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The propagation of extraordinary and upper-hybrid waves in spin quantum
magnetoplasmas with vacuum polarization effect is investigated. Based on the quantum
magnetohydrodynamics model including Bohm potential, arbitrary relativistic degeneracy
pressure and spin force, and Maxwell’s equations modified by the spin current and vacuum
polarization current, the dispersion relations of extraordinary and upper-hybrid waves are
derived. The analytical and numerical results show that quantum effects (Bohm potential,
degeneracy pressure and spin magnetization energy) and the vacuum polarization effect
modify the propagation of the extraordinary wave. Under the action of a strong magnetic
field, the plasma frequency is obviously increased by the vacuum polarization effect.
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1. Introduction

As an emerging research field of plasma physics, the quantum plasma, composed
of ions and degenerate electrons, has attracted much attention and research interest
(Markowich, Ringhofer & Schmeiser 1990; Haas, Manfredi & Feix 2000; Harding &
Lai 2006; Brodin et al. 2007). An example of the real physical environments in which
a quantum plasma exists is the dense astrophysical objects, such as white dwarfs and
neutron stars. White dwarfs resist gravitational collapse by producing electron degeneracy
pressures with extremely high number density, typically as high as 10°° cm™3, whereas
neutron stars have a higher density. Electrons in the quantum plasma obey the Fermi—Dirac
distribution. According to the Pauli exclusion principle, the thermal pressure is replaced
by the degenerate pressure between electrons (Haas 2011). In dense astrophysical plasmas,
the conditions of high-electron-number density and low temperature make the thermal de
Broglie wavelength of electrons become equal to or even larger than the characteristic
scale of the plasma system, and the quantum tunnelling effect represented by the Bohm
potential will appear (Bohm 1952; Manfredi 2005; Shukla 2006; Shukla & Eliasson 2006).

Since electrons are fermions (spin-1/2 quantum particles), under the action of a strong
magnetic field there will appear an electron-spin current and a spin force acting on
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electrons due to the Bohr magnetization. In highly magnetized or cold plasmas, the spin
effect is significant (Shukla & Eliasson 2011). The spin magnetohydrodynamic model was
proposed by Marklund & Brodin (2007), in which the electrons were treated as a single
fluid. Andreev then gave a generalized form of the quantum hydrodynamics (QHD) model
for spin-1/2 particles (Andreev 2015), in which the electrons of spin-up and spin-down
were treated as two different fluids. This model is called the separate spin evolution
quantum hydrodynamics (SSE-QHD) model. Since then, a lot of research on the electron
spin-1/2 effect has been carried out. Igbal investigated the spin magnetoacoustic wave
and hybrid wave instabilities (Igbal, Khan & Murtaza 2018a; Igbal, Khanum & Murtaza
2018b; Igbal et al. 2019a,b), which indicated that the dispersion of an upper-hybrid wave is
affected by spin effects. The extraordinary wave in a spin-1/2 quantum plasma was studied
by Andreev (2017). A magnetohydrodynamic wave with relativistic electrons and positrons
in degenerate spin-1/2 astrophysical plasmas was investigated by Maroof et al. (2015).
A magnetohydrodynamic spin wave in degenerate electron—positron plasmas was analysed
by Mushtaq et al. (2012).

The quantum electrodynamic (QED) effect in a strong field is a very large research
area. The QED effect has been experimentally confirmed under many different conditions,
but there is still one that has not been verified, called the Schwinger mechanism. QED
theory points out that a vacuum will exhibit some special properties in the strong
field. For example, when the field intensity reaches Schwinger’s critical strength, the
vacuum will break down, and a virtual electron—positron pair can be spontaneously
excited into a real electron—positron pair. When the field strength is lower than the
Schwinger’s critical strength, the vacuum will still show a weak nonlinear dielectric
effect due to the quantum fluctuation of the virtual electron—positron pair, which is the
so-called QED vacuum polarization effect (Goldreich & Julian 1969; Gedalin, Merose &
Gruman 1998; Marklund & Shukla 2006). The vacuum polarization effect can induce
many new physical phenomena, such as photon—photon scattering, electron—positron
pair generation, vacuum birefringence and photon acceleration in a vacuum. Shukla &
Stenflo (2008) investigated the dispersion relations for elliptically polarized extraordinary
waves and linearly polarized ordinary waves propagating across an external magnetic
field in a dense magnetoplasma. Lundin et al. (2007) investigated circularly polarized
waves propagating along an external magnetic field with a vacuum polarization effect.
Stenflo et al. (2005) investigated a new low-frequency circularly polarized electromagnetic
waves in an electron—positron plasma, taking into account the QED effect involving
photon—photon scattering.

In this paper, we investigate the propagation of extraordinary and upper-hybrid waves
in dense magnetoplasmas composed of immobile ions and electrons, taking into account
QED vacuum polarization, as well as the Bohm potential, arbitrary relativistic degeneracy
pressure and spin magnetization energy due to the electron-1/2 spin effect. As far as we
know, only Shukla & Stenflo (2008) have previously studied the dispersion relationship of
electromagnetic wave propagation in a dense magnetized plasma, in which the spin effect
and the QED vacuum polarization effect were considered. However, in their theoretical
model, the spin effect is only considered to modify the electron momentum equation, and
it is not considered to modify Maxwell’s equations. The theoretical model used here is
composed of the electron momentum equation, which includes Bohm potential, arbitrary
relativistic degeneracy pressure and spin force, and Maxwell’s equations modified by
the spin current and vacuum polarization current. This paper is organized as follows.
In §2, the quantum magnetohydrodynamics model composed of the continuity equation
and the momentum equation, including Bohm potential, arbitrary relativistic degeneracy
pressure and spin force, is presented, and Maxwell’s equations modified by the spin current
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and vacuum polarization current are also provided. In § 3, starting from the quantum
magnetohydrodynamics model and the Poisson equation, the dispersion relation of the
upper-hybrid wave is deduced. In § 4, based on the spin quantum magnetohydrodynamics
model and the Maxwell’s equations, the dispersion relation of an extraordinary wave is
derived. In § 5, the contributions of quantum effects and the vacuum polarization effect
are quantitatively calculated and discussed with the real parameters of dense astrophysical
plasmas.

2. Basic equations

In this paper, we consider a zero-temperature plasma composed of ions and electrons.
Since the mass of ions is much more than that of electrons, ions are treated as a stationary
neutralizing background, and only the motion of electrons is considered. The quantum
magnetohydrodynamics model for spin-1/2 electrons is composed of the continuity
equation:

on

3 + V. (nu) =0, (2.1)

and the momentum equation (Brodin & Marklund 2007; Marklund & Brodin 2007):

0 u PPn_ (Vi/n 2nup
mn(a—t—i—u-V)u_—en(E—i-zxB)—VP—i—%V( NG )+ W V(S - B),
2.2)

where 7 is the number density of electrons, u is the fluid velocity of electrons, e is the
charge of the electron, m is the electron mass, up = eh/2mc is the Bohr magneton and h
is Planck’s constant divided by 2m. Here, P denotes the relativistic electron degeneracy
pressure in dense plasmas, which can be written as (Shukla & Eliasson 2011)

4.5
T, c

3n3

where f(£) = £Q2E% — 3)(1 + £2)'/2 4+ 3sinh ™' (§), £ = p/mc and p = 3n*n)'Ph is the
momentum of an electron on the Fermi surface. Expanding (2.3) around the unperturbed
density of electrons ny by the Taylor series expansion and neglecting the higher order
terms, we have (Maroof et al. 2015; El-Shamy 2015)

P = 1), (2.3)

2

P =P+ ke, (2.4)
3%

where n; denotes the perturbed electron number density, vy, = (312ng)!/*h/mis the Fermi
velocity of electrons, and y, = 1//1 — & with & = py/mc, where py = (31*ng)'*h is
the Fermi momentum of electrons.

Neglecting the spin—thermal coupling terms and the nonlinear spin fluid contribution,
the spin vector S in (2.2) satisfies the evolution equation

dS  2ug
—=——BxS. 2.5
dr Tl 23)
Neglecting the spin inertia, the spin vector is determined from B x S = 0, which has a
solution
h usB '\ ~
S=—= B, 2.6
2" <kBTpe) (20
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where B denotes the magnitude of the magnetic field, and B is a unit vector in the
direction of the magnetic field. Here, n(«) = tanh« is the Brillouin function, where
a = upBy/(kgTF).

The QED vacuum polarization effect is formulated by the Heisenberg—Euler Lagrangian
density of electromagnetic fields, which is expressed as (Heisenberg & Euler 1936;
Marklund & Shukla 2006)

§

——[(E* — B*) + (E - B)’], (2.7)
81

L= L(E2 — B +
8m

where & = he*/(45mm*c”), and c is the speed of light in vacuum. The first term of (2.7)
is the classical Lagrangian density, and the second term is the correction term originating
from the vacuum polarization effect. The effective polarization and magnetization vectors
of the vacuum derived from Lagrangian density can be expressed as (Shen, Yu & Wang
2003; Lundin et al. 2007)

3

P= E[z(EZ — B)E +7(E - B)B], (2.8)
and
M = %[—2@2 — B>)B+17(E - B)E]. (2.9)

Assuming that the amplitude of oscillation is small, we can solve the system by using
linearized equations. The plasma equilibrium is assumed as Ey = 0, uy = 0, therefore, the
linearized continuity equation is derived as

8n1
- HnVu =0, (2.10)

and the linearized momentum equation is obtained as

811] e U vlz:e 2 2 2,“3
e (E1 A Bo> - Vi, + VV2n + =——V(S-B)). (2.11)
ot m c 3n0y0 4m?n mh

The linearized Maxwell equations modified by the vacuum polarization effect and spin
effect can be presented as

1 0B,
VXE =——, (2.12)
c ot
10E, 4m
VXBIZ__+_(J6+JM+Jvac), (213)
c ot c
V. El = 4T[(pe + Iovac)s (214)
where p, = —en; and J, = —enpu, are the charge and current density of electrons,
respectively. Then Jy; = —cV x (2noupS/h) is the magnetization spin current density,

Pvac = —V « Pand J,. = 0P/dt 4+ cV x M are the effective vacuum charge and current
density, respectively.
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FIGURE 1. Cartesian coordinate system, chosen such that By is along Z and E| is along .

3. Dispersion relation of upper-hybrid wave

We choose the external magnetic field as By = B,z with respect to the propagation
direction determined by the wavenumber k = ky of the wave. Since the upper-hybrid wave
is an electrostatic wave, the first-order electromagnetic fields are chosen as E; = E;y and
B, = 0, as shown in figure 1. It should be noted that E? as well as B? in (2.8) are constant
and that E - B = (. The effective vacuum charge density in (2.14) can be written as

_5
27

Inserting (3.1) into (2.14), we derive a new Poisson equation modified by the vacuum
polarization correction as

Prac = (E* - B)V - E,. (3.1

V.E = dnp(1—p) ", (3.2)
where
B =26 — B ~ 2250 (3.3)
N 0 TV 45nB2° .

Here E; < By is the amplitude of the firs-order electric field, a = ¢?/hc is the fine
structure constant, and B, = m*c®/he ~ 4.44 x 10"Gs is the Schwinger critical magnetic

field.
Supposing the perturbations are proportional to expli(ky — wt)], (2.10) and (2.11)
become
ikv? ih2k
—ia)ul =—£ (E'1—|'ﬂ XBO) — ! vFenlj)—l nlj} (34)
m c 3)/0110 4””2”0
and
kuly
ny = —ny. (35)
1)
By solving (3.4) and (3.5), we have the component u,, of the fluid velocity as
ieE| w? -
Uy = ——" -5 A ’ (36)
wm w

where w. = eBy/mc is the electron cyclotron frequency and A = k*v% /3ypw® +
h2k* /4m*@? is the quantum correction.
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z

X

FIGURE 2. Cartesian coordinate system, chosen such that By and By are along Z, and E| is in
the plane of xoy.

Inserting (3.6) into (3.2), we derive the dispersion relation of upper-hybrid wave as

w? 2y2 B2k
N a)f 4 Y% K Vg, .
1—-p8 31 4m?

(3.7)

£

When setting h— 0 and B — 0, (3.7) can be degenerated to the frequency of
upper-hybrid oscillation in the classical cold plasmas, and it indicates that an upper-hybrid
oscillation can propagate in cold plasmas due to quantum effects.

4. Dispersion relation of an extraordinary wave

We choose the external magnetic field as By = B,z with respect to the propagation
direction determined by the wavenumber k = ky of the wave. Since we investigate the
propagation of an extraordinary wave, the first-order electromagnetic fields are particularly
chosen as E| = Ex + E,y and B, = B|Z = —kcE,,/wz, as shown in figure 2. It should
be noted that E? as well as B? are constant and that E - B = 0. This means that

1 0E,
Joe = —i(E2 —-B)(VxB —-—— 4.1)
27 c ot

Inserting (4.1) into (2.13) we derive a new equation

10E,

VXBl—;a—+—(J +JM)(1_X)_17 4.2)
where
_ 2 = DE 4B, (4.3)
X= 45nB2 '

Here n = kc/w is the index of refraction and E, is the amplitude of the first-order electric
field.
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The spin magnetization current density in (2.13) is calculated as

_ imm(@nok®u,

I (4.4)
1)
Supposing the perturbations are proportional to expli(ky — w?)], (2.10) and (2.11)
become
. e u ikvin, . iR*kn, . i Q)k*cE), .
—lwu1=——(E1+—leo)— ey — 5+ 1) Y5 4.5
m c 3voho 4m?n, mw
and
k
ny = ﬂno. (4.6)
1)

as

e , iw? w W, w? -
e =— —iE, — e 1 - ;S E\ + ZEU 1 - Pl A ;
‘ B 4.7)
e [w, w . w?
e 8 (1= 25)m | (- )
om | o, w

where S = (ugn(a)k’c)/ew is the spin correction term.
From the linearized Maxwell’s equations (2.12) and (4.2), we have

(0* — KPAE), = —4mio ([, + ) (1 — )7, (4.8)

and
w’Ey, = —4niod (1 — )7, (4.9)
where J,, = —enou;, and J,, = —enou;, are the two components of electron current

density J,., and Jy, = (iMBn(a)nokzvly) /o is the magnitude of the spin magnetization
current density.
According to (4.8) and (4.9), the dispersion equation can be obtained as

(D 2 2, @ N2
1(a) S)a)p W <l 2 A)(l x) — w,

2 =0
2_ 22 @e 2 2 [ @e 2 ’
(@ —kc)<1—w2—A)(l—x)—wp(l—A—S) i(Z+5) o)

(4.10)

where w? = 4mnge? /m is the plasma frequency.
Solving (4.10), the dispersion relation of the extraordinary wave in spin quantum
magnetoplasmas with the vacuum polarization effect is derived as

2,2 2 2
ge | @ei-4-8) -

pra P P &)% , 4.11)
where
k*v? h2k*
~2 2 2 Fe
a)h—.Qp-Fa)C-F3—)/0'|‘4—m2 (4.12)

is the dispersion relation of an upper-hybrid wave, and .Q,? = a)f, /(1 — x).
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In the absence of quantum effects and the vacuum polarization effect we have A = 0,
S=0and x =0, so (4.11) and (4.12) will reproduce to the dispersion relation of an
extraordinary wave and the frequency of upper-hybrid oscillation in the classical cold
plasmas.

5. Discussion and conclusion

Here, we adopt the typical parameters of a dense astrophysical object, such as a pulsar
magnetosphere, for quantitative calculation, where the plasma parameters are chosen as
ny = 10¥ cm=3, By = 10~ Gs and T ~ 10° K (Harding & Lai 2006).

It is well known that when the de Broglie wavelength Ag of electrons becomes
comparable to, or even larger than, the average interparticle distance of electrons (viz.,
A3ng > 1), the quantum effects will play a crucial role in plasma dynamics. From the
expression /lzno > 1, we have

no

T 2 10" em ™3 /K32 (5.1)

Obviously, the parameters of a pulsar magnetosphere satisfy the above quantum condition.
Therefore, the Bohm potential and arbitrary relativistic degeneracy pressure should be
considered.

Due to the complexity of the spin dynamics, it is difficult to give simple conditions when
the spin effect is important. However, a few simple rules of thumb can be given: the spin
effect is important if the energy difference between the two spin states is larger than the
thermal energy or Fermi energy (viz., upBo/KpT > 1 or ugBy/KpTr > 1). Calculating
with the parameters of a pulsar magnetosphere we have

/J,BBO > KBTFE > KBT (52)

Obviously, the energy difference between the two spin states is larger than the Fermi
energy and thermal energy in the pulsar magnetosphere, and the spin effect should also be
considered.

Equations (3.7) and (4.11) indicate that the contribution of vacuum polarization to the
dispersion relation of linear waves is mainly reflected in the correction of the plasma
frequency with the factor of B, and figure 3 shows that 8 can reach 1073 with the super
strong magnetic field By = 1.4 x 10" Gs.

Figure 4 shows the dispersion relation curves of extraordinary waves in classical
plasmas, quantum plasmas and spin quantum plasmas, where the plasma parameters are
chosen as ny = 10? cm~ and B, = 10"Gs. In figure 4(a), the three dispersion relation
curves almost coincide and are indistinguishable, because the value range of the wave
vector is relatively large (k = 10> ~ 10" cm™"). If the wave vector is restricted to the
relatively high range k ~ 10'° cm~!, as shown in figure 4(b), it shows that the dispersion
curve of extraordinary waves is significantly modified by the quantum effects and the
spin effects. Meanwhile, if the wave vector is restricted to the relatively low range
k ~ 10° cm™!, as shown in figure 4(c), the dispersion curve of extraordinary waves is
significantly modified by the quantum effects (Bohm potential and arbitrary relativistic
degeneracy pressure), but the contribution of the spin effects is not obvious. Therefore, it
can be concluded that in the low-frequency range, the correction to the dispersion relation
of extraordinary waves produced by spin effects can be ignored, but in the high-frequency
range, the correction is more obvious.

In summary, we present a theoretical investigation on the propagation of extraordinary
and upper-hybrid waves in spin quantum magnetoplasmas with vacuum polarization effect.
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FIGURE 4. (a) The dispersion relation curves of extraordinary waves in classical plasmas,
quantum plasmas and spin quantum plasmas, where the value of k ranges from 107 to 10!
(b) The dispersion relation curves with a k value of approximately 10'°. (¢) The dispersion

relation curves with k value of approximately 10°. The plasma parameters: ng = 10%° cm™3,
By = 103 Gs.
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Based on the quantum magnetohydrodynamics model including Bohm potential, arbitrary
relativistic degeneracy pressure and spin force, and Maxwell’s equations modified by the
spin current and vacuum polarization current, the dispersion relations of an extraordinary
wave and upper hybrid wave are derived. The analytical and numerical results show
that quantum effects (Bohm potential, arbitrary relativistic degeneracy pressure and
spin magnetization energy) and the vacuum polarization effect should be considered in
the dense astrophysical objects, such as a pulsar magnetosphere, as they significantly
modify the propagation of an extraordinary wave under certain circumstances. Under
the action of a strong magnetic field, the plasma frequency is obviously increased by the
vacuum polarization effect. This theoretical research may be useful for understanding the
propagation properties of the high-frequency waves in dense astrophysical objects, and
also provides important reference for the experimental study on the intense laser—solid
density plasma interaction.
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