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Design and optimization of a microstrip
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With the ever-increasing need for wireless communication and the emergence of many systems, it is important to design
broadband antennas to cover a wide frequency range. The aim of this paper is to design a broadband patch antenna, employ-
ing the three techniques of slotting, adding directly coupled parasitic elements and fractal electromagnetic band gap (EBG)
structures.The bandwidth is improved from 9.3 to 23.7%. A wideband ranging from 4.15 to 5.27 GHz is obtained. Also, a
comparative analysis of embedding EBG structures at different heights is also done. The composite effect of integrating
these techniques in the design provides a simple and efficient method for obtaining low-profile, broadband, and high-gain
antenna. By the addition of parasitic elements the bandwidth was increased to 18%. Later on by embedding EBG structures
the bandwidth was increased up to 23.7%. The design is suitable for a variety of wireless applications like WLAN and radar
applications.
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I . I N T R O D U C T I O N

Microstrip patch antennas have been designed and character-
ized extensively over the past many years because of their
low-profile structures, light weights, and low cost in fabrica-
tion [1–8] where various design techniques and fast solvers
have been developed to enhance radiation performance
(such as bandwidth and gain). These low-profile antennas
are useful in aircraft, satellite, and missile applications where
size, weight, cost, performance, ease of installation, and aero-
dynamic profiles are strict constraints. In spite of many advan-
tages, these antennas suffer from some disadvantages which
include their low efficiency, low power, high Q, spurious
feed radiation, and very narrow bandwidth [9–14]. There
have been considerable efforts made by researchers from all
over the world toward increasing its bandwidth. A possible
way for increasing the bandwidth is to either increase the
height of the dielectric or decrease the dielectric constant.
However, the first approach would make it unsuitable for low-
profile structures, whereas the latter approach will make the
matching circuit to the patch difficult due to excessively
wide feeding lines. Various other techniques [15–17] have
been proposed to increase the bandwidth of a patch
antenna. Bandwidth of small size microstrip antennas has
been improved by the use of U slot and L probe [15],
stacked microstrip patch antenna [16–18], aperture coupled,

and impedance matching network using filter design tech-
niques [19, 20], unbalanced structures [21].

Another way of increasing the bandwidth of the MPA is the
use of additional resonators either directly or indirectly
coupled to the patch antenna [22].

The use of electromagnetic band gap (EBG) structures for
improving the characteristics of MPA such as improving their
radiation patterns, enhancing their gain, and minimizing the
side and back lobe levels, etc. has attracted much attention
among researchers in the microwave and antenna commu-
nities [23]. Various EBG structures have been proposed and
they have found many applications in the microwave region
[24–27]. Recently, EBG structure on the feed line has also
been studied to improve the performance of a triple-band
slot antenna [28].

The main objective of this paper is to present a new antenna
configuration with combined effect of slotting, the use of directly
coupled parasitic elements and fractal EBG structures to design a
simple low-profile broadband antenna. Fractal structures have
shown advantages in designing small, multiband, and high-
directive antennas [29–32]. Firstly, slotting was done by introdu-
cing four slits on all the four sides of a rectangular-shaped patch
antenna as shown in Fig. 1. Then four different radiating
elements connected together and directly coupled to the
slotted antenna as shown in Fig. 2 were added, which shows
an improvement in bandwidth from 9.3 to 18%. Later on by
embedding fractal EBG structures in the same antenna it was
being observed that the bandwidth was increased upto 23.7%.
A comparative analysis was also done at different heights of
fractal EBG structures. The material used as the substrate is
FR4 (glass epoxy, 1r ¼ 4.4) and the type of feed used is coaxial
probe feed. The simulation is done using HFSS, which is based
on finite-element method (FEM).
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I I . A N T E N N A D E S I G N

A) Slotted rectangular microstrip patch
antenna
In this section, a slotted patch antenna is designed. Figure 1
depicts the geometry of the proposed patch antenna with its
dimensions 36 × 28 mm. The four slits, as shown in Fig. 1,
are created in its shape. The FR4 material is used as the sub-
strate whose thickness is 3.2 mm (h1) (Fig. 3). The dimensions
of the slits along the length are L1 ¼ 4 mm and W1 ¼ 10 mm
and along the width are W2 ¼ 4 mm and L2 ¼ 12 mm. The
feed is positioned 0.6 mm along the x-axis and 4.3 mm
along the y-axis from the center of the rectangular patch.
The ground plane size is 100 × 100 mm. The proposed
antenna is simulated using HFSS, which is based on FEM.
Figure 4 shows the simulated impedance bandwidth. The
impedance bandwidth is found to be 9.3% ranging from 4.2
to 4.61 GHz. By embedding the suitable slits in the radiating

patch, compact operation with an enhanced impedance band-
width is obtained [33].

B) Bandwidth improvement by the use of
directly coupled parasitic elements
The antenna designed in Section A still has narrow bandwidth
by seeing the demand for overgrowing need of wireless com-
munication. The second technique employed here to increase
its bandwidth is the use of directly coupled parasitic elements.
Figure 2 shows the geometry of the proposed new modified
slotted patch antenna with parasitic patches. These additional
resonators generate the modes very close to the fundamental
resonant frequency of the main patch resulting in broad band-
width. As shown in the figure, additional parasitic elements
are directly coupled and inserted in the slits of the slotted
patch antenna. All the dimensions of the parasitic elements
are shown in Fig. 2. This new antenna with parasitic elements
has bandwidth of 18%, which is twice that of the slotted patch
antenna. This antenna operates in the range of 3.53–4.23 GHz.
The length and width of each element of these parasitic
elements are optimized to get the broad bandwidth. The opti-
mized feed location is found to be at 0.62 mm along the x-axis
and 4.3 mm along the y-axis from the center of the rectangular
patch. The results are shown in Fig. 5.

C) New modified antenna design using fractal
EBG structures for wide bandwidth
In this section, a third technique is employed to further
improve the bandwidth of the antenna designed in Section
B. By the use of EBG structures the characteristics of the
patch antenna can further be enhanced. An EBG structure is
a periodic structure that forbids the propagation of all electro-
magnetic waves within a particular frequency band called the
band gap. The performance improvement occurs due to the
stop bands of these periodic structures. These structures

Fig. 1. Top view of slotted patch antenna.

Fig. 2. Top view of slotted patch antenna with directly coupled parasitic elements.
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provide a simple and effective solution to surface and leaky
waves. Several types of microstrip based EBG structures
have been analyzed for a variety of applications.

Figure 6 shows the geometry of the single element of the
EBG structures. An array of 6 × 6 EBG structures is
embedded at a height of 1.6 mm (h2) as shown in Fig. 7
and Fig. 8. Each single-array element has dimensions of
L7 ¼ 12 mm and W7 ¼ 12 mm as shown in the figure. The
gap between the array elements, L5 ¼ 4 mm and W5 ¼
4 mm is also shown in the figure. This new modified
antenna design using EBG structures has a wide bandwidth
of 23.7% ranging from 4.15 to 5.27 GHz as shown in Fig. 9
in comparison to 18% of the antenna designed in Section B.Fig. 3. Side view of slotted patch antenna with directly coupled parasitic

elements.

Fig. 4. Reflection coefficient (in dB) versus frequency (in GHz) for slotted patch antenna shown in Fig. 1.

Fig. 5. Reflection coefficient (in dB) versus frequency (in GHz) for slotted patch antenna with directly coupled parasitic elements shown in Fig. 3.
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The antenna is found to resonate at the frequency of 4.17 GHz
with 238.60 dB reflection coefficient.

The side view of the new modified antenna design is shown
in Fig. 8. The EBG structures were embedded at the height of
1.6 mm (h2) from the ground plane in the antenna designed
in Section B. The modified feed location is found to be at
0.6 mm along the x-axis and 4.6 mm along the y-axis from
the center of the rectangular patch.

D) Simulated results and discussion

1) slotted patch antenna

Figure 4 shows the reflection coefficient curve for the antenna
designed in Section A. The simulated results show that the res-
onant frequency locates at about 4.31 GHz with the maximum
reflection coefficient of 233.55 dB. The 210 dB impedance
bandwidth is found to be 9.3% ranging from 4.2 to 4.61 GHz.

2) slotted patch antenna with directly

coupled parasitic elements

The result in Section A shows only the limited bandwidth. To
further enhance the bandwidth of the patch antenna designed
in Section A, the use of parasitic elements is made which
increased the bandwidth to 18% ranging from 3.53 to
4.23 GHz. Figure 5 shows the reflection coefficient curve for
the antenna designed in Section B. The maximum reflection
coefficient is found to be 229.12 dB located at the resonant
frequency of 3.63 GHz.

3) new modified antenna with embedded

fractal ebg structures

Figure 9 shows the reflection coefficient curve for the antenna
designed in Section C. By embedding the fractal EBG struc-
tures the bandwidth was further improved to 23.7% ranging
from 4.15 to 5.27 GHz. It is being observed from the figure
that by embedding EBG structures the bandwidth is drasti-
cally improved.

Fig. 6. Single element of EBG structures.

Fig. 8. Side view of the new modified antenna design with EBG structures.

Fig. 7. 6 × 6 array of EBG structures.
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4) effect of embedding fractal ebg

structures at different heights from

ground plane

Figure 10 shows the reflection coefficient curve of the new
proposed antenna with EBG structures at different heights.
The height from the ground plane of the EBG structures is
optimized to get the broad bandwidth. The optimum result
is found at height h2 ¼ 1.6 mm from the ground plane as
can be seen in Fig. 8.

Figure 11 shows the radiation pattern for slotted patch
antenna with directly coupled parasitic elements and
embedded fractal EBG structures at height h2 ¼ 1.6 mm.
The main beams are in the broadside direction of the

antenna. The radiated power degrades in the off-axis
direction.

I I I . C O N C L U S I O N

In this paper a very wideband patch antenna is designed,
employing the three techniques of slotting, adding directly
coupled parasitic elements, and embedding fractal EBG struc-
tures. From the simulation result it is being observed that by
adding slots in the normal rectangular-shaped patch antenna
the bandwidth is 9.3% .This bandwidth is further improved
to 18% by adding directly coupled parasitic elements, which

Fig. 9. Reflection coefficient (in dB) versus frequency (in GHz) for slotted patch antenna with directly coupled parasitic elements and embedded fractal EBG
structures shown in Fig. 6.

Fig. 10. Effect of fractal EBG structures at different heights from ground plane.

design and optimization of a microstrip patch antenna for increased bandwidth 533

https://doi.org/10.1017/S1759078713000160 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078713000160


is just twice to that of the slotted antenna. To further increase
the bandwidth the third feature is incorporated that is the use
of 6 × 6 fractal EBG structures. These EBG structures are
embedded in the modified patch to increase the bandwidth
upto 23.7%. This antenna can be used to provide the wide-
band operation for WLAN and radar applications.
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