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The response of a pressure-induced turbulent separation bubble (TSB) to periodic forcing
by pulsed-jet actuators (PJAs) positioned in the upstream boundary layer is investigated
experimentally in an attempt to elucidate the mechanism of low-frequency contraction
and expansion (‘breathing’) already documented in this flow by Mohammed-Taifour &
Weiss (J. Fluid Mech., vol. 799, 2016, pp. 383–412). The TSB is generated on a flat test
surface by a combination of adverse and favourable pressure gradients and the free-stream
velocity is 25 m s−1. The results indicate that periodic forcing artificially reduces the
size of the TSB by moving separation downstream and reattachment upstream. The
smaller TSB is associated with narrower streamwise distributions of average pressure and
forward-flow fraction, as well as smaller turbulent stresses in the shear layer bounding
the recirculation region. Transient forcing experiments further demonstrate that the TSB
responds to upstream forcing with a characteristic time scale that is of the same order
of magnitude as that of the breathing motion. Overall, the results of this study support
a mechanism whereby the low-frequency breathing motion is a response of the TSB
to upstream perturbations that affect the position of separation first and, indirectly, the
position of reattachment through a global redistribution of the pressure and velocity
fields. The low-frequency behaviour of the TSB appears to be well illustrated by a
first-order low-pass filter model that converts the broadband fluctuations of the incoming
turbulent boundary layer into a low-frequency, large-scale oscillation of the separation
and reattachment fronts, thus leading to a contraction and expansion of the TSB. The
results of the continuous forcing experiments also offer new insights into active separation
control with PJAs by showing that such actuators generate strong starting vortices that,
when convected within an adverse pressure gradient, are associated with a downstream
shift of the separation front.
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1. Introduction

The separation of a turbulent boundary layer from a wall is accompanied by pressure
and velocity fluctuations in a broad range of time scales. In turbulent separation
bubbles (TSBs), where the separated shear layer reattaches to the wall downstream
of the detachment region, at least three frequency ranges are typically observed: a
low-frequency unsteadiness, usually dubbed flapping or breathing of the separation
bubble, medium-frequency fluctuations, typically referring to the convection and shedding
of coherent structures downstream of the separated zone, and high-frequency fluctuations
related to the turbulent nature of the flow (Kiya & Sasaki 1983; Cherry, Hillier &
Latour 1984; Hudy, Naguib & Humphreys 2003; Mohammed-Taifour & Weiss 2016; Wu,
Meneveau & Mittal 2020).

Among those unsteady phenomena, the low-frequency unsteadiness is probably the
least understood. In pressure-induced TSBs, where the boundary layer separates from
a smooth surface because of an adverse pressure gradient, this unsteadiness relates to a
large-scale, low-frequency contraction and expansion (hence breathing) of the separated
zone. The effect of this motion is most dramatic in the supersonic regime, where TSBs
generally occur within shock-wave/boundary-layer interactions (SBLI). In such flows, the
low-frequency breathing of the TSB is associated with the unsteady motion of an oblique
separation shock that creates detrimental fluctuating pressure and thermal loads on the
structure (Dolling 2001; Dussauge, Dupont & Debiève 2006; Clemens & Narayanaswamy
2014). Although pressure loads are much smaller in subsonic flows, there is mounting
evidence that low-frequency unsteadiness can occur both in low-speed and high-speed
pressure-induced TSBs (Weiss, Mohammed-Taifour & Schwaab 2015; Larchevêque 2020;
Weiss et al. 2021).

The frequency f of the large-scale contraction and expansion of a TSB is typically
several orders of magnitude lower than the turbulent fluctuations in the incoming
boundary layer. Following a scaling introduced by Mabey (1972), researchers often
define a non-dimensional frequency with a length Lsep representative of the separated
zone and a reference velocity Uref . This gives a Strouhal number St = fLsep/Uref .
Experience shows that the low-frequency motion is essentially broadband and does not
show any clear peak in the frequency domain. Thus, its characteristic frequency is
often taken as the maximum of the pre-multiplied power-spectral density f × p.s.d.( f ).
As shown by Poggie et al. (2015), this maximum corresponds to the cutoff frequency
of a first-order linear system. This implies that characteristic frequencies obtained this
way essentially mark the upper boundary of a broadband low-frequency range and
not a specific frequency characterizing the fluctuations. Nevertheless, Strouhal numbers
obtained in a variety of high-speed, SBLI-induced TSBs typically cluster around St =
0.03 (Dussauge et al. 2006). Results obtained in low-speed flows are much sparser.
Mohammed-Taifour & Weiss (2016) and LeFloc’h et al. (2020) report a value of St � 0.01
in a family of incompressible, pressure-induced TSBs generated on a flat surface with a
combination of adverse and favourable pressure gradients. This value is consistent with
the low-frequency pressure fluctuations observed by Camussi et al. (2008) (St � 0.01)
and Graziani et al. (2018) (St � 0.02–0.03) upstream and on the front face of a
forward-facing step, respectively. While the latter authors define their Strouhal number
with the height H of the step, its numerical value is comparable to the Strouhal defined
above since the length of the pressure-induced TSB upstream of the step is Lsep � H
in both experiments. Wu et al. (2020) simulated a flat-plate TSB via direct numerical
simulation (DNS) and observed a contraction-expansion motion with characteristic
frequency St � 0.4 when the TSB was generated with a suction-only boundary condition
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but not when a suction-and-blowing condition was used. The large difference with the
value of Mohammed-Taifour & Weiss (2016) remains unexplained but may be related to a
difference in Reynolds number or in the combination of pressure gradients (i.e. boundary
conditions) used to generate the TSBs in both set-ups. Larchevêque (2020) compared
pre-multiplied wall-pressure p.s.d.s under flat-plate TSBs generated in low-subsonic
(M � 0), high-subsonic (M = 0.9) and supersonic flows (M = 2.0) and showed very
good agreement of the low-frequency pressure signature with a characteristic frequency
St � 0.01 by using consistent normalizing constants Lsep and Uref .

Several mechanisms have been proposed to explain the low-frequency unsteadiness of
TSBs. For SBLI-induced separation bubbles, a distinction is made between upstream and
downstream mechanisms (Clemens & Narayanaswamy 2014). Proponents of the upstream
mechanism argue that the TSB responds selectively to large-scale, near-wall perturbations
in the incoming boundary layer, e.g. Porter & Poggie (2019), while supporters of the
downstream mechanism suggest that inherent instabilities in the separation bubble are
responsible for the unsteadiness, e.g. Piponniau et al. (2009). This latter view stems from
an analysis of low-speed, geometry-induced TSBs, which have been investigated far more
often than their pressure-induced counterparts (Eaton & Johnston 1982; Kiya & Sasaki
1983; Cherry et al. 1984; Driver, Seegmiller & Marvin 1987; Hudy et al. 2003; Ma &
Schröder 2017). Geometry-induced TSBs differ from pressure-induced TSBs inasmuch as
the separation point is fixed in the former case but may fluctuate in the latter. Downstream
mechanisms usually relate the low-frequency unsteadiness to the medium-frequency
vortex shedding via a feedback loop. It has been conjectured that this feedback originates
from an instantaneous imbalance between the entrainment from the recirculation region
and the reinjection of fluid in the reattachment zone. The imbalance could be caused by an
unusual event which would either ‘breakdown the spanwise vortices’ (Eaton & Johnston
1982), ‘temporarily interrupt the shear-layer growth’ (Cherry et al. 1984), ‘disorder the
roll-up and pairing process’ (Driver et al. 1987) or generate ‘vorticity accumulation’ (Kiya
& Sasaki 1983). More recently, based on dynamic mode decomposition of computational
fluid dynamics results, several authors have suggested that the low-frequency unsteadiness
in low-speed and high-speed TSBs might be related to a centrifugal instability linked to
the flow curvature around the bubble (Priebe et al. 2016; Pasquariello, Hickel & Adams
2017; Wu et al. 2020).

The distinction between upstream or downstream mechanisms is not necessarily
straightforward since one could envisage a situation where the bubble responds to
incoming disturbances in a complex way. This occurs in laminar separation bubbles
(LSBs), which appear on certain airfoils at low Reynolds numbers (Alam & Sandham
2000; Spalart & Strelets 2000). Such LSBs, where a laminar boundary layer separates
from a smooth surface, transitions to turbulence, and reattaches further downstream due to
increased turbulent transport, are known to feature a type of low-frequency unsteadiness
usually denoted as flapping in the literature (Hain, Kähler & Radespiel 2009; Boiko
et al. 2013). DNS results by Marxen and co-workers (Marxen & Rist 2010; Marxen &
Henningson 2011; Marxen 2020), confirmed experimentally by Michelis, Yarusevych &
Kotsonis (2017) and Yarusevych & Kotsonis (2017), suggest that the flapping of LSBs is
driven by altered stability characteristics of the flow due to variations in the incoming
free-stream disturbances. According to this theory, a random increase in the amplitude
of incoming disturbances accelerates the roll-up of vortical structures in the unstable
shear layer and causes reattachment to occur earlier. This indirectly affects the position
of separation through viscous–inviscid interaction and leads to a shorter bubble whose
stability characteristics are altered, thus resulting in a (yet to be clarified) feedback loop.
Such a mechanism is intimately related to the concept of mean flow deformation, which
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refers to a change of the time-averaged flow field that may occur because of a change of
the unsteady character of upstream forcing (Marxen & Rist 2010).

A better understanding of the mechanism(s) sustaining the low-frequency unsteadiness
of TSBs may be obtained by subjecting the separation bubble to controlled perturbations.
There is a large body of knowledge on active forcing in TSBs generated on
backward-facing steps (Bhattacherjee, Troutt & Scheelke 1986; Chun & Sung 1996;
D’Adamo, Sosa & Artana 2014), blunt cylinders (Sigurdson 1995; Kiya, Shimizu &
Mochizuki 1997) or ramp flows (Brunn & Nitsche 2003; Dandois, Garnier & Sagaut 2007),
to cite only a few. Most of these studies are concerned with finding the ‘most effective’
forcing parameters that minimize the reattachment length of the separated zone. Forcing
in a specific range of frequencies tends to increase the spreading rate of the shear layer
by enhancing the merging of large-scale coherent structures, which leads to a shorter
recirculation region. Typically, the most effective frequency is found to be of the order
of the natural shedding frequency. While these studies help understand the relationship
between shear-layer growth and reattachment length in geometry-induced TSBs, they do
not specifically consider the effect of forcing on low-frequency unsteadiness.

In the present article, controlled perturbations are imposed upstream of the large
pressure-induced TSB already investigated by Mohammed-Taifour & Weiss (2016). The
objective is to explore the response of the separation bubble to these perturbations
in an attempt to elucidate the mechanism responsible for the low-frequency breathing
motion already documented in this flow. The TSB occurs on a flat test surface by a
combination of adverse and favourable pressure gradients generated in a low-speed wind
tunnel. In contrast to most existing set-ups, the separation location is free to move on the
flat test surface, thus providing a configuration that is well suited to comparison with SBLI
flows (Weiss et al. 2015).

Of relevance to the present work is the extensive literature on active flow control
(AFC) of boundary-layer separation. A complete review of existing results would be
largely out of the scope of the present article and the interested reader is referred to the
review article by Greenblatt & Wygnanski (2000), the recent AIAA Flow Control Virtual
Collection (Greenblatt, Whalen & Wygnanski 2019) and references therein. Briefly,
periodic excitation has been found to be much more effective than steady forcing to
delay or suppress flow separation on airfoils in a wide range of Reynolds numbers.
Depending on the actuation method and parameters, the effectiveness of AFC has been
explained by the amplification of large spanwise structures in the shear layer (Darabi &
Wygnanski 2004a), virtual aerodynamic shaping through trapped vorticity (Glezer 2011)
or momentum transfer induced by the starting vortices of pulsed jets (Hecklau, Salazar
& Nitsche 2013). In the present work, pulsed-jet actuators (PJAs) are used to impose
controlled perturbations of specific amplitude and frequency upstream of the TSB in order
to investigate its response to the perturbations. Such PJAs are one among many types of
actuators available for AFC applications (Cattafesta & Sheplak 2011).

The article is organized as follows. Sections 2 and 3 briefly describe the experimental
methodology and the salient features of the unforced flow with reference to the previous
results of Mohammed-Taifour & Weiss (2016). The response of the TSB to continuous
forcing at various frequencies and amplitudes is then analysed in § 4. These results are an
extension of the preliminary discussion by Mohammed-Taifour, Le Floc’h & Weiss (2020).
This is followed by an investigation of transient forcing in § 5. Finally, the interpretation of
the new results in terms of low-frequency unsteadiness is discussed in § 6 and a conclusion
is offered in § 7.
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Figure 1. (a) Average wall-pressure coefficient cp measured on the test-section centreline (z = 0 m) and at
two symmetric spanwise positions (z = ±0.15 m). (b) Profile sketch of the test section with contour plot of the
longitudinal velocity (the numbers 1 to 5 refer to the particle image velocimetry measurement stations). Solid
white and dashed blue lines denote the dividing streamline and the δ99 boundary-layer thickness, respectively.
Inset: settling chamber and contraction of the PJA system (§ 2.2).

2. Experimental apparatus and methods

2.1. Wind tunnel
Experiments were performed in the TFT boundary-layer wind tunnel at a nominal
velocity of Uref = 25 m s−1. The blowdown wind tunnel is described in detail in
Mohammed-Taifour et al. (2015) and Mohammed-Taifour & Weiss (2016). As illustrated
in figure 1, its test section is 3 m in length and 0.6 m in width. In the first half of the
test section, a zero-pressure-gradient (ZPG) boundary layer develops on the upper surface
and separates because of the adverse pressure gradient (APG) imposed by the diverging
test-section floor. The boundary layer subsequently reattaches due to the favourable
pressure gradient (FPG) that occurs when the floor converges again. The use of a bleed slot
ensures that the boundary layer on the lower surface stays attached to the contoured part
of the test-section floor. This slot connects directly to the atmosphere, while the interior
of the test section is maintained at a slightly elevated pressure by a mesh positioned at
the exit. Also shown in figure 1 is the pressure distribution measured on the centreline
(z = 0 m) and at two symmetric spanwise positions (z = ±0.15 m), as well as a contour
plot of the average longitudinal velocity field on the centreline in the region of the TSB.
For reference, at x = 1.3 m the incoming boundary-layer thickness is δ = 33 mm and the
momentum thickness is θ = 3.26 mm, which implies a Reynolds number Reθ � 5000.

The position of reattachment on the test surface is strongly influenced by the presence
of an FPG. This so-called suction-and-blowing configuration was specifically chosen to
generate a TSB that mimics the region of separated flow in turbulent SBLIs, where the
shear layer in the aft part of incident-shock or compression-ramp interactions is usually
deflected towards the wall (Babinsky & Harvey 2011; Threadgill & Bruce 2020). Thus,
the flow development in the current configuration is different than in flows that use a
suction-only boundary condition to separate the boundary layer, and where reattachment
occurs because of turbulent diffusion only (Wu et al. 2020). LeFloc’h et al. (2020) discuss
the pressure distribution generated in the TFT boundary-layer wind tunnel in relation to
other references from the literature.

2.2. Pulsed-jet actuators
The flow is controlled with a series of PJAs that can be placed at two streamwise
positions on the test surface and that are distributed across the complete test-section span.
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Figure 2. Exemplary time traces of the jet velocity for Fj = 100 Hz.

Those actuators produce rectangular jets of velocity Uj(t) ejecting from the test-section
wall at a specific frequency. They were chosen because of their relatively large control
authority compared to other types of actuators, the possibility of independently controlling
their forcing amplitude, frequency and duty cycle as well as their proven success in the
active control of two-dimensional flow separation (Petz & Nitsche 2007; Cattafesta &
Sheplak 2011). The pulsed jets are generated using a supply line of compressed air with
a pressure Pj that imposes a given mass-flow rate. The total mass flow is controlled
by eight solenoid valves which simultaneously feed a settling chamber that is mounted
on top of the test surface (see inset in figure 1). The settling chamber is filled with
light foam to homogenize the air flow and ensure a constant forcing amplitude across
the test-section span. The flow from the settling chamber is then accelerated through a
third-order polynomial shaped contraction with an area ratio of 50 before reaching a series
of equally spaced slots perforated on the test surface. Each slot has a width of h = 1 mm
in the main streamwise direction of the flow and a length of 6h in the spanwise direction.
The slots are spaced 2 mm apart and are built with a slant angle in the test surface so
that the jets exit at 45◦ from the horizontal direction (an image of the system is shown in
Mohammed-Taifour et al. 2020). The control signal of the solenoid valves is a square
wave of frequency Fj that can be varied between 0 and 300 Hz. The duty cycle was
fixed at 25 % for the duration of the experiments. The amplitude of the pulsations is
controlled by an analogue pressure reducer through which the pressure-supply level Pj
can be manually controlled between 1 and 7 bar. The jet velocity Uj corresponding to
each Pj was measured experimentally with a single hot-wire probe positioned 1 mm below
the test surface at the centre of slot closest to the test-section centreline. An example of
time traces of Uj(t), measured when the wind tunnel was turned on at Uref = 25 m s−1,
is shown in figure 2 for a frequency of 100 Hz and four amplitudes ranging from 1 to
6 bar. Repeatability studies demonstrated that the jet velocity can be reproduced within
0.5 m s−1 by manually controlling the supply pressure Pj. Further measurements across
the span of the wind tunnel demonstrated the homogeneity of the jets outflow within a few
per cent. No evidence of negative velocity (i.e. air ingestion) was observed, either when
the actuators pulsed air in the main wind-tunnel flow or in a quiescent environment.

The pulsed jets are characterized by their maximum velocity Uj,max when the solenoid
valves are open, from which we define the velocity ratio λj = Uj,max/Uref . The momentum
coefficient is defined as Cμ = (Uj,eff /Uref )

2(h/δ), where Uj,eff is the effective jet velocity

Uj,eff =
√

Ū2
j + (Uj,std)2, h = 1 mm is the width of the control slots and δ = 33 mm is

the boundary-layer thickness at x = 1.30 m. In the definition of the jet effective velocity,
Ūj and Uj,std are the mean value and the standard deviation of the jet velocity signal Uj(t)
during a full period, respectively. Defined as such, Cμ represents the average momentum
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Pj (bar) Ūj (m s−1) Uj,eff (m s−1) Cμ (%) Cm (%) Uj,max (m s−1) λj

1 9.5 10.9 0.57 0.25 19.1 0.77
2 11.8 14.2 0.98 0.32 25.7 1.03
3 12.9 16.0 1.24 0.34 30.1 1.21
4 13.6 17.2 1.43 0.36 32.2 1.29
5 14.8 19.0 1.75 0.39 35.9 1.43
6 14.9 19.2 1.79 0.40 37.3 1.49

Table 1. PJA parameters for Fj = 100 Hz.

Fj F+ Fj/fbreath Fj/fshed

15 0.25 25 1
40 0.67 67 2.7
100 1.68 167 6.7
200 3.36 333 13

Table 2. Non-dimensional forcing frequency F+ = FjLb/Uref and ratio of several forcing frequencies to the
characteristic frequencies of the breathing and shedding modes of the unforced flow: fbreath � 0.6 Hz and
fshed � 15 Hz, respectively.

input of the forcing system normalized by a reference momentum in a fully incompressible
flow (Greenblatt & Wygnanski 2000). We further define a mass-flow coefficient Cm =
ṁj/ṁref = (Ūj/Uref )(h/hts), where hts = 0.15 m is the height of the test section at x = 0
and where ṁj and ṁref are the mass-flow rates of the jet and the main stream in the wind
tunnel, respectively. Table 1 recaps the values of λj, Cμ, and Cm as a function of the supply
pressure Pj for frequency Fj = 100 Hz (figure 2). Note that, at a fixed value of the supply
pressure Pj, λj, Cμ and Cm vary slightly as a function of Fj.

The non-dimensional forcing frequency F+ = FjLb/Uref , where Lb = 0.42 m is the
average length of the unforced backflow region on the test-section centreline, is provided
in table 2, together with the ratios of several forcing frequencies used in the experiments
to the characteristic frequencies of the breathing and shedding modes of the unforced flow
(see § 3).

2.3. Instrumentation
The experimental techniques used in the present work were essentially the same as
in Mohammed-Taifour & Weiss (2016) and LeFloc’h et al. (2020) and will only be
described briefly. The average wall pressure was measured using two Scanivalve DSA3217
pressure scanners and the wall-pressure fluctuations with several Meggitt 8507C-1
piezoresistive pressure transducers. The estimated uncertainty of the measured values is
±0.7 % and ±5 % for the mean and fluctuating pressure, respectively (Weiss et al. 2015).
The forward-flow fraction γ , defined as the percentage of time that the near-wall flow goes
in the main, positive streamwise direction, was measured with the microelectromechanical
system (MEMS) calorimetric shear-stress sensor introduced by Weiss et al. (2017). This
sensor features three parallel micro-beams suspended over a small cavity. The middle
beam is heated by an electric current and the two lateral beams act as resistance
thermometers. By measuring the electrical resistance of the two lateral beams, the
asymmetry of the thermal wake of the heater can be related to the wall shear stress after
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a dedicated calibration. In the present work, the sensor was used uncalibrated to detect
the instantaneous direction of the near-wall flow in a manner similar to a classical thermal
tuft (Eaton et al. 1979; Schwaab & Weiss 2015). The uncertainty in γ is estimated at
±2 % for a 180 s long signal (LeFloc’h et al. 2018). All single-point unsteady signals
were digitized with a 24-bit National Instruments NI-PXIe-4492 data acquisition card at
a sampling rate of 2 kHz and low-passed filtered with the embedded anti-aliasing filter.
Power-spectral densities were computed using Welch’s modified periodogram algorithm
with 50 % overlap and a Hamming window (Bendat & Piersol 2010).

Planar flow velocity measurements were achieved using a high-speed, planar,
two-component (2D-2C), particle image velocimetry (PIV) system that consists of a
Litron LDY304 Nd:YLF laser, light-sheet optics and two Phantom V9.1 CMOS cameras
mounted side by side. Both cameras were equipped with a 50 mm, f #2 Micro Nikkor lens
to obtain a total field of view of approximately 0.20 m in the streamwise direction and
0.075 m in the wall-normal direction. The pair of cameras was moved in the streamwise
and vertical directions to cover the complete length and height of the separation bubble
(see figure 1). The images were processed by the LaVision DaVis software (version 8.2)
using a multi-pass correlation technique with 50 % overlap. The vector spacing in the
object plane is 1 mm, which corresponds to approximately 3 % of the boundary-layer
thickness at x = 1.3 m (δ = 33 mm). The sampling frequency was set at 400 Hz
for the duration of the experiments, except for Fj = 15 Hz, where it was set at 450
Hz to facilitate phase averaging. The nominal uncertainty of the system, based on a
0.1 pixel displacement uncertainty, is 0.5 m s−1 (Mohammed-Taifour & Weiss 2016).
The uncertainty in turbulence statistics, which depend on the total duration of the
measurements, are ±0.2 m s−1 for the mean streamwise velocity, ±0.3 m s−1 for the
mean wall-normal velocity, ±0.2 m2 s−2 for the streamwise stresses, ±0.1 m2 s−2 for the
wall-normal stresses and ±0.1 m2 s−2 for the shear stresses, respectively (LeFloc’h et al.
2020).

2.4. Three-dimensional effects in the average flow
Because the test section of the wind tunnel is rectangular, three-dimensional effects
in the average flow are unavoidable. Mohammed-Taifour & Weiss (2016) used oil-film
visualizations to draw a consistent topological map of the skin-friction lines in the
unforced TSB. They showed the strongly three-dimensional nature of the near-wall flow
but argued that wall-normal measurements near the centreline can be considered as
quasi-two-dimensional since the flow is symmetric and features a narrow band around
the centreline where the wall streamlines are straight. Mohammed-Taifour, Dufresne &
Weiss (2019) and LeFloc’h et al. (2020) further investigated the three-dimensional nature
of the average (unforced) flow through Reynolds-averaged Navier–Stokes simulations and
interpreted the directions of the wall streamlines by classical secondary-flow arguments in
the sidewall boundary layers.

Oil-film visualizations on the test surface are shown in figure 3 for the unforced flow
(a) and two forced cases: a relatively mild forcing where the actuators were placed at
x = 1.45 m (b) and a stronger forcing with actuators placed at x = 1.55 m (c). In both
cases the forcing frequency was 20 Hz and the supply pressure was set to 4 bar. It can be
seen that the overall structure of the wall streamlines is not changed by the actuation, and
that the flow remains symmetric, thus precluding any significant average spanwise velocity
through the centreline. On the other hand, for relatively strong forcing, and despite the
spanwise-homogeneous forcing amplitude, the separation line is strongly curved, which
implies a vanishing band of quasi two-dimensional flow. This can be explained as follows:
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Figure 3. Sample of oil-film visualizations. (a) Unforced flow, (b) forcing at x = 1.45 m and (c) forcing at
x = 1.55 m for a supply pressure of 4 bar and a forcing frequency of 20 Hz. In (c) the upstream part of the test
surface is blocked by the actuator set-up.

as will be discussed in § 4, forcing does not have a strong effect on the average pressure
distribution in the test section, nor, consequently, on the potential streamlines. Therefore,
the secondary flows on the sidewalls and the associated corner effects remain relatively
unaffected. On the other hand, as can be observed in figure 3, forcing strongly changes the
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Figure 4. Averaged velocity field along the test-section centreline. The white solid line delimits Ū = 0.

position of flow separation on the test-section centreline. This difference in behaviour
between the centreline and the sidewalls leads to stronger three-dimensionality of the
average wall streamlines when forcing is more effective.

Despite this caveat, the measurements reported in this article were, for practical reasons,
performed on the centreline of the test section. The underlying assumption is that the flow
physics reported herein is locally two-dimensional, which can be substantiated by the fact
that the separation line is only slightly curved between z = −0.1 and z = 0.1 m, even
when forcing is strong. Nevertheless, the consequence of this hypothesis will be further
discussed in § 6.

3. The unforced flow

In this section we provide salient features of the TSB in its uncontrolled state. The
presentation is limited to the material that is relevant for a discussion of the controlled
cases in the next sections. Further details can be obtained in Mohammed-Taifour & Weiss
(2016).

A contour plot of the average longitudinal velocity Ū(x, y) in the unforced TSB with
representative velocity vectors is shown in figure 4. As expected, the flow detaches from
the wall and reattaches further downstream, thereby creating a recirculation region with
negative average longitudinal velocity. The degree of detachment may be quantified by
streamwise positions referring to a specific threshold of the near-wall forward-flow fraction
γ (Simpson 1989). Incipient detachment (ID) is the position where the near-wall flow is
in the positive direction exactly 99 % of the time (γ = 99 %) and marks the start of the
separation process. At transitory detachment (TD) and transitory reattachment (TR), the
flow goes in the positive and negative directions with equal probability (γ = 50 %). These
two positions delimit the average recirculation zone of the TSB and correspond to the usual
definitions of turbulent separation and reattachment with cf = τw/1

2ρU2
ref = 0, where τw

is the average wall shear stress and ρ is the fluid density (Coleman, Rumsey & Spalart
2018). Finally, complete reattachment (CR) marks the very end of the separation process
with γ = 99 % again. In the present case, xID � 1.59 m, xTD � 1.75 m, xTD � 2.17 m
and xCR � 2.30 m, where x = 0 marks the entrance of the test section (figure 1). Based on
these values, we define two characteristic lengths of the unforced TSB: L50 = xTR − xTD =
0.42 m and L99 = xCR − xID = 0.71 m. For clarity, in the remainder of the article we will
use Lb to denote the length L50 of the unforced flow, as in Mohammed-Taifour & Weiss
(2016).

Streamwise distributions of the average wall-pressure coefficient cp = ( p −
pref )/

1
2ρU2

ref , the fluctuating wall-pressure coefficient cp′ = prms/
1
2ρU2

ref and the
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Figure 5. Averaged and fluctuating pressure coefficients and forward-flow fraction along the test-section
centreline.
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Figure 6. The p.s.d. (a) and pre-multiplied p.s.d. (b) of wall-pressure fluctuations at the local and global
maxima of cp′ .

near-wall forward-flow fraction γ , are shown in figure 5 (here, prms is the root mean
square of the pressure fluctuations). The slope of the cp distribution is very steep between
x = 1.45 m and x = 1.65 m and decreases afterwards when the shear layer detaches
from the wall. The maximum of cp is reached at x = 2.25 m, between TR and CR,
and the wall pressure subsequently decreases because of the flow acceleration induced
by the convergence of the tunnel floor. The fluctuating pressure coefficient cp′ shows a
bi-modal character with a first local maximum close to ID and a second, global maximum
close to CR. As demonstrated by LeFloc’h et al. (2020), the first maximum is caused
by the superposition of two separate phenomena occurring at approximately the same
streamwise position: first, the pressure signature of the low-frequency breathing motion of
the TSB and second, the effect of the APG on the turbulent structures responsible for the
pressure fluctuations in the attached boundary layer, which shifts the energy of the pressure
fluctuations to lower frequencies. The second maximum of the cp′ distribution is associated
with the convection of large structures within the shear layer and their subsequent shedding
downstream of the TSB (Mohammed-Taifour & Weiss 2016; LeFloc’h et al. 2020).

The spectral content of the wall-pressure signatures at x = 1.60 m (ID) and x = 2.30 m
(CR) is shown in figure 6. A medium-frequency activity is apparent as a broad peak in the
p.s.d. at approximately 15–20 Hz in the reattachment region. This unsteadiness is linked to
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Figure 7. Magnitude-squared coherence C and phase angle θ of the low-frequency component of the
wall-pressure fluctuations measured at x1 = 1.60 m � xID and x2 = xCR = 2.30 m. The blue line is a linear
fit on the phase angle between 0 and 4 Hz.

the convective roll-up and shedding of vortical structures in the separated shear layer that
are responsible for the second peak of cp′ in figure 5. The structures are initiated between
ID and TD and most likely grow downstream through a pairing-like process similar to that
occurring in turbulent free shear layers. As they are convected downstream at a velocity
of approximately Uc = 0.3Uref , the structures are then accelerated towards the wall in the
FPG zone and produce a maximum wall-pressure signature at the edge of the separation
bubble near CR (Weiss et al. 2015; Mohammed-Taifour & Weiss 2016). When scaled with
the average length of the recirculation zone, the shedding frequency of the structures is of
the order of Sts = fLb/Uref = 0.25–0.35. Given the convective velocity of Uc � 0.3Uref ,
this implies that there is on average only approximately one large structure within the
streamwise length Lb of the TSB.

The low-frequency unsteadiness of the TSB is most apparent at x = 1.60 m, where it
emerges as a hump with a central frequency of 0.6 Hz in the pre-multiplied spectrum.
This low-frequency pressure signature is also present in the reattachment zone, albeit
at a lower amplitude: Weiss et al. (2015) showed that when computed in a narrow
frequency range characteristic of the low-frequency unsteadiness, the filtered fluctuating
wall-pressure coefficient shows two distinct peaks located at the streamwise positions
of maximum APG and FPG (their figure 11). With the use of two thermal-tuft probes,
and following a methodology similar to that of Eaton & Johnston (1982), Weiss et al.
(2015) then showed that these pressure fluctuations are the signature of a low-frequency
random cycle of contraction and expansion, dubbed breathing, of the TSB. In a subsequent
experiment, Mohammed-Taifour & Weiss (2016) demonstrated that this breathing motion
is well illustrated by the first proper orthogonal decomposition mode of the velocity field
(see also LeFloc’h et al. 2020). Using the same scaling as above, the breathing frequency
is of the order of Stb = fLb/Uref � 0.01.

Both the thermal-tuft measurements of Weiss et al. (2015) and the PIV experiments
of Mohammed-Taifour & Weiss (2016) revealed that during the random cycles of
low-frequency contraction and expansion, the instantaneous detachment moves over a
distance approximately twice as large as the instantaneous reattachment. However, no
attempt was made to investigate a possible time lag between the low-frequency motion
in the detachment and reattachment zones. Mohammed-Taifour (2017) subsequently
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Figure 8. (a) Correlation coefficient between the low-pass filtered pressure fluctuations measured at reference
positions x = 1.65 m and x = 2.30 m and a moving point on the test-section centreline. (b) Conceptual model
of the contraction and expansion of the average pressure distribution.

performed a lead–lag analysis of the wall-pressure signal between x1 = 1.60 m � xID
and x2 = xCR = 2.30 m. The results are presented in figure 7. The magnitude-squared
coherence function Cp′

1p′
2

is significantly larger than zero in the low-frequency part of the
spectrum and the phase angle shows a linear dependency with the frequency, with a slope
of θp′

1p′
2
/2π � 0.044f . This indicates that the two signals are highly correlated and that

there is an average delay of 44 ms between the pressure signal at CR compared to the
signal at ID (Bendat & Piersol 2010). In other words, the instantaneous (low-frequency)
reattachment moves after the instantaneous detachment. The time delay of 44 ms
corresponds to the time that it takes for a fluid particle to follow an average streamline
between the streamwise positions of ID and CR in the potential flow outside of the
boundary layer. From the average velocity field shown in figure 4, the length of such a
streamline starting at (x = 1.60 m, y = 0.04 m) and integrated until x = 2.30 m is 0.80 m.
The average potential-flow velocity between ID and CR can be estimated from an average
pressure coefficient c̃p between these two positions. From figure 5 we obtain c̃p � 0.42,
which implies a potential velocity of Upot � Uref

√
1 − c̃p = 19 m s−1. Dividing the

length of the streamline (0.80 m) by this velocity gives an estimated convection time of
42 ms, which is indeed very close to the time delay obtained from the lead–lag analysis.
This convection time is much shorter than the characteristic period of the low-frequency
breathing motion, which, in this flow, is of the order of 1 s.

Figure 8(a) shows distributions of the correlation coefficient between the low-pass
filtered wall-pressure fluctuations measured at two reference positions (x = 1.65 m and
x = 2.30 m) and other streamwise positions on the test-section centreline. These data
were obtained by low-pass filtering the pressure signal at f = 10 Hz to concentrate on
the low-frequency breathing motion. As mentioned above, the correlation coefficient is
high between the two reference points, but turns slightly negative when the moving probe
is located between TD and TR. This indicates that when the wall pressure is increasing at
the upstream and downstream edges of the TSB, it decreases in the middle, and vice versa.
This suggests a simple model of the low-frequency breathing where the modulation of the
TSB size is associated with a slow, quasi-steady contraction and expansion of the average
wall-pressure distribution is a manner sketched in figure 8(b). A contraction of the TSB
induces a decrease of the wall pressure at the edges of the TSB and an increase within
the recirculation zone. The variation of the wall pressure that occurs near ID during this
quasi-steady motion is responsible for the low-frequency pressure signature observed in
figure 6.
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Figure 9. Forward-flow fraction γ for the unforced and forced flows with Pj = 4 bar (Cμ = 1.4 % ± 0.06 %).
Forcing position at x = 1.45 m (a) and at x = 1.55 m (b). Vertical dashed lines indicate the streamwise position
of actuation.

In summary, the unforced TSB investigated in this work naturally contracts and expands
at a frequency of the order of one Hertz. This low-frequency ‘breathing’ motion is most
likely driven by an upstream mechanism that acts on the separation position first. The shift
of the separation front triggers a change of the overall pressure distribution and leads to a
motion of the reattachment position in the direction opposite of separation. This proposed
mechanism will be further discussed in § 6 in light of the results obtained with periodic
forcing.

4. Continuous forcing

We begin with a presentation of the results obtained while the flow was continuously
forced at a specific frequency and amplitude. The pulsed-jet actuators were installed at
two streamwise positions in the test section: first at the beginning of the pressure rise
(x = 1.45 m) and second within the APG zone (x = 1.55 m). The resulting distributions
of forward-flow fraction on the tunnel centreline, measured with the MEMS calorimetric
sensor, are presented in figure 9. These data were obtained for a supply pressure Pj = 4 bar,
which corresponds to a nominal velocity ratio of λj = 1.4 and a momentum coefficient
of Cμ = 1.4 %, with variations of ±0.1 and ±0.06 % depending on the frequency,
respectively. At x = 1.55 m, steady forcing at f = 0 Hz was also tested. For this, the
supply pressure was reduced manually so as to match the nominal momentum coefficient
of Cμ = 1.4 %.

The distributions of γ show the familiar U shape indicative of an increased amount of
backflow within the TSB. For all frequencies, the distributions are narrower with forcing
compared to the unforced case. This shows that forcing reduces the size of the TSB by
pushing the average separation point (TD) downstream and the average reattachment point
(TR) upstream. Interestingly, forcing appears to move TD approximately twice as far as
TR, and that irrespective of the forcing frequency. The most effective frequency which
results in the smallest TSB (minimum L50) is Fj = 100 Hz at both streamwise positions,
although the changes in L50 above Fj = 40 Hz are relatively small. When scaled with
the average backflow length Lb of the unforced TSB, Fj = 100 Hz is equivalent to F+ =
FjLb/Uref = 1.7, which is of the same order of magnitude as the most effective frequencies
reported by Greenblatt & Wygnanski (2000) in typical AFC applications (see also table 2).
Furthermore, the results demonstrate that periodic forcing is more effective than steady
blowing (f = 0 Hz) in reducing the size of the TSB, which is consistent with virtually all
known results on active separation control (Greenblatt & Wygnanski 2000).
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Figure 10. Average wall-pressure coefficient cp for the unforced and forced flows at varying forcing
frequencies and amplitudes. Forcing position at x = 1.45 m (a) and at x = 1.55 m (b). Vertical dashed lines
indicate the streamwise position of actuation.

Representative distributions of the average wall-pressure coefficient cp for Cμ = 1.4 %
and 1.8 % are presented in figure 10, again for the two forcing positions. The effect of
forcing on cp is much smaller than on γ and the pressure distributions are only slightly
altered. Nevertheless, the variations of cp are larger than the measurement uncertainty
of the pressure transducers (§ 2.3) and than the spanwise variations in the unforced flow
(figure 1). The trend is similar for both forcing positions, with a decrease of cp at the
edges of the TSB and an increase between TD and TR. This behaviour is consistent with
a reduction of the TSB size through forcing since a smaller TSB is associated with an
increased pressure recovery in the separated region. Both the forward-flow fraction and
the average pressure distributions indicate that forcing at x = 1.55 m is more effective
than at x = 1.45 m, which is most likely correlated with the larger distance between the
actuators and the unforced position of TD in the latter case. Thus, in the remainder of
the article we will concentrate on forcing at x = 1.55 m.

The effect of the forcing amplitude is shown in figure 11 at the most effective frequency
Fj = 100 Hz. Clearly, increasing Cμ decreases the size of the TSB with, again, more
effect on separation than reattachment. At the maximum amplitude of Cμ = 1.8 % (Pj =
6 bar), the average recirculation region is almost completely eliminated on the test-section
centreline, with a minimum forward-flow fraction just below 50 %. It also appears that
while the effect on TD and TR is relatively strong, the displacement of ID and CR
is more limited. Thus, the characteristic length L50 = xTR − xTD decreases more than
L99 = xCR − xID when forcing is applied. These results are consistent with those obtained
at other frequencies and amplitudes, which are summarized in figure 12. We conclude
that the TSB length can be artificially reduced by periodic forcing in the boundary layer
upstream of the average separation point. Increasing the amplitude of forcing has the
strongest effect on the positions of TD and, to a lesser extent, on TR, while the positions
of ID and CR are relatively unaffected. Finally, figure 12(a) clearly demonstrates that the
differences in TSB length above Fj = 40 Hz are minimal.

Contour plots of the average vorticity and the turbulence statistics measured by PIV
at Cμ � 1.4 % and varying forcing frequencies are presented in figure 13. These data
were obtained by averaging over a total measuring time of 27 s, which led to the
uncertainty brackets quoted in § 2.3. In all plots the white line delimits the region of mean
backflow, which is shown to decrease in size with increasing frequency. At Fj = 100 Hz,
both the length and height of the recirculation region are significantly reduced compared to
the unforced case. In accordance with the MEMS calorimetric sensor data of figure 9(b),
the left intersection of the U = 0 isoline with the x axis (which corresponds to the TD
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Figure 11. Forward-flow fraction γ for the unforced and forced flows with Fj = 100 Hz and varying jet
amplitudes Cμ = 1.24 %, 1.43 %, 1.75 % and 1.79 %. Forcing position at x = 1.55 m (vertical dashed line).
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Figure 12. (a) Positions of ID/CR (γ = 99 %) and TD/TR (γ = 50 %) for unforced (dashed lines) and forced
(solid lines) flows with Cμ = 1.4 % ± 0.06 %. (b) Characteristic lengths L50 and L99 as function of Cμ and Fj.
Forcing position at x = 1.55 m.

point), moves more than the right intersection (TR). This shows again that separation is
more displaced by periodic forcing than reattachment.

Crucially, the amplitude of all turbulence statistics appears to decrease while the TSB
size is reduced by increasing the forcing frequency. This is contrary to most existing results
on periodic forcing in flows where the separation point is fixed by a geometric singularity
or constrained by a sufficiently strong curvature, and where earlier reattachment is
achieved by enhancing the turbulent kinetic energy in the shear layer. In such flows the
most effective frequency is close to the unforced shedding frequency of the separated shear
layer (Chun & Sung 1996; Kiya et al. 1997; Brunn & Nitsche 2003). Excitation near the
shedding frequency enhances vortex merging and turbulent fluctuations in the shear layer.
This increases entrainment and intensifies the momentum transfer with the outer flow,
thus resulting in earlier reattachment (Bhattacherjee et al. 1986; Brunn & Nitsche 2006;
Dandois et al. 2007). In contrast, the effect of forcing appears to be different in the present
pressure-induced TSB where the separation point is free to move on the test surface.
Here, periodic forcing pushes separation downstream and reattachment upstream, while
the most effective frequency is a multiple of the natural shedding frequency. This creates
a smaller TSB and, consequently, reduces the turbulent fluctuations in the shear layer in a
manner similar to what is observed in pressure-induced TSBs of different sizes (LeFloc’h
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Forcing position at x = 1.55 m.
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Figure 14. The p.s.d.s of wall-pressure fluctuations for the natural and forced flows, x = 2.35 m: (a) standard
representation and (b) pre-multiplied representation.

et al. 2020). The streamwise stresses appear to be reduced the most, with a decrease of
approximately 50 % between the unforced case and Fj = 100 Hz. Instead of showing a
strong peak in the upstream half of the unforced TSB, the streamwise variation of ρu′u′
is essentially flat when forcing is applied, even at Fj = 0 Hz. The wall-normal and shear
stresses ρv′v′ and −ρu′v′ decrease only by approximately 20 % and keep their maxima at
the same streamwise position in the downstream part of the TSB. This shows again that
the shear layer is strongly affected near detachment but less so near reattachment. In fact,
although the size of the average backflow region is strongly diminished with forcing, the
downstream part of the shear layer appears to behave in a similar way with or without
forcing.

The contour plots of average vorticity (figure 13a,e,i,m,q) confirm these findings by
showing that periodic forcing redistributes vorticity close to the test surface in the
detachment region. The separating shear layer, which is characterized by a region of
increased (negative) vorticity in the wall-normal direction upstream of TD, is wider when
forcing is applied because the distance between ID and TD increases (see figure also
12a). This spreading decreases the average shear and consequently reduces the streamwise
stresses. In contrast, the vertical extent of the shear layer remains relatively constant in the
downstream half of the TSB (x > 2 m), which limits the decrease in wall-normal and shear
stresses. Furthermore, results from a triple decomposition of the velocity fields (not shown
here), where the contribution of the coherent components at the forcing frequency and its
harmonics are removed from the turbulent quantities (Hussain & Reynolds 1970), did not
show any significant difference with the Reynolds decomposition of figure 13. This is a
further indication that forcing with PJAs does not have a strong effect on the development
of the shear layer but mostly affects the position of separation.

The p.s.d.s of wall-pressure fluctuations measured at x = 2.35 m (near CR) are shown
in figure 14. The shape of the p.s.d.s is not affected by forcing and the ‘natural’ shedding
signature at 15–20 Hz can be observed irrespective of the forcing frequency. The narrow
peak at the forcing frequency for Fj = 15 Hz shows that large-scale vortices are slightly
more coherent in this case but there does not appear to be a strong lock-on effect when
forcing is applied close to the shedding frequency, as seen for example by Bhattacherjee
et al. (1986) behind a backward-facing step or by Kotapati et al. (2010) in a laminar
separation bubble. For frequencies above 5 Hz, the amplitude of the forced p.s.d.s is
moderately reduced compared to the unforced case, in accordance with the reduction in
turbulent stresses. This confirms that forcing only slightly affects the dynamics of the shear
layer wrapping the backflow region.
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Figure 15. Illustration of vortical flow dynamics in the first PIV station with contour maps of Γ2 ≤ −2/π

(counter-clockwise) and Γ2 ≥ 2/π (clockwise). Panels (a) to (d) show Fj = 15 Hz, Fj = 40 Hz, Fj = 100 Hz
and Fj = 200 Hz, respectively, with Cμ = 1.4 % for all frequencies; Γ2 was computed after subtracting the
mean velocity field from the phase-averaged field.

Phase-averaged velocity fields obtained by PIV were analysed in an attempt to better
understand the mechanism sustaining the reduction in TSB size. Figure 15 shows that
periodic forcing generates a vortex system that is convected in the downstream direction
close to the test surface. This vortex system is made visible by contours of the Γ2
criterion introduced by Graftieaux, Michard & Grosjean (2001) and computed here
after subtracting the mean velocity Ū(x, y) from the phase-averaged fields. In addition,
the position of the vortices and their direction of rotation is highlighted by a dashed
line that was manually placed based on the observation of the local velocity vectors.
For Fj < 200 Hz the signature of the vortex system in the two-dimensional PIV plane is a
pair of contra-rotating vortices aligned in the streamwise direction, with a positive vortex
(clockwise) upstream of a negative one. The combination of positive and negative vorticity
generates a channel of positive vertical velocity that moves fluid away from the test surface
at each forcing cycle. This is reminiscent of the ‘moving pump’ concept of Darabi &
Wygnanski (2004a), although in their case the forcing through a loudspeaker acted on the
shear layer by promoting the formation of a series of negative-vorticity structures. The
present mechanism is different inasmuch as the contra-rotating vortices appear as the key
elements that remove low-momentum fluid away from the wall.

A similar mechanism has already been described by Hecklau et al. (2013), who
investigated the active control of flow separation in a one-sided diffusor. They interpreted
the contra-rotating vortices observed in the PIV plane as the two-dimensional signature
of the three-dimensional starting vortex generated by a PJA slot. The starting vortex is
created by the rapid ejection of fluid through the inclined slot in the test surface and its
size depends, among other parameters, on the amount of ejected fluid (Steinfurth & Weiss
2020). Because the duty cycle was kept constant in the present experiment, a higher forcing

915 A24-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

77
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.77


A. Mohammed-Taifour and J. Weiss

0.06

1.75 1.80 1.85 1.90 1.95

0.04

0.02

0

x (m)
1.75 1.80 1.85 1.90 1.95

x (m)

y 
(m

)

0.06

0.04

0.02

0

y 
(m

)

0.06

0.04

0.02

0

y 
(m

)

0.06

0.04

0.02

0

0 5 10 15 20
y 

(m
)

–2/π 0 12/π–1(a) (b)

(c) (d)

(e) ( f )

(g) (h)

Figure 16. Illustration of the flow dynamics for Fj = 15 Hz and Cμ = 1.4 % in PIV station 2 with contours
of phase-averaged streamwise velocity (a,c,e,g) and Γ2 (b,d, f,h). Time delay of 15.3 ms (approximately one
quarter of a period) between the snapshots from (a,b) to (g,h). See also supplementary movie 1.

frequency results in a smaller amount of fluid ejected through the slots and, consequently,
a smaller vortex diameter. While there is only one pair of relatively large vortices visible
in the two-dimensional measurement station for Fj = 15 Hz and Fj = 40 Hz, there are
two pairs at Fj = 100 Hz and, presumably, four at Fj = 200 Hz. At the latter frequency,
the vortex system does not appear so clearly anymore because of the small amount of
fluid ejected and the short time period between the pulses. It is also apparent that the
high-frequency vortices tend to dissipate faster in the streamwise direction than the lower
frequency, larger structures. This reduces the amount of fluid that is pumped away from
the wall and may explain why forcing at Fj = 200 Hz is less effective than at Fj = 100 Hz.

The effect of the vortex system on the separation front is illustrated in figures 16 and
17 for Fj = 15 Hz and Fj = 100 Hz, respectively. Each figure illustrates one full cycle
of forcing by showing snapshots extracted from supplementary movies 1 and 2 available
at https://doi.org/10.1017/jfm.2021.77. In both figures the white line delimits the region
of phase-averaged backflow. Here also, the position of the vortices and their direction
of rotation is highlighted by dashed lines based on the direction of the phase-averaged
velocity vectors.

At Fj = 15 Hz (figure 16) the sequence starts with a relatively large region of
instantaneous backflow and a counter-clockwise vortex spanning almost the entire field
of view. At the next time step the clockwise vortex enters the field and the instantaneous
separation front is pushed downstream. Between the second and third time steps both the
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Figure 17. Illustration of the flow dynamics for Fj = 100 Hz and Cμ = 1.4 % in PIV station 3 with contours
of phase-averaged streamwise velocity (a,c,e,g) and Γ2 (b,d, f,h). Time delay of 2.5 ms (one quarter of a period)
between the snapshots from (a,b) to (g,h). See also supplementary movie 2.

clockwise vortex and the separation front continue their downstream sweep. This results in
a much smaller region of phase-averaged backflow compared to the start of the sequence.
Finally, in the last time step the counter-clockwise vortex from the next period enters the
field of view and the separated zone grows back to its original size. Supplementary movie 1
clearly shows that the process is highly unsteady and that the instantaneous recirculation
zone grows and recedes at the period of forcing. Similar plots obtained further downstream
in the reattachment region (not shown here) demonstrate a very similar phenomenon where
the instantaneous reattachment point moves back and forth at 15 Hz. When averaged over
time, this motion results in a smaller TSB compared to the unforced case, as can be seen
in figures 9 and 13.

The phase-averaged fields obtained at Fj = 100 Hz (figure 17) illustrate a strikingly
different situation. At this frequency, one period of forcing corresponds to the translation
of two pairs of relatively small contra-rotating vortices within the field of view. The first
(upstream) pair of vortices is visible on the contours of Γ2 for the first three snapshots only.
In the last snapshot, the threshold of |Γ2| > 2/π is not attained but a careful inspection of
the velocity vectors reveals the likely presence of the two contra-rotating vortices at their
expected positions. As for the second (downsteam) structure, only its counter-clockwise
half is observed, presumably because the second half of the pair has shifted out of
the field of view. Furthermore, this vortex appears to move slower than its upstream
counterpart because the local velocity is smaller. Nevertheless, the mechanism controlling
the separation front appears to be similar to the 15 Hz case, i.e. the passage of a vortex
structure is associated with a downstream shift of the separation region. In the 100 Hz case,
however, the persistent arrival of new vortices essentially maintains the phase-averaged
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separation front at one constant streamwise position. As can be observed in supplementary
movie 2, this results in an almost steady recirculation region in a phase-averaged sense.
The results obtained at Fj = 40 Hz (not shown here) are essentially similar to the 100
Hz case inasmuch as only a very small back-and-forth motion of the separation front at
40 Hz can be detected. We conclude that periodic forcing is more effective when the
forcing frequency is significantly higher than an inherent characteristic frequency of the
separation front. When this occurs, the front does not have time to move back towards its
original position between two incoming structures and the TSB appears steady when phase
averaged. The similarity of the results obtained at Fj = 40 Hz and Fj = 100 Hz compared
to the Fj = 15 Hz case indicates that such a situation already occurs at Fj = 40 Hz,
which explains why there is only a limited effect of forcing above the latter frequency.
Interestingly, these results bear some resemblance with those of Amitay & Glezer (2002),
who used synthetic jets to control the flow separation near the leading edge of an airfoil
at both low and high forcing frequencies. Forcing at F+ = O(1) generated strong vortices
that led to unsteady reattachment while forcing at F+ = O(10) led to an essentially steady
reattachment process.

In summary, the results presented in this section indicate that the size of the average TSB
can be artificially reduced by periodic forcing in the upstream boundary layer. In contrast
to flow cases where the separation point is fixed by the surface geometry, forcing with
PJAs pushes the mean separation (strictly speaking the TD point) downstream while the
mean reattachment (TR) moves upstream, thus leading to a smaller TSB and a reduction of
turbulent stresses in the shear layer. Increasing the forcing amplitude decreases the size of
the average TSB while the most effective range of frequencies, which leads to the smallest
TSB, is of the order of 40–100 Hz Nevertheless, one may note that the use of other types
of actuators may have led to a different response of the shear layer. The present results also
suggest the existence of a characteristic time scale during which the TSB tries to return
to its original state between two forcing inputs. Forcing at frequencies significantly higher
than the inverse of this time scale (i.e. 40–100 Hz) is more effective in reducing the size of
the TSB than forcing at lower frequencies. Furthermore, the phased-averaged fields offer
an interesting insight into the physics of flow separation control with PJAs. In accordance
with the mechanism suggested by Hecklau et al. (2013), our results indicate that PJAs
generate strong starting vortices that, when convected within an APG, are associated with
a downstream shift of the separation front.

5. Transient forcing

The results presented above suggest that the separation front responds to upstream
disturbances with a characteristic time scale. To investigate this aspect in more detail,
the transient response of the TSB subjected to an abrupt starting (Off/On) or stopping
(On/Off) of the periodic forcing is explored in this section.

The MEMS calorimetric sensor was used to measure the temporal evolution of
the forward-flow fraction γ (t) when forcing was started or stopped. The procedure is
illustrated in figure 18 for a stopping sequence at a forcing frequency Fj = 100 Hz. The
forcing signal (a) is modulated with a low-frequency square-wave function at 0.5 Hz.
In the first half of the square-wave period (t < 1 s), the forcing signal at Fj = 100 Hz
is on but stops abruptly at t = 1 s. The output of the calorimetric sensor (b) indicates
that the near-wall flow direction is mostly positive for t < 1 s but oscillates more strongly
between positive and negative values when the forcing is stopped (t > 1 s). This indicates
a shift of the separation front on the test surface when forcing is turned off. By ensemble
averaging this signal over a large number of square-wave periods, the forward-flow fraction
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Figure 18. Illustration of the methodology used for transient forcing: (a) forcing signal; (b) output of
calorimetric sensor at x = 1.75 m; (c) forward-flow fraction computed by ensemble averaging the calorimetric
sensor output over 90 square-wave periods.

is obtained as a function of time (c) and the variation of the TSB size when the forcing is
stopped can be observed. The ensemble-averaged data are further smoothed by a moving
average filter of 0.05 s in width. The same procedure is used for starting sequences
(Off/On) by considering the square-wave period starting at t = 1 s.

The square-wave period of 2 s was chosen as a compromise that is sufficiently long to
observe a complete return of the TSB to its unforced state when the forcing is started or
stopped while also being sufficiently short to enable the acquisition of a large number of
periods in a manageable testing time. All data reported herein were obtained by recording
the calorimetric sensor signal during 180 s, which resulted in 90 square-wave periods used
for ensemble averaging. The forward-flow fraction calculated at each streamwise position
between t = 0.5 s and t = 1.0 s (forcing on) and between t = 1.5 s and t = 2.0 s (forcing
off) is compared in figure 19 to the distributions obtained in the unforced and continuously
forced cases, respectively. The values of γ measured with the square-wave modulated
forcing signal are very close to the reference distributions, which demonstrates the validity
of the methodology.

The transient forward-flow fraction γ (t) obtained with this procedure at x = 1.75 m
(unforced TD position) is shown in figure 20 for forcing frequencies of 15 Hz (a), 40 Hz (b)
and 100 Hz (c), respectively. For Fj = 15 Hz, the back-and-forth motion of the separation
front, already observed in figure 16, is obvious when forcing is turned on since γ (t) shows
an oscillatory behaviour at 15 Hz. For higher forcing frequencies, these oscillations are
not observed and γ (t) reaches a constant value consistent with continuous forcing after
approximately 300 ms. For all forcing frequencies, the curves of γ (t) show an exponential
increase or decrease after t = 1 s that is reminiscent of the step response of a first-order
linear system. To determine the corresponding time constants, γ (t) was least-squares fitted
to the following simple laws for t > 1 s:

γOff –On(t) = γOff + (γOn − γOff )e−t/τOff –On,

γOn–Off (t) = γOn + (γOff − γOn)e−t/τOn–Off ,

}
(5.1)
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Figure 19. Comparison of forward-flow fraction distribution between unforced flow, continuous forcing, and
transient forcing (Fj = 100 Hz). Dashed line indicates position of forcing.

Fj (Hz) τOff –On (s) τOn–Off (s)

15 0.11 0.13
40 0.10 0.15
100 0.10 0.20

Table 3. Time constants of ensemble-averaged γ (t) at x = 1.75 m according to (5.1).

where γOff and γOn are the values of the forward-flow fraction in the unforced and
continuously forced cases, respectively, and where τOff –On and τOn–Off are the time
constants obtained when forcing is started or stopped. The time constants are summarized
in table 3, where it can be observed that τOff –On is almost constant for all forcing
frequencies, whereas τOn–Off is larger and increases with Fj. This indicates that the TSB
takes more time to return to its unforced state when forcing is stopped than to react
to a start of upstream forcing. Finally, figure 20(d) shows the transient forward-flow
fraction obtained with a forcing frequency of Fj = 100 Hz and forcing amplitudes varying
between Cμ = 0.57 % and Cμ = 1.79 %. In order to highlight the potential effect of the
forcing amplitude on the TSB time scale, the curves of γ (t) were scaled to allow their
superposition on the same graph. This representation clearly shows that the values of
τOff –On and τOn–Off , and hence the transient behaviour of the TSB, do not depend on
forcing amplitude.

Darabi & Wygnanski (2004a) experimentally controlled the forced reattachment of
the flow over a trailing edge flap by using a loudspeaker at the hinge line. Contrary
to the present results, the time required for the flow to attach after forcing was started
depended on the forcing frequency and amplitude. The minimum reattachment time
obtained for a flap deflected 6 degrees over its critical angle was found to be tU∞/Lf = 16,
where U∞ was the free-stream velocity and Lf the flap length. Using Lf = Lb = 0.42 m
and U∞ = Uref = 25 m s−1, this corresponds to a time t = 269 ms in our case. As can
be seen in figure 20, this value is close to the time where the γ (t) curves reach their
asymptotes (approximately 300 ms). Darabi & Wygnanski (2004b) then investigated the
transient separation process on the flap by abruptly stopping the loudspeaker forcing and
found that the time required for separation to completely reappear was approximately
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Figure 20. Transient forward-flow fraction measured at (a) x = 1.75 m for Fj = 15 Hz, (b) Fj = 40 Hz,
(c) Fj = 100 Hz (the blue and green curves are fitted to (5.1)) and (d) variation of forcing amplitude at
Fj = 100 Hz.

30 % larger than the time required to force the flow to attach. We conclude that the
values of both time constants τOff –On and τOn–Off are consistent with those of Darabi
& Wygnanski (2004a,b) despite significant differences in flow configuration and forcing
method. It should be noted, however, that the separation line in Darabi & Wygnanski’s
(2004a; 2004b) experiment was essentially fixed at the flap corner.

Time traces of the transient forward-flow fraction γ (t) were also measured at multiple
streamwise positions in order to investigate the time required between the start or stop of
upstream forcing and the first indication of the TSB reaction along its length. As illustrated
in figure 21(a), a time delay δt was defined between t = 1 s, which corresponds to the start
or stop of forcing, and the instant when the γ (t) curve reacts to forcing. The values of
δt were found to be almost identical for starting or stopping sequences and are plotted in
figure 21(b) as a function of the streamwise position. The streamwise distribution of δt
is essentially linear and hints at a convection velocity of 0.27Uref , which is very close
to the convection velocity Uc � 0.30Uref of both the naturally occurring and the PJA
vortices in the shear layer. This indicates that at each streamwise position, the unforced
TSB starts its deformation with the passage of the first vortex system emanating from the
PJAs. Thereafter, several vortices are required for the TSB to reach its asymptotic state.
As indicated in figure 20, approximately 300 ms are required for all transient effects to
have disappeared when forcing is started. This time delay corresponds to the passage of 5,
12 and 30 vortex pairs for Fj = 15, 40 and 100 Hz, respectively. Similarly, the forced TSB
starts to move back to its unforced position after the passage of the last vortex pair from
the PJA when forcing is stopped but requires more time to complete its motion.

The transient response of the TSB was also investigated with ensemble-averaged PIV
data at a forcing frequency of Fj = 100 Hz and an amplitude of Cμ = 1.43 %. For this, 30
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Figure 21. (a) Illustration of the definition of the time delay δt between t = 1 s and the vertical dashed-dotted
line at x = 1.85 m and x = 2.05 m, respectively; (b) variation of δt as a function of the streamwise position.
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Figure 22. Illustration of the flow dynamics in PIV station 1 for a start of forcing at Fj = 100 Hz and Cμ =
1.4 % with contours of phase-averaged streamwise velocity (a,c,e,g,i) and Γ2 (b,d, f,h,j). Forcing is started at
t0. See also supplementary movie 3.

PIV sequences of 1 s each were recorded at the most upstream PIV station. The camera
recordings were synchronised to start exactly when the forcing started (Off/On sequence)
or stopped (On/Off sequence). Contours of Γ2 were calculated after subtracting the mean
velocity Ū(x, y) of the corresponding continuous forcing case (i.e. either On or Off) from
the ensemble-averaged fields.

Figure 22 illustrates a few snapshots extracted from supplementary movie 3, where the
TSB reacts to a start of forcing at t0. In the first snapshot, the separation front is in its
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Figure 23. Illustration of the flow dynamics in PIV station 1 for a stop of forcing at Fj = 100 Hz and Cμ =
1.4 % with contours of phase-averaged streamwise velocity (a,c,e,g,i) and Γ2 (b,d, f,h,j). Forcing is stopped at
t0. See also supplementary movie 4.

unforced position. While a few spots of |Γ2| > 2/π are visible in the field of view, they
do not appear to be the signatures of the vortex structures observed in figures 15 and
17. Rather, they are interpreted as residual noise from the phase-averaging procedure. In
the next snapshots, the counter-rotating vortices emanating from the PJAs at Fj = 100 Hz
can be seen in the two-dimensional field of view near x = 1.65 m and x = 1.75 m. The
position of the vortices is constant in this representation since the time between snapshots
was chosen to be exactly six forcing periods. Between t0 + 60 ms and t0 + 180 ms, only
the counter-clockwise vortex is seen in the most downstream position (x = 1.75 m), again
presumably because the other half of the pair is located outside of the field of view like in
figure 17. In the last snapshot, however, the complete pair is observed again because the
separation front is now downstream of the field of view, which results in a smaller average
vertical velocity and a situation similar to that observed in figure 15. The translation of
the vortices through the field of view is obvious in supplementary movie 3: each arrival
of a new vortex pair slightly pushes the separation front downstream and, after 240 ms,
or 24 vortex passages, the region of phase-averaged backflow is shifted downstream of
the field of view. These PIV results are consistent with figure 20(c) since a downstream
shift of the separation front implies an increase of forward-flow fraction at x = 1.75 m.
Indeed, figures 19 and 20(c) indicate that γ (t) still increases slightly after 240 ms and that
the TD point finally settles near x � 1.90 m after the disappearance of transient effects at
t � 300 ms.

The stopping of upstream forcing is illustrated in figure 23 and supplementary movie 4
for the same parameters as above. The first snapshot at t0 is taken exactly when forcing
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is stopped. At this instant the separation front (i.e. the TD point) is located downstream of
the field of view and the contour of Γ2 shows the typical pair of contra-rotating vortices
observed when the flow is continuously forced at Fj = 100 Hz (see figures 17 and 22).
In the next snapshots these vortices disappear from the field of view since forcing is
stopped. Rather, the ensemble-averaging procedure produces a random contour akin to
noise, which would probably have been completely eliminated with a larger number of
averaging periods. Crucially, the time between snapshots is much longer in figure 23 than
in figure 22, which shows that the separation front takes approximately twice as much time
to come back to its original position when forcing is stopped than to move to its controlled
position when forcing is started. This is consistent with the time traces of γ (t) obtained
with the calorimetric sensor (figure 20) and with the values of the corresponding time
constants summarized in table 3.

In summary, the results presented in this section demonstrate that the TSB responds
to upstream forcing with a characteristic time scale that is much larger than the forcing
period of the PJAs. When forcing is started the TSB takes approximately 300 ms to reach
its continuously forced state but, depending on the forcing frequency, it can take twice as
long to return to its unforced state. The time traces of the transient forward-flow fraction
γ (t) further suggest that the TSB responds to upstream perturbations like a first-order
linear system with a characteristic time constant of the order of 0.1–0.2 s.

6. Discussion

The main objective of the present experiment was to investigate how periodic forcing
upstream of the TSB may help understand the naturally occurring, low-frequency
breathing motion already documented in this flow. Strong similarities between forcing
and breathing were indeed uncovered.

(i) First, it was shown that periodic forcing in the upstream boundary layer artificially
reduces the size of the TSB by pushing separation downstream and reattachment
upstream. The displacement of the separation point (TD) is larger than that of
the reattachment point (TR), which is consistent with what is observed when the
TSB is naturally contracting and expanding at low frequency (Weiss et al. 2015;
Mohammed-Taifour & Weiss 2016).

(ii) Second, the average pressure distribution measured when the TSB size is artificially
modified by forcing is consistent with the model of natural low-frequency behaviour
presented in figure 8. Specifically, when the TSB contracts, the average pressure is
reduced near the positions of maximum and minimum pressure gradient and slightly
elevated in the middle of the TSB. This behaviour is expected because a smaller TSB
implies an increased pressure recovery in the separated region.

(iii) Third, when forcing is started or stopped, the separation point moves first and
the reattachment thereafter. This is again similar to the low-frequency breathing,
whose pressure signature is measured on average 44 ms later at x = 2.3 m than at
x = 1.6 m (figure 7). The difference between this value and the time delay observed
during forcing (�110 ms, figure 21) may be explained by the different techniques
used to measure the delay. Figure 7 shows the pressure signature of the breathing
motion whereas figure 21 is obtained from the near-wall velocity. It is reasonable
to assume that when the separation point is shifted one way or the other, changes
in the global flow structure are transmitted through convection in the inviscid flow
whereas the near-wall velocity only changes when turbulent structures in the shear
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layer reach the local measurement position. Thus, the near-wall velocity information
is transmitted slower than the pressure signal.

(iv) Finally, the time constants obtained when forcing is abruptly started or stopped are
strikingly similar to the characteristic time scale of the breathing motion: the largest
time constant τ = 0.2 s in table 3 implies a characteristic frequency f = 1/2πτ =
0.8 Hz which compares very well with the low-frequency pressure signature
observed in figure 6. Furthermore, the fact that the separation and reattachment times
measured by Darabi & Wygnanski (2004a,b) are consistent with ours suggests that
the present results might be transferable to other flow configurations.

These findings strongly support the hypothesis formulated in § 3 that the breathing
motion is a response of the TSB to turbulent fluctuations in the upstream boundary layer
that affect the position of separation first and, indirectly, the position of reattachment
through a global change of the pressure distribution. In effect, the TSB acts like a low-pass
filter to the broadband perturbations naturally present in the upstream turbulent boundary
layer, and contracts and expands with an amplitude and frequency that depends on the
scale of the overall separated flow. The form of the transient forward-flow fraction curves
plotted in figure 20 suggests a simple first-order linear model of the form

ẋ(t) + x(t)
τ

= u(t), (6.1)

where x may either represent a short-time average of the forward-flow fraction γ at a
specific streamwise position or of the separation or reattachment line, and where u(t) is a
forcing term linked to velocity fluctuations in the upstream boundary layer. By short-time
average we mean a quantity averaged over a period longer than a typical turbulent
time scale but shorter than the characteristic time scale τ of the separation front. In the
frequency domain, (6.1) is equivalent to

Gxx( f ) = τ 2

1 + (2πf τ)2 Guu( f ), (6.2)

where Gxx( f ) and Guu( f ) are the autospectral density functions of x(t) and u(t),
respectively (Bendat & Piersol 2010). This frequency-domain representation clearly
illustrates the filtering character the TSB and the fact that 1/2πτ should be interpreted
as some sort of cutoff frequency instead of a characteristic spectral peak.

A crude model of upstream forcing by the PJAs may be obtained by choosing

u(t) = A[1 + B sin(2πFjt)], (6.3)

where the model parameters A and B depend on the forcing frequency Fj and are chosen
to match the experimental data. Equations (6.1) and (6.3) are solved in figure 24(a) for
a set of parameters (A, B) = (70/τ, 1), (85/τ, 0.1), and (90/τ, 0.1) for Fj = 15, 40 and
100 Hz, respectively. In this example, x = γ , τ = 0.1 s, and the integration is started from
γ = 50 % at t = 1 s. Clearly, the model matches remarkably well the experimental time
traces of transient forward-flow fraction shown in figure 20. Similarly, figure 24(b) depicts
the autospectral density function of x in its standard (Gxx) and pre-multiplied ( f × Gxx)
form when the forcing u(t) is assumed to be white noise simulating turbulent fluctuations
in the upstream boundary layer, i.e. Guu( f ) = 1, and when the TSB time constant is
τ = 0.2 s. Assuming like in figure 8 that the low-frequency pressure signature consists
of a back-and-forth translation of the average APG and FPG on the test surface, Gxx
can also be interpreted as a wall-pressure p.s.d. Here also, the model agrees very well
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Figure 24. (a) Solutions of (6.1) and (6.3) for γ = 50 % at t = 1 s. (b) Standard (blue) and pre-multiplied
(red) autospectral density functions of x(t) ((6.2)) for Guu = 1.

with the low-frequency character of wall-pressure fluctuations measured at x = 1.60 m
and presented in figure 6. Finally, figure 25 shows the p.s.d.s of streamwise velocity
fluctuations measured with a hot-wire probe at a wall-normal position y � δ in the
unforced TSB, where δ is the 99 % boundary-layer thickness. The appropriate resolution at
low frequencies was obtained by integrating the signal for 300 s. Two streamwise positions
are considered: x = 1.45 m is at the very beginning of the APG and x = 1.60 m is at
ID, close to the position of maximum low-frequency pressure signature (see figure 5).
Above 3 Hz, the p.s.d.s at both positions are very similar but below 3 Hz, the amplitude is
almost an order of magnitude higher at x = 1.60 m. This difference occurs because of the
breathing motion in the unforced TSB, whose low-frequency signature can be observed in
both wall-pressure and velocity signals (Mohammed-Taifour & Weiss 2016). Also shown
in the figure is the output Gxx of (6.2) applied to the p.s.d. measured at x = 1.45 m and
scaled to fit the lowest-frequency value of the x = 1.60 m p.s.d. It can be seen that at
x = 1.60 m, both Gxx and Guu follow the same trend at low frequencies, which further
supports the validity of a low-pass filter model transforming a broadband turbulent signal
into a low-frequency contraction and expansion of the TSB. We conclude that the simple
first-order model (6.1)/(6.2), although purely heuristic, offers a good approximation of
both the TSB response to artificial periodic forcing and of its natural low-frequency
unsteadiness.

Interestingly, a first-order model similar to (6.1) was devised by Plotkin (1975) to relate
the low-frequency shock oscillations observed in turbulent SBLI flows to broadband
velocity fluctuations in the upstream boundary layer. Plotkin’s model is compressible
in nature and assumes that the velocity of the separation shock in a turbulent SBLI
is the superposition of a random forcing and a restoring velocity that is proportional
to the displacement of the shock. These assumptions naturally lead to a first-order
equation similar to (6.1), where x is the position of the separation shock. Touber &
Sandham (2011) subsequently derived a low-order stochastic model for impinging shock
SBLIs that is mathematically equivalent to Plotkin’s model. On the basis of this model,
they argued that the origin of the low-frequency unsteadiness in such SBLIs is caused by
the inherent dynamics of the boundary layer and shock system which act as a low-pass filter
to incoming turbulent perturbations. Poggie et al. (2015) demonstrated that this simple
model is consistent with wall-pressure spectra obtained in a large number of SBLI flows
generated in wind-tunnel experiments, flight tests and numerical simulations. The success
of a similar first-order model in our low-Mach-number experiment suggests that it may be
the separation front, and not necessarily the separation shock, that acts as a filter. Such a
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Figure 25. The p.s.d.s of streamwise velocity fluctuations (Guu) measured at x = 1.45 m and x = 1.60 m
(y � δ) and scaled output of first-order model Gxx applied to the x = 1.45 m data with τ = 0.2 s.

conclusion would not invalidate existing results in SBLI flows since in all likelihood the
separation shock would follow a slowly moving separation front.

LeFloc’h et al. (2020) investigated the low-frequency breathing of a family of TSBs
generated in the same wind tunnel as the one used in the present experiment by varying
the streamwise position of the FPG in figure 1. By moving the FPG upstream, smaller
TSBs could be generated with the same APG. It was found that the pressure and
velocity signatures of the low-frequency breathing were smaller when the TSB size
was reduced. In the framework of the present model of low-frequency breathing, this
would mean that the low-frequency motion of the separation front is smaller for a
shorter TSB, which is expected since the most downstream position of separation is
necessarily bounded by the average FPG. Thus, we expect that the amplitude of the
low-frequency breathing will increase with the streamwise extent of the TSB since the
separation front may move over a larger distance. This is consistent with the recent DNS
results of Wu et al. (2020), who observed low-frequency unsteadiness in a large TSB
generated with a suction-only boundary condition but not in smaller TSB obtained with a
suction-and-blowing condition. On the other hand, the reattachment position in Wu et al.’s
(2020) suction-only TSB appeared to move over a larger distance than the separation front.
This is in contrast with the present configuration and may possibly be explained by the
absence of an FPG in the aft part of their TSB and the resulting reattachment through
turbulent diffusion only. Furthermore, the absence of any low-frequency breathing with
the suction-and-blowing configuration of Wu et al. (2020), which is not much different
than the present configuration, remains unexplained.

It is also interesting to compare the proposed mechanism of low-frequency unsteadiness
in the present TSB to a mechanism already formulated to explain the flapping motion of
laminar separation bubbles. As suggested by the results of Marxen & Henningson (2011)
and Michelis et al. (2017), the low-frequency flapping in a LSB may be characterised by
both a downstream shift of the separation point and an upstream shift of reattachment.
Therefore, in effect, this motion could also be described as ‘breathing’, like in the
present TSB. Crucially, however, in a LSB the separation point moves much less than
the reattachment point, which explains why the shear layer may be seen as ‘flapping’,
as if the separation point were fixed. Another striking difference between TSB and LSB
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unsteadiness is that in a LSB, the (low-frequency) reattachment point moves first and is
followed by the separation point (Dovgal & Kozlov 1995; Marxen & Henningson 2011).
A reduction in LSB size might occur when incoming disturbances in the free stream
increase in the most unstable range of frequencies of the shear layer. This triggers
transition earlier and pushes reattachment upstream, which in turn provokes a global
change of the pressure distribution and a downstream shift of the separation point
through viscous–inviscid interaction. The smaller bubble is then more stable to incoming
disturbances, which results in a feedback loop (Marxen & Henningson 2011; Michelis
et al. 2017; Marxen 2020). In the present TSB, upstream disturbances from the turbulent
boundary layer affect separation first. The (low-frequency) reattachment point follows
later through a viscous–inviscid interaction that provokes a global change of the pressure
distribution, and the TSB size is modulated.

One may also note that in a geometry-induced TSB, the mechanism of low-frequency
unsteadiness (usually referred to as ‘flapping’ in the literature) must be different than
in the present pressure-induced TSB because in the former case the separation point is
necessarily fixed. As mentioned above, most existing studies on geometry-induced TSBs
indicate that forcing strongly influences the development of the shear layer while in the
present case, the shear layer remains relatively unaffected. It is therefore expected that the
flapping of geometry-induced TSBs is also linked to the development of the shear layer.

Finally, we briefly come back to the assumption of quasi-two-dimensionality introduced
in § 2.4. As can be seen in the oil-film visualizations of figure 3, despite a constant
forcing amplitude in the spanwise direction, the separation line is strongly curved when
the actuators are placed at x = 1.55 m. This corresponds to the majority of forced
cases discussed in this article. Thus, strictly speaking, the results are only valid on the
test-section centreline and it is legitimate to ask what would be different in the absence
of corner effects. While it is impossible to be certain without a dedicated investigation,
the most likely consequence would be an even stronger effect of forcing on the TSB
size. Indeed, the motion of the TD point on the centreline appears to be constrained by
the sidewalls. If this constraint were relaxed, it is probable that the TD point would move
even further for a specified forcing input. Thus, in a way, the effect of forcing on the
TSB size may be considered as conservative in the present experiment. On the other
hand, the potential influence of corner effects on the time scales investigated in this work
remains unknown. In this respect, highly resolved numerical simulations, where sidewall
effects can be artificially removed, would be very welcome to further investigate this flow
configuration.

7. Conclusion

The response of a large pressure-induced TSB to periodic forcing was investigated in
this work in an attempt to elucidate the mechanism responsible for the low-frequency
breathing motion already documented in the unforced flow. The TSB was generated on
a flat test surface by the APG-induced separation of a turbulent boundary layer followed
by its FPG-induced reattachment. Both continuous and transient forcing using pulsed-jet
actuators were considered, and the flow was probed using steady and unsteady pressure
transducers, a MEMS calorimetric shear-stress sensor and high-speed PIV.

Results from the continuous forcing experiments indicate that the size of the TSB can
be artificially reduced by periodic forcing in the upstream boundary layer. Forcing pushes
the TD point downstream and the TR point upstream, thus leading to a contraction of
the original TSB. As a consequence, the streamwise distributions of forward-flow fraction
and average pressure both narrow and the turbulent stresses in the shear layer decrease.
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The size of the TSB decreases with increasing forcing amplitude and the range of most
effective frequencies that lead to the smallest TSB is 3 to 7 times the natural shedding
frequency. Regardless of the chosen frequency and amplitude, periodic forcing appears
to mostly influence the flow physics near separation, while the aft part of the shear layer
in the reattachment region remains relatively unaffected. This suggests that the motion
of the reattachment point (TR) occurs because of a redistribution of the global flow
structure caused by the downstream shift of the separation point (TD) and not because of
an enhancement of vortex merging in the shear layer. In this respect, the effect of forcing
appears to be different than in geometry-induced TSBs, where forcing is known to strongly
affect the development of the shear layer. Transient forcing experiments, during which the
periodic forcing is either abruptly started or stopped, further demonstrate that the TSB
responds to upstream forcing with a characteristic frequency that is much smaller than the
forcing frequency of the PJAs, but that is of the same order of magnitude as that of the
natural low-frequency breathing motion.

Overall, the present results support a mechanism where the low-frequency breathing
motion is a response of the TSB to upstream turbulent perturbations. The TSB appears to
behave like a first-order low-pass filter that converts the broadband fluctuations present
in the incoming turbulent boundary layer into a low-frequency, large-scale fluctuation
of the separation and reattachment fronts, thus leading to a contraction and expansion of
the TSB. The upstream perturbations affect the position of separation first and, indirectly,
the position of reattachment through a low-frequency, global redistribution of the pressure
and velocity fields (viscous–inviscid interaction). In that sense, the mechanism bears
some resemblance with the low-frequency flapping of LSBs, although in the latter case
the reattachment moves first and is followed by the separation point (Marxen 2020).
The proposed mechanism of low-frequency unsteadiness must also be different than in
geometry-induced TSBs where the separation point is fixed on the test surface.

In addition to the conclusions obtained with respect to the mechanism of low-frequency
breathing, results from the continuous forcing experiments also offer new insights
into active separation control with PJAs. Specifically, the phase-averaged PIV results
demonstrate that PJAs operate by generating strong starting vortices that are associated
with a downstream shift of the separation front. Given the large parameter space that
governs the use of PJAs, further research appears necessary to optimize their usage for
AFC purposes.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.77.
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