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Counting divisors

G. J. O. JAMESON

The function τ (n)
The ‘divisors’ of  are the positive integers (including 1 and  itself)

that divide into .  We will denote by  the number of these divisors.
(This notation owes its origin to the German ‘Teiler’; English speakers often
use , but in my view the letter  is in far too much demand to be tied up
in this way!)

n n
n τ (n)

d (n) d

Here we outline a number of results about , culminating in
Dirichlet's splendid theorem on the cumulative sum of its values.  For any
readers with the appetite for it, we then go on to show how the methods
extend to give analogous results about the number of ways of expressing a
number as a product of three factors.

τ (n)

Every divisor  comes with a natural partner, its ‘codivisor’ .
Another way to describe  is: the number of ordered pairs  of
positive integers with  (just think of  as defining the divisors in
turn).  Really  is  in a sequence of functions ; we return to this later.

j n / j
τ (n) (j, k)

jk = n j
τ τ2 τk

First, a pleasant fact that follows at once from this pairing idea:

Proposition 1:   is odd if, and only if,  is a square.τ (n) n

Proof:  If  is not a square, then all the divisors can be listed in pairs ,
with  and , so the number of them is even.  If  is a square,
say , then the divisors consist of these pairs together with , so the
number is odd. 

n (j, k)
j < n jk = n n

n = m2 m

It is quite easy to give an expression for  in terms of the prime
factorisation of .  Note first that if  is prime, then  and

, since the divisors of  are .  For a general
number , we have the following expression for :

τ (n)
n p τ (p) = 2

τ (pa) = a + 1 pa 1, p, … , pa

n τ (n)

Proposition 2:  Suppose that , with prime factorisation .

Then .

n > 1 n = ∏
m

j = 1
paj

j

τ (n) = ∏
m

j = 1
(aj + 1)

Proof:  Because of unique prime factorisation, the divisors are the numbers
, where  for each .  For each , there are

possible values for , and each combination gives a different divisor.  (The
divisor 1 is obtained by choosing  for each , and the divisor  by
choosing ; it would be strange to exclude these two.)

pb1
1 pb2

2 … pbm
m 0 ≤ bj ≤ aj j j aj + 1

bj

bj = 0 j n
bj = aj

For example, since , we have .60 = 22 × 3 × 5 τ (60) = 3 × 2 × 2 = 12
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12 THE MATHEMATICAL GAZETTE

As a further illustration, we will describe, in terms of the possible
patterns of prime factors, the numbers for which , and find the
smallest such number.  The factorisations of 8 are 8,  and .
So  if  is one of the forms , ,  (where  are distinct
primes).  The smallest of each type is: , ,

.  So the smallest is 24.  (The reader might like to repeat
this exercise with a different value for , for example 12.)

τ (n) = 8
4 × 2 2 × 2 × 2

τ (n) = 8 n p7 p3q pqr p, q, r
27 = 128 23 × 3 = 24

2 × 3 × 5 = 30
τ (n)

Of course, Proposition 1 follows easily from Proposition 2:  if  is a

square, then each  is even, so  is odd.

n

aj ∏
m

j = 1
(aj + 1)

A way in which the divisor function seems to appear out of the blue is
as follows.  Recall that the Riemann zeta function is defined by

 for real  (or indeed for complex  with ).

So

ζ (s) = ∑
∞

n = 1
1 / ns s > 1 s Res > 1

ζ (s)2 = (∑∞

j = 1

1
js) ( ∑∞

k = 1

1
ks) .

In this product, consider the terms that equate to  for a fixed .  There is
such a term for each ordered pair  with , so  occurs
times.  Hence

1/ ns n
(j, k) jk = n 1/ ns τ (n)

ζ (s)2 = ∑
∞

n = 1

τ (n)
ns

.

(Again, it is clear that 1 and  must be counted as divisors.)n

This is actually a special case of the following.  Given arithmetic
functions , , the convolution  is defined bya (n) b (n) a ∗ b

(a ∗ b) (n) = ∑
j | n

a(j)  b (n

j ) = ∑
jk = n

a(j) b (k) .

Clearly , where  is the ‘unit function’ defined by  for
all .  Convolution defines the coefficients when two Dirichlet series are

multiplied:  if we write , and similarly , then

.  Convolutions are very useful in number theory, but
they will not be used in this article.

τ = u ∗ u u u (n) = 1
n

∑
∞

n = 1
a (n) n−s = Fa (s) Fb (s)

Fa (s) Fb (s) = Fa ∗ b (s)

Summation of τ (n)
Individual values of  fluctuate wildly.  However, the variation is

smoothed out when the cumulative sums of these values are considered, and
in fact it is possible to give a very satisfactory estimate of such sums.  For
all real , write

τ (n)

x > 0

T (x) = ∑
n ≤ x

τ (n) .
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COUNTING DIVISORS 13

We do not restrict  to integer values: the advantage of this will be seen

in the applications below.  The notation  means that summation is over

the integers  such that .  Of course, as a function of a real
variable,  is constant between integers and jumps by  at the integer
.

x

∑
n ≤ x

n 1 ≤ n ≤ x
T (x) τ (n)

n
There are two ways, both obvious, in which  can be described as

enumerating ordered pairs of positive integers:
T (x)

(a) the number of ordered pairs  with  and ;(j, n) j | n n ≤ x
(b) the number of ordered pairs  with .(j, k) jk ≤ x

Geometrically, ordered pairs  of integers are called ‘lattice points’.
Note that (b) can be described as the number of lattice points in the -
plane lying below the hyperbola .

(j, k)
(s, t)

st = x
Denote by  the largest integer not greater than , and write  for

, the fractional part of .  Clearly .
[x] x {x}

x − [x] x 0 ≤ {x} < 1

From (a), by a neat example of ‘double counting’,  we have at once the
following expression for :T (x)
Proposition 3:

T (x) = ∑
j ≤ x


x

j


. (1)

Proof:  Consider the pairs in (a).  For a fixed  (instead of fixed ), the
values of  allowed are the multiples  not greater than , so that .
The number of such  is clearly .  The stated expression follows.

j n
n kj x k ≤ x / j

k [x / j]

This expression gives a way to evaluate  without calculating
individual values of .  However, a better alternative will be described
shortly.

T (x)
τ (n)

To derive a formula approximating , we need an estimate of the
harmonic sum

T (x)

H (x) = ∑
n ≤ x

1
n

.

As the reader may be aware, comparison with the integral
shows that  is roughly .  For greater precision, and for later
application, we reiterate here how such estimates work in general.  The
basic underlying result for a decreasing function is:

∫
 x
1 (1/ t) dt = ln x

H (x) ln x

Lemma 1:  Let  be a decreasing, non-negative function for , and letf (t) t ≥ 1

S(x) = ∑
n ≤ x

f (n) ,  I (x) = ∫
 x

1
f (t)  dt.

Then for all ,x ≥ 1

I (x) ≤ S(x) ≤ I (x) + f (1) .
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14 THE MATHEMATICAL GAZETTE

When  is an integer, this result is obtained by combining the obvious
inequalities

x

f (r) ≤ ∫
 r

r − 1
f (t)  dt ≤ f (r − 1)

for .  The version for non-integer  follows quite easily; see for
example [1, p. 19].

2 ≤ r ≤ x x

Applied with , Lemma 1 gives:f (t) = 1/ t
Lemma 2:   For all ,x > 1

ln x ≤ H (x) ≤ ln x + 1. (2)

The following estimate of  now drops into our lap.T (x)
Theorem 1:  For all ,x > 1

x ln x − x ≤ T (x) ≤ x ln x + x. (3)

Proof:  Since , (1) givesx − 1 ≤ [x] ≤ x

∑
j ≤ x

(x

j
− 1) ≤ T (x) ≤ ∑

j ≤ x

x

j
,

which equates to

xH (x) − [x] ≤ T (x) ≤ xH (x) .
Inserting (2), we obtain (3).

We now show how to obtain a much more accurate estimate.  Both the
result and the method were presented by Dirichlet in 1841.  Peter Gustav
Lejeune Dirichlet (1805-1859) grew up in the German Rhineland, in a
family of mixed German and French origins.  He taught for most of his life
in Berlin, and married a sister of the composer Mendelssohn.  He made it his
mission to make the awe-inspiring works of Gauss better known and
understood, but he also made important contributions of his own in several
different areas of mathematics.

The key step is to replace (1) by the following expression for ,
which is known as ‘Dirichlet's hyperbola identity’:

T (x)

Proposition 4:  For all ,x > 1

T (x) = 2 ∑
j ≤ x


x

j


− [ x ]2
. (4)

Proof:  In the expression (b), let ,  be the number of pairs  with
 and  respectively (in the diagram, these are the points in

 and ).  By symmetry, .  For fixed , the

number of  such that  is .  Hence .

N1 N2 (j, k)
j ≤ x k ≤ x
A ∪ B A ∪ C N1 = N2 j ≤ x

k jk ≤ x [x / j] N1 = ∑
j ≤ x

[x / j]
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jk = x

k

jx1/21

x

x

B

CA

1/2x

FIGURE 1

In the sum , the points satisfying both  and  are
counted twice (in the diagram, these are the points in ).  Hence

, where  is the number of such points.  Clearly
, so (4) follows.

N1 + N2 j ≤ x k ≤ x
A

T (x) = 2N1 − N0 N0

N0 = [ x]2

Note that the summation in (4) is over the shorter range  instead
of .  We illustrate this by using (4) to calculate .  We tabulate
the values of  as follows:

j ≤ x
j ≤ x T (100)

[100/ j]
j 1 2 3 4 5 6 7 8 9 10

[100/ j] 100 50 33 25 20 16 14 12 11 10

Addition gives .  So .

Using (1), we would have needed to consider  for all .

∑
10

j = 1
[100/ j] = 291 T (100) = 2 × 291 − 102 = 482

[100/ j] j ≤ 100
At the same time, we deploy a better approximation than (2) for :

such an approximation is , where  is Euler's constant.  The exact
statement, in the form that we require, is as follows; a detailed proof (for
those who wish) can be seen in [1, pp. 24-25].

H (x)
ln x + γ γ

Lemma 3:  For all x ≥ 1

H (x) = ln x + γ + q (x) , (5)
where .|q (x)| ≤ 1/ x

With (4) and (5), the path to Dirichlet's theorem is clear.  It says:
Theorem 2:  For all ,x ≥ 1

T (x) = x ln x + (2γ − 1) x + � (x) , (6)
where .  In other words,  is approximated by

, with the error no greater than .
|�(x)| ≤ 4 x T (x)

x lnx + (2γ − 1)x 4 x
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Proof:  Let  be as in Proposition 4.  Then .  Since
, we have , where .

N0, N1 N0 = [ x]2

x − 1 ≤ [ x ] ≤ x N0 = x − q1 (x) 0 ≤ q1(x) ≤ 2 x

Recalling that  and , we have[x] = x − {x} 0 ≤ {x} < 1

N1 = ∑
j ≤ x

(x

j
− {x

j }) = xH ( x) − q2 (x) ,

where .  By (5),0 ≤ q2 (x) ≤ x

H ( x) = 1
2 ln x + γ + q ( x) ,

where , so  |q ( x)| ≤ 1/ x

xH ( x) = x (1
2 ln x + γ) + q3 (x) ,

where .  Put together, we obtain|q3 (x)| ≤ x

T (x) = 2N1 − N0 = x ln x + (2γ − 1) x + q1 (x) − 2q2 (x) + 2q3 (x) .
Clearly , and hence . |q1 (x) − 2q2 (x)| ≤ 2 x |� (x)| ≤ 4 x

Another striking example of the importance of Euler's constant!

Recall that the notation  denotes a quantity  that satisfies
 for some constant  throughout the range of definition.  In

this notation, (6) can be stated as follows:

O [g(x)] f (x)
|f (x)| ≤ Kg(x) K

T (x) = x ln x + (2γ − 1) x + O ( x) .
The theorem can be interpreted as saying that  averages out as if it

were , because the method of integral estimation gives 
τ (n)

ln 2 + 2γ

∑
n ≤ x

(ln n + 2γ) = x ln x + (2γ − 1) x + O (ln x) .

The following table compares some actual values of  with the
estimate .

T (x)
x ln x + (2γ − 1) x

x 100 1,000 10,000 100,000 1,000,000
actual 482 7,069 93,668 1,166,750 13,970,034

estimate 476 7,062 93,648 1,166,736 13,969,942

A table like this gives only a very partial picture, because the difference
 obviously has irregular fluctuations corresponding to those of ,

and can be positive or negative.  To illustrate this, note that since
, we have , so that ,

while the estimate is .  So  (to the nearest
integer), while .

� (x) τ (n)

100,000 = 2555 τ (100,000) = 36 Sτ (99,999) = 1,166,714
1,166,723 � (99,999) ≈ −9

� (100,000) ≈ 14
With this said,  is visibly smaller than the stated estimate  for

the values listed.  The problem of determining the true order of magnitude
of  is called the ‘Dirichlet divisor problem’.  It has been the subject of a
great deal of study.  The point of interest is not the factor 4 (which can in

� (x) 4 x

� (x)
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fact quite easily be reduced to 1) but the power of .  Denote by  the
infimum of numbers  such that  is .  It was already shown by
Voronoi in 1903 that .  A proof of this can be seen in [2, sect. 1.6.4];

it uses delicate estimates of ‘exponential sums’ of the form .   With

very considerable effort, the estimate has been reduced slightly in a long
succession of small steps, rather like the 10,000 metres record in athletics!
The current record, held by M. N. Huxley, is .  On the
other hand, it was shown by Hardy and Landau in 1915 that  is at least ,
and a bold conjecture is that this is the true value. 

x θ0

θ � (x) O (xθ)
θ0 ≤ 1

3

∑
n ≤ x

eif (n)

θ0 ≤ 131
416 ≈ 0.31490

θ0
1
4

Combining Proposition 3 and Theorem 2, we can derive a rather striking
application to sums of fractional parts (with the divisor function nowhere in
sight):
Proposition 5:  We have

∑
j ≤ x

{x

j } = (1 − γ) x + �1 (x) .

where .|�1 (x)| ≤ 4 x + 1

Proof:  Denote the sum by .  By (1) and (5), V (x)

T (x) = ∑
j ≤ x

(x

j
− {x

j }) = xH (x) − V (x)

= x (ln x + γ) + xq (x) − V (x) ,
where .  Now equating this to (6), we have|xq (x)| ≤ 1

V (x) = (1 − γ) x − � (x) + xq (x) ,
and the statement follows.

So the average of these fractional parts approximates to ; one
might have expected it to approximate to .

1 − γ
1
2

Expressions as products of three factors
We now widen our investigation to consider the number of ways of

expressing  as a product of three factors.  More exactly, define  to be
the number of ordered triples  with .  We show how the
previous methods and results extend quite naturally to this case.

n τ3 (n)
(i , j, k) i jk = n

For a prime , we have :  the triples are ,
and .

p τ3 (p) = 3 (p,  1,  1) (1, p,  1)
(1,  1, p)

Again, we will consider the cumulative sums:  let .

Clearly this is the number of (positive) triples  with .

T3 (x) = ∑
n ≤ x

τ3 (n)
(i , j, k) i jk ≤ x

We can relate  and  to  and  as follows.τ3 T3 τ (= τ2) T (= T2)
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Proposition 6:   We have

τ3 (n) = ∑
k | n

τ (k) , (7)

T3 (x) = ∑
k ≤ x

T (x

k) . (8)

Proof:  For a fixed divisor  of , the number of triples with  is the
number of pairs  with , that is, .  When  runs through
the divisors of , so does .  Hence (7).

k n ijk = n
(i , j) i j = n / k τ (n / k) k

n n / k

For (8), take a fixed .  The number of triples with  is the
number of pairs  with .  By (b), this is .  Hence (8).

k ≤ x i jk ≤ x
(i , j) i j ≤ x / k T (x / k)

In terms of convolutions, (7) says that .
Corresponding to Proposition 2, we have:

τ3 = τ ∗ u = u ∗ u ∗ u

Proposition 7:  Let  have prime factorisation .  Thenn n = ∏m
j = 1 paj

j

τ3 (n) = ∏
m

j = 1

1
2 (aj + 1) (aj + 2) ,

Proof:  First consider  for a prime .  By (7),pa p

τ3 (pa) = ∑
a

b = 0

τ (pb) = ∑
a

b = 0

(b + 1) = 1
2 (a + 1) (a + 2) .

When  is expressed as a product of three factors, these factors are of the
form

n

∏
m

j = 1

pbj
j ,  ∏

m

j = 1

pcj
j ,  ∏

m

j = 1

pdj
j ,

in which  for each .  As just shown, for a fixed , the
number of choices of  is .  These choices
combine to give distinct factorisations of , hence  is as stated.

bj + cj + dj = aj j j
(bj, cj, dj) 1

2 (a + 1) (a + 2)
n τ3 (n)

Given this expression, the reader may care to try showing that  is a
multiple of 3 unless  is a cube, in which case it is congruent to 1 mod 3. 

τ3 (n)
n

Using (8) and Theorem 2, we can derive a corresponding estimate of

.  We now need an estimate of .  This is delivered by the

following variant of Lemma 1, which is proved by a slight extension of the
same method (for details, see [3, pp. 206-208]).

T3 (x) ∑
n ≤ x

[(ln n) / n]

Lemma 4:  Suppose that  is non-negative, increasing for
and decreasing for , with maximum value .  Define

f (t) 1 ≤ t ≤ x0

x ≥ x0 f (x0) = M S(x)
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and  as in Lemma 1.  ThenI (x)

I (x) − M ≤ S(x) ≤ I (x) + M.

Writing  for , we deduce for our case:ln2 x (ln x)2

Lemma 5:  We have

∑
n ≤ x

ln x

n
= 1

2 ln2 x + r (x) , (9)

where .|r (x)| ≤ e−1

Proof:  The function  increases for  and decreases
for , with .  Also, .  

f (t) = (ln t) / t 1 ≤ t ≤ e
t ≥ e f (e) = e−1 ∫

 x
1 f (t)  dt = 1

2 ln2 x

Actually,  converges to the ‘Stieltjes constant’

 as , but we don't need this.

∑
n ≤ x

[(ln n) / n] − 1
2 ln2 x

γ1 ≈ −0.072816 x → ∞

Theorem 3:  We have

T3 (x) = 1
2 ln2 x + (3γ − 1) x ln x + O (x) . (10)

Proof:  By (8) and (6),

T3 (x) = ∑
n ≤ x


x

n
(ln x − ln n) + (2γ − 1) x

n
+ � (x

n) .

Write this as , whereJ1 − J2 + J3

J1 = x (ln x + 2γ − 1) H (x) ,

J2 = x ∑
n ≤ x

ln n

n
,

J3 = ∑
n ≤ x

� (x

n) .

We deal with  and  first.  By (9),J2 J3

J2 = 1
2x ln2 x + r2 (x) ,

where .  Also,|r2 (x)| ≤ e−1x

|J3| ≤ 4 ∑
n ≤ x

x

n
.

By Lemma 1, we see that .  Hence .∑
n ≤ x

(1/ n) ≤ 2 x |J3| ≤ 8x
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Now consider .  Substituting for  by (5), we haveJ1 H (x)

J1 = x (ln x + 2γ − 1) (ln x + γ + q (x))
= x [ln2 x + (3γ − 1) ln x + c] + r1 (x) ,

where  (so ) and .  Since
 and , we have , hence .

Combining the three pieces, we obtain (10), with the term ‘ ’ no greater
than .

c = γ (2γ − 1) c < 1
2 r1(x) = xq(x)(lnx + 2γ − 1)

|q (x)| ≤ 1/ x 2γ − 1 < 1 |r1(x)| ≤ lnx + 1 |r1 (x)| ≤ x
O (x)

10x
With slightly less effort, we could have used (2) and (3), instead of (5)

and (6), to derive the correspondingly less accurate estimate 

T3 (x) = 1
2x ln2 x + O (x ln x) .

Of course,  and  are defined similarly for all ,
enumerating -tuples instead of triples.  In the same way, one has

τk (n) Tk (x) k ≥ 3
k

Tk (x) = ∑
n ≤ x

Tk − 1 (x

n) ,

and it can be shown by induction that

Tk (x) =
x

(k − 1)!
lnk − 1 x + O (x lnk − 2 x) .

The details can be seen in [3, chapters 6 and 7].
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