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Counting divisors
G. J. 0. JAMESON

The functiorr (n)

The ‘divisors’ of n are the positive integers(including 1 and n itself)
that divide into n. We will denoteby z (n) the numberof thesedivisors.
(This notationowesits origin to the GermanTeiler’; Englishspeakersften
used (n), butin my view theletterd is in far too muchdemando betied up
in this way!)

Here we outline a number of results about 7 (n), culminating in
Dirichlet's splendidtheoremon the cumulativesum of its values. For any
readerswith the appetitefor it, we then go on to show how the methods
extendto give analogougesultsaboutthe numberof ways of expressinga
number as a product tiireefactors.

Every divisor | comeswith a natural partner, its ‘codivisor’ n/j.
Another way to describez (n) is: the number of ordered pairs (j, k) of
positive integerswith jk = n (just think of j as defining the divisors in
turn). Reallyr is7; in a sequence of functiomg we return to this later.

First, a pleasant fact that follows at once from this pairing idea:

Propositionl: 7 (n) is odd if, and only ifp is a square.

Proof. If nis notasquarethenall the divisorscanbe listedin pairs(j, k),
with j < v/nandjk = n, sothe numberof themis even. If nis a square,
sayn = n?, thenthe divisorsconsistof thesepairstogetherwith m, sothe
number is odd.

It is quite easyto give an expressionfor 7 (n) in termsof the prime
factorisation of n. Note first that if p is prime, then r(p) = 2 and
7(p?) = a + 1, sincethe divisors of p* are 1, p, ..., p>. For a general
numbem, we have the following expression fo):

m
Proposition2: Supposehatn > 1, with prime factorisationn = jljlga’.

m
Thenz (n) = J_l_'[l(a,- + 1).
Proof Becauseof uniqueprime factorisation the divisorsarethe numbers
pypbe... phr, whereO < by < g for eachj. For eachj, thereareg + 1
possiblevaluesfor b, andeachcombinationgivesa differentdivisor. (The
divisor 1 is obtainedby choosingb; = 0 for eachj, andthe divisor n by
choosingy; = a;; it would be strange to exclude these two.)

For example, sinc@0 = 22 x 3 x 5, we haver(60) = 3x2x 2= 12.
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As a further illustration, we will describe,in terms of the possible
patternsof prime factors,the numbersfor which 7 (n) = 8, andfind the
smallestsuchnumber. Thefactorisationof 8 are8,4 x 2and2 x 2 x 2.
Sor(n) = 8if nis oneof theformsp’, p’q, par (wherep, g, r aredistinct
primes). The smallest of each type is: 2’ = 128, 2° x 3 = 24,
2 x 3 x 5 = 30. Sothe smallestis 24. (Thereadermight like to repeat
this exercise with a different value fo(n), for example 12.)

Of course,Propositionl follows easily from Proposition2: if nis a
m
square, then eadjis even, s?[[l(a,- + 1) is odd.

A way in which the divisor function seemso appearout of the blueis
as follows. Recall that the Riemann zeta function is defined by
(s = nglllns for reals > 1 (or indeedfor complexs with Res > 1).
So

-1l 1
O (Z -—s)(z —s)-
AT
In this product,considertthetermsthatequateto 1/ n® for afixed n. Thereis

sucha term for eachorderedpair (j, k) with jk = n, so 1/n° occursz (n)
times. Hence

c(s? = z T(n)'

S
n=1 n

(Again, it is clear that 1 amimust be counted as divisors.)

This is actually a special case of the following. Given arithmetic
functionsa(n), b (n), theconvolutiona * b is defined by

b) () = Zau)b() Y al)b®.

]|n jk=n
Clearlyr = u = u, whereu is the ‘unit function’ definedby u(n) = 1 for
all n. Convolutiondefinesthe coefficientswhen two Dirichlet seriesare
multiplied: if we write ngla(n) n° = F,(s), and similarly R, (s), then

Fa(9 R (s) = Fi.p(S). Convolutionsarevery usefulin numbertheory, but
they will not be used in this article.

Summatiorof 7 (n)

Individual valuesof  (n) fluctuatewildly. However,the variationis
smoothedut whenthe cumulativesumsof thesevaluesare consideredand
in fact it is possibleto give a very satisfactoryestimateof suchsums. For
all realx > 0, write

T = Y 7).

n<x
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We do not restrictx to integervalues:the advantagef this will be seen
in the applicationsbelow. The notation ; meansthat summationis over
n<Xx

the integersn suchthat1 < n < x. Of course,as a function of a real
variable, T (X) is constanbetweenintegersandjumpsby 7 (n) attheinteger
n.

Therearetwo ways, both obvious,in which T (x) canbe describedas
enumerating ordered pairs of positive integers:

(@) the number of ordered paifs n) withj | nandn < x;
(b) the number of ordered paigs k) with jk < x.

Geometrically,orderedpairs (j, k) of integersare called ‘lattice points’.
Note that (b) canbe describedasthe numberof lattice pointsin the (s, t)-
plane lying below the hyperboth = x.

Denoteby [x] the largestintegernot greaterthan x, and write {x} for
x — [x], the fractional part of. Clearly0 < {x} < 1.

From (a), by a neatexampleof ‘double counting’, we haveat oncethe
following expression for (x):

Proposition3:

T =Y H 1

j<x

Proof Considerthe pairsin (a). For a fixed j (insteadof fixed n), the
valuesof n allowedarethe multipleskj not greaterthanx, sothatk < x/j.
The number of suckis clearly[x/]]. The stated expression follows.

This expressiongives a way to evaluate T (x) without calculating
individual valuesof 7 (n). However,a betteralternativewill be described
shortly.

To derive a formula approximatingT (x), we needan estimateof the

harmonic sum
1
Hx = Y, =
n<x

As thereademay be aware comparisorwith theintegraljlx(llt)dt = Inx
shows that H(x) is roughly Inx. For greater precision, and for later
application, we reiteratehere how such estimateswork in general. The
basic underlying result for a decreasing function is:

Lemmal: Letf (t) be a decreasing, non-negative functiontfer 1, and let

s} =Yfm, 1 = jle(t) dt.

n<x

Then for allx > 1,
I (x) < S(X) < 1(X) + f(1).
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Whenx is aninteger,this resultis obtainedby combiningthe obvious
inequalities

f(r) < f:_lf(t) dt < f(r - 1)

for 2 < r < x. Theversionfor non-integerx follows quite easily; seefor
example [1, p. 19].

Applied withf (t) = 1/t, Lemma 1 gives:
Lemma2: Forallx > 1,

Inx < HX < Inx + 1 (2

The following estimate of (x) now drops into our lap.
Theoreml: Forallx > 1,

XInx — x < T(X) < xInx + x. 3

Proof Sincex — 1 < [x] < x, (1) gives

2(’—( - 1) <TX < 2—

j<x\] j<x!

which equates to
XHX) - [x] < T < xH(X).
Inserting (2), we obtain (3).

We now showhow to obtaina muchmoreaccurateestimate. Both the
resultand the methodwere presentecby Dirichlet in 1841. PeterGustav
Lejeune Dirichlet (1805-1859)grew up in the GermanRhineland,in a
family of mixed GermanandFrenchorigins. He taughtfor mostof his life
in Berlin, andmarrieda sisterof the composeMendelssohn He madeit his
mission to make the awe-inspiring works of Gauss better known and
understoodbut he alsomadeimportantcontributionsof his own in several
different areas of mathematics.

The key stepis to replace(1) by the following expressionfor T (x),
which is known as ‘Dirichlet's hyperbola identity’:

Proposition4: For allx > 1,

TX = 2 2[ } 4

j<Vx
Proof. In the expressionb), let N;, N, be the numberof pairs(j, k) with

i < vxand k < vx respectively(in the diagram,theseare the pointsin
AU BandA u C). By symmetry,N; = N,. For fixed j < v/X, the

number ok such thatk < xis[x/j]. HenceN; = Z [x/]].

j <X
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X

FIGURE 1

In the sum N; + N, the points satisfyingboth j < vx and k < v/X are
counted twice (in the diagram, these are the points in A). Hence
T(X) = 2N; — Ng, where Ny is the number of such points. Clearly
No = [VX]% so (4) follows.

Note thatthe summationin (4) is overthe shorterrangej < v/ instead
of j < x. Welillustratethis by using(4) to calculateT (100). We tabulate
the values 0f100/]] as follows:

j 1 2 3 4 5 6 7 8 9 10
[100/j] 100 50 33 25 20 16 14 12 11 10
10
Addition gives_Zl[lool j] = 291. SoT(100) = 2 x 291 — 10? = 482.
]:

Using (1), we would have needed to cons[d®0/j] for allj < 100.

At the sametime, we deploy a betterapproximationthan (2) for H (x):
suchan approximationis Inx + v, wherey is Euler'sconstant. The exact
statementjn the form that we require,is asfollows; a detailedproof (for
those who wish) can be seen in [1, pp. 24-25].

Lemma3: Forallx > 1
HX = Inx + vy + g, 5
where|q(x)| < 1/x.
With (4) and (5), the path to Dirichlet's theorem is clear. It says:
Theorem?2: For allx > 1,
TX = xInx + (2y - )x + A%, (6)

where |A(X)|<4vx. In other words, T(x) is approximated by
xInx + (2y — 1)x, with the error no greater thag/x.
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Proof Let No, N; be as in Proposition4. Then N, = [vxX]°. Since
VX - 1 < [Vx] < VX we haveNg = x — g1 (X), where0 < g, (X) < 2vx.

Recalling thafx] = x - {x} and0 < {x} < 1, we have

N- (X - [5}) = XH(WVX) - G0,

where0 < g(X) < VX. By (5),

HOR) = 3inx+ 7 + ).
where|q(vx)| < 1/vx, so

xH(VX) = x(3 Inx + y) + 600,
where|gz (x)| < vX. Put together, we obtain

TX = 2Ny — Ng = xInx + (2y = D)X + q1(X) — 20(X) + 20s(X).
Clearly|g. () — 20, (X)| < 2V, and hencéa (x)| < 4vx.

Another striking example of the importance of Euler's constant!

Recall that the notationO[g(x)] denotesa quantity f (x) that satisfies
[f )| < Kg(x) for someconstant< throughoutthe rangeof definition. In
this notation, (6) can be stated as follows:

T = xInx + (2y - )x + O(vx).

The theoremcanbe interpretedas sayingthat z (n) average®ut asif it
wereln 2 + 2y, because the method of integral estimation gives

Y (Inn+2y) = xInx + (2y - 1)x + O(Inx).
n<x
The following table comparessome actual values of T (x) with the
estimatex Inx + (2y — 1)x.

X 100 1,000 10,000 100,000 1,000,000
actual 482 7,069 93,668 1,166,750 13,970,034
estimate 476 7,062 93,648 1,166,736 13,969,942

A tablelike this givesonly a very partial picture,becausehe difference
A (X) obviously hasirregular fluctuations correspondingo thoseof 7 (n),
and can be positive or negative. To illustrate this, note that since
100,000 = 2°5°, we haver(100,000) = 36, sothat S, (99,999) = 1,166,714,
while the estimateis 1,166,723. So A (99,999) = -9 (to the nearest
integer), whileA (100,000) = 14.

With this said, A (x) is visibly smallerthanthe statedestimateds/x for
the valueslisted. The problemof determiningthe true orderof magnitude
of A (x) is calledthe ‘Dirichlet divisor problem’. It hasbeenthe subjectof a
greatdeal of study. The point of interestis not the factor 4 (which canin
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fact quite easily be reducedto 1) but the power of x. Denoteby 6, the
infimum of numbersf suchthat A (x) is O(x’). It was alreadyshownby
Voronoiin 1903thatf, < 1. A proofof this canbeseenin [2, sect.1.6.4];

it usesdelicateestimatesf ‘exponentialsums’of the form Z '™, With

very considerableeffort, the estimatehas beenreducedshghtly in a long
successiorof small steps,ratherlike the 10,000metresrecordin athletics!
The currentrecord,heldby M. N. Huxley, is 6, < #% = 0.31490. Onthe
otherhand,it wasshownby Hardy andLandauin 1915that, is at leasts,
and a bold conjecture is that this is the true value.

CombiningProposition3 and Theorem?2, we canderivearatherstriking
applicationto sumsof fractionalparts(with the divisor function nowherein
sight):

Proposition5: We have

Z[ﬂ S L= PX+ A X).

j<x

where|A; ()| < 4/x + 1.

Proof. Denote the sum by (x). By (1) and (5),

o= 3t

j<x ]

XH(X) — V(X)

x(INx + y) + xq(x) — V(X),

where|xq(x)| < 1. Now equating this to (6), we have
VX = (1 -»X- AKX + Xq(X),
and the statement follows.

So the averageof thesefractional parts approximateso 1 — y; one
might have expected it to approximatesto

Expressions as products of three factors

We now widen our investigationto considerthe numberof ways of
expressingy asa productof threefactors. More exactly,definezz(n) to be
the numberof orderedtriples (i, j, k) with ijk = n. We show how the
previous methods and results extend quite naturally to this case.

For a prime p, we haverz(p) = 3 thetriplesare(p, 1, 1), (1, p, 1)
and(l, 1, p).

Again, we will considerthe cumulativesums: let Tz3(x) = 2. z3(n).
n<x
Clearly this is the number of (positive) triplgsj, k) withijk < x

We can relate; andTs toz (= 1) andT (= T,) as follows.
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Proposition6: We have

3(N) = Y 7(K), )
k|n
Lo = 3 T(5). ®)

k<x

Proof. For afixed divisor k of n, the numberof tripleswith ijk = nis the
numberof pairs(i, j) with ij = n/k, thatis, 7 (n/k). Whenk runsthrough
the divisors oh, so does/ k. Hence (7).

For (8), takeafixed k < x. Thenumberof tripleswith ijk < xisthe
number of pairgi, j) withij < x/k. By (b), this isT (x/k). Hence (8).

In terms of convolutions, (7) saysthat 73 = 7 * U = U * U * U.
Corresponding to Proposition 2, we have:

Proposition7: Letn have prime factorisatiom = T'-;p". Then
s = [13(3 + 1)(3 + 2),
j=1

Proof. First considep®for a primep. By (7),

a a

() = D7) = Y b+ 1 =3@+ D@+ 2.
b=0 b=0
Whenn is expresseds a productof threefactors,thesefactorsare of the

form
n b m C; m d
i i i
I Il e

in which by + ¢ + d; = & for eachj. As just shown,for a fixed j, the
number of choices of (b, ¢, d;) is 3(a + 1)(a + 2). These choices
combine to give distinct factorisationsmfhencers (n) is as stated.

Giventhis expressionthe reademay careto try showingthatzz(n) is a
multiple of 3 unles® is a cube, in which case it is congruent to 1 mod 3.

Using (8) and Theorem?2, we can derive a correspondingestimateof
T(X). We now needanestimateof ¥ [(Inn)/n]. Thisis deliveredby the

following variantof Lemmal, wh|ch |s provedby a slight extensionof the
same method (for details, see [3, pp. 206-208]).

Lemma4: Supposethat f (t) is non-negativejncreasingfor 1 < t < X
anddecreasindgor x > Xo, with maximumvaluef (xo) = M. Define S(x)
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andl (x) as in Lemma 1. Then
IxX)— M < SX) < I (X)) + M.

Writing In?x for (In x)?, we deduce for our case:

Lemma5: We have

ZlnTX = 3In°x + r(x, 9)

wherelr (x)| < e

Proof Thefunctionf (t) = (Int)/t increase$or 1 < t < eanddecreases
fort > e withf(e) = e Also,[;f(t) dt = 1 In2x.

Actually, ¥ [(Inn)/n] - $In?x convergesto the ‘Stieltjes constant’
X
y1 = —0.072816 asx — e, but we don't need this.

Theorem3: We have
Ts(%) = 3In°x + (3y - )xInx + O(X). (10)

Proof By (8) and (6),

Ta(x) = Z[E('”X =)+ (2 - 1))_; ’ A(%)]

n<x
Write this asl; — J, + Ji, where
Ji = x(Inx + 2y — )H(X),
Inn

‘J2=X >
n

n<x

b= X

n<x
We deal withJ, andJs first. By (9),
Jo = X In®Xx + ry(x),
wherelr,(x)| < ex. Also,

m<4z%.

n<x

By Lemma 1, we see thr?Ex(l/\/ﬁ) < 2vX. HencdJ] < 8x.
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Now considet;. Substituting foH (x) by (5), we have
Ji

x(Inx + 2y = )(Inx + y + q(x))

x[In?x + (3y = 1) Inx + ¢] + ri (),

wherec = y(2y — 1) (soc < 3) andr;(x) = xq(x)(Inx+ 2y —1). Since
l[g)| < 1/x and2y - 1< 1, we have|ry(x)| < Inx + 1, hencelr; (x)| < x.

Combiningthe threepieceswe obtain(10), with theterm*O(x)’ no greater
than10x.

With slightly lesseffort, we could haveused(2) and (3), insteadof (5)
and (6), to derive the correspondingly less accurate estimate

Ts(%) = 3xIn®x + O(xInx).

Of course, 7 (n) and Ty (x) are defined similarly for all k > 3,
enumeratin-tuples instead of triples. In the same way, one has

T = 3 Tea(5),

n<x
and it can be shown by induction that
X k-1 k-2
Tc(X) = ——— In"""x + O(xIn""“x).
) = T + 0O )
The details can be seen in [3, chapters 6 and 7].
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