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Scaling of the interface that demarcates a turbulent boundary layer from the
non-turbulent free stream is sought using theoretical reasoning and experimental
evidence in a zero-pressure-gradient boundary layer. The data-analysis, utilising
particle image velocimetry (PIV) measurements at four different Reynolds numbers
(δuτ/ν = 1200–14 500), indicates the presence of a viscosity dominated interface at
all Reynolds numbers. It is found that the mean normal velocity across the interface
and the tangential velocity jump scale with the skin-friction velocity uτ and are
approximately uτ/10 and uτ , respectively. The width of the superlayer is characterised
by the local vorticity thickness δω and scales with the viscous length scale ν/uτ . An
order of magnitude analysis of the tangential momentum balance within the superlayer
suggests that the turbulent motions also scale with inner velocity and length scales uτ
and ν/uτ , respectively. The influence of the wall on the dynamics in the superlayer
is considered via Townsend’s similarity hypothesis, which can be extended to account
for the viscous influence at the turbulent/non-turbulent interface. Similar to a turbulent
far-wake the turbulent motions in the superlayer are of the same order as the mean
velocity deficit, which lends to a physical explanation for the emergence of the wake
profile in the outer part of the boundary layer.
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1. Introduction

All turbulent flows and their different turbulence characteristics are affected by the
boundaries within which they reside. These boundaries are rigid, flexible, fluid or a
combination thereof. Substantial research has been devoted to the case where a flow is
bounded by a rigid surface with prominent emphasis on near-wall dynamics, e.g. duct
flows, turbulent boundary layers, impinging jets, wall-jets, etc. The case where a
turbulent flow has a fluid boundary is relatively more complex, e.g. combustion flame
fronts, mixing of non-identical fluids, turbulent flow bounded by a non-turbulent flow,
etc. Here we focus on the boundary between the turbulent and non-turbulent flow in
canonical zero-pressure-gradient turbulent boundary layers.

In practice, the turbulent/non-turbulent interface (TNTI) is detected in many
different ways such as hot-wire signal (skewness, variance, gradients), scalar
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concentration, vorticity, etc. Using vorticity as a criterion to demarcate turbulent/non-
turbulent regions, da Silva & Taveira (2013) have shown the existence of a region
where the diffusion of enstrophy is dominant while its production is negligible, the
region suggested to be the viscous superlayer in accordance with the description
of Corrsin & Kistler (1955). In the immediate vicinity of this region (towards the
turbulent side) is the region where the peak in vorticity occurs and is defined as
the ‘turbulent sublayer’ (da Silva et al. 2014). The interface layer is suggested to
have these two layers. The results of da Silva & Taveira (2013) are obtained using a
vorticity criteria to identify the TNTI in a turbulent jet. It remains to be seen whether
their observations apply to other flows, especially at high Reynolds numbers and for
different TNTI detection criteria.

Until recently, for the majority of studies, the limited resolution of probing
techniques have been able to identify the region with vorticity concentration (the
thickness of this region is found to be of the order of λT , the Taylor microscale in
shear flows), while the existence of a region with dominant viscous diffusion was
only hypothesised. This is due to the fact that the thickness of the viscous diffusion
region is small and of the order of the Kolmogorov scale. (Based on dimensional
arguments Corrsin & Kistler (1955) estimate the thickness to be of the order of

√
ν/ω,

where ν is the kinematic viscosity and ω is the vorticity magnitude.) Using direct
numerical simulations, da Silva & Taveira (2013) specify that one would require a
fine resolution (grid spacing no larger than η, the Kolmogorov scale) to detect this
region. The experimental database used in the present study lacks the resolution to
identify the region where diffusion is prominent. However, the limited interrogation
size does allow us to identify the region with vorticity peak (as will be shown in
§ 3.3). Furthermore, it is noted that various approaches that can be used to identify
TNTI are consistent and reveal similar overall characteristics (Anand, Boersma &
Agrawal 2009; de Silva et al. 2013; Chauhan et al. 2014). In our study we have
utilised a kinetic energy (KE) criteria to identify the TNTI, particularly, as we only
have access to one component of vorticity and not the full enstrophy. Chauhan et al.
(2014) described in detail the KE criteria and established the appropriateness of
using the KE criteria to identify the TNTI. Although it is not certain whether the
KE criteria can identify a subregion where vorticity diffusion occurs, Taveira & da
Silva (2013) have shown that the conditional KE profile exhibits a sharp rise at the
interface where the TNTI is identified by a vorticity criteria. If two such regions
are identifiable with a KE criteria, we acknowledge that the limited resolution of
data presented here fails to reveal the diffusion layer. Since the thickness of the
vorticity/enstrophy concentration region is much larger than the thickness over which
diffusion occurs, we follow the common convention to collectively refer to these two
regions as the superlayer. Therefore, in this paper we use the term ‘superlayer’ to
refer to the region with vorticity concentration that is identified with the KE criterion.

The scaling of the TNTI in turbulent boundary layers can be pursued in two
complimentary aspects; global as well as local. The global aspect is related to
the mean growth rate of the turbulence boundary, its organisation and entrainment.
Globally different flows behave differently, especially shear-free and shear flows,
with further differences among the various shear flows (Philip & Marusic 2012).
However, it is in the local aspects where there is a hope of universality (Sreenivasan,
Ramshankar & Meneveau 1989b). Philip et al. (2014) utilise a multi-scale analysis
to show that entrainment from global and local views can be considered as viewing
the flow from different scales. They examined molecular diffusion of KE and viscous
nibbling at the smallest scale, focussing on correlations between interface orientation,
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viscous stress tensor elements, and local fluid velocity. At the largest scale, the total
KE is shown to evolve predominantly due to the turbulent advective fluxes occurring
through an average surface which differs considerably from the local, corrugated,
sharp interface.

The emphasis of the current study is the local aspect that pertains to the
conditionally averaged velocity and variance profiles, as well as the velocity and
length scale characteristics of and within the interface, utilising data spanning more
than a decade in Reynolds number. Developments in characterising these features are
fairly nascent and made possible by the recent advances in experimental techniques
and numerical methods. Holzner & Lüthi (2011) have shown that the interface
thickness scales with the Kolmogorov scale in a TNTI under a shear-free flow. On
the other hand, the thickness of the interface layer is found to be of the order of the
Taylor microscale (λT) in flows with mean shear (e.g. Bisset, Hunt & Rogers 2002
in wakes, da Silva & Taveira 2010 in jets). Furthermore, da Silva & dos Reis (2011)
have shown that in flows with mean shear the presence of vortical structures at the
interface, the radius of which is O(λT), determine the thickness of the layer, while in
flows without mean shear the thickness scales with the Kolmogorov scale. Pertaining
to the length scales of turbulent motions responsible for entrainment, Holzner et al.
(2007) have shown that they are essentially small scales in shear-free flow, and
evidenced to be of the order of Taylor microscale by Westerweel et al. (2005) and
da Silva & Pereira (2008). Similar observation in a zero-pressure-gradient turbulent
boundary layer at high Reynolds number (δ+ = δuτ/ν ≈ 14 500, where uτ =√τw/ρ is
the skin-friction velocity) is made by Chauhan et al. (2014), wherein autocorrelation
of the normal velocity at the interface and instantaneous mass-flux analysis indicate
that motions of O(λT) are representative of small-scale features. Further, by means of
‘mass-flux spectra’ it is shown that the boundary layer entrainment is characterised
by two distinctive length scales (O(λT) and O(δ)) with a large separation between
them with increasing Reynolds number.

The local entrainment velocity (vn, normal velocity relative to the interface) is found
to scale with the Kolmogorov velocity (vK) in a TNTI emerging from an oscillating
grid (shear-free flow) by Holzner & Lüthi (2011). The local entrainment velocity
depends significantly on the surface shape of the interface as evidenced by Wolf
et al. (2012, 2013) in a turbulent jet flow. For turbulent boundary layers vn scales
with uτ (Philip et al. 2014). On the other hand, the mean propagation velocity of
the interface can be obtained from the growth rate of the mean turbulence boundary
(dδ/dx in boundary layers and db/dx in jets/wakes, where b is the half-width). The
mean entrainment velocity relative to the interface can then be calculated from the
average mass-flux in the flow, e.g. for the case of an axisymmetric jet, E = −Eb/2,
where Eb is the rate at which the turbulent flow is spreading and E is the rate at
which external fluid flows into the turbulent flow across the interface (Turner 1986).
In the present paper an analogous expression (3.4) for the mean entrainment velocity
is verified for boundary layers under zero pressure gradient.

As indicated above, recent studies have focussed primarily on the shear-free
(oscillating grid) and free-shear (jets/wakes) flows, while the case of a turbulent
boundary layer (wall-bounded shear flow) has received less attention, even though it is
also of much practical importance. For boundary-layer flows, two distinct length scales
(inner, ν/uτ , and outer, δ) are required to characterise the mean-flow similarity. It is
also known that in the outer region (considered as the logarithmic layer and beyond)
the turbulent motions of the order of δ influence the dynamics in the logarithmic
region and below (Hutchins & Marusic 2007). The TNTI, wherein viscous effects are
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FIGURE 1. (Colour online) (a) Example of an instantaneous TNTI (grey line) shown over
contours of total streamwise velocity. (b) Conditionally averaged streamwise velocity with
respect to the interface position zi for δ+= 14 500. The line —•— shows 〈Ũ〉/U∞; solid
lines indicate local slopes. The shaded region is equivalent to the vorticity thickness δω
and is indicative of the superlayer width.

dominant, resides in the intermittent region of the boundary layer (z/δ & 1/3); the
interaction is between the small scales (that carry the viscous influence) and the large
scales (that are predominantly inviscid). In this paper we focus on the small-scale
aspects by examining the superlayer at four distinct Reynolds numbers. To this end
we concentrate on scaling of the mean thickness, streamwise velocity jump and mean
entrainment velocity by examining different Re zero-pressure-gradient flows.

For future reference we note that, in the laboratory frame of reference, the
streamwise and wall-normal axes are represented by x and z. The instantaneous
streamwise velocity, wall-normal velocity and spanwise vorticity are represented by
Ũ, W̃ and Ω̃y, respectively. The corresponding mean quantities are denoted as U, W
and Ωy and lowercase symbols are used for fluctuating components (u, w and ωy),
e.g. Ũ = U + u. The superscript ‘+’ indicates the scaling by inner velocity (uτ ) and
length (ν/uτ ). The subscript ‘i’ denotes quantities at the interface. The conditional
averages over the interface are indicated by 〈 〉, while the fluctuating quantities with
respect to the conditional mean are denoted as lowercase symbols with ‘′’ superscript
(u′, w′ and ω′y), e.g. Ũ = 〈Ũ〉 + u′.

1.1. Problem definition
Consider figure 1 which shows the conditionally averaged streamwise velocity profile
with reference to the local interface position zi for Reτ =14 500 (Chauhan et al. 2014).
The average profile is obtained as one moves along the interface and profiles for
instantaneous quantities are collected over the ordinate z− zi for subsequent averaging.
As one crosses the interface from the turbulent region to the non-turbulent region a
steep rise in 〈Ũ〉 is observed accompanied by corresponding change in the wall-normal
gradient. The steep rise occurs in a narrow region which is the superlayer. If the linear
gradients in the turbulent and non-turbulent regions are extrapolated, we see that a
jump in velocity across the superlayer has to occur at z− zi= 0. This jump is denoted
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as D[〈Ũ〉]. Thereby, the measured jump in 〈Ũ〉 and the maxima of its local gradient
aids in defining the vorticity thickness (e.g. Brown & Roshko 1974).

δω ≡ D[〈Ũ〉]
d〈Ũ〉

dz

∣∣∣∣∣
max

. (1.1)

Chauhan et al. (2014) have shown that the vorticity thickness is an appropriate
measure of the width of the superlayer by spectra of the instantaneous mass-flux
across the interface that the length scales involved in the small-scale nibbling
mechanism are of the same order as the vorticity thickness. Nibbling refers to
the propagation of vorticity from the turbulent region into the non-turbulent region
by viscous diffusion through small-scale eddy motions in the vicinity of the TNTI.
The questions that then emerge with respect to the scaling with varying Reynolds
numbers are as follows.

(a) What can one say about the mean entrainment velocities at the interface?
(b) How does the jump in 〈Ũ〉 and the vorticity thickness, δω, vary with Reτ?
(c) What is the scale of turbulent velocity fluctuations within the superlayer?

Answering the above questions is the main aim of this study and they are addressed
in § 3. Starting with the experimental evidence in § 3.1, velocity scales for the mean
flow (relative to the interface) are first established. Thereafter the governing equations
that are relevant to the superlayer dynamics is outlined in § 3.2 and an order of
magnitude analysis is undertaken. The conclusions made for scaling from the order
of magnitude analysis are attested with results from experiments in § 3.3. Subsequent
discussion on the emergence and implications of the observed scaling is presented in
§ 4, followed by the summary in § 5.

2. Experimental database
The present study utilises particle image velocimetry (PIV) data. Two-dimensional

velocity fields in the streamwise/wall-normal plane at four different Reynolds numbers
over a range δ+ = 1200–14 500 are considered. Previous PIV experiments contribute
to the present data and the key experimental parameters are summarised in table 1.
The present data (data sets C and D in table 1) are from the high-Reynolds-number
boundary layer wind tunnel (HRNBLWT) at the University of Melbourne. The
experiments listed in table 1 were performed under nominally zero streamwise
pressure-gradient conditions. The streamwise pressure-gradient is within ±0.5 % and
±2 % of the freestream velocity for HRNBLWT and Adrian et al. (2000), respectively.
The freestream turbulence intensity (uu1/2/U∞) is less than 0.2 %, 0.5 % and 0.2 %
of the freestream velocity for the data of Adrian et al. (2000), Hambleton et al.
(2005) and HRNBLWT (Kulandaivelu 2012), respectively. Further details of each
measurement can be found in the corresponding references. The boundary-layer
thickness δ for the Adrian et al. (2000) and Hambleton et al. (2005) profiles is
re-evaluated here by a fit to the composite velocity profile of Chauhan, Monkewitz
& Nagib (2009) for consistency. The TNTI in these velocity fields is detected using
a KE criteria, where the threshold k̃ for each flow is established using the procedure
outlined by Chauhan et al. (2014) in order to obtain a good agreement of the
intermittency profile with other data in the form of an error function. The local
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turbulent KE in the frame of reference moving with U∞, over a 3× 3 grid is defined
as

k̃= 100× 1
9 U2∞

1∑
m,n=−1

[(Ũm,n −U∞)2 + (W̃m,n)
2]. (2.1)

The above definition is suitable to distinguish between the turbulent regions where the
KE of fluctuations is high from the non-turbulent regions where the KE of fluctuations
is nearly zero. A detailed discussion on the KE criteria is found in Chauhan et al.
(2014). The consistency of using a KE criteria is evident in the recent results of de
Silva et al. (2013) and Chauhan et al. (2014). We note that the present data is limited
to two dimensions in the wall-normal–streamwise plane. Even though in the mean
equation all terms that are present can be evaluated from this 2D measurement (which
is carried out here), a fuller investigation of interface characteristics will be aided by
3D data, which unfortunately is not accessible in the present experimental set-up with
a large field of view at these high Re.

Before proceeding further, we give a note on the measurement resolution in these
studies. For the four different Re boundary layers examined here, the ratio of the
interrogation window size (∆i) to the Kolmogorov scale varies between 4 and 6
in the outer region. This finite window size has a filtering effect and thus motions
that are smaller than the window size cannot be resolved. Obviously this limits us
from isolating a region at the TNTI where viscous diffusion is prominent, since this
region can only be resolved with a grid spacing smaller than the Kolmogorov scale
according to da Silva et al. (2014). Even so, the large dynamic range obtained in
these experiments (Lx/1x or Lz/1z, see table 1) justifies the compromise made in
not resolving scales that are approximately of size η. On the other hand, the ratio of
the Taylor microscale to the interrogation window size approximately ranges from 2
to 3. The overall layer thickness (dictated by the region of vorticity peak) is of the
order of the Taylor microscale in flows with mean-shear (da Silva & dos Reis 2011).
Therefore, it is possible to identify this layer of vorticity concentration (as will be
shown in § 3.3) in these data sets. (See (4.3) for the definition of Kolmogorov length
scale and Taylor microscale.)

3. Analysis
3.1. Mean velocity scales (relative to the interface)

The mean interface location, Zi, when normalised by the local boundary-layer
thickness is Reynolds number independent, i.e. Zi/δ ≈ 2/3. Owing to this property
we consider the developing boundary layer as either of the two configurations
shown in figure 2(a,b). Figure 2(a) is the typical boundary-layer schematic where
the turbulent flow resides within the thickness δ, while the mean velocity profile
gradually approaches the free-stream velocity. The mean entrainment into the layer
can be determined from the free-stream velocities U∞ and W∞ at the layer’s edge.
In the alternate average schematic of figure 2(b) it is considered that the turbulent
flow is confined below the superlayer at Zi = 2δ/3. The flow above the superlayer
is non-turbulent and the streamwise velocity undergoes a sudden change within the
superlayer. In this case the mean entrainment is determined by the mean velocities
at the interface, i.e. 〈Ũi〉 and 〈W̃i〉 in the streamwise and wall-normal directions,
respectively. Using experimental data at δ+ = 14 500, Chauhan et al. (2014) showed
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FIGURE 2. (Colour online) Two average schematics. (a) Schematic of the mean boundary
layer, where U∞ and W∞ are the free-stream velocities in the streamwise and wall-normal
directions, respectively, and δ is the boundary layer thickness. (b) Schematic of a turbulent
flow below a mean interface. ‘C.V.’ denotes the control volume. Here 〈Ũi〉 and 〈W̃i〉 are
averaged streamwise and wall-normal velocities respectively, conditioned at the interface
and Zi is the mean interface height. Subscripts ‘n’ and ‘t’ denote normal and tangential
directions, respectively. (c) Control volume along the superlayer. Superscripts ‘nt’ and ‘t’
denote non-turbulent and turbulent regions, respectively, and v and ` are characteristic
velocity and length, respectively, of turbulent motions within the superlayer.

Experiment δ+ Left-hand side Right-hand side

A Hambleton et al. (2005) 1230 0.10 0.08
B Adrian et al. (2000) 2790 0.13 0.13
C Present study 7870 0.11 0.11
D Present study 14 500 0.21 0.22

TABLE 2. Net entrainment dṁ/dx calculated from the left-hand side and right-hand side
of (3.1).

that the entrainment calculations using either of the above approaches are consistent
and result in the equation

dṁ
dx
=U∞

[
dδ
dx
− dδ∗

dx

]
≈
[
〈Ũi〉 Zi

δ

dδ
dx
− 〈W̃i〉

]
. (3.1)

Here δ∗ is the displacement thickness. The above equation is validated for the four
data sets by estimating the net mass flux dṁ/dx using both sides of the equation. The
resulting values for dṁ/dx from the theory (left-hand side of (3.1)) are compared with
those obtained from conditional mean velocities at the interface (right-hand side of
(3.1)) in table 2 and found to be in good agreement.

Now, the ratio Zi/δ is less than one and approximately equal to 2/3. The outer
similarity of the mean flow at high Reynolds numbers implies that 〈Ũi〉/U∞ ∼ 1.
Using the expressions for dδ/dx and dδ∗/dx (see appendix A in Chauhan et al. 2014,
or other equivalent evolution equations) we get

〈W̃i〉
U∞
≈ 1
(U+∞)2

[
H κ

H IWW/(U+∞)2 + κ
]

︸ ︷︷ ︸
=dδ∗/dx

−1
3
δ+

Reδ∗
1

U+∞

[
H (κ + 1/U+∞)

H IWW/(U+∞)2 + κ
]

︸ ︷︷ ︸
=dδ/dx

, (3.2)
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where κ is the von Kármán’s constant, H = δ∗/θ is the shape factor, θ is the
displacement thickness, IWW =

∫∞
0 (U

+
∞ − U+)2d(z/∆) with ∆ = U∞δ∗/uτ and

Reδ∗ = U∞δ∗/ν. Since Reδ∗/δ+ ≈ 3.4 at high Reynolds numbers (Chauhan et al.
2009), the second term on the right is U+∞ times larger than the first term on the
right. Therefore

〈W̃i〉
U∞
≈−1

3
dδ
dx
. (3.3)

Since Eb=U∞dδ/dx, the mean spreading velocity of the boundary layer. Therefore

〈W̃i〉 ≈−Eb

3
. (3.4)

In the experiments analysed here the boundary layer is examined in the Eulerian
frame of reference and under a fixed free-stream velocity the boundary layer thickness
remains unchanged. Since the location of the mean interface also does not change,
the mean propagation velocity of the interface at a fixed position in x is zero. This
implies that the measured conditional velocity (〈W̃i〉) at the interface is then the mean
entrainment velocity across the interface. Therefore (3.4) is an approximate expression
that relates the mean entrainment velocity to the growth of the layer, analogous to a
similar expression by Turner (1986) for turbulent jets. Furthermore, the shape factor
H→1 (Monkewitz, Chauhan & Nagib 2008) in the limit U+∞→∞ for a zero-pressure-
gradient boundary layer (for example, at δ+ = 14 500, Reδ∗/δ+ ≈ 3.6, H ≈ 1.3 and
dδ/dx ≈ 0.012 which correspond to a slow boundary layer growth of approximately
0.7◦). Equation (3.2) then simplifies to

〈W̃i〉
uτ
≈− 1

10
. (3.5)

The constraint of (3.1) in the developing boundary layer establishes that 〈W̃i〉 is
proportional to uτ , i.e. 〈W̃i〉 ∼ uτ . Equation (3.5) is an approximate expression for the
mean entrainment velocity. It is noted that 〈W̃i〉 at the interface is negative, which is
consistent with the notion that the mean influx of momentum is from the non-turbulent
region to the turbulent region, in contrast to positive W∞. Figure 3(a) shows profiles of
〈W̃〉/uτ from PIV measurements for the four Reynolds numbers. Hereafter the wall-
normal distance from the interface is denoted as ξ = z − zi. A good agreement of
the profiles is seen over the wide range of Reynolds numbers on the non-turbulent
side. On the turbulent side the profile for Adrian et al. (2000) deviates from the rest,
however, a lack of Reynolds number trend in this region is evident. For the Adrian
et al. (2000) data set, the number vector fields were considerably small (Nf = 50)
which likely makes it difficult to obtain converged results especially for the wall-
normal component that is at least two orders of magnitude smaller than the streamwise
component. It is also seen that in the vicinity of the detected interface location and
above it, i.e. ξ &0, the average wall-normal velocity is negative and in good agreement
with the approximation of (3.5).

A note on the dynamic range of the measurements in turbulent boundary layers is
warranted here especially for the wall-normal component. The average wall-normal
velocity is approximately two orders of magnitude smaller than the average streamwise
velocity in a turbulent boundary layer. For PIV measurements this characteristic
implies that the displacement of the interrogation region in the wall-normal direction
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FIGURE 3. (Colour online) Conditionally averaged velocities with respect to the interface
position zi. (a) Wall-normal velocity, 〈W̃〉. Dashed vertical line is (3.5). (b) Streamwise
velocity, 〈Ũ〉. Symbols indicate: (black) —�—, δ+= 1230 (Hambleton et al. 2005); (green
online) —H—, δ+ = 2790 (Adrian et al. 2000); (blue online) —•—, δ+ = 7870; (red
online) —�—, δ+ = 14 500. The inset in (b) shows variation of D[〈Ũ〉]/uτ with δ+.

is less than one pixel and typically in the range 0.25–0.5 pixels. Hence the resolved
wall-normal velocity is susceptible to bias errors due to peak-locking (Christensen
2004). The extent of this bias error is dependent on the accuracy of the subpixel
displacement estimator (such as the Gaussian estimator adopted in our study) that
typically is 0.1 pixels. Therefore, caution needs to be exercised in examining the
distribution of 〈W〉, which is only few times our measurement accuracy.

Equivalence of the mean entrainment rates calculated for cases (a) and (b) of
figure 2 implies that the bulk flow within each layer is the same. For the conventional
boundary-layer schematic in figure 2(a) the bulk flow velocity Ub with the boundary
layer is given as

Ub =
∫ 1

0
U d(z/δ)=U∞

∫ 1

0
1−

(
1− U

U∞

)
d(z/δ)=U∞

(
1− δ

∗

δ

)
. (3.6)

Utilising the defect form and knowing that the ratio ∆/δ asymptotes to a constant
with increasing Re, we get

U∞ −Ub

uτ
≈ U∞

uτ

δ∗

δ
= ∆
δ
→ 3.4. (3.7)

The above equation implies that the defect of the bulk velocity in the turbulent
boundary layer scales with uτ at high Reynolds numbers. The above equation
is not surprising and merely an implication of the outer mean flow similarity in
zero-pressure-gradient turbulent boundary layers, i.e.

U −U∞
uτ

= fo(z/δ), z/δ→ 1. (3.8)

Here fo(z/δ) is the outer similarity profile for the mean flow that is independent
of Reynolds number and valid in and above the overlap region. In figure 1 the
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conditional streamwise velocity is built across the interface that is known to reside
in the intermittent region (δ/3 . zi . δ). Since the conditional profile is obtained
by averaging from a region in which the streamwise velocity deficit scales with uτ
(3.8), we can expect the deficit of the conditionally averaged streamwise velocity to
also scale with uτ . Therefore the conditionally averaged streamwise velocity profiles
from the four Reynolds number data sets available to us are plotted in figure 3(b)
in the defect form and normalised by uτ , i.e. (〈Ũ〉 − U∞)/uτ . The profiles exhibit a
Reynolds number trend for 〈Ũ〉+ − U+∞ mostly in the region −0.01. ξ/δ . 0.05. In
the turbulent and non-turbulent regions excluding this region an agreeable collapse
of profiles is observed. On the turbulent side (ξ/δ < 0), the lowest Re profile of
Hambleton et al. (2005) deviates from the rest, however a lack of trend in the
remaining profiles is suggestive of Re-independence at higher Reynolds numbers. A
sharp rise in (〈Ũ〉 −U∞)/uτ for all profiles is seen as one moves from the turbulent
region to the non-turbulent region. This characteristic is indicative of the presence of
a superlayer in all four data sets examined in this study. Similar to figure 1, the linear
trends of (〈Ũ〉 − U∞)/uτ in the turbulent and non-turbulent regions are extrapolated
for all profiles to determine the jump D[〈Ũ〉]/uτ that would appear at ξ = 0. The
resulting D[〈Ũ〉]/uτ are plotted versus δ+ in the insert of figure 3(b). A convincing
agreement in the form of Reynolds number independence is found for D[〈Ũ〉]/uτ
over a range of δ+ = 1200–14 500. The agreement implies that the jump across the
superlayer scales with the skin-friction velocity uτ irrespective of the free-stream
velocity. It is found that

D[〈Ũ〉]
uτ

≈ 1.15⇒D[〈Ũ〉] ∼ uτ . (3.9)

If one considers the entrainment hypothesis set by Morton, Taylor & Turner (1956)
that the local rate of entrainment is proportional to some characteristic velocity, we
find in our study that indeed the mean entrainment velocity (3.5) is proportional to
uτ . The characteristic velocity is usually the local time-averaged mean velocity and
in the case of the boundary layer is proportional to the difference between the mean
velocity inside and outside the turbulent region (Hunt, Rottman & Britter 1984; Turner
1986). Similarity of the mean velocity deficit (U−U∞) when normalised by uτ in the
outer region of a zero-pressure-gradient turbulent boundary layer is well-known (3.8).
Considering U(z/δ) − U∞ as the characteristic velocity at a particular z/δ, the local
entrainment velocity will be proportional to this deficit according to the entrainment
hypothesis. Since (U(z/δ) − U∞)/uτ = O(1) in the intermittent region, on average,
the skin-friction velocity uτ is then appropriate to characterise the mean entrainment.
This conclusion is consistent with (3.5) obtained in the present study which is derived
based on the mean growth of the boundary layer. Thus, (3.5) not only agrees well with
the data (figure 1a) but also adheres to the entrainment hypothesis of Morton et al.
(1956).

3.2. The governing equations
The emphasis in this subsection is on a thin control volume along the superlayer
as illustrated in figure 2(b) (dashed box). The control volume is shown in detail
in figure 2(c). Following Reynolds (1972), an orthogonal coordinate system can be
defined with n, t and p axes that has its local origin at the interface. The perpendicular
to n–t plane is positive going into the plane of the paper. The mean velocity in the
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p direction is zero by the assumption of homogeneity. The mean tangential and
normal velocities on the non-turbulent side of the control volume are denoted as Unt

t
and Unt

n , respectively, and similarly the velocities on the turbulent side are denoted
as Ut

t and Ut
n. Fluctuating components are u′t and u′n in the tangential and normal

direction, respectively. Across the control volume, i.e. the superlayer, a sharp change
in tangential velocity occurs such that Unt

t 6= Ut
t . The difference in Unt

t and Ut
t is

denoted using the difference operator D, i.e. D[Ut] = Unt
t − Ut

t . Homogeneity in the
tangential and perpendicular directions is assumed, i.e. ∂( )/∂xt = 0 and ∂( )/∂xp = 0
for averaged quantities. From the continuity equation,

∂Un

∂xn
= 0⇒Unt

n =Ut
n. (3.10)

Equation (3.10) is the same as the first of four superlayer jump conditions obtained
by Reynolds (1972). Now the turbulent boundary layer under a zero pressure gradient
grows gradually and the growth rate decreases further downstream (dδ/dx → 0).
Although the instantaneous interface is contorted, the average interface is bounded
by the slow growth rate of the boundary layer itself, i.e. dZi/dx ≈ (Zi/δ) · (dδ/dx)
(Chauhan et al. 2014). Under such conditions the wall-normal velocity W̃ will
contribute the most to the velocity normal to the mean interface while the streamwise
velocity Ũ will dominate the mean tangential velocity. Therefore, one can make the
approximations

D[Ut] ≈D[〈Ũ〉] ∼ uτ , (3.11)

and
Unt

n =Ut
n ≈−〈W̃i〉 ∼ uτ . (3.12)

Equations (3.5) and (3.9) are utilised in the above expressions. Owing to the assumed
local homogeneity in the tangential direction, ∂( )/∂xt→ 0 and ∂( )/∂xp = 0 due to
symmetry in the transverse direction for the conditional averages. Consequently, the
tangential momentum balance is then stated as

Un
∂Ut

∂xn
= ν ∂

2Ut

∂x2
n

− ∂u′tu′n
∂xn

. (3.13)

Integration of (3.13) from the turbulent to the non-turbulent side results in the third
superlayer jump condition of Reynolds (1972) after neglecting the viscous stress. We
adhere to the differential form of (3.13) because within the superlayer the viscous
effects are expected to be significant even if they are not in the turbulent and
non-turbulent regions. If the viscous term in (3.13) is neglected then one gets a
trivial solution. On the other hand if the gradient of shear stress is neglected then
the transfer of momentum from the non-turbulent to the turbulent side is solely by
viscous diffusion. The typical rates of entrainment observed in a TNTI cannot be
explained by the viscous diffusive process while considering the Reynolds-averaged
equations in the laboratory frame (since the advective flux of mean momentum is
much larger than the diffusion especially at high Re). Hence, both terms on the
right-hand side of (3.13) are deemed important to the superlayer dynamics.

Now consider a velocity scale v as the characteristic velocity of the turbulent
motions within the superlayer such that u′iu′i/3 ∼ v2 and ` as a length scale that is
appropriate for the width of the superlayer. Considering the largest scale of motions
within the interface will be of the order of the superlayer width, ` is the characteristic
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length of the turbulent motions within the superlayer. Also the tangential velocity
changes by D[Ut] across the superlayer. The approximation ∂Ut/∂xn ≈ −D[Ut]/`
is then appropriate. Using (3.11) we have an order of magnitude estimate for the
convective transport and viscous diffusion terms in (3.13);

Un
∂Ut

∂xn
= O

(
uτ

uτ
`

)
, (3.14)

ν
∂2Ut

∂x2
n

= O
(ν
`

uτ
`

)
. (3.15)

Balance of the above two terms necessitates `=O(ν/uτ ). The implication that the
width of a thin region where viscous effects are important scales with a viscous length
scale (ratio of ν and some characteristic velocity) should not be surprising as it is also
the case for the scaling of the viscous sublayer width at the wall. On comparison of
the stress-gradient term with the remaining we obtain

u′tu′n =O(u2
τ ). (3.16)

The above order of magnitude estimate for u′tu′n stress is consistent with the typical
argument u′tu′n∼ v2 in flows with shear. It is inferred that v=O(uτ ). It will be shown
later regarding figure 7 that the order of magnitude for u′tu′n is indeed proper. The
tangential momentum balance hence suffices in clarifying the scaling of u′iu′i and gives
estimates of v and `. We now examine the experimental data to verify these scaling
behaviours.

3.3. Experimental evidence
In this section the experimental data are scrutinised for the validity of conclusions
made in § 3.2. With the assumption of homogeneity in the tangential direction the
conditionally averaged spanwise vorticity within the interface is expressed as

〈Ω̃y〉 ≈ d〈Ũ〉
dz

. (3.17)

Figure 4(a) plots d〈Ũ〉/dz normalised by U∞/δ across the interface for the
experimental data in lieu of spanwise vorticity. Note that the ordinate ξ is with
reference to the interface position and is normalised by the boundary-layer thickness
δ. All profiles show finite vorticity in the turbulent region and, as one moves outwards,
the vorticity reaches a maximum and then drops to nearly zero in the non-turbulent
region. The vorticity profiles show a bell-shaped behaviour in the region where it
reaches its maximum. Such a narrow bell-shaped behaviour in the spanwise vorticity
profile is the manifestation of a sharp jump in the velocity profile, similar to a
delta function resulting for vorticity from a velocity jump modelled as a Heaviside
function (Bisset et al. 2002; Westerweel et al. 2005). These characteristics along
with figure 3(b) are evidence for the presence of a superlayer in the boundary layers
analysed here. The vorticity profiles show two distinct Reynolds number trends. First,
the peak of the vorticity magnitude that lies in the vicinity of ξ = 0 increases with
increasing Reynolds number. Second, the width of the bell-shaped profile decreases
with increasing Reynolds number (this is more evident on the non-turbulent side). It
can be observed in figure 1(b) that the most significant change in the wall-normal
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FIGURE 4. (Colour online) Spanwise vorticity calculated from conditionally averaged
streamwise velocity, i.e. 〈Ω̃y〉≈ d〈Ũ〉/dz. See caption of figure 3 for symbol notations: (a)
ξ normalised by δ; (b) ξ normalised by δω. Shaded region is equivalent to the vorticity
thickness δω and is indicative of the superlayer.

gradient of 〈Ũ〉 occurs over a region equivalent to the vorticity thickness. Therefore,
the vorticity thickness δω is determined for all four profiles using (1.1). (It is noted
that due to the finite interrogation window size d〈Ũ〉/dz is likely under-estimated
and δω is over-estimated. A finer resolution will then give a lower estimate of δω.
Hence, the value of δω in this paper should be considered as the upper bounds for
the vorticity thickness at the corresponding Reynolds numbers.) The ordinate ξ is
then normalised by δω and the vorticity profiles are re-plotted in figure 4(b). On
normalisation of ξ by the vorticity thickness it is found that the profiles show a good
agreement in the turbulent and the non-turbulent regions except for a narrow region
in between where the vorticity peaks. In the region −0.5 . ξ/δω . 0.5 (the shaded
region), the vorticity profile for each Reynolds number peaks with the bell-shaped
behaviour. The normalisation by vorticity thickness therefore takes away the Reynolds
number trend of the changing width of the bell shape in d〈Ũ〉/dz profiles. It is then
concluded that the width equivalent to one δω is a good measure of width of the
superlayer.

In figure 4(b) the Reynolds number trend of increasing peak magnitude still remains.
We note that the quantity (d〈Ũ〉/dz)−1 indicates a time scale for the mean flow. The
most rapid changes in the mean flow will occur when d〈Ũ〉/dz is maximum. Hence,
the peak magnitude in figure 4(b) and thereby (d〈Ũ〉/dz|max)

−1 represents a time scale
over which rapid variation in mean flow occurs. If local self-preservation exists in the
superlayer, then the turbulence therein will respond to the changes in the mean flow
by keeping pace with it. In § 3.2 we considered v and ` as the velocity and length
scale, respectively, of the turbulence and it was concluded that v ∼ uτ and `∼ ν/uτ .
The turbulent time scale is then estimated as `/v ∼ ν/u2

τ . Considering the turbulent
time scale and the mean flow time scale of the same order,

d〈Ũ〉
dz

∣∣∣∣∣
max

∼ u2
τ

ν
⇒ δ

uτ
· d〈Ũ〉

dz

∣∣∣∣∣
max

∼ δ+, (3.18)
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FIGURE 5. (Colour online) Reynolds number trends: (a) (d〈Ũ〉/dz)max · δ/U∞; the solid
line is (3.19); (b) δω/δ; solid line is (3.20). See the caption of figure 3 for symbol
notation.

which suggests that d〈Ũ〉/dz|max normalised by uτ/δ scales linearly with Reynolds
number δ+. This behaviour is examined in figure 5(a) where d〈Ũ〉/dz|max · δ/uτ versus
δ+ is plotted. The maxima in the gradient of the conditional streamwise velocity
profiles, i.e. (d〈Ũ〉/dz)max indeed shows a linear behaviour with δ+ and supports the
above reasoning. This linear behaviour is well indicated by the solid line on the
figure and fitted with least squares:

δ

uτ
· d〈Ũ〉

dz

∣∣∣∣∣
max

= a1 δ
+ + a2, with a1 = 5.4× 10−3, a2 = 13.23. (3.19)

Also it is seen from the experimental data (see the inset in figure 3b) that the jump
in the streamwise velocity D[〈Ũ〉] is approximately invariant with Reynolds number,
i.e. D[〈Ũ〉] = b1 uτ (b1 ≈ 1.15). Utilising (3.9) and (3.19) in the definition of δω we
can write

δω

δ
= b1

a1 δ+ + a2
. (3.20)

The vorticity thickness calculated from the experimental data is plotted versus δ+ in
figure 5(b) along with (3.20). (As noted earlier, the estimates of vorticity thickness
here are considered as upper bounds due to the finite resolution in measurements. The
linear trend in (3.18) is deduced from theoretical arguments and, hence, data from
finer resolution measurements are also expected to adhere to the linear trend.) The
vorticity thickness relative to the boundary-layer thickness decreases with increasing
Reynolds number. The empirical (3.20) duplicates this behaviour very well in
agreement with the experimental data. The trend for δω/δ in figure 5(b) suggests
that at very high Reynolds numbers the vorticity thickness and thereby the width
of the superlayer is small compared with the boundary-layer depth. Equations (3.19)
and (3.20) incorporate normalisation by the outer length scale δ, however, turbulent
motions that are O(δ) are unlikely to have a viscous influence in the superlayer.
Furthermore, the order of magnitude balance of the tangential momentum equation
suggests that ` = O(ν/uτ ). Therefore, (3.19) and (3.20) are posed using the inner
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FIGURE 6. (Colour online) Reynolds number trends: (a) (d〈Ũ〉/dz)max · (ν/uτ )/U∞; the
solid line is (3.21); (b) δ+ω ; solid line is (3.22). See the caption of figure 3 for symbol
notation.

normalisation by ν/uτ instead of δ as below:

ν/uτ
uτ
· d〈Ũ〉

dz

∣∣∣∣∣
max

= a1 + a2

δ+
(3.21)

δωuτ
ν
= δ+ω =

b1

a1 + a2/δ+
. (3.22)

Figure 6(a,b) show variation of (d〈Ũ〉/dz)max and δω, respectively, with Reynolds
number, normalised with ν/uτ as the length scale. The experimental data is plotted
and compared with expressions (3.21) and (3.22). A good agreement is seen between
the empirical forms and the experimental data throughout the Reynolds number range.
Further it is noted that the form of (3.21) and (3.22) is such that in the limit of high
Reynolds number, i.e. δ+→∞, they asymptote to a constant. This asymptotic limit is
a1 for the maxima in the gradient of the conditional streamwise velocity profile that
is normalised by uτ/(ν/uτ ). The extrapolation of (3.21) shows this limit in the inset
to figure 6(a). On the other hand the asymptotic limit for δ+ω is b1/a1 ≈ 215, which
is again shown via extrapolation of (3.22) in figure 6(b).

These high-Reynolds-number limits are encouraging, in particular for δω as it is in
agreement with the conclusion made from the order of magnitude of the tangential
momentum balance in § 3.2, i.e. the asymptotic invariance of δ+ω in the limit δ+→∞
implies that δω ∼ ν/uτ . Earlier it was also deduced in § 3.2 that ` ∼ ν/uτ , where `
was considered as the characteristic length scale of the turbulent motions that span
the width of the superlayer. The experimental data seen so far indicate that δω is
an effective length scale to characterise this width (scaling ξ by δω in figure 4(b)
concentrates the bell-shaped discontinuity in spanwise vorticity within a region
equivalent to one δω). Thereby `' δω is appropriate.

In the preceding discussion regarding the turbulent time scale we considered
v ∼ uτ based of the order of magnitude analysis of § 3.2. Support for this scaling
is also found in the following arguments. Corrsin & Kistler (1955) explains that the
non-turbulent flow acquires vorticity through diffusion, which in turn is amplified by
vortex stretching by the vorticity and mean shear that exists on the turbulent side. The
streamwise velocity profiles resembling a shear layer in figure 3(b) assist in vortex
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FIGURE 7. (Colour online) Conditionally averaged statistics with respect to the interface
location zi: (a) r.m.s. of streamwise fluctuations 〈u′u′〉1/2; (b) r.m.s. of wall-normal
fluctuations 〈w′w′〉1/2; (c) Reynolds shear stress −〈u′w′〉. The shaded region in each panel
is equivalent to the vorticity thickness δω and is indicative of the superlayer. See the
caption to figure 3 for symbol notation.

stretching. One can also model the bell-shaped behaviour of spanwise vorticity in
figure 4(b) using a Gaussian function, analogous to the vorticity in an Oseen vortex.
In addition, da Silva & Taveira (2010) have observed that coherent vortices are
present at the TNTI that are comparable with the interface thickness in size. Based
on these observations it is likely that a certain vortex-like feature or vortex sheet
resides within the superlayer. Considering the interface is populated with vortices or
vortex-like motions, the angular momentum of such motions is conserved such that

v · `∼ constant. (3.23)

On substituting `' δω, which in turn scales with ν/uτ , we obtain

v ∼ uτ . (3.24)

Equation (3.24) arrives at the same conclusion that v ∼ uτ by the argument of
conservation of angular momentum.

At this point inspection of experimental results for the scaling of the turbulent
velocity fluctuations within the superlayer is duly required. Fluctuating components of
streamwise and wall-normal velocities are calculated with respect to the conditional
mean profiles in figure 3. Using these fluctuating components, figure 7(a,b) plots
the conditional profiles of 〈u′u′〉1/2/uτ and 〈w′w′〉1/2/uτ , respectively. We adhere to
the normalisation of the ordinate ξ by the vorticity thickness, δω. The profiles of
both standard deviations undergo a sudden rise in the region that is marked as the
superlayer as one moves from the non-turbulent region to the turbulent region. The
root-mean-square (r.m.s.) profiles when scaled with uτ exhibit very good collapse
within the superlayer for a range of δ+ = 1200–14 500. This agreement implies that
the fluctuations within the superlayer scale with uτ and the conclusion made in
§ 3.2 that v ∼ uτ is thus validated again. Using the fluctuations with respect to the
conditional mean, figure 7(c) plots the conditional Reynolds shear stress, −〈u′w′〉
normalised by u2

τ . All profiles indicate that the Reynolds shear stress is virtually
zero in the non-turbulent region and it sharply rises within the superlayer to reach
finite magnitude in the turbulent region. Within the superlayer the profiles show good
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agreement and a lack of Reynolds number trend. The profile for δ+= 14 500 deviates
from the rest in the turbulent region (ξ/δω <−0.5), however scaling in this region is
not the concern of this study. This agreement supports the scaling of the Reynolds
shear stress by u2

τ and substantiates our interpretation of the superlayer dynamics
from the governing equations in § 3.2.

4. Discussion
In this section we undertake a discussion on these scales to interpret the significance

of the TNTI for turbulent boundary layers as a whole.

4.1. The velocity scale uτ
We have observed that a sharp jump in the tangential velocity occurs at the superlayer
which also scales with uτ . To explain the emergence of this scaling we turn to the
third superlayer jump condition obtained by Reynolds (1972), which for the control
volume illustrated in figure 2(c) is written as

Un D[Ut] = (u′tu′n)t. (4.1)

Here (u′tu′n)
t is the Reynolds shear stress on the turbulent side of the superlayer.

Since (u′tu′n)
t is finite and so is Un, the tangential mean velocity Ut exhibits a

discontinuity across the superlayer. It is noted that Reynolds (1972) did not conclude
that a discontinuity occurs at the superlayer. However, (4.1) is still valid across the
superlayer as it is obtained after integration of the tangential momentum balance and
applying the boundary conditions, doing so without an assumption of discontinuity
in Ut. We know that Un scales with uτ in the boundary layer and if (u′tu′n)

t ∼ u2
τ ,

then D[Ut] ∼ uτ . The scaling of (u′tu′n)
t with u2

τ is evident in figure 7(c) and follows
from the fact that the skin-friction velocity serves as the velocity scale for mean
velocity deficit and the turbulent stresses in the outer region (Marusic, Uddin & Perry
1997; Smits, McKeon & Marusic 2011). The validity of uτ as the velocity scale
for fluctuations in the outer-scaling (z/δ) is also obvious from figure 8(a), which
plots the r.m.s. of the streamwise velocity fluctuations (u, in the laboratory frame)
in the intermittent region of the boundary layer. (The normal stress uu is examined
here as it is more pertinent to the discussion of Kolmogorov and Taylor scales and
accurately available from hot-wire measurements over a wide range of Reynolds
numbers.) The r.m.s. is also calculated from only the turbulent segments of the signal
utilising the fluctuations that are relative to the mean in the turbulent regions. The
turbulent/non-turbulent zones in a hot-wire signal are identified using (1 − Ũ/U∞)2
as the detector function (Chauhan et al. 2014). Over the range of Reynolds number
plotted in figure 8(a), the collapse of profiles indicates that throughout the intermittent
region uτ is an appropriate velocity scale for the fluctuations of the whole signal or
just the turbulent parts, i.e. one can write

uu1/2(z/δ)= uτ go(z/δ). (4.2)

Here go(z/δ) is the outer similarity profile for the streamwise intensity that is
independent of Reynolds number and valid in and above the overlap region. In fact,
the r.m.s. for only the turbulent zones in figure 8(a) is approximately equal to uτ in
the region z/δ > 2/3. Hence, even in the regions where mostly non-turbulent flow
exists, the turbulence within the short-lived turbulent zones is still of the order of uτ .
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FIGURE 8. (Colour online) Scales of turbulent motions in the intermittent region (1/36
z/δ 6 1). (a) Root mean square of the streamwise velocity fluctuations. Top: solid (grey)
lines, hot-wire data of Hutchins et al. (2009) (δ+ ≈ 2800–19 030); solid (black) lines,
present PIV data. Bottom: uu1/2/uτ calculated in the turbulent zones only; dashed (grey)
lines, hot-wire data of Hutchins et al. (2009); dashed (black) lines, present PIV data. Solid
(grey) lines, uu1/2/uτ calculated from the full signal (duplicated from the plot on top).
Solid (black) line, uu1/2/uτ for the channel flow data of Hoyas & Jiménez (2006) at Reτ =
2003. (b) Solid (blue online) lines, η+/(κz+)1/4 on top; solid (red online) lines, λ+T /(z+)1/2
on bottom. Corresponding dashed lines indicate that the quantities are calculated from the
turbulent zones only. (c) Vorticity thickness scaled by Kolmogorov and Taylor scales (from
the full signal) at z/δ= 2/3 at corresponding Reynolds numbers of the four data sets. See
the caption to figure 3 for symbol notation.

Note that the r.m.s. of the streamwise fluctuations in the turbulent zones are of the
same order of magnitude as the r.m.s. in a turbulent channel flow (solid black line).

Equation (4.2) is not new in boundary-layer research and follows from Townsend’s
Reynolds number similarity hypothesis which is stated as (Townsend 1956, p. 89):

‘In a fully turbulent flow, there exists a region including almost all of
the flow, over which the direct action of viscosity on the mean flow is
negligible, i.e. the Reynolds stresses are large compared with the mean
viscous stresses. Within this region, the mean motion and the motion of
the energy-containing components of the turbulence are determined by the
boundary conditions of the flow alone, and are independent of the fluid
viscosity, except so far as a change in the fluid viscosity may change the
boundary conditions.’

To elaborate on the implications of the above hypothesis for TNTI we consider a
fully developed turbulent boundary layer (a flow that has no memory of its history) at
a fixed streamwise location under constant free-stream velocity. This flow is bounded
by two boundaries, one is the wall and the other is the non-turbulent flow residing
above it. The boundary condition at the wall is set within the viscous sublayer such
that u2

τ = ν(dU/dz)|z=0. The scaling of fluctuations in figure 8(a) by uτ is therefore
consistent with the notion that mean motion (not shown here) and the turbulence are
determined by the gradient at the wall. Now if by some means the fluid viscosity is
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changed, an immediate response of the boundary layer occurs at the wall resulting
in a change in uτ (dU/dz|z=0 also changes), which is equivalent to a change in the
boundary condition. The bulk flow (the log region and beyond) and the turbulent
motions within will then adjust accordingly such that fluctuations will scale with uτ ,
i.e. (u′tu′n)

t ∼ u2
τ and thereby D[Ut] ∼ uτ from (4.1). According to Reynolds number

similarity, the change in Re brought on by changing the viscosity is equivalent to
varying the Re by changing U∞ or x. Since the scaling by uτ is specific to the case
of a turbulent boundary layer (as opposed to turbulent jets/wakes where the wall is
absent), Townsend’s hypothesis explains the influence of the wall on the finite velocity
jump.

Furthermore, utilising the tangential momentum balance we deduce that the velocity
scale (v) for turbulent fluctuations within the interface is also uτ . Our interpretation
of (3.16) finds experimental support in figure 7 for the r.m.s. of fluctuations and the
corresponding Reynolds shear stress in a frame of reference relative to the interface.
The turbulent velocity scale v is determined by the jump in the tangential velocity
D[Ut] across the interface which scales with uτ . Such a scaling behaviour is analogous
to shear layers and wakes, where the turbulent velocity fluctuations scale with the
maximum mean velocity defect. This similarity is further considered in § 4.3.

A satisfactory dynamical basis for the scaling of the fluctuations by uτ is also
obtained through the conservation of angular momentum (3.23) by considering ν/uτ
as the characteristic length scale of turbulent motions in the superlayer. Since the
turbulent motions that span the width of the layer are typically filamentary vortices
that undergo stretching in the presence of the local shear (da Silva & dos Reis 2011)
the conservation of angular momentum is applicable to such structures.

Before concluding this subsection on uτ scaling it is also interesting to note that
an analysis that was suggested to the authors by an anonymous referee allows
an appraisal of the scaling of the fluctuating spanwise velocity of the TNTI.
The details of this analysis are given in appendix A, where given the definition
that the instantaneous velocity of the TNTI utilising Reynolds decomposition is
vI = (UI + u′I, WI + w′I, VI + v′I) in the (x, z, y) directions, respectively, the spanwise
fluctuations v′I =O(u′I)=O(uτ ). The scaling v′I =O(uτ ) is analogous to the scaling of
spanwise fluctuations of the fluid velocity vv1/2 ∼ uτ (e.g. Jiménez & Hoyas 2008;
Bernardini, Pirozzoli & Orlandi 2014).

4.2. The length scale ν/uτ
It can be argued that uτ is the velocity scale that is responsible for setting ν/uτ as the
length scale. From figure 8(a) we know that turbulent motions in the outer part scale
with uτ . As diffusion of vorticity has to occur from the turbulent region towards the
non-turbulent regions, the spatial extent of these diffusing motions will be viscosity
dependent. An eddy with a characteristic velocity uτ will then diffuse over a length
ν/uτ in the characteristic time of ν/u2

τ . Previous studies, for example those of Falco
(1977), Head & Bandyopadhyay (1981) and Murlis, Tsai & Bradshaw (1982), have
also observed that the vortical features in the outer region of the boundary-layer scale
with the viscous length scale ν/uτ (it is noted that these studies did not explicitly
identify vortical features in the vicinity of the interface and their findings apply to
the complete outer region).

The theoretical estimate of the length scale of turbulent motions in our study is an
indirect one. We deduce that the turbulent motions within the superlayer scale with the
viscous length scale by considering the viscous diffusion to be of significance in the
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tangential momentum balance. The viscous influence applies to the jump in tangential
velocity across the interface, where the diffusive nature of viscosity tends to smooth
out any discontinuities in the velocity distribution. We recall Townsend’s similarity
hypothesis stated in the previous subsection, now applying it to the TNTI. The viscous
superlayer will adjust to a change in viscosity by varying the extent and magnitude of
the velocity gradient of the jump, similar to the change in the gradient (dU/dz)|z=0 in
the viscous sublayer. Therefore, a viscous length scale is appropriate to characterise
the scaling of the TNTI dynamics with varying Reynolds number. The viscous scale
ν/uτ deduced here for the thickness of the interface and motions within is consistent
with the similarity hypothesis.

In recent literature, the width of the region where the mean vorticity peak occurs
is found to be of the order of Taylor microscale (e.g. Bisset et al. 2002; da Silva
& Taveira 2010), while here we find it to scale with ν/uτ . Figure 8(b) plots the
Kolmogorov scale η (top) and the Taylor microscale λT (bottom) normalised by
(ν/uτ )(κz+)1/4 and (ν/uτ )(z+)1/2, respectively, in the intermittent region of the
boundary layer. The proportionality η+ ∼ (κz+)1/4 follows from the assumption
that the production of turbulent KE equals the dissipation and −uw/u2

τ ≈ 1 in the
logarithmic region (e.g. Pope 2000), while an additional assumption uu/u2

τ ≈ constant
results in λ+T ∼ (z+)1/2 (Marusic & Adrian 2012). Hot-wire measurements of Hutchins
et al. (2009) over a range of δ+ = 2800–19 030 are utilised in figure 8(b). The
length scales are calculated using Taylor’s hypothesis to evaluate ∂u/∂x from ∂u/∂t
and isotropy assumptions are employed to estimate the dissipation. The following
relations are used to estimate η and λT from hot-wire data:

η=
(
ν3

ε

)1/4

, where ε = 15ν
(
∂u
∂x

)2

, and λ2
T = uu

[(
∂u
∂x

)2
]−1

. (4.3a,b)

In the intermittent region η and λT are also calculated using only the turbulent
segments of the signal (shown by the dashed lines) in order to examine the influence
of non-turbulent zones in the estimation of these scales. It is seen that profiles for
η+/(κz+)1/4 show a very good collapse for z/δ < 0.8 over the Re range. The profiles
evaluated only in the turbulent zones show a remarkable collapse throughout the
intermittent region and the ratio η+/(κz+)1/4 continues to remain approximately equal
to one. Similarly the profiles for λ+T /(z+)1/2 calculated from the full velocity signal
shows a good collapse up to z/δ ≈ 0.7, while the profiles calculated from only the
turbulent segments show Re-independence throughout the intermittent region. It is
then obvious that at a particular reference height (e.g. z/δ = 2/3, the mean interface
location) in the intermittent region, η+(z/δ)∼ (δ+)1/4 and λ+T (z/δ)∼ (δ+)1/2, implying
that the change of η+ and λ+T with Reynolds number is noticeably small. Over the
range of Reynolds number considered in this study (a decade of δ+), at the mean
interface location, the ratio of Taylor microscale to the viscous scale, i.e. λT/(ν/uτ )
changes by a factor of approximately 3 while the ratio of Kolmogorov scale to the
viscous scale, i.e. η/(ν/uτ ), changes by a factor of approximately 1.8. Utilising the
values of η and λT at the mean interface location for the four Reynolds numbers
considered here, figure 8(c) plots the ratio of the vorticity thickness δω at the TNTI
to these scales. It is seen that δω/η increases at low Reynolds numbers and the
trend reaches an approximate constant value at high Reynolds number. This trend
is similar to the trend observed for δω/(ν/uτ ) owing to the gradual variation in
η/(ν/uτ ). On the other hand, the ratio δω/λT (bottom plot of figure 8c) does not vary
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significantly. Previous studies by Bisset et al. (2002) and da Silva & Taveira (2010)
in free-shear flows have concluded that δω =O(λT). Our findings are consistent with
these observations. As an interesting aside, if we consider λT ≈ δω, then the Reynolds
number based on the Taylor microscale Reλ ≈ δ+ω (with uτ as the characteristic
velocity fluctuation) inside the superlayer, and range of δ+ω in figure 6(b) corresponds
to that observed at the mixing transition (e.g. Dimotakis 2005). This suggests that
when the non-turbulent fluid becomes turbulent after crossing the interface, in the
immediate vicinity of the interface the flow rapidly becomes fully turbulent. This is
in accordance with the findings of da Silva & Pereira (2008) where they observe
fully turbulent features close to the interface.

Now, two considerations should then be taken into account for figure 8(c). First,
if we assume that the Kolmogorov length is the true length scale to characterise
the superlayer width; then this assumption is consistent with the scaling originally
proposed by Corrsin & Kistler (1955); also see Sreenivasan et al. (1989a) and Holzner
et al. (2008). Since η+(z/δ) ∼ (δ+)1/4, the scaling by η or ν/uτ is indistinguishable
in the measurements analysed here. At low δ+ the flow is not fully developed and
thus the variation of δ+ω (or δω/η) is possibly a manifestation of the low-Re behaviour
of Cf = 2u2

τ/U
2
∞ (Monkewitz, Chauhan & Nagib 2007) and/or the lack of sufficient

scale separation between η and δ. Second, if however we assume that the Taylor
microscale is the true length scale for superlayer width, seemingly apparent from
figure 8(c, bottom); then in this case the characteristic velocity scale is uu1/2 which
is proportional to uτ . The width of the layer is then determined by velocity scale
uτ (via uu1/2) and a local viscous influence at the TNTI. Noting that λ/η ∼ (δ+)1/4
at a fixed z/δ, the validation of these two equally justifiable assumptions require
measurements over an even wider range of Reynolds number than presented here.
Hence, the present experimental data are not definitely conclusive regarding the role
played by η and λ in the scaling of the TNTI as compared with scaling by ν/uτ .
It is noted, that using ν/uτ and uτ as the relevant length and velocity scales over
Taylor and Kolmogorov scales in a boundary layer has an advantage as uτ and ν are
known a priori.

Earlier a peculiar behaviour was observed in figure 8(b) for the ratio η+/(κz+)1/4
calculated in turbulent zones only in the form of the ratio being approximately equal
to one through the intermittent region for all Reynolds numbers. This similarity of
Kolmogorov scales in the intermittent turbulent region to the Kolmogorov scales near
the wall is possibly a signature of their association. It is plausible that the structure of
turbulence in the turbulent zones of the intermittent region is either determined by the
near wall turbulence or analogous to it. Such a scenario is possible in the description
of Adrian (2007) wherein hairpin packets that are typically found in the lower half
of the boundary layer (especially the logarithmic layer) possibly extend to the edge
of the boundary layer to result in turbulent bulges. Furthermore, Morrill-Winter &
Klewicki (2013) recently proposed that beyond the logarithmic region small-scale high-
vorticity motions are spatially dispersed via the advective transport associated with
wωy (Taylor 1938). The dispersive nature of eddy structures in the logarithmic region
is evident in the results of Herpin et al. (2013) where it is shown that the radius of
spanwise vortices remain almost constant in the log layer when scaled with the local
Kolmogorov scale. In either case, the growing packets or the advective high-vorticity
motions obtain their characteristic velocity from the near-wall turbulence where they
originate, and this characteristic velocity persists when these motions reach the outer
region. These mechanisms are consistent with Townsend’s hypothesis in explaining uτ
as the velocity scale of turbulence in the outer part of the boundary layer.
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FIGURE 9. (a) Gaussian p.d.f. of interface location zi. The mean is at 2δ/3 and standard
deviation is δ/9. (b) Superlayer jump in streamwise velocity modelled as a step function.
(c) Solid (grey) line, mean velocity deficit U+ −U+∞; solid (black) line, convolution of a
step function and a Gaussian distribution; dashed (grey) line, deficit log law. (d) Mean
velocity profile U+ corresponding to the deficit in (c).

4.3. On the superlayer and the boundary-layer wake region
We have deduced that the turbulent velocity scale is uτ and also concluded that
the mean velocity deficit within the superlayer scales with uτ . It is inferred that
the turbulent KE within the superlayer is prescribed by the velocity deficit, the
deficit being of the order of uτ (3.11). This characteristic is similar to the scaling of
velocity fluctuations in a two-dimensional turbulent far-wake. In the far-wake region
it is known that v/Us = O(1), where Us is the velocity deficit at the centreline of
the wake (Tennekes & Lumley 1972). Although the average structure of the mean
velocity profile across the superlayer resembles a mixing-layer profile, in the aspect
of its turbulent velocity scale v being of the same order has the deficit D[〈Ũ〉], the
superlayer can be considered wake-like locally, albeit ‘half-wake’.

It then follows to examine whether this localised wake behaviour manifests itself in
some way onto the mean boundary-layer structure. The indirect influence of viscosity
via the superlayer on the mean in the intermittent region of the boundary layer
has been previously considered by Coles & Hirst (1968) and Huffman & Bradshaw
(1972). In particular, Kovasznay (1967) and Huffman & Bradshaw (1972) noted that
in pipe and duct flows a TNTI is not present. The agreement of the r.m.s. profile
from turbulent channel flow data of Hoyas & Jiménez (2006) with the r.m.s. of
fluctuations within the turbulent zones only for a boundary layer in figure 8(a) points
to this difference. Huffman & Bradshaw (1972) also proposed that in a developing
boundary layer at low Reynolds number, the presence of the viscous superlayer in the
intermittent region is responsible for the low-Re development of wake parameter Π
observed in experimental data (Coles & Hirst 1968; Chauhan et al. 2009). Keeping
the scaling relations obtained so far at hand, we shall identify the influence of the
superlayer, in particular the sharp velocity jump on the mean velocity profile.

A sharp change in velocity occurs at the interface over a wall-normal distance of
the order of δω and at high Reynolds numbers δω/δ→ 0. In the high-Re limit, this
sharp change can be modelled as a step change in velocity as shown in figure 9(b)
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(e.g. Westerweel et al. 2005; Chauhan et al. 2014). This step change in velocity
flutters across the boundary layer along with the instantaneous interface location
zi. The probability distribution of the instantaneous interface location zi is well
represented by a Gaussian distribution (Townsend 1976), the span of which scales
with δ (e.g. Corrsin & Kistler 1955; Chauhan et al. 2014). The probability distribution
function (p.d.f.) is illustrated in figure 9(a). Thereby the resultant velocity distribution
can be estimated by taking a correlation between the step change in the streamwise
velocity and the Gaussian probability distribution of its location, i.e. the conditional
(step) velocity profile scans the Gaussian p.d.f. The ensuing velocity profile in the
defect form is plotted in figure 9(c) in comparison with the mean velocity defect in
a zero-pressure-gradient turbulent boundary layer. The mean deficit profile is plotted
using the composite velocity profile of Chauhan et al. (2009) and is Re-independent
in the outer part. Nee & Kovasznay (1969) have used similar ‘smearing’ of the total
turbulent viscosity by the Gaussian distribution in the boundary layer to achieve a
good agreement for the mean velocity profile in the outer part.

It is found that the deficit profile emerging from the existence of a superlayer jump
is in excellent agreement with the mean deficit profile of the boundary layer for the
region z/δ > 0.6 that is 40 % of the boundary layer in the outer part. In figure 9
we have chosen D[Ut]/uτ = −1.75 which is equal to twice the value of U+ − U+∞
at z/δ = 2/3 (the choice of the reference location is arbitrary and here taken as the
mean interface location). Hence, a direct dynamical influence of Corrsin’s superlayer
on Coles’ wake profile is demonstrated here in a quantitative manner. In the region
below (z/δ < 0.6), the intermittency is greater than 0.5 and therefore the mean
profile would have a dominating influence of the gradient dU/dz in the turbulent
part which is unaccounted for in figure 9. Understandably the profile obtained from
the step function does not agree well with the mean velocity deficit in this region.
If a gradient is prescribed for the turbulent part in figure 9(b), then the resultant
correlation profile might agree further deep into the boundary layer. However, we
refrain from introducing empiricism by specifying the gradient magnitude, because the
TNTI is not the only shear layer (step function) but there are also other instantaneous
shear layers inside the turbulent boundary layer (Meinhart & Adrian 1995) which
would have to be taken into account for a fuller explanation of the wake.

4.4. Implications for other wall-bounded flows
As can be seen in figure 9(d), the jump D[Ut] is slightly smaller than the wake
strength 2Π/κ , the difference being 0.57. This difference is equivalent to a wake
parameter Π = 0.11 (with κ = 0.384), which is within the range of Π values observed
in pipes and channels (Π ≈ 0.05 for turbulent channel flows and Π ≈ 0.2 for pipe
flows; see Nagib & Chauhan (2008)). Since the wake profile in boundary layers is
observed above z/δ ≈ 0.15, while the intermittency resides above z/δ ≈ 0.3, it is
evident that the wake profile is not solely due to the wake-like TNTI and that it is also
influenced by the turbulence below. Similarly a wake profile is present in turbulent
pipes and channels even though a strict TNTI is not present in these flows. Hence, in
turbulent pipes, channels and boundary layers, a certain phenomenon that is different
from the TNTI but common to these flows causes the mean velocity profile to deviate
from the log law in the outer region. While a deviation from the logarithmic profile in
the outer part is observed in all canonical wall-bounded flows, the wake parameter in
boundary layers is typically larger than pipes and channels. It is then safe to theorise
that the additional contribution to the wake parameter in boundary layers is a result
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of the presence of a superlayer across which a jump in tangential velocity (that is
predominantly streamwise) occurs.

It is also important to consider the mean entrainment mechanism in non-canonical
flows, even if qualitatively. In the case of a zero-pressure-gradient boundary layer
over a rough surface, the local boundary layer thickness is higher compared to δ

for a flow over a smooth wall under the same free-stream velocity at a particular
streamwise location. This would imply that the mean entrainment rate has to increase
to account for the increased mass-flux in a rough-wall boundary layer. This adjustment
of the flow to surface roughness is explained by Townsend’s outer flow similarity
hypothesis for rough wall boundary layers. In essence the hypothesis states that for
a turbulent flow over a uniformly distributed roughness, if the roughness height (k)
is small compared to the boundary layer width (δ), then turbulence in the outer
region is not affected by the nature of roughness and, as with a smooth wall, it will
be determined by the average wall stresses, the layer depth and the fluid viscosity
(p. 139 Townsend 1976). This hypothesis has been verified experimentally for various
rough-wall geometries in many experimental studies, most recently by Schultz &
Flack (2007) and Wu & Christensen (2007), to show that the turbulent fluctuations
in the outer region scale with uτ . (Also see the list of previous studies in Wu &
Christensen (2007) that support or dispute the hypothesis.) Along with the increase in
δ, a concurrent increase in uτ occurs and, as per the discussion above, the turbulence
in the outer part adjusts to the changed wall-boundary condition. Consequently the
mean entrainment rate across the TNTI becomes consistent with the local turbulence
level that scales with uτ .

5. Summary

In order to advert a particular scaling data at different Reynolds numbers are
examine for the TNTI in zero-pressure-gradient turbulent boundary layers. It is
shown that the TNTI dynamics in boundary layers are influenced by the wall. The
consequences of the wall boundary condition to the superlayer are explained via
Townsend’s similarity hypothesis and the mechanisms leading to observed scaling of
TNTI with Reynolds number are summarised in figure 10(a). The mean entrainment
corresponds to the growth of the boundary layer and results in uτ as the velocity scale
for the net entrainment velocity. Outer similarity of turbulent stresses imposes the
Reynolds shear stress to scale with u2

τ , which in turn results in the mean tangential
velocity jump to scale with uτ . The local turbulence is dictated by the velocity jump
and the velocity fluctuations then scale with uτ accordingly. The mean superlayer
width is governed by the influence of viscosity on the tangential velocity jump. The
influence of viscosity coupled with the velocity scale uτ gives rise to the viscous
length scale ν/uτ as the characteristic length. The viscous length scale ν/uτ is a
utilitarian preference for the superlayer width and the motions within. Since the
Kolmogorov scale and Taylor’s microscale vary gradually relative to the viscous
scale, the appropriateness of scaling by η or λT can only be clarified using a very
wide range of Reynolds number. These conclusions are supported via conditional
statistics from experiments.

The invariance of the superlayer width in viscous units, i.e. δ+ω → constant at high
Reynolds numbers, is analogous to the invariant depth of the viscous sublayer next
to the wall in viscous scaling. Figure 10(b) illustrates the viscous superlayer and the
viscous sublayer for comparison. Three schematics are shown to depict a developing
boundary layer (U∞ is held constant) at low, moderate and high Reynolds number.
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FIGURE 10. (Colour online) (a) Mechanisms leading to observed scaling of TNTI with
Reynolds number in a boundary layer. Boxes show different scalings that exist. A change
in Reynolds number changes uτ at the wall. Near-wall motions and thereafter turbulence
in the outer part scales accordingly with uτ (dashed arrows, red online). The mean
entrainment velocity changes with uτ as per (3.5) (solid black arrow). Mean entrainment
and local turbulence set the streamwise velocity jump according to (4.1). Viscous influence
at the TNTI boundary determines δω (dashed line, green online). Turbulent motions within
the superlayer scale according to δω and D[Ut] (dash-dotted arrows, blue online). (b)
Schematic representation of the observed scaling. Relative arrow sizes denoting δω, D[Ũ]
and 〈W̃i〉 are not to scale.

In a zero-pressure-gradient turbulent boundary layer the depth of viscous sublayer is
approximately 5 ν/uτ , while δ+ω→ constant at high Reynolds numbers. The similarities
between the sublayer and the superlayer are not limited to their widths. The mean
velocity in the viscous sublayer scales with uτ while in the superlayer the velocity
deficit scales with uτ . However, the scalings of the viscous superlayer and of the
viscous sublayer are independent, i.e. the presence of viscous sublayer does not
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influence the scaling of the viscous superlayer. The scaling of viscous superlayer is
due to the imposed skin-friction velocity uτ , and is likely to hold even in the case of
rough-wall boundary layers where the viscous sublayer ceases to exist accompanied
by the form drag due to the roughness elements. The scaling by uτ is explained by
Townsend’s outer similarity hypothesis and existence of this similarity is essential in
our understanding.

As the flow develops downstream, the velocity jump at the interface D[〈Ũ〉]
decreases with decreasing uτ . This decrease is coincidental with the decrease in the
average wall-normal velocity 〈W̃i〉. Spatially the superlayer width increases with
downstream distance in a developing boundary layer at a rate dictated by ν/uτ
(figure 10b). Since dδ/dx is much larger than d(ν/uτ )/dx, the superlayer width
relative to the boundary-layer depth asymptotes to zero (3.20).

An idealised superlayer jump profile and its statistical distribution of location
results in a smeared profile that matches the mean velocity description. The dynamical
similarity between the superlayer and the free-shear wake is explored here to partially
explain the emergence of the ‘wake’ profile in the intermittent region. This physical
phenomenon describes the presence of the wake profile with quantitative agreement
in contrast to the purely empirical descriptions available in the literature for the wake
profile.
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Appendix A. A note on the three-dimensionality of TNTI (main analysis
contributed by a reviewer)

Consider the TNTI as a two-dimensional surface bounding all turbulent flow below.
Instantaneous interface height is represented as Z̃i=Zi(x)+ z′i(x, y, t), where Zi is the
mean interface height and z′i is the fluctuating height. Here we consider the z′i(x, y, t)
as a single-valued function, i.e. in the regions where the interface folds back onto
itself Z̃i is the upper envelope of the turbulent/non-turbulent boundary. The velocity
of this interface is defined as vI = (ŨI, W̃I, ṼI) = (UI + u′I, WI + w′I, VI + v′I) in the
(x, z, y) directions, respectively. (Note that subscript ‘I’ is used to denote velocity of
the interface and should not be confused with subscript ‘i’ used in the manuscript to
denote a quantity at the interface.) The following properties are also noted:

(a) 〈u′I〉 = 〈w′I〉 = 〈v′I〉 = 0;
(b) UI 6= 0 (the interface convects in the flow-direction);
(c) WI 6= 0 (the mean interface height increases with down-stream distance);
(d) VI = 0 (two-dimensional mean flow).

The rate of change of Z̃i= Zi(x)+ z′i(x, y, t) in the Eulerian frame is equivalent to
the interface velocity in z direction and can be written as

W̃I = ∂Z̃i

∂t
+ ŨI

∂Z̃i

∂x
+ ṼI

∂Z̃i

∂y
. (A 1)

Splitting into mean and fluctuating components

WI +w′I =
∂z′i
∂t
+ (UI + u′I)

∂(Zi + z′i)
∂x

+ v′I
∂z′i
∂y
. (A 2)
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Substituting WI =UI · (dZi/dx) gives

w′I =
∂z′i
∂t
+UI

∂z′i
∂x
+ u′I

∂(Zi + z′i)
∂x

+ v′I
∂z′i
∂y
. (A 3)

An average of (A 3) then yields〈
u′I
∂z′i
∂x

〉
=−

〈
v′I
∂z′i
∂y

〉
. (A 4)

Time-resolved measurements are needed to determine the displacement of TNTI
over a small time interval ∆t and thereby evaluate u′I . Unfortunately, time-resolved
information is not available to us from the present data and therefore left-hand side of
(A 4) cannot be estimated accurately in our study. Two possibilities emerge for (A 4).
First, u′I and ∂z′i/∂x are uncorrelated. In this case both terms in (A 4) are identically
zero. Recently Wolf et al. (2013) demonstrated that turbulent fluctuations display a
strong dependence on the local TNTI shape and that different entrainment mechanisms
are dominant depending on the surface shape. Based on this evidence it is reasonable
to assume that (A 4) holds a finite magnitude, i.e. u′I and ∂z′i/∂x are correlated.
Furthermore, in two dimensions, z′i(x, t) detected in the streamwise/wall-normal plane
has a fractal characteristic similar to z′i(y, t) detected in the spanwise/wall-normal
plane. Therefore, z′i(x, t) and z′i(y, t) are statistically similar in geometry (Paizis &
Schwarz 1974) and (A 4) indicates that v′I =O(u′I).

Now the interface velocity is related to the entrainment velocity and fluid velocity
as

vI = vE + v, (A 5)

where the entrainment velocity vE = (UE + u′E, WE + w′E, v
′
E) and the fluid velocity

v = (U + u,W +w, v). Therefore

u′I +UI = u′E +UE + u+U⇒ u′I = u′E + u. (A 6)

We know that u′E = O(uτ ) (Philip et al. 2014) and u = O(uτ ) from figure 8 of the
present manuscript. Hence u′I = O(uτ ). From (A 4) it can then be deduced that v′I =
O(uτ ). Hence, the fluctuating spanwise interface velocity also scales with uτ .
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