYSIS

In this section we study the statistical properties of the stochastic maps X �→ Y and
X �→ N , under the general model assumptions postulated earlier. The proofs of the
results stated below are given in Appendix A.

• Means. The means of the output process Y and the queue process N are given,
respectively, by

E[Y(t)] =
∑
s≤t

g(t − s)E[X(s)] (4)

and

E[N(t)] =
∑
s≤t

G(t − s) E[X(s)]. (5)

• Variances. The variances of the output process Y and the queue process N
are given, respectively, by

Var[Y(t)] =
∑
s≤t

g(t − s)g(t − s)E[X(s)]

+
∑
s1≤t

∑
s2≤t

g(t − s1)g(t − s2) Cov[X(s1), X(s2)] (6)

and

Var[N(t)] =
∑
s≤t

G(t − s)G(t − s)E[X(s)]

+
∑
s1≤t

∑
s2≤t

G(t−s1)G(t−s2) Cov[X(s1), X(s2)]. (7)
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• Autocovariances. The autocovariance functions of the output process Y and
the queue process N are given, respectively, by (t1 < t2)

Cov[Y(t1), Y(t2)] = −
∑
s≤t1

g(t1 − s)g(t2 − s)E[X(s)]

+
∑
s1≤t1

∑
s2≤t2

g(t1−s1)g(t2 − s2) Cov[X(s1), X(s2)]

(8)

and

Cov[N(t1), N(t2)] =
∑
s≤t1

G(t1 − s)G(t2 − s)E[X(s)]

+
∑
s1≤t1

∑
s2≤t2

G(t1−s1)G(t2 − s2) Cov[X(s1), X(s2)] .

(9)

• Cross-covariances. The cross-covariance between the output process Y and
the queue process N is given by

Cov[Y(t1), N(t2)] = −
∑
s≤t1

g(t1 − s)G(t2 − s)E[X(s)]

+
∑
s1≤t1

∑
s2≤t2

g(t1−s1)G(t2 − s2) Cov[X(s1), X(s2)]

(10)

for t1 ≤ t2 and by

Cov[N(t1), Y(t2)] =
∑
s≤t1

G(t1 − s)g(t2 − s)E[X(s)]

+
∑
s1≤t1

∑
s2≤t2

G(t1−s1)g(t2 − s2) Cov[X(s1), X(s2)].

(11)

for t1 < t2.

• Probability Generating Functions. The PGFs of the output process Y and
the queue process N are given, respectively, by (|θ | ≤ 1)

E
[
θY(t)

] = E

[ ∞∏
n=1

(
g(n) + θg(n)

)X(t−n)

]
(12)
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and

E
[
θN(t)

]=E

[ ∞∏
n=0

(
G(n) + θG(n)

)X(t−n)
]

. (13)

These results are in fact one-dimensional “projections” of the following
multidimensional results:

• Multidimensional PGFs. Let {θ(t)}t∈Z be an arbitrary sequence of complex
numbers taking values in the unit disk (|θ(t)| ≤ 1). The multidimensional
PGFs of the output process Y and the queue process N are given,
respectively, by

E

[∏
t∈Z

θ(t)Y(t)

]
= E

[∏
t∈Z

α(t)X(t)

]
, (14)

where α(t) = E[θ(t + ξ)], and

E

[∏
t∈Z

θ(t)N(t)

]
= E

[∏
t∈Z

β(t)X(t)

]
, (15)

where β(t) = E[θ(t)θ(t + 1) · · · θ(t + ξ − 1)].

4. STATIONARY INPUTS: L2 ANALYSIS

In this section we consider the case where the input process X is a stationary random
sequence (in the wide sense) and conduct an L2 analysis of the stochastic maps X �→ Y
and X �→ N . Henceforth, by “stationary” we mean “stationary in the wide sense.”

4.1. Preliminaries

Given a stationary random sequence Z = (Z(t))t∈Z, we denote by μZ its mean, by
RZ(t) its autocovariance function (t ∈ Z), and by SZ(ω) its spectral density (−π ≤
ω < π ):

SZ(ω) =
∑
t∈Z

RZ(t) exp{itω} (16)

(−π ≤ ω < π ). The autocovariance function is retrievable from the spectral den-
sity via

RZ(t) = 1

2π

∫ π

−π

exp{−itω}SZ(ω) dω (17)

(t ∈ Z).
Two stationary random sequences are said to be equal in L2 if their means and

autocovariance functions (spectral densities) coincide. For a detailed account of the
L2 theory of stationary random sequences, the readers are referred to [19, Chap. VI].
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A stationary random sequence Z = (Z(t))t∈Z is said to be short-range dependent
(SRD) if its autocovariance function is summable—in which case,

SZ(0) =
∑
t∈Z

RZ(t). (18)

Conversely, Z is said to be long-range dependent (LRD) if its autocovariance function
is nonsummable, in which case its spectral density diverges at the origin. A “finer
resolution” of the LRD case is provided by the following result [4] (0 < ν < 1).

The autocovariance function RZ(t) is regularly varying1 at infinity with exponent
−ν if and only if the spectral density SZ(ω) is regularly varying at the origin with
exponent −(1 − ν), in which case,

tRZ(t) ∼
t→∞ cνSZ

(
1

t

)
, (19)

where cν = 
(ν) cos(πν/2)/π .
For a comprehensive exposition of both the theory and applications of LRD, the

readers are referred to [17,24].

4.2. The Base Case

Let us begin with a special case henceforth referred to as the ‘base case’: the input
X being an uncorrelated stationary random sequence whose mean and variance are
equal; namely, we consider stationary inputs satisfying

RX(t) = μXδ(t) ⇔ SX(ω) = μX (20)

(t ∈ Z ; −π ≤ ω < π ).
Note that the M/GI/∞ model—in which the input process X is a sequence of

Poisson-distributed IID random variables—resides within the realm of the base case.
The results regarding the base case are as follows:

• The output process. The output process Y is stationary with mean

μY = μX (21)

and correlation structure

RY (t) = μXδ(t) ⇔ SY (ω) = μX (22)

(t ∈ Z ; −π ≤ ω < π ).

https://doi.org/10.1017/S0269964808000338 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964808000338


“S0269964808000338jra” — 2008/9/17 — 9:44 — page 564 — #8

�

�

�

�

564 I. Eliazar

• The queue process. The queue process N is stationary with mean

μN = μXE[ξ ] , (23)

autocovariance

RN (t) = μX

∞∑
k=|t|

G(k) = μX E
[
(ξ − |t|)+

]
(24)

(t ∈ Z), and spectral density

SN (ω) = μX
1 − E[cos(ωξ)]

1 − cos(ω)
(25)

(−π ≤ ω < π ).

• SRD/LRD. The queue process N is SRD if and only if the service times are
of finite variance, in which case

SN (0) = μXE
[
ξ 2

]
. (26)

In the LRD case, the autocovariance RN (t) is regularly varying at infinity with
exponent −ν if and only if the service times’ probability tail G(x) is regularly
varying at infinity with exponent −(1 + ν), in which case,

ν · RN (t) ∼
t→∞ μXtG(t) (27)

(the exponent ν being in the range 0 < ν < 1).
The proofs of (21)–(25) are given in Appendix B. Equation (26) fol-

lows straightforwardly from (25). Equation (27) follows from (24) due to the
“monotone density theorem” of the theory of Regular Variation (see [1, Sect.
1.7.3]).

Equations (21) and (22) imply that the output process Y equals, in L2,
the input process X . In fact, this property characterizes the base case.

• Characterization. The base case characterizes the fixed points of the stoch-
astic map X �→ Y (in the L2 sense); namely the output process Y equals, in
L2, the input process X if and only if (20) is satisfied.

The proof of this assertion is given in Appendix B.

4.3. The General Case

Having analyzed the base case in the previous subsection, we now turn to analyze the
general case, in which the input X is a general stationary process.

The results regarding the general case are as follows:
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• The output process. The output process Y decomposes into the sum of two
uncorrelated stationary processes:

Y = YBase + YFluc. (28)

YBase is the base case output process. YFluc is a zero-mean stationary process
with autocovariance

RYFluc(t) =
∞∑

k=1

∞∑
l=1

g(k)g(l)
(

RX − μXδ
)

(k − l + |t|) (29)

(t ∈ Z) and spectral density

SYFluc(ω) = ∣∣E[
exp{iωξ}]∣∣2 (SX(ω) − μX

)
(30)

(−π ≤ ω < π ).

• The queue process. The queue process N decomposes into the sum of two
uncorrelated stationary processes:

N = NBase + NFluc. (31)

NBase is the base case queue process. NFluc is a zero-mean stationary process
with autocovariance

RNFluc(t) =
∞∑

k=1

∞∑
l=1

G(k)G(l)
(

RX − μXδ
)

(k − l + |t|) (32)

(t ∈ Z) and spectral density

SNFluc(ω) =
∣∣∣∣∣1 − E

[
exp{iωξ}]

1 − exp {iω}

∣∣∣∣∣
2 (

SX(ω) − μX

)
(33)

(−π ≤ ω < π ).

• SRD/LRD. The input process X and the fluctuation processes YFluc and NFluc

are SRD/LRD jointly. If SRD, then

SX(0) − μX = SYFluc(0) = 1

E[ξ ]2 SNFluc(0). (34)

Conversely, if LRD, then

SX(ω) ∼
ω→0

SYFluc(ω) ∼
ω→0

1

E[ξ ]2 SNFluc(ω). (35)

In the LRD case, if one of the autocovariances is regularly varying at infinity
with exponent −ν, then so are the others and

RX(t) ∼
t→∞ RYFluc(t) ∼

t→∞
1

E[ξ ]2 RNFluc(t) (36)

(the exponent ν being in the range 0 < ν < 1).
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The proofs of (28)–(33) are given in Appendix B. Equations (34) and (35) follow
straightforwardly from (30) and (33). Equation (36) follows from (35) due to the
general result of (19).

Equations (28) and (31) imply that the output process Y and the queue process N
decompose into two uncorrelated processes: (i) a base process, which is independent
of the correlation structure of the input process X and represents a corresponding
M/GI/∞ system, and (ii) a fluctuating process, which is contingent on the correlation
structure of the input process X and represents the deviation of the G/GI/∞ system
under consideration from the corresponding M/GI/∞ system.

Equations (30) and (33) imply that the spectral densities of the output process
Y and the queue process N factorize into two terms: (i) a term contingent on the
distribution of the service times and (ii) a term contingent on the L2 properties of the
input process X.

The output process Y is LRD if and only if the input process X is such. Long-
range dependence of the queue process N , on the other hand, stems from either infinite
variance of the service times or LRD of the input process X (the “or” being inclusive).

5. STATIONARY COX INPUTS

In this last section we explore the stochastic maps X �→ Y and X �→ N in the case
where the inputs are stationary Cox-type processes [3].

5.1. Analysis

Let � = (�(t))t∈Z be a stationary and nonnegative-valued process representing ran-
dom “underlying Poissonian rates.” Given the rate process �, the input X is assumed
to be a sequence of independent and Poisson distributed random variables, where
X(t) is Poisson distributed with mean �(t) (t ∈ Z). For further details regarding Cox
processes, the readers are referred to [11, Chap. 6].

The L2 characteristics of the Cox input process X are induced by the L2

characteristics of the underlying rate process �:

• The input process. The input process X is stationary with mean

μX = μ�, (37)

autocovariance

RX(t) = μ�δ(t) + R�(t) (38)

(t ∈ Z), and spectral density

SX(ω) = μ� + S�(ω) (39)

(−π ≤ ω < π ).
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The proof of (37)–(39) is straightforward (using conditioning and the definition
of the Cox process X). Equations (37)–(39), substituted into the results of Section 4,
yield the full L2 structure of G/GI/∞ systems “fed” by Cox inputs. Moreover, we
have the following:

• Multidimensional PGFs. Let {θ(t)}t∈Z be an arbitrary sequence of complex
numbers taking values in the unit disk (|θ(t)| ≤ 1). The multidimen-
sional PGFs of the output process Y and the queue process N are given,
respectively, by

E

[∏
t∈Z

θ(t)Y(t)

]
= E

[
exp

{
−

∑
t∈Z

a(t)�(t)

}]
, (40)

where a(t) = 1 − E[θ(t + ξ)], and

E

[∏
t∈Z

θ(t)N(t)

]
= E

[
exp

{
−

∑
t∈Z

b(t)�(t)

}]
, (41)

where b(t) = 1 − E[θ(t)θ(t + 1) · · · θ(t + ξ − 1)].

Equations (40) and (41), whose proofs are given in Appendix C, yield the mul-
tidimensional PGFs of the output process Y and the queue process N in terms of the
multidimensional Laplace transform of the underlying rate process �.

5.2. An Example

As an example of stationary Cox inputs, consider the case in which the rate process
� is a moving-average of a “white noise”:

�(t) =
∑
s∈Z

w(t − s)η(s), (42)

where (i) {w(n)}n∈Z is a sequence of nonnegative weights summing up to unity and
(ii) (η(t))t∈Z is a nonnegative “white noise”—a sequence of nonnegative IID random
variables [η(t) being the “innovation” at time t].

Let η denote a generic “noise variable”, and let W denote a Z-valued random
variable governed by the probability distribution P(W = n) = w(n). Then [19]

μ� = E[η] and S�(ω) = var[η]
∣∣E[

exp{iωW}]∣∣2 . (43)

Moreover, setting (λ) := E
[
exp {−λη}] (λ ≥ 0) to denote the Laplace trans-

form of the noise variable η, the multidimensional PGF of the output process Y and
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the queue process N are given respectively by

E

[∏
t∈Z

θ(t)Y(t)

]
=

∏
t∈Z


(

1 − E [θ(t + W + ξ)]
)

(44)

and

E

[∏
t∈Z

θ(t)N(t)

]
=

∏
t∈Z


(

1 − E [θ(t + W) · · · θ(t + W + ξ − 1)]
)

. (45)

The proofs of (44) and (45) are given in Appendix C.

6. CONCLUSIONS

The discrete-time G/GI/∞ queuing model—“fed” by arbitrary input processes X
and with general IID service times—was studied. Focusing attention on the system’s
output process Y (of job departures) and queue process N (tracking the number of
jobs present in the system), the stochastic maps X �→ Y and X �→ N were inves-
tigated. Closed-form formulas for various statistics of these stochastic maps were
explicitly obtained, including means, variances, autocovariances, cross-covariances,
and multidimensional probability generating functions.

The general results obtained were applied to the case of stationary input processes,
facilitating a thorough L2 analysis of stationary G/GI/∞ systems: The spectral den-
sities of the stochastic maps X �→ Y and X �→ N were computed, the fixed points (in
L2) of the map X �→ Y were characterized, and, the display of either short-ranged or
long-ranged temporal dependencies, by the output process Y and the queue process N ,
were precisely determined. Moreover, a general L2 decomposition result, governing
the intrinsic L2 structure of stationary G/GI/∞ systems, was obtained.

Notes

1. Regarding the notion of regular variation [1]: A real function φ is said to be regularly varying at
the limit point l if the limit limx→l φ (θx)/φ (x) exists for all positive constants θ . Theory shows that if the
function φ is regularly varying, then limx→l φ (θx)/φ (x) = θε , where the exponent ε is a real parameter
called the exponent of regular variation. Regularly varying functions are generalizations of power laws and
play a key role in various fields of Probability Theory (see [1, Chap. 8]).
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APPENDIX A

This Appendix contains the proofs of the results stated in Section 3.

A.1. MEANS AND VARIANCES

Using the “integral representation” of the output process Y (Eq. (1)), the model
assumptions, and the notation introduced in Eq. (3), we obtain the following:
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1. The conditional mean of Y(t), given the input process X, is

E[Y(t)|X] = E

[∑
s≤t

X(s)∑
k=1

I {ξ(s; k) = t − s} |X
]

=
∑
s≤t

X(s)∑
k=1

E[I {ξ(s; k) = t − s}]

=
∑
s≤t

X(s)∑
k=1

P(ξ(s; k) = t − s)

=
∑
s≤t

g(t − s)X(s). (A.1)

2. The conditional variance of Y(t), given the input process X, is

Var[Y(t)|X] = Var

[∑
s≤t

X(s)∑
k=1

I{ξ(s; k) = t − s} |X
]

=
∑
s≤t

X(s)∑
k=1

Var[I {ξ(s; k) = t − s}]

=
∑
s≤t

X(s)∑
k=1

P (ξ(s; k) = t − s) P (ξ(s; k) 	= t − s)

=
∑
s≤t

g(t − s) (1 − g(t − s)) X(s)

=
∑
s≤t

g(t − s)g(t − s)X(s) (A.2)

(the transition from the first line to the second line of (A.2) is due to the fact
that the service times ξ(s; k) are IID random variables).

The conditional mean and variance of (A.1) and (A.2), in turn, imply that

E[Y(t)] = E[E [Y(t)|X]]

= E

[∑
s≤t

g(t − s)X(s)

]

=
∑
s≤t

g(t − s)E[X(s)] (A.3)
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and

Var[Y(t)] = E[Var[Y(t)|X]] + Var[E[Y(t)|X]]

= E

[∑
s≤t

g(t − s)g(t − s)X(s)

]
+ Var

[∑
s≤t

g(t − s)X(s)

]

=
∑
s≤t

g(t − s)g(t − s)E[X(s)]

+
∑
s1≤t

∑
s2≤t

g(t − s1)g(t − s2) Cov[X(s1), X(s2)] (A.4)

(since the input random variables X(s) are dependent, the variance of their linear
combination equals the double linear combination of their covariances).

The computation of the mean E[N(t)] and the variance Var[N(t)] follows
analogously.

A.2. AUTOCOVARIANCES

Using the “integral representation” of the output process Y (Eq. (1)), the model
assumptions, and the notation introduced in Eq. (3), we obtain that (t1 < t2) the
conditional covariance of the random variables Y(t1) and Y(t2), given the input
process X, is

Cov[Y(t1), Y(t2)|X]

= Cov

⎡
⎣∑

s1≤t1

X(s1)∑
i=1

I {ξ(s1; i) = t1−s1},
∑
s2≤t2

X(s2)∑
j=1

I {ξ(s2; j)= t2−s2} |X
⎤
⎦

=
∑
s1≤t1

X(s1)∑
i=1

∑
s2≤t2

X(s2)∑
j=1

Cov
[
I {ξ(s1; i) = t1 − s1} , I {ξ(s2; j) = t2 − s2}

]

=
∑
s≤t1

X(s)∑
k=1

Cov[I {ξ(s; k) = t1 − s} , I {ξ(s; k) = t2 − s}]

= −
∑
s≤t1

X(s)∑
k=1

P (ξ(s; k) = t1 − s) P (ξ(s; k) = t2 − s)

= −
∑
s≤t1

X(s)∑
k=1

g (t1 − s) g (t2 − s)

= −
∑
s≤t1

g (t1 − s) g (t2 − s) X(s) (A.5)
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(the transition from line three to line four of (A.5) is due to the fact that the
service times are IID random variables; hence, the only nonzero covariances are
those corresponding to (s1; i) = (s2; j). The transition from line four to line five
of (A.5) is due to the fact that the intersection of the events {ξ(s; k) = t1 − s} and
{ξ(s; k) = t2 − s} is empty, hence, yielding only the negative term of the corresponding
covariance).

The conditional covariance of (A.5), in turn, implies that

E[Cov[Y(t1), Y(t2)|X]] = −
∑
s≤t1

g (t1 − s) g (t2 − s) E[X(s)] . (A.6)

On the other hand, using the conditional mean E[Y(t) | X] of (A.1), we have

Cov[E[Y(t1)|X] , E[Y(t2)|X]]

= Cov

[∑
s1≤t1

g(t1 − s1)X(s1),
∑
s2≤t2

g(t2 − s2)X(s2)

]

=
∑
s1≤t1

∑
s2≤t2

g(t1 − s1)g(t2 − s2) Cov[X(s1), X(s2)] . (A.7)

Combining (A.6) and (A.7) together, we conclude that

Cov[Y(t1), Y(t2)]

= E[Cov[Y(t1), Y(t2)|X]] + Cov[E[Y(t1)|X] , E[Y(t2)|X]]

= −
∑
s≤t1

g(t1 − s)g(t2 − s)E[X(s)]

+
∑
s1≤t1

∑
s2≤t2

g(t1 − s1)g(t2 − s2) Cov [X(s1), X(s2)]. (A.8)

The computation of the covariance Cov[N(t1), N(t2)] follows analogously.

A.3. CROSS-COVARIANCES

Using the “integral representation” of the output process Y (Eq. (1)) and of the queue
process N (Eq. (2)), the model assumptions, and the notation introduced in Eq. (3),
we obtain that (t1 ≤ t2) the conditional covariance of the random variables Y(t1) and
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N(t2), given the input process X , is

Cov[Y(t1), N(t2)|X]

= Cov

⎡
⎣∑

s1≤ t1

X(s1)∑
i=1

I {ξ(s1; i)= t1−s1},
∑
s2≤ t2

X(s2)∑
j=1

I {ξ(s2; j)> t2−s2} |X
⎤
⎦

=
∑
s1≤t1

X(s1)∑
i=1

∑
s2≤t2

X(s2)∑
j=1

Cov
[
I {ξ(s1; i) = t1 − s1} , I {ξ(s2; j) > t2 − s2}

]

=
∑
s≤t1

X(s)∑
k=1

Cov[I {ξ(s; k) = t1 − s} , I {ξ(s; k) > t2 − s}]

= −
∑
s≤t1

X(s)∑
k=1

P (ξ(s; k) = t1 − s) P (ξ(s; k) > t2 − s)

= −
∑
s≤t1

X(s)∑
k=1

g (t1 − s) G (t2 − s)

= −
∑
s≤t1

g (t1 − s) G (t2 − s) X(s) (A.9)

(the transition from line three to line four of (A.9) is due to the fact that the service times
are IID random variables; hence, the only nonzero covariances are those corresponding
to (s1; i) = (s2; j). The transition from line four to line five of (A.9) is due to the fact
that the intersection of the events {ξ(s; k) = t1 − s} and {ξ(s; k) > t2 − s} is empty,
hence yielding only the negative term of the corresponding covariance).

The conditional covariance of (A.9), in turn, implies that

E[Cov[Y(t1), N(t2)|X]] = −
∑
s≤t1

g (t1 − s) G (t2 − s) E[X(s)]. (A.10)

On the other hand, using the conditional mean E[Y(t) | X] of (A.1) and the analogous
conditional mean E[N(t) | X] (in which G(t − s) replaces g (t − s)), we have

Cov[E[Y(t1)|X] , E[N(t2)|X]]

= Cov

[∑
s1≤t1

g(t1 − s1)X(s1),
∑
s2≤t2

G(t2 − s2)X(s2)

]

=
∑
s1≤t1

∑
s2≤t2

g(t1 − s1)G(t2 − s2) Cov[X(s1), X(s2)]. (A.11)
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Combining (A.10) and (A.11) together, we conclude that

Cov[Y(t1), N(t2)]

= E[Cov[Y(t1), N(t2)|X]] + Cov[E[Y(t1)|X], E[N(t2)|X]]

= −
∑
s≤t1

g(t1 − s)G(t2 − s)E[X(s)]

+
∑
s1≤t1

∑
s2≤t2

g(t1 − s1)G(t2 − s2) Cov[X(s1), X(s2)]. (A.12)

The computation of the cross-covariance Cov[N(t1), Y(t2)] (t1 < t2) follows analo-
gously.

A.4. PROBABILITY GENERATING FUNCTIONS

A.4.1. Multidimensional PGFs

Let {θ(t)}t∈Z be an arbitrary sequence of complex numbers taking values in the unit
disk (|θ(t)| ≤ 1).

Set

α(s) := E

[ ∞∏
n=0

θ(s + n) I{ξ=n}
]

= E[θ(s + ξ)] (A.13)

(s ∈ Z).
Using the “integral representation” of the output process Y (Eq. (1)), the model

assumptions, the notation introduced in Eq. (3), and (A.13), we obtain that the
conditional multidimensional PGF of the output process Y , given the input process
X, is

E

[∏
t∈Z

θ(t)Y(t)|X
]

= E

[∏
t∈Z

{∏
s≤t

X(s)∏
k=1

θ(t)I{ξ(s;k)=t−s}
}

|X
]

=
∏
s∈Z

X(s)∏
k=1

E

[∏
t≥s

θ(t)I{ξ(s;k)=t−s}
]

=
∏
s∈Z

X(s)∏
k=1

E

[ ∞∏
n=0

θ(s + n)I{ξ(s;k)=n}
]
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=
∏
s∈Z

X(s)∏
k=1

α(s)

=
∏
s∈Z

α(s)X(s). (A.14)

The conditional multidimensional PGF of (A.14), in turn, yields

E

[∏
t∈Z

θ(t)Y(t)

]
= E

[
E

[∏
t∈Z

θ(t)Y(t)|X
]]

= E

[∏
s∈Z

α(s)X(s)

]
. (A.15)

The computation of the multidimensional PGF E
[∏

t∈Z
θ(t)N(t)

]
follows analogously

by setting

β(s) := E

[ ∞∏
n=0

θ(s + n) I{ξ>n}
]

= E[θ(s)θ(s + 1) · · · θ(s + ξ − 1)] . (A.16)

A.4.2. One-Dimensional PGFs

We compute the PGF E[zY(t)] (|z| ≤ 1) of the random variable Y(t) using the
multidimensional PGF result of (A.15).

Set

θ(τ ) = 1 + (z − 1)δ(τ − t) (A.17)

(τ ∈ Z) and note that

α(s) = E[θ(s + ξ)]

= E[1 + (z − 1)δ(s + ξ − t)]

= 1 + (z − 1)P (ξ = t − s)

= g (t − s) + zg (t − s) (A.18)

(s ∈ Z). Further, note that

∏
s∈Z

α(s)X(s) =
∏
s∈Z

(
g (t − s) + zg (t − s)

)X(s)

=
∞∏

n=1

(
g(n) + zg(n)

)X(t−n)

. (A.19)
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Equation (A.19), substituted into (A.15), yields the desired one-dimensional PGF

E
[
zY(τ )

] = E

[∏
t∈Z

θ(t)Y(t)

]

= E

[∏
s∈Z

α(s)X(s)

]

= E

[ ∞∏
n=1

(
g(n) + zg(n)

)X(t−n)

]
. (A.20)

The computation of the PGF E[zN(t)] (|z| ≤ 1) of the random variable N(t) follows
analogously.

APPENDIX B

This appendix contains the proofs of the results stated in Section 4.

B.1. MEANS AND AUTOCOVARIANCES

B.1.1. Means

Using Eqs (4) and (5) for the means of output process Y and the queue process N
yields

E[Y(t)] =
∑
s≤t

g(t − s)E[X(s)]

=
∑
s≤t

g(t − s)μX

= μX

∞∑
n=0

g(n) = μX (B.1)

and

E[N(t)] =
∑
s≤t

G(t − s) E[X(s)]

=
∑
s≤t

G(t − s)μX = μX

∞∑
n=0

G(n) = μXE[ξ ] . (B.2)
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B.1.2. Autocovariance:The Output Process Y

Setting t2 − t1 = t ≥ 1 and using Eq. (8) for the autocovariance of the output process
Y yields

Cov[Y(t1), Y(t2)]

= −
∑
s≤t1

g(t1 − s)g(t2 − s)μX

+
∑
s1≤t1

∑
s2≤t2

g(t1−s1)g(t2−s2)RX(s2−s1)

= −μX

∞∑
k=1

g(k)g(k + t)+
∞∑

k=1

∞∑
l=1

g(k)g(l)RX(k − l + t).

(B.3)

On the other hand, if t2 = t1 then Eq. (6) for the variance of the output process Y
yields

Cov[Y(t1), Y(t2)]

= Var[Y(t1)] =
∑
s≤t1

g(t1 − s) (1 − g(t1 − s)) μX

+
∑
s1≤t1

∑
s2≤t1

g(t1 − s1)g(t1 − s2)RX(s2 − s1)

= μX

∞∑
k=1

g(k) (1 − g(k)) +
∞∑

k=1

∞∑
l=1

g(k)g(l)RX(k − l)

= μX −μX

∞∑
k=1

g(k)2+
∞∑

k=1

∞∑
l=1

g(k)g(l)RX(k − l). (B.4)

B.1.3. Conclusion:The Output Process Y

Combining (B.1), (B.3), and (B.4) together, we conclude that the output process Y is
stationary with mean μY = μX and autocovariance function

RY (t) = μXδ(t) − μX

∞∑
k=1

g(k)g(k + |t|)

+
∞∑

k=1

∞∑
l=1

g(k)g(l)RX(k − l + |t|)
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= μXδ(t) +
∞∑

k=1

∞∑
l=1

g(k)g(l)
(

RX − μXδ
)

(k − l + |t|) (B.5)

(t ∈ Z).
Setting RX(t) = μXδ(t) in (B.4) yields Eqs (21) and (22) and, consequently, Eqs

(28) and (29).

B.1.4. Autocovariance:The Queue Process N

The computation of the autocovariance function RN (t) of the queue process N follows
analogously to the computation of RY (t), yielding

RN (t) = μX

∞∑
k=0

G(k)G(k + t) +
∞∑

k=0

∞∑
l=0

G(k)G(l)RX(k − l + t) (B.6)

(t ≥ 0). However,

∞∑
k=0

G(k)G(k + t) =
∞∑

k=0

(
1 − G(k)

)
G(k + t)

=
∞∑

k=t

G(k) −
∞∑

k=0

G(k)G(k + t), (B.7)

Also, note that

∞∑
k=t

G(k) =
∞∑

k=0

I {k ≥ t} E[I {ξ > k}]

= E

[ ∞∑
k=0

I {ξ > k ≥ t}
]

= E
[
(ξ − t)+

]
. (B.8)

B.1.5. Conclusion:The Queue Process N

Combining (B.2), (B.6), and (B.7) together, we conclude that the queue process N is
stationary with mean μN = μXE[ξ ] and autocovariance function

RN (t) = μX

∞∑
k=|t|

G(k) − μX

∞∑
k=0

G(k)G(k + |t|)

+
∞∑

k=0

∞∑
l=0

G(k)G(l)RX(k − l + |t|)
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= μX

∞∑
k=|t|

G(k) +
∞∑

k=0

∞∑
l=0

G(k)G(l)
(

RX −μXδ
)
(k − l+|t|) (B.9)

(t ∈ Z).
Setting RX(t) = μXδ(t) in (B.9) yields Eqs. (23) and (24) and, consequently, Eqs.

(31) and (32).

B.2. SPECTRAL DENSITIES

B.2.1. Spectral Density:The Base Case

We compute the spectral density S(ω) of the autocovariance function

R(t) =
∞∑

k=|t|
G(k). (B.10)

We begin with the following calculation:

S+(ω) :=
∞∑

n=0

R(n) exp{iωn}

=
∞∑

n=0

⎛
⎝ ∞∑

k=n

G(k)

⎞
⎠ exp{iωn}

=
∞∑

k=0

⎛
⎝ k∑

n=0

exp{iωn}
⎞
⎠G(k)

=
∞∑

k=0

1 − exp{iω(k + 1)}
1 − exp{iω} G(k)

=
∞∑

k=0

1 − exp{iω(k + 1)}
1 − exp{iω}

⎛
⎝ ∞∑

n=k+1

g(n)

⎞
⎠

= 1

1 − exp{iω}
∞∑

n=1

(
n−1∑
k=0

(1 − exp{iω(k + 1)})
)

g(n)
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= 1

1 − exp{iω}
∞∑

n=1

(
n − exp{iω}1 − exp{iωn}

1 − exp{iω}
)

g(n)

= 1

1−exp{iω}E
[
ξ − exp{iω}1−exp{iωξ}

1 − exp{iω}
]

= 1

1−exp{iω} E[ξ ] − exp{iω}
(1−exp{iω})2

(
1−E

[
exp{iωξ}]). (B.11)

Some elementary algebra further implies that

Re S+(ω) = 1

2

(
E[ξ ] + 1 − E[cos(ωξ)]

1 − cos(ω)

)
. (B.12)

Now, using (B.12), while noting that R(0) = E[ξ ], we conclude that

S(ω) =
∑
t∈Z

R(t) exp{itω}

=
∞∑

n=0

R(n) exp{−iωn} +
∞∑

n=0

R(n) exp{iωn} − R(0) = S+(ω) + S+(ω) − E[ξ ]

= 2Re S+(ω) − E[ξ ] = 1 − E[cos(ωξ)]

1 − cos(ω)
. (B.13)

Equation (B.13), in turn, implies the transition from Eq. (24) to Eq. (25).

B.2.2. A General Spectral-Density Computation

Consider an autocovariance function of the form

RZ(t) =
∞∑

k=0

∞∑
l=0

h(k)h(l)
(

RX − μXδ
)

(k − l + |t|) (B.14)

(t ∈ Z), where {h(n)}∞n=0 is an arbitrary nonnegative sequence. Set

H(ω) =
∞∑

n=0

h(n) exp{iωn} (B.15)

(−π ≤ ω < π ).
Using Eq. (17) and the fact that the spectral density corresponding to a delta-

function autocovariance is unity [i.e., δ(t) = (1/2π)
∫ π

−π
exp{−itω} dω], we have

RZ(t) =
∞∑

k=0

∞∑
l=0

h(k)h(l)
(

RX − μXδ
)

(k − l + |t|)

=
∞∑

k=0

∞∑
l=0

h(k)h(l)
1

2π

∫ π

−π

exp{−i(k − l + |t|)ω} (SX(ω) − μX) dω
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= 1

2π

∫ π

−π

exp{−i|t|ω}
⎛
⎝ ∞∑

k=0

h(k) exp{−ikω}
⎞
⎠

×
⎛
⎝ ∞∑

l=0

h(l) exp{ilω}
⎞
⎠(SX(ω) − μX) dω

= 1

2π

∫ π

−π

exp{−i|t|ω}H(−ω)H(ω) (SX(ω) − μX) dω

= 1

2π

∫ π

−π

exp{−i|t|ω} |H(ω)|2 (SX(ω) − μX) dω

= 1

2π

∫ π

−π

exp{−itω} |H(ω)|2 (SX(ω) − μX) dω (B.16)

(the last transition is due to the fact that the function |H(ω)|2 (SX(ω) − μX) is sym-
metric). Equation (B.16) implies that the spectral density SZ(ω) corresponding to the
autocovariance function RZ(t) is given by

SZ(ω) = |H(ω)|2 (SX(ω) − μX) (B.17)

(−π ≤ ω < π ).

B.2.3. Spectral Density:The Process YFluc

In the case of the process YFluc, we have h(n) = g(n) (n ∈ N; h(0) = 0) (due to
Eq. (29)) and hence H(ω) = E

[
exp{iωξ}]. Equation (B.17) thus implies that

SYFluc(ω) = ∣∣E[
exp{iωξ}]∣∣2 (SX(ω) − μX

)
(B.18)

(−π ≤ ω < π ).

B.2.4. Spectral Density:The Process NFluc

In the case of the process NFluc, we have h(n) = G(n) (n ∈ Z+) (due to Eq. (32)) and
hence

H(ω) =
∞∑

n=0

G(n) exp{iωn}

=
∞∑

n=0

⎛
⎝ ∞∑

k=n+1

g(k)

⎞
⎠ exp{iωn}

=
∞∑

k=1

⎛
⎝k−1∑

n=0

exp{iωn}
⎞
⎠g(k)
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=
∞∑

k=1

1 − exp{iωk}
1 − exp{iω} g(k)

= E
[

1 − exp{iωξ}
1 − exp{iω}

]

= 1 − E
[
exp{iωξ}]

1 − exp{iω} . (B.19)

Equation (B.17) thus implies that

SYFluc(ω) =
∣∣∣∣∣1 − E

[
exp{iωξ}]

1 − exp{iω}

∣∣∣∣∣
2

·
(

SX(ω) − μX

)
(B.20)

(−π ≤ ω < π ).

B.2.5. Characterization of the Base Case

Combining (B.5), (B.18), and the fact that the spectral density corresponding to a delta-
function autocovariance is unity (i.e., δ(t) = (1/2π)

∫ π

−π
exp{−itω}dω), we obtain

that the spectral density of the output process Y is given by

SY (ω) = μX + ∣∣E[
exp{iωξ}]∣∣2 (SX(ω) − μX) (B.21)

(−π ≤ ω < π ).
Since the mean μY of the output process Y equals the mean μX of the output

process X, these processes are equal (in L2) if and only if their spectral densities
coincide. Substituting SY (ω) = SX(ω) into (B.21) yields SX(ω) = μX , which, in turn,
is equivalent to RX(t) = μXδ(t) (−π ≤ ω < π ; t ∈ Z).

APPENDIX C

This Appendix contains the proofs of the results stated in Section 5.

C.1. MULTIDIMENSIONAL PGFS

Let {θ(t)}t∈Z be an arbitrary sequence of complex numbers taking values in the unit
disk (|θ(t)| ≤ 1).
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Note that the conditional-Poisson structure of the Cox input X implies that

E

[∏
t∈Z

ζ(t)X(t)|�
]

=
∏
t∈Z

E
[
ζ(t)X(t)|�(t)

]

=
∏
t∈Z

exp {−(1 − ζ(t))�(t)}

= exp

{
−

∑
t∈Z

(1 − ζ(t))�(t)

}
, (C.1)

where {ζ(t)}t∈Z is an arbitrary sequence of complex numbers taking values in the unit
disk (|ζ(t)| ≤ 1).

Hence, Eq. (14) for the multidimensional PGF of the output process Y , combined
with (C.1), yields

E

[∏
t∈Z

θ(t)Y(t)

]
= E

[∏
t∈Z

α(t)X(t)

]

= E

[
E

[∏
t∈Z

α(t)X(t)|�
]]

= E

[
exp

{
−

∑
t∈Z

(1 − α(t))�(t)

}]

= E

[
exp

{
−

∑
t∈Z

a(t)�(t)

}]
, (C.2)

where a(t) = 1 − α(t) = 1 − E[θ(t + ξ)].
Analogously, Eq. (15) for the multidimensional PGF of the queue process N ,

combined with (C.1), yields

E

[∏
t∈Z

θ(t)N(t)

]
= E

[
exp

{
−

∑
t∈Z

b(t)�(t)

}]
, (C.3)

where b(t) = 1 − β(t) = 1 − E[θ(t)θ(t + 1) · · · θ(t + ξ − 1)].
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C.2. THE EXAMPLE

Consider now the special case where the rate process � admits the moving-average
representation of Eq. (42) and note that

∑
t∈Z

ζ(t)�(t) =
∑
t∈Z

ζ(t)

(∑
s∈Z

w(t − s)η(s)

)

=
∑
s∈Z

(∑
t∈Z

ζ(t)w(t − s)

)
η(s)

=
∑
s∈Z

(∑
n∈Z

ζ(s + n)w(n)

)
η(s)

=
∑
s∈Z

E[ζ(s + W)] η(s). (C.4)

Since (η(t))t∈Z is a nonnegative “white noise” with Laplace transform (λ) :=
E
[
exp {−λη(t)}] (λ ≥ 0, t ∈ Z), (C.4) implies that

E

[
exp

{
−

∑
t∈Z

ζ(t)�(t)

}]
= E

[
exp

{
−

∑
t∈Z

E[ζ(t + W)] η(t)

}]

=
∏
t∈Z

E
[
exp {−E [ζ(t + W)] η(t)}]

=
∏
t∈Z

 (E[ζ(t + W)]), (C.5)

where {ζ(t)}t∈Z is an arbitrary sequence of complex numbers taking values in the unit
disk (|ζ(t)| ≤ 1).

For the output process Y , we have ζ(t) = a(t) and, hence,

E[ζ(t + W)] = E[a(t + W)]

= E[1 − α(t + W)]

= E[1 − E[θ(t + W + ξ)]]

= 1 − E[θ(t + W + ξ)] . (C.6)

Analogously, for the queue process N , we have ζ(t) = b(t) and, hence,

E[ζ(t + W)] = 1 − E[θ(t + W) · · · θ(t + W + ξ − 1)] . (C.7)
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Substituting (C.6) and (C.7) into equation (C.5)—while using, respectively, (C.2) and
(C.3)—we conclude that

E

[∏
t∈Z

θ(t)Y(t)

]
=

∏
t∈Z


(

1 − E [θ(t + W + ξ)]
)

(C.8)

and

E

[∏
t∈Z

θ(t)N(t)

]
=

∏
t∈Z


(

1 − E [θ(t + W) · · · θ(t + W + ξ − 1)]
)

. (C.9)
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