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A self-consistent formalism to estimate baroclinic energy densities and fluxes resulting
from the propagation of internal waves of arbitrary amplitude is derived using the
concept of available potential energy. The method can be applied to numerical,
laboratory or field data. The total energy flux is shown to be the sum of the linear
energy flux

∫
u′p′ dz (primes denote baroclinic quantities), plus contributions from

the non-hydrostatic pressure anomaly and the self-advection of kinetic and available
potential energy. Using highly resolved observations in Massachusetts Bay, it is shown
that due to the presence of nonlinear internal waves periodically propagating in the
area,

∫
u′p′ dz accounts for only half of the total flux. The same data show that

equipartition of available potential and kinetic energy can be violated, especially
when the nonlinear waves begin to interact with the bottom.

1. Introduction
Observations of nonlinear internal waves (NLIWs) in the ocean are rapidly growing

in number (Apel, Ostrovsky & Stepanyants 1995). Remote sensing techniques show
that NLIWs of depression are a common feature over most continental shelves
(Jackson 2004), but there are also many examples of NLIWs propagating across
entire basins, such as the South China Sea (Ramp et al. 2004; Duda et al. 2004) or
the Andaman Sea (Osborne & Burch 1980). In addition, recent observations indicate
that near-bottom waves of elevation might be just as widespread (Klymak & Moum
2003; Hosegood & van Haren 2004; Scotti & Pineda 2004). NLIWs have important
effects on many problems, ranging from the biology of pelagic organisms (Pineda
1991) to sound propagation and attenuation (Apel et al. 1997), and have become
a subject of numerous field and theoretical studies, which are summarized well in
Helfrich & Melville (2006).

An interesting property of NLIWs is that they can very efficiently package and
transport energy across considerable distances. Once they reach shallow waters, the
energy can then be applied to mixing or to drive along-shore currents via a radiation
stress divergence mechanism. It is therefore important to quantify the baroclinic
energy flux associated with NLIWs. While baroclinic fluxes are generally small when
compared to barotropic fluxes, they nontheless represent energy that is ‘ready’ for
mixing, whereas away from boundaries barotropic energy has first to go through
a cascade process in order to cause mixing (see e.g. Laurent & Garrett 2002).
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104 A. Scotti, R. Beardsley and B. Butman

Jeans & Sherwin (2001) were among the first to attempt to quantify the energy fluxes
associated with NLIWs, including the nonlinear contributions (i.e. contributions from
terms other than

∫
u′p′ dz, where primes denote baroclinic quantities). They considered

NLIWs propagating along the Portuguese shelf using a combination of shipboard
acoustic Dopple current profile (ADCP) measurements for currents and conductivity-
temperature-depth (CTD) casts and fixed thermistor chains for density. Their analysis
suffered from two shortcomings: one related to the accuracy of ADCP-measured
currents in the presence of short-wavelength waves discussed in Scotti et al. (2005), and
the other due to the lack of a unifying framework to estimate fluxes, which resulted in
potentially confusing mesoscale-mediated changes in stratification for NLIWs-caused
mixing. More recently, Lien et al. (2005) and Chang et al. (2006) looked at the energet-
ics and energy fluxes for NLIWs in the South China Sea. They report a much larger
value for the energy than predicted by the Garret–Munk spectrum and an almost com-
plete dissipation of the waves as they leave the deep part of the basin. However, they
used linear-wave theory to account for deficiencies in the vertical coverage of the water
column, and they apparently did not take into account the already mentioned problem
with ADCPs. Moreover, they did not include nonlinear fluxes (to be defined below),
which is particularly significant, as they represent a sizable component of the total flux.

These examples highlight the theoretical and observational challenging nature of
nonlinear internal waves. In this paper we develop a consistent framework to diagnose
the energetics of internal waves. It recovers the standard treatment of Nash, Alford
& Kunze (2005) in the limit of small waves, but it applies to waves of any amplitude
and wavelength. To examine the importance of each term making up the total flux, we
apply the framework to NLIWs observed in Massachusetts Bay, where a high-quality
comprehensive dataset exists which allows us to calculate all of the terms involved in
the energy equation.

2. Energy equation for a stratified fluid
Our treatment of the energy problem for NLIWs represents a synthesis of the

concept of available potential energy (APE) as discussed in Shepherd (1993) and
Winters et al. (1995). The idea of APE goes back to the early works of Margules
(1903) and Lorenz (1955), who showed that in order to be meaningful, potential
energy has to be referenced to an appropriately defined background potential energy.

Let ρ = ρ(z, t) be a properly defined density reference state, strictly decreasing in
z (stable stratification) and possibly time dependent, and let z∗(s, t) be such that
ρ(z∗(s, t), t) = s. Let min ρ <ρ0 < max ρ be a given density reference and define

ψ =

∫ ρ

ρ0

gz∗ ds, (2.1)

where ρ = ρ(x, t) is the density of the fluid. The spatial dependence of ψ depends
only on the spatial dependence of the density field whence it follows that ∇ψ = gz∗∇ρ.
Let the evolution of the fluid be governed by the Navier–Stokes equations for a fluid
of variable density in the Boussinesq approximation. It is a matter of simple algebra
to show that from conservation of mass ψ obeys

Dψ

Dt
= κ∇2ψ − κg|∇ρ|2 ∂z∗

∂ρ
+ g

∫ ρ

ρ0

∂z∗

∂t
ds, (2.2)

where D/Dt is the Lagrangian derivative and κ the molecular diffusivity of the
stratifying agent. The first term on the right-hand side is diffusion of ψ , the second,
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which is positive, represents the effect of irreversible mixing (see below), while the last
reflects changes to the background state. Similarly, we can write

D

Dt
(ρgz) = ρgw + κ∇2(ρgz) − 2gκ

∂ρ

∂z
. (2.3)

Here the terms on the right are the buoyancy flux, diffusion of total potential energy
and work done against gravity by diffusive processes. If we subtract (2.2) from (2.3)
and add the equation for kinetic energy, we arrive at the following equation:

∂

∂t
(Ek + ρgz − ψ) = ∇2(νEk + κ(ρgz − ψ)) − u · ∇(J ) − εk

+ κg|∇ρ|2 ∂z∗

∂ρ
− 2gκ

∂ρ

∂z
− g

∫ ρ

ρ0

∂z∗

∂t
ds, (2.4)

where Ek is the kinetic energy density, εk the kinetic energy dissipation term, ν the
molecular viscosity and J =p + Ek + ρgz − ψ . Finally, since

ψ =

∫ ρ

ρ

gz∗ ds + ρgz − ρ0gz0(t) − g

∫ z

z0(t)

ρ dz′, (2.5)

with z0(t) = z∗(ρ0, t), (2.4) can be recast into the final form of the energy equation

∂

∂t
(Ek + Ep) + ∇(u(P + Ek + Ep)) = ∇2(νEk + κEp)

− εk − εp − 2gκ
∂

∂z
(ρ − ρ) − g

∫ ρ

ρ

∂z∗

∂t
ds, (2.6)

where

P = p + gρ0z0(t) +

∫ z

z0(t)

gρ dz′, Ep = g

∫ ρ

ρ

(z − z∗) ds,

εp = −gκ

(
|∇ρ|2 ∂z∗

∂ρ

∣∣∣∣
ρ

− |∇ρ|2 ∂z∗

∂ρ

∣∣∣∣
ρ

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.7)

P is the deviation from the hydrostatic pressure distribution associated with the
reference state. The terms on the right of (2.6) represent diffusion, conversion of
energy to internal energy (heat) due to viscous friction, energy used to irreversibly
raise the centre of mass of the system by molecular mixing (a geometric interpretation
of this term was given by Winters & D’Asaro 1996) and changes in Ep due to changes
in the backgroud state. Note that (2.6) does not depend on the choice of the reference
density ρ0 and that each term is identically zero if u =0 and ρ = ρ.

2.1. Properties of the energy equation

2.1.1. Closed systems

For a closed system, if one chooses ρ as the adiabatic restratification of ρ, (2.6) is
the local version of the volume-averaged equations derived by Winters et al., and Ep

represents the available potential energy as it is commonly understood. Our derivation
highlights the fact that it is possible to attach a local meaning to Ep , as already noted
by Shepherd. In fact, as defined above Ep(ρ, ρ) � 0, as long as ρ is chosen to be
monotonic. Moreover, Ep(ρ, ρ) = 0 if and only if ρ = ρ. For small deviations from
the reference state

Ep(ρ + δ, ρ) = ρ0

g2

2N2

(
δ

ρ0

)2

+ O(δ3), (2.8)
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where N2 = −g∂ρ/∂zρ−1
0 is the Brünt–Väisälä frequency of the reference state. The

above relationship is exact if the reference state is linear (i.e. constant N2). The mixing
terms in (2.6) are globally negative, as more easily seen if one forms an equation for
the background potential energy (BPE) defined as gρz − Ep . However, locally they
can be of either sign, unless the backgroud stratification is linear. To see that, consider
again a small perturbation of the reference state and expand the mixing terms. To
the lowest order the expansion is equal to

−εp − 2gκ
∂

∂z
(ρ − ρ) � gκ(ρ − ρ)|∇ρ|2 ∂2z∗

∂ρ2
, (2.9)

unless the reference state is linearly stratified, in which case

−εp − 2gκ
∂

∂z
(ρ − ρ) = −κ

ρ0g
2

2N2
|∇(ρ − ρ)|2. (2.10)

In the former case, diffusion may locally increase the APE of the parcel of fluid.

2.2. Open or semi-open systems

In deriving (2.6), we did not make use of the assumption that ρ is connected by
an adiabatic restratification to ρ. All we require from ρ is that it is monotonic and
min ρ � min ρ < max ρ � max ρ. Thus, (2.6) describes the evolution of a family of
adiabatic global invariants with a clear link to the mixing properties of the flow. As
such, they are very useful as a diagnostic tool. With NLIWs in mind, the problem
usually reduces to determining how much energy is available for mixing within a
semi-enclosed area (e.g. shoreward of a give isobath) or calculating how much mixing
occurs within a region traversed by NLIWs. In either case, determining the exact
‘background’ ρ may be difficult or impossible. However, as long as conditions within
the domain allow the existence of an equilibrium state (u = 0, ρ = ρ(z)), one can guess
a reasonable value for ρ, and calculate the resulting fluxes. Equation (2.6) shows that
there are no ‘hidden’ terms resulting from the mismatch between the estimated ρ

and the real one. In fact, there is more to that. Saying that a certain region of the
ocean receives a given amount of baroclinic energy flux does not tell anything about
the mixing occurring within it, unless something is known about the nature of the
stratification within the area, reflected in the widely used formula

κt ∼ εk

N2
(2.11)

that links kinetic energy dissipation to eddy diffusivity (Fernando 1991). The
disadvantage is that calculating the flux of pseudo-energy alone only allows the
evalutation of the total amount of energy dissipated by the combined mixing and
turbulent kinetic energy dissipation. However, it is always possible, either by means of
direct measurements, or by using a parameterization of εp in terms of εk , to separate
the contributions. The alternative is to use the standard energy equation

∂

∂t
(Ek + ρgz) + ∇(u(p + Ek + ρgz)) = ∇2(νEk + κρgz) − εk, (2.12)

which was the route followed by Chang et al. (2006). This is appropriate for linear
internal waves, once the barotropic component is removed (Kunze et al. 2002; Nash
et al. 2005), because the kinetic energy and APE density associated with the waves
is small relative to the baroclinic internal energy p′. Thus the baroclinic flux reduces
to

∫
u′p′dz. For NLIWs, as we will show below, the baroclinic energy density

becomes comparable to the baroclinic internal energy (pressure) p′, and thus the term
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Figure 1. Map of the Massachusetts Bay/Stellwagen Bank area. The solid triangles marked
A, B, and C show the positions of the moorings deployed during MBIWE98. The plot also
shows the barotropic M2 tidal ellipses at stations B and C.

∫
u(Ek + ρgz) dz cannot be simply dropped out. On the other hand, by not

distiguishing APE from BPE, a naive calculation of the effective baroclinic flux
including u(Ek + ρgz) amounts to calculating a small quantity by subtracting large
quantities (since BPE is large), thus introducing large errors.† In either case, the
error in the estimate is expected to be large. In addition, mixing cannot be evaluated
directly, even if direct measurements of εk are available, but has to be parameterized.
How to modify the formalism to include open systems that do not have a simple
background state is a question first raised by Lorenz (1955). While the energy equation
derived above holds, it is not clear how to interpret EP . Shepherd (1993) shows that
the Hamiltonian formalism can be used to consider this case, but exact expressions
cannot be easily obtained, and at this moment the problem remains open.

3. Application to Massachusetts Bay
In 1998, a Massachusetts Bay Internal Wave Experiment (MBIWE98) was

conducted to study the impact of NLIWs on sediment transport within Stellwagen
Basin (figure 1). The experiment included both shipboard and moored array
measurements over a period of four weeks from August 4 to September 1, 1998.
More than thirty sets of NLIW packets were observed during the deployment,
resulting in the most comprehensive set of observations of NLIWs in Massachusetts
Bay to date (Butman et al. 2006). Moorings at B (85 m depth) and C (50 m depth)
(figure 1) recorded velocity, temperature and salinity over the deployment period.
ADCP measurements were postprocessed following Scotti et al. (2005) and validated
with in-situ current meters. Hydrographic cruises completed during the survey period
provide data to calculate the background stratification. Both at B and C the wave cycle
typically can be divided into three phases. The first phase (I), which lasts approximately
40 min, consists of a packet of large high-frequency oscillations, ranging from a few
to more than 10, followed by more random oscillations lasting for about 2 hours

† This problem does not exist if (2.6) is used, since the terms in the flux involving density depends
explicitly on ρ − ρ and BPE is removed.
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Figure 2. Time series of vertically averaged APE and kinetic energy ρ(u2 + v2 + w2)/2 of a
packet of NLIWs at B. Both the full expression for Ep and its quadratic approximation are
shown.

(second phase), leaving the pycnocline displaced downward. The leading NLIWs were
characterized by a mean amplitude of 15 ± 5 m, approximately equal to the depth of
the pycnocline, with wavelengths of about 240 m. The pycnocline slowly rebounds to
its equilibrium position during the last phase. The time interval between successive
sets of packets (12.4 h) strongly suggests that the observed NLIWs originate from
the interaction of the barotropic tide with nearby Stellwagen Bank (Chereskin 1983;
Trask & Briscoe 1983). Due to instrument failure, only 25 wave cycles were observed
at C, while at B data were obtained over 31 cycles. The main difference between the
two sites is that at C the waves begin to interact with the shoaling bottom.

Fluxes and energy densitites are averaged over the duration of the first phase.
Thus, we aggregate the effects of several waves into a single number. Because of the
variability of the NLIW field, the MBIWE dataset provides an excellent opportunity
to test the relative importance of the different flux terms in the energy equation under
a spectrum of nonlinear waves. The only exception to this rule is when we discuss the
relative importance of high- and low-bandpassed fluxes.

3.1. Energy density and energy fluxes

The background stratification ρ was determined by combining data from the
hydrographic cruises with average values of density recorded by the moored
instruments during the periods immediately preceding the arrival of the waves. The
results were found to be robust with respect to day-to-day changes in ρ. Figure 2
shows a typical time series of depth-averaged available and kinetic energy for a series
of NLIWs at B. For comparison, we have also plotted the leading-order term of the
APE (equation (2.8)). While not large, the difference between the approximated APE
and the real energy illustrates the nonlinear nature of the waves. The total energy
in this particular packet is evenly distributed between kinetic and available potential
energy. This appears to be a statistically robust property of the NLIWs observed at B
(figure 3), despite deviations at the individual wave level and at the packet level. At C,
there appears to be a shift towards more energy stored in the available potential field,
probably due to a departure from weak nonlinearity caused by the shoaling bottom.
The increase in overall energy densitites at C is similarly due to the shallowing of
the water column. While equipartition is to be expected for a weakly nonlinear wave
it is not clear if this property survives for strongly nonlinear waves and/or waves
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Figure 3. Scatter plot of APE vs. kinetic energy, depth and time averaged, of the NLIWIs
observed at B (open circles) and C (solid circles). The slope of the linear regression of the data
at C is 0.82 ± 0.064 (r2 = 0.87), and at B is 1.06 ± 0.088 (r2 = 0.8).

interacting with the bottom; the waves described in Scotti & Pineda (2004) (analysed
with the same technique) have a potential to kinetic energy ratio much larger than
one.

While our approach can be used to study the depth dependence of fluxes, for ease
of interpretation we consider only depth-integrated quantities, for which a partition
between barotropic and baroclinic fluxes is straightfoward. To analyse the fluxes we
first write the pressure P as

P = P0(x, y, t) − g

∫ z

0

(ρ − ρ) dz − ρ0

∫ z

0

Dw

Dt
dz ≡ P0 + p′

h + p′
nh, (3.1)

where a prime denotes baroclinic quantities (and again we have assumed a Boussinesq
fluid). The first term is the pressure at the reference level z = 0, which includes
the surface tide (we have assumed for convenience that z0(t) = 0). To separate the
baroclinic from the barotropic component of the energy it is necessary to depth-
integrate (2.6) and remove the equation for the barotropic component of the energy.
Since the baroclinic velocity integrates to zero and

∫
(u − u′)P0 dz is removed when

we subtract the barotropic energy, we do not need to worry about this term (Nash
et al. 2005). The other two terms are the baroclinic hydrostatic pressure anomaly and
the non-hydrostatic pressure component due to the vertical acceleration of the fluid
elements (Moum & Smyth 2006). Thus the vertically integrated divergence term in
(2.6) reduces to∫

u′p′
hdz +

∫
up′

nhdz +

∫
u(E′

k + E′
p) dz ≡ Fh + Fnh + Fnl, (3.2)

where the subscripts h, nh and nl mean hydrostatic, non-hydrostatic and nonlinear.†
Note that in the nh and nl terms the full velocity has to be used. For the present
dataset, Phase I in practice coincided with slack water, so that u � u′, but in general
the advection of nonlinear energy cannot be neglected a priori.

† The mixed terms u′|u − u′|2/2 and u′[(u − u′) · u′] arising from the expansion of uEk do not
appear in (3.2) because the former integrates to zero, while the integral of the latter contributes to
the barotropic energy flux.
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Figure 4. Scatter plot of hydrostatic (x-axis) vs. nonlinear and nonhydrostatic (y-axis) fluxes
at B and C. The fluxes are both depth-integrated and averaged over the duration of Phase I
of the tidal cycle.
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Figure 5. High (solid) and low-frequency (dash-dotted) component of the vertically integrated
baroclinic energy fluxes at B. The high-frequency fluxes are averaged over 2 hours, while the
low-frequency fluxes are averaged over a tidal cycle.

At both B and C, the contribution of Fnl is substantial. The ratio Fnl/Fh is close
to 0.6 over the range of fluxes observed (figure 4). The non-hydrostatic flux is smaller
but none the less still significant at B, while it is only a small fraction of the total
at C, where the high-frequency oscillations begin to interact with the bottom, and so
tend to have flatter and wider troughs. Since the non-hydrostatic term peaks over the
shoulders of the waves (e.g. Scotti & Pineda 2004, figure 3), it tends to contribute less
once averaged over several waves, even though locally it may still be large.

3.2. High- and low-frequency fluxes

A frequent claim is that although the instantaneous values of the depth-averaged
energy flux during the passage of NLIWs can be very large, the contribution over
time is small, because NLIWs occupy a small fraction of the total cycle. The present
analysis does show large instantaneous fluxes. At B it exceeds 9 kWm−1, with a
median value of 1.2 kWm−1 when NLIWs are present. To assess the average flux, we
bandpass filtered the time series into high-frequency and low-frequency components
(figure 5). The cut-off of the filter was set to separate the NLIW component from the
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rest of the signal. The high-frequency flux is non-zero during about 15% of the tidal
cycle but accounts for about 60% of the total flux averaged over the entire cycle.
While this result cannot be generalized to other areas, it is important to recognize that
the energy contained in nonlinear high-frequency internal waves may be an important
term in the overall energy baroclinic budget.

3.3. Dissipation and mixing

At both sites, energy fluxes are consistently directed towards the west-southwest.
Assuming a two-dimensional propagation, we can estimate dissipation levels by
subtracting fluxes at each site. To establish a baseline dissipation we consider the low-
passed fluxes first, neglecting the dissipation due to bottom friction, and assuming
that the internal dissipation occurs within a region of enhanced shear centred on the
pycnocline (about 20 m thick, based on EOF analysis) extending between B and C.
The estimated value is εk = 10−6 Wkg−1, where we have used a 20 % mixing efficiency
to separate εk from εp . Dissipation associated with the high-frequency component
was calculated by integrating the fluxes over 2 hour periods and assuming that
dissipation occurs only within the volume of the pycnocline occupied by the packet
(20 m × 3.6 km) during its transit time from B to C (approximatively 5.5 hours). Using
a standard parameterization for bottom friction, we estimate εk =2.6 × 10−6 W kg−1,
which is close to values measured with microstructure profilers under similar
conditions (Klymak & Moum 2003). Thus, NLIWs increase the dissipation by only a
factor of 2.6. This modest increase suggests that in Massachusetts Bay, waves do not
beget large-scale instabilities between B and C. Rather, it is likely that the strain field
associated with the waves increases locally the background turbulence.

4. Conclusion
We have developed a formalism to calculate baroclinic energy fluxes that applies

to both linear and nonlinear internal waves. The centrepiece is an equation that, for
the appropriate choice of the reference state, describes conservation of kinetic energy
and APE. We have shown that equipartition between kinetic and potential energy
does not hold for NLIWs that begin to interact with a shoaling bottom. We also
have shown that

∫
u′p′dz underestimates the total energy fluxes by as much as 50%

when NLIWs are present. The linear scaling between the different terms in the total
flux and the linear energy flux can be used to estimate the total flux from knowledge
of

∫
u′p′dz alone, but more observations are needed to ascertain how robust the

correlation is.
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