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SUMMARY
This paper presents a motion planning method for a
simple wheeled robot in two cases: (i) where translational
and rotational speeds are arbitrary, and (ii) where the
robot is constrained to move forwards at unit speed. The
motions are generated by formulating a constrained optimal
control problem on the Special Euclidean group SE(2). An
application of Pontryagin’s maximum principle for arbitrary
speeds yields an optimal Hamiltonian which is completely
integrable in terms of Jacobi elliptic functions. In the unit
speed case, the rotational velocity is described in terms
of elliptic integrals, and the expression for the position
is reduced to quadratures. Reachable sets are defined
in the arbitrary speed case, and a numerical plot of the
time-limited reachable sets is presented for the unit speed
case. The resulting analytical functions for the position and
orientation of the robot can be parametrically optimised to
match prescribed target states within the reachable sets. The
method is shown to be easily adapted to obstacle avoidance
for static obstacles in a known environment.

KEYWORDS: Path planning; Motion planning; Optimal
control; Geometric control; Wheeled robots.

1. Introduction
The task of computing a suitable trajectory from a given
initial condition to a desired final point is fundamental
in robotics. However, for some robotic systems, such as
wheeled robots, motion planning is challenging due to their
inherent nonholonomic constraints. Subsequently, many
methods use linearisation or introduce local co-ordinates
in order to tackle the motion planning problem (MPP).
Nevertheless, motion planning is essentially a global problem
and ideally requires a global approach.

In the context of optimisation the optimal path between the
start and end points is often selected via the use of a numerical
optimisation procedure. Despite the numerous optimisation
tools available, the use of optimal control theory to tackle
the MPP has had little impact on practical applications,
presumably because the delicate numerical treatment of
optimal control problems is often less suited to practical
implementation than other methods.
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However, since the development of geometric control
theory,1 new approaches have arisen which exploit the
underlying analytical structure of the system. When the
configuration space can be represented by a Lie group, as in
the case of the wheeled robot on the Special Euclidean group
SE(2),2 motion planning algorithms can be designed based
on this global representation.3–5 For nonholonomic systems
defined on Lie groups, the MPP methodologies are naturally
based on Lie-algebraic techniques. The control functions are
designed such that motions are generated in the direction of
the iterated Lie bracket, i.e. in the direction which is not dir-
ectly controlled. By application of the maximum principle of
optimal control,6 and by specifying an appropriate quadratic
cost function, the optimal Hamiltonian for nonholonomic
systems, such as a wheeled robot, can be obtained. If the
Hamiltonian is integrable then the optimal control problem
can be reduced to quadratures and often solved analytically.
Moreover, for wheeled robots whose configuration space is
SE(2), the Hamiltonian is always integrable.1

The problem of motion planning for simple wheeled robots
has been widely studied. In an early work on the subject,
Dubins7 derived a method for generating trajectories for a
car-like robot, termed Dubins’ car,8 which is constrained to
move forwards at unit speed. In this method the paths are
constructed from straight line segments and arcs of constant
curvature, and are referred to as Dubins’ curves or paths.8

Dubins’ curves are the shortest length curves in Euclidean
space whose curvature is uniformly bounded for all points
along the curve, which connect two arbitrary points.9 It was
shown that Dubins’ car is capable of arriving at any state
(assuming no obstacles) using a combination of no more than
three motion primitives – left turn, right turn or straight ahead.
Reeds and Shepp10 extended the work of Dubins by defining
the shortest paths for a car capable, in addition, of reversing
at unit speed. Dubins’ curves have been used extensively in
motion planning for a range of systems, including unmanned
air vehicles11 and underwater vehicles.12

Scheuer and Fraichard13 developed a motion planning
method to overcome an inherent limitation of Dubins’
curves – that the wheeled robots are required to stop to
reorientate at each section of the path. This method, derived
from Dubins’ curves, generates continuous curvature curves
which do not require the robot to stop and reorientate, and
was extended to include obstacle avoidance.14, 15

Murray and Sastry16 extended the work of Brockett17 on
steering drift-free nonholonomic systems, and showed that
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for certain classes of system the optimal controls take the
form of sinusoids. A particular benefit of this method is the
ability to satisfy orientation constraints by exploiting the
periodicity of controls. Other methods for motion planning
of wheeled robots include the use of polynomial spiral
trajectories,18 in which the path is described by a continuous
control function.

Murray et al.,19 Canny20 and Latombe21 pay particular
attention to the nonholonomic MPP for simple robots, while
Brockett and Dai22 showed that for a particular nonholo-
nomic system the optimal controls were elliptic functions.

In this paper a simple analytical motion planning method
is derived via the framework of geometric control theory that
seeks to define a general class of curves for the wheeled
robot in the following two cases: (i) where translational and
rotational speeds are arbitrary, and (ii) where the robot is
constrained to move forwards at unit speed. The optimal
Hamiltonian is shown to be completely solvable in the
arbitrary speed case where the position and orientation
can be described analytically using elliptic functions.
These elliptic functions have special cases which include
hyperbolic functions and the sinusoids commonly used in
motion planning.16 As a result, a wide range of possible
curves are obtained. In the unit speed case the rotational
velocity is described in terms of elliptic integrals and the
expression for the position can be reduced to quadratures. A
truncated approximation is then used to describe the position
analytically. It is interesting to note that the motion planning
formulation of a wheeled robot with arbitrary and unit speed
is analogous to the definition of sub-Riemannian and elastic
curves on SE(2) respectively. Therefore, when tracking these
motions the robotic vehicles will trace a sub-Riemannian or
elastic curve.

Reachable sets are defined exactly in the arbitrary speed
case, and time-limited reachable sets presented in the
unit speed case. A method for parametrically optimising
the analytical equations describing the motion to match
prescribed boundary conditions and produce reference
tracks is presented. The completely analytical expressions
enable the references to be generated rapidly and at low
computational cost. Finally, it is shown that the set of feasible
curves can be probed to create a simple obstacle avoidance
algorithm in a static and known environment. This enables a
range of single curves to be generated which match boundary
conditions on the final position while avoiding forbidden
areas.

The paper is organised as follows. In Section 2 we
introduce the model of the wheeled robot and explain
some preliminary concepts concerning the framework of
geometric control theory. In Section 3 we explain how the
optimal controls are derived from the optimal Hamiltonian.
In Section 4 we solve explicitly for the completely analytical
optimal controls in the arbitrary speed and unit speed cases.
Reachable sets are defined in Section 5. In Section 6 we
describe the parametric optimisation procedure to find the
optimal curve that satisfies the boundary conditions, and
show how the procedure can be extended to provide simple
obstacle avoidance for static and known obstacles. Finally,
we summarise the findings of the paper and present future
work in Section 7.

Fig. 1. Wheeled robot model. Body axis is placed at centre of rear
axle with x-axis lying along the centre line of robot.

2. Problem Statement on SE(2)
In this section the MPP for a simple wheeled robot is framed
in the context of an optimal control problem on a matrix Lie
group. The general definitions of a Lie group, Lie algebra and
the dual of the Lie algebra are introduced, and these concepts
are related to the specific problem of motion planning for a
wheeled robot.

2.1. Model
The wheeled robot model under consideration is shown in
Fig. 1. The distance between the front and rear axles is given
by L. The angle between the body-fixed x–y frame and the
inertial X–Y frame is denoted by θ . A sliding constraint is
imposed by the assumption that in a small time interval dt

the wheeled robot moves in approximately the direction that
the rear wheels are pointing.8 This condition can be written
as the Pfaffian constraint:

−Ẋ sin θ + Ẏ cos θ = 0. (1)

As in Choset et al.,23 we choose to focus on the position and
orientation of the wheeled robot. Therefore, we eliminate the
steering angle φ from the representation of the configuration
and treat it as part of the control. The control system is then
described by

Ẋ = u1 cos θ,

Ẏ = u1 sin θ,

θ̇ = u3,

(2)

where u1 and u3 are the controls in translation and rotation
respectively.

2.2. Preliminary concepts
We begin with some general definitions of matrix Lie groups,
the Lie algebra and its dual from Bloch.2

Definition 1. A matrix Lie group is a set of invertible
n × n matrices that are closed under matrix multiplication
and that are a submanifold of Rn×n.

An example of a matrix Lie group is the Special Euclidean
group, SE(2), whose elements represent the configuration
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described by an orthonormal frame attached to a Euclidean
plane.

Definition 2. A Lie algebra g is a set of n × n matrices
that is a vector space with respect to the usual operations of
matrix addition and multiplication by real numbers (scalars)
and that is closed under the matrix Lie bracket operation
[·, ·].

Definition 3. Let G be a Lie group and g its Lie algebra
with [·, ·] the associated Lie bracket. The dual space g∗
is a Poisson manifold with Poisson bracket {p̂(·), p̂(·)} =
−p̂([·, ·]) where (·) ∈ g.

We will now relate these concepts to the optimal control
of a nonholonomic wheeled robot. The configuration space
of the wheeled robot in Fig. 1 can be described by a curve
g(t) ∈ SE(2) and expressed in matrix form as

g(t) =
(

R(t) γ

0 1

)
, (3)

where R(t) ∈ SO(2) (the Special Orthogonal group)
represents the rotational component of the motion, and
γ ∈ �2 (the Euclidean plane) represents the translational
component. The rotation matrix R(t) is given by

R(t) =
(

cos θ − sin θ

sin θ cos θ

)
(4)

and γ = [XY ]T .
The tangent space at the identity is the Lie algebra denoted

se(2). It follows that the kinematics of the simple wheeled
robot can be expressed as a left invariant control system on
SE(2) as

dg(t)

dt
= g(t)

(
s∑

i=1

ui(t)Ai

)
, (5)

where ui with i = 1, . . . , s are controls and A1, . . . , A3 ∈
se(2) are the basis of the Lie algebra se(2). The Lie algebra
se(2) is a vector space together with the matrix commutator,
the Lie bracket:

[X, Y ] = XY − YX, (6)

where X, Y ∈ se(2). The basis are defined by

A1 =
⎛
⎝0 0 1

0 0 0
0 0 0

⎞
⎠,

A2 =
⎛
⎝0 0 0

0 0 1
0 0 0

⎞
⎠,

A3 =
⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠

(7)

Table I. Commutative table for basis on se(2).

A1 A2 A3

A1 0 0 −A2

A2 0 0 A1

A3 A2 −A1 0

satisfying the commutative table shown in Table I. Note
that the lateral direction, represented by the basis A2, is
not directly controlled (u2 = 0) due to the sliding constraint
expressed in (1). However, the Lie bracket enables motions to
be generated in the A2 direction despite not having a control
directly associated with it.

By differentiating (3) and substituting into (5) we obtain
the control system defined in (2). Note also that the driftless
system in (5) can be augmented to include systems with drift
by setting one of the controls ui to a constant a priori without
loss of generality.

Subject to the kinematic nonholonomic constraint given
by (5) and given that the system is controllable, the problem
is then to find a trajectory g(t) ∈ SE(2) from an initial
position and orientation g(0) ∈ SE(2) to a final position and
orientation g(T ) ∈ SE(2), where T is some fixed final time
that minimises the functional

J = 1

2

∫ T

0

s∑
i=1

ciu
2
i dt, (8)

where i = 1, . . . , s and ci are constant weights. In addition, it
enables the MPP to be formulated in the context of geometric
optimal control and this enables us to ask questions of integ-
rability and in some cases solve the system in a closed form.
Furthermore, obtaining a closed form solution essentially
reduces the MPP to a problem of optimising the available
parameters to match the prescribed boundary conditions.

3. Methodology
The methodology for the MPP comprises the following
phases:

1. Lifting the optimal control problem on SE(2) to a
Hamiltonian setting via the maximum principle of optimal
control.

2. Solving integrable cases of the Hamiltonian vector fields
analytically in the most general form of the cost function
(8).

3. Given the optimal velocities derive the corresponding
motions in SE(2) analytically, reducing the MPP to a
parameter optimisation problem.

4. Defining the reachable sets of the optimal motions.
5. As the boundary conditions are not contained in the cost

function, optimise the available parameters of analytical
solutions to match the prescribed boundary conditions.

The application of the coordinate-free maximum principle
to left-invariant optimal control problems is well known,
see Jurdjevic1 and Sussman.24 As the Hamiltonian is left-
invariant, the cotangent bundle T ∗SE(2) can be realised as
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the direct product SE(2) × se(2)∗, where se(2)∗ is the dual
of the Lie algebra se(2) of SE(2). Therefore, the original
Hamiltonian defined on T ∗SE(2) can be expressed as a
reduced Hamiltonian on the dual of the Lie algebra se(2)∗
as T ∗SE(2)/SE(2) ∼= se(2)∗. Essentially this means that the
translational and rotational symmetry of the wheeled robot
problem enables the Hamiltonian to be defined independently
of configuration co-ordinates on the dual of the Lie algebra.
This means that the Hamiltonian is highly simplified, and
makes the process of solving for the optimal controls simpler.

The appropriate Hamiltonian for constraint (5) with respect
to minimizing the cost function (8) is given by (see Jurdjevic1

for details)

H (p, u, g) =
s∑

i=1

uip(g(t)Ai) − ρ0
1

2

s∑
i=1

ciu
2
i , (9)

where s ≤ 3, p ∈ T ∗SE(2) and ρ0 = 1 for regular extremals
and ρ0 = 0 for abnormal extremals. Jurdjevic1 showed
that abnormal extremals are a subset of regular extremals,
therefore in this paper we consider only the regular extremals,
setting ρ0 = 1. As stated, the Hamiltonian (9) defined on
T ∗SE(2) is expressed as a reduced Hamiltonian on the dual
of the Lie algebra se(2)∗. It follows that p(g(t)Ai) = p̂(Ai)
for any p = (g(t), p̂) and any Ai ∈ se(2). Defining the
extremal (linear) functions explicitly as λi = p̂(Ai), where
p̂ ∈ se∗(2), the Hamiltonian (9) can be expressed on se(2)∗
as

H =
s∑

i=1

uiλi − 1

2

s∑
i=1

ciu
2
i . (10)

Through the maximum principle and the fact that the control
Hamiltonian (10) is a concave function of the control
functions ui , it follows by calculating ∂H

∂ui
= 0 that the optimal

kinematic control inputs are

u∗
i = 1

ci

λi, (11)

where i = 1, . . . , s and λi are the extremal curves.
Substituting (11) back into (10) gives the appropriate left-
invariant quadratic Hamiltonian:

H ∗ = 1

2

(
s∑

i=1

λ2
i

ci

)
. (12)

For each quadratic Hamiltonian (12), the corresponding
vector fields are calculated using the Poisson bracket
{p̂(·), p̂(·)} = −p̂([·, ·]), where (·) ∈ se(n). Then the
Hamiltonian vector fields are given by

d(·)
dt

= {·, H ∗}, (13)

where (·) ∈ se(2)∗. Finally, substituting (11) into (5) yields

dg(t)

dt
= g(t)∇H ∗, (14)

where ∇H ∗ is the gradient of the Hamiltonian and g(t) ∈
SE(2) are the corresponding paths. The MPP is thus reduced
to solving for g(t) ∈ SE(2) such that the boundary conditions
g(0) ∈ SE(2) and g(T ) ∈ SE(2) in some final time T are
matched. Equations (13) and (14) are integrable with the
three integrals of motion: (i) the Hamiltonian H ∗; (ii) the
Casimir function M = λ2

1 + λ2
2 and (iii) the integral of

motion ϕ3 corresponding to a right-invariant vector field.
The corresponding Hamiltonian vector fields (13), which
describe the extremal curves, are 3-dimensional (3D) with the
Hamiltonian and Casimir providing two integrals of motion.
Therefore, each extremal can be decoupled and described by
a 1-degree-of-freedom (DOF) ordinary differential equation.
In addition, integrability is an intrinsic property of the system
as it implies that all motions will be regular.

4. Extremal Curves
In this section we derive optimal Hamiltonians in the arbitrary
speed and unit speed cases through the application of
Pontryagin’s maximum principle before solving explicitly
for optimal controls.

4.1. Arbitrary translational and rotational speeds
We assume that the wheeled robot can move backward or
forwards at a velocity v, which can be controlled. This sliding
constraint (1) can be expressed as follows:

dγ

dt
= R(t)

[
v

0

]
, (15)

where γ = [X Y ]T . Furthermore, the robot can rotate at
an angular velocity ω = θ̇ , which can also be controlled.
Differentiating Eq. (3) and taking into account constraint (15)
it is easily shown that the nonholonomic kinematic constraint
can be expressed as a left-invariant differential equation:

g(t)−1 dg(t)

dt
=

⎛
⎝ 0 −ω v

ω 0 0
0 0 0

⎞
⎠ . (16)

This can be expressed in the following form:

g(t)−1 dg(t)

dt
= vA1 + ωA3, (17)

where the Lie algebra is given by (7), and the cost function
(8) is given by

J = 1

2

1∫
0

v2 + cω2dt, (18)

where c is a constant weight. The time t is scaled such that
in real time τ with final fixed time T is t = τ/T . In relation
to the general form (8) u1 = v, c1 = 1, u3 = ω, c3 = c. This
cost function minimises steering effort and forward velocity.
Together, the kinematic constraints (16) and the cost function
(18) are analogous to a sub-Riemannian curve on SE(2).25

https://doi.org/10.1017/S0263574713000519 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000519


Path planning for simple wheeled robots 1289

That is, while we constrain the MPP to a fixed time T , a
curve would be constrained by a fixed length. Therefore, the
Hamiltonian function corresponding to the constraint (16)
that minimises the cost function (18) is

H = vλ1 + ωλ3 − 1

2
(v2 + cω2). (19)

Then Pontryagin’s maximum principle says that if

∂H

∂v
= 0,

∂H

∂ω
= 0,

∂2H

∂v2
< 0,

∂2H

∂ω2
< 0, (20)

then the functions v and ω are optimal. These conditions are
satisfied if

v = λ1, ω = λ3
c
. (21)

Substituting these values into (19) yields the optimal
Hamiltonian H ∗:

H ∗ = 1

2

(
λ2

1 + λ2
3

c

)
. (22)

The corresponding Hamiltonian vector fields which
implicitly define the extremal solutions are given by the
Poisson bracket dλi

dt
= {λi, H

∗}, where i = 1, . . . , 3. This
yields the differential equations:

λ̇1 = λ2λ3
c

,

λ̇2 = −λ1λ3
c

,

λ̇3 = −λ1λ2.

(23)

In addition, observe that the Casimir function

M = λ2
1 + λ2

2 (24)

is constant along the Hamiltonian flow, i.e. {M, H ∗} = 0.
The integrability of the system can be confirmed

geometrically by plotting the intersection of the integrals
of the system, the Hamiltonian (22) and the Casimir function
(24), as shown in Fig. 2.

It is known that the intersection of two quadratic surfaces
define elliptic curves, which in turn are parameterised by
elliptic functions, see Husemoller.26 Therefore, the extremal
curves can be solved via elliptic functions as shown in the
following Lemma:

Lemma 1. The optimal velocity v in the surge direction
and angular velocity ω that minimise the cost function (18)
subject to the kinematic constraint (16) are Jacobi elliptic
functions sn(·, ·), dn(·, ·) of the form:

v = √
Msn

(√
2H ∗

√
cH ∗ t,

M

2H ∗

)
,

ω =
√

2H ∗

c
dn

(√
2H ∗

√
cH ∗ t,

M

2H ∗

)
,

(25)

where H ∗ and M are constants defined by (22) and (24)
respectively, and c is the constant weight in the cost function

Fig. 2. Plot of intersection between the Hamiltonian function
(light) and Casimir (dark) in arbitrary speed case. In this case
m = M/2H ∗ < 1.

(18) with the corresponding path:

X = −
√

2
√

cH ∗
√

M
dn� +

√
2H ∗c
M

,

Y = 2H ∗t√
M

−
√

2H ∗cE
(

am�,
M

2H ∗

)
,

(26)

where E(·, ·) is the elliptic integral of the second kind and
am(·) is the Jacobi amplitude, and where the rotation of the
body along the path is

R(t) =
(

cn� −sn�

sn� cn�

)
(27)

with � =
(√

2H ∗√
cH ∗ t,

M
2H ∗

)
, and

θ = am(�). (28)

Proof. The conserved quantity (24) can be parameterised
by the Jacobi elliptic functions:

λ1 = rsn (αt, m), λ2 = rcn (αt, m). (29)

Substituting (29) into (24) yields r = √
M . Then (22) can be

parameterised by defining

λ3 = adn (αt, m). (30)

Substituting (29) and (30) into (22) we find that a = √
2H ∗c.

From this we can derive that m = M/2H ∗ and so

λ1 = rsn

(
αt,

M

2H ∗

)
,

λ2 = rcn

(
αt,

M

2H ∗

)
,

λ3 = √
2H ∗cdn

(
αt,

M

2H ∗

)
.

(31)
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Finally, to obtain α substitute (31) into (23), giving α =√
2H ∗/

√
cH ∗ and enabling the complete expressions for the

extremal functions to be written as follows:

λ1 = rsn

(√
2H ∗

√
cH ∗ t,

M

2H ∗

)
,

λ2 = rcn

(√
2H ∗

√
cH ∗ t,

M

2H ∗

)
,

λ3 = √
2H ∗cdn

(√
2H ∗

√
cH ∗ t,

M

2H ∗

)
.

(32)

The relationship between the optimal velocities and the
extremals (21) then enables us to derive (25). As ω = θ̇ ,

it follows from (25) that

θ = am(�) + C1, (33)

where C1 is a constant of integration. For simplicity we set
C1 = 0 such that the rotation matrix R(t) emanates from the
origin. This yields (27). Substituting (27) and (25) into Eq.
(15) we find that

dγ

dt
=

[√
Msn�cn�√

Msn2�

]
. (34)

These can be integrated analytically to give the expressions
for the evolution of the robot’s path (26). �

Remark 1. It is interesting to note the change in
behaviour of the elliptic functions as the parameter m =
M/2H ∗ changes. For 0 < m < 1 the optimal controls are
described by (25), and the Casimir and Hamiltonian intersect
as in Fig. 2.

As m = M/2H ∗ → 0 in (25), the velocity in translation
tends to a sinusoid and the velocity in rotation tends to a
constant, viz:

v = √
Msin

(√
2H ∗

√
cH ∗ t

)
,

ω =
√

2H ∗

c
.

(35)

Note also that the elliptic functions in expression (34) tend
to sine and cosine. As sine and cosine are special cases of
the elliptic functions described above, this suggests that it
may be possible to derive a more general form of the control
using sinusoids described by Murray and Sastry.16

As m = M/2H ∗ → 1, Eqs. (25) tend to hyperbolic fun-
ctions:

v = √
Mtanh

(√
2H ∗

√
cH ∗ t

)
,

ω =
√

2H ∗

c
sech

(√
2H ∗

√
cH ∗ t

)
.

(36)

This case is shown in Fig. 3(a).

Fig. 3. Plot of intersection between the Hamiltonian function (light)
and Casimir (dark) in arbitrary speed case defining the extremal
curves for (a) m = M/2H ∗ = 1 and (b) m = M/2H ∗ > 1.

Fig. 4. 2D plot of intersection between the Hamiltonian function
and Casimir (solid shaded area) in arbitrary speed case for different
values of m.

Finally, when m = M/2H ∗ > 1, Eqs. (25) are trans-
formed using the Jacobi transformation,27 which gives

v = √
2H ∗sn

(√
M

c
t,

2H ∗

M

)
,

ω =
√

2H ∗

c
cn

(√
M

c
t,

2H ∗

M

)
.

(37)

This case is shown in Fig. 3(b). The behaviour of the elliptic
functions can be further explained by an analogy with simple
pendulum.28 Plotting the curves in Figs. 2 and 3 in 2D we
obtain Fig. 4.

The case where m > 1 can be thought of as corresponding
to oscillatory solutions in the phase plane of the pendulum
where it is swinging back and forth, while m = 1 defines a
heteroclinic connection and m < 1 defines the case where
the pendulum has high energy.

4.2. Unit speed
We now assume that the wheeled robot is constrained to move
forwards at fixed unit speed (v = 1). This corresponds to the
case where the system has drift. The velocity constraint can
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be expressed as

dγ

dt
= R(t)

[
1
0

]
. (38)

Furthermore, the robot can rotate at an angular velocity
ω = θ̇ , which is controllable. Differentiating Eq. (3) and
taking into the account the constraint (38), the nonholonomic
kinematic constraint can be expressed as the left-invariant
differential equation:

g(t)−1 dg(t)

dt
=

⎛
⎝ 0 −ω 1

ω 0 0
0 0 0

⎞
⎠ . (39)

This can be written in the form

g(t)−1 dg(t)

dt
= A1 + ωA3, (40)

where the Lie algebra is given by (7) and the cost function
(8) is expressed as

J = 1

2

1∫
0

ω2dt. (41)

Time t is scaled such that in real time τ with final fixed time T

is t = τ/T . In relation to the general form (8), u1 = 1, c1 =
1, u3 = ω, c3 = 1. Together, the kinematic constraint (39)
and the cost function (41) are analogous to the definition
of an elastic curve on SE(2), where ω is analogous to the
curvature. Jurdjevic29 reduced the extremals of this problem
to quadratures. However, this paper extends this by solving
explicitly the optimal steering control in terms of an elliptic
function.

The Hamiltonian function corresponding to the constraint
(39) that minimises the cost function (41) is

H = λ1 + ωλ3 − 1

2
(ω2). (42)

Then Pontryagin’s maximum principle says that if

∂H

∂ω
= 0,

∂2H

∂ω2
< 0, (43)

then the function u is optimal. These conditions are satisfied
if

ω = λ3. (44)

Substituting these values into (42) yields the optimal
Hamiltonian H ∗:

H ∗ = 1

2

(
λ2

3

) + λ1. (45)

The corresponding Hamiltonian vector fields which
implicitly define the extremal solutions are given by the

Fig. 5. Plot of the Hamiltonian function (light) and the Casimir
function (dark) in unit speed case.

Poisson bracket dλi

dt
= {λi, H

∗}. This yields the following
differential equations:

λ̇1 = λ2λ3,

λ̇2 = −λ1λ3,

λ̇3 = −λ2.

(46)

In addition, the Casimir function (24) is again constant along
the Hamiltonian flow.

Note that by setting λ1, λ2 = 0 in (46) we find that
λ̇3 = 0 and λ3 = const. Therefore, this corresponds to the
curves of constant curvature commonly used in motion
planning. In addition, setting λ1, λ2, λ3 = 0 yields straight
line segments. Therefore, (46) can be manipulated to obtain
motion primitives which comprise Dubins’ curves.

As for the arbitrary speed case, the integrability of the unit
speed system can be confirmed geometrically by plotting the
intersection of the integrals of the system, the Hamiltonian
(45) and the Casimir function (24) as shown in Fig. 5. The two
quadratic surfaces intersect and define elliptic curves, which
can again be parameterised by elliptic functions.26 Therefore,
the system is integrable, and the extremal curves can be
solved analytically via the use of Jacobi elliptic functions
and Taylor expansions as stated in the following Lemma:

Lemma 2. The optimal angular velocity ω that minimises
the cost function (41) subject to the kinematic constraint (39)
is a Jacobi elliptic function of the form:

ω = √
s1sn

(√
αs2t + K,

s1

s2

)
, (47)

where constant K is defined by

K = sn−1

(
λ3(0)√

s1
,

s1

s2

)
(48)
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with

s1 = −β +
√

β2 − 4αχ

2α
,

s2 = −β −
√

β2 − 4αχ

2α
,

(49)

and:

α = − 1
4 ,

β = H ∗,
χ = M − H ∗2.

(50)

Proof. By combining the conserved quantities (24) and
(45) it can be found that

λ2 =
√

M −
(

H ∗ − 1

2
λ2

3

)2

. (51)

Then squaring the expressions for λ̇1 and λ̇3 in (46) and
combining with (51) gives:

λ̇2
3 = −1

4
λ4

3 + H ∗λ2
3 + (M − H ∗2). (52)

This expression can be written in the form:

λ̇2
3 = α

(
s1 − λ2

3

) (
s2 − λ2

3

)
(53)

and then rewritten as the integral:

t∫
0

dt =
λ3(t)∫

λ3(0)

1√
α(s1 − λ2

3)(s2 − λ2
3)

dλ3. (54)

In order to simplify the integration, we use the substitution

λ3 = √
s1sn(u, m). (55)

Note that m = s1
s2

. Differentiating gives

dλ3 = √
s1cn(u, m)dn(u, m). (56)

Substituting (55) and (56) into (54) leads to an equation of
the form:

t∫
0

dt =
u2∫

u1

√
s1cn(u,m)dn(u,m)

√
α

√
s1s2 − s2

1 sn2(u,m) − s1s2sn2(u,m) + s2
1 sn4(u,m)

du,

(57)
where

u1 = sn−1

(
λ3(0)√

s1
,
s1

s2

)
,

u2 = sn−1

(
λ3(t)√

s1
,
s1

s2

)
.

(58)

With some manipulation Eq. (4.2) reduces to

t∫
0

dt =
u2∫

u1

1√
αs2

du. (59)

Integrating and rearranging leads to the equation for λ3(t):

λ3(t) = √
s1sn

(√
αs2t + K,

s1

s2

)
, (60)

where constant K is given in (48). Remembering that ω =
λ3(t) yields the expression for the rotational angular velocity
(47). �

The orientation of the wheeled robot is given by θ =∫
ωdt , therefore,

θ = 2
√

s1√
m

√−s2
log

(
−√

mcn

(
K + 1

2

√−s2t, m

)

+ dn

(
K + 1

2

√−s2t, m

))
+ C1, (61)

where

C1 = − 2
√

s1√
m

√−s2
log(−√

mcn(K, m) + dn(K, m)). (62)

Substituting (61) into Eq. (38) yields:

dγ

dt
=

[
cos(θ)
sin(θ)

]
. (63)

These expressions cannot be integrated analytically for X

and Y . However, Taylor expanding (63) in t about t = 0 and
integrating enables approximate analytical expressions for
X and Y to be found. Note that as a result of the Taylor
expansion these expressions will only be convergent for t

in [0, 1); however, the references can be easily scaled to the
desired time.

5. Reachable Sets
In this paper we define reachable sets as the states in the
wheeled robot’s configuration space which are achievable
via a single trajectory from the starting point at the origin.
The robot’s environment is assumed to be obstacle-free when
defining reachable sets.

5.1. Arbitrary translational and rotational speeds
Since the magnitudes of forward and rotational speeds are
unconstrained, the reachable sets in the X–Y plane which
can be reached via a single manoeuvre are limited only by
the parameter space and the physical constraints of the robot
(e.g. turning radius). All other X–Y positions are reachable
in time t in the interval (0, ∞). Rearranging (28) leads to
an expression for the orientation θf , which is reached after
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Fig. 6. Time-limited subset of reachable sets determined
numerically for T = 1, H ∗,M, λ3(0) ∈ (0, 1]. 1000 trajectories
plotted.

some final time T :

T = F (θf , m)

α
, (64)

where F is an elliptic integral of the first kind,30 with m =
M/2H ∗ and α = √

2H ∗/
√

cH ∗ as in Section 4.1. Therefore,
for some final orientation θf and some values of the free
parameters H ∗, M and c, we have the time required to reach
this orientation. The final position Xf , Yf can be found from
(26) at t = T . Then for θf ∈ [0, 2π] and H ∗, M, c ∈ (0, ∞]
the complete reachable sets for the arbitrary speed case are
defined.

5.2. Unit speed
The expression for θ (61) in the unit speed case cannot
be solved explicitly for t and so the reachable sets are
difficult to define analytically. Therefore, in this case it is
useful to numerically evaluate time-limited reachable sets.
Constraining H ∗, M, λ3(0) ∈ (0, 1], manoeuvre time to
T = 1 and running random Monte Carlo simulations, we
can numerically evaluate the time-limited reachable sets.
This can be seen in Fig. 6. In this case the reachable sets
for the wheeled robot constrained to move at unit speed
but with arbitrary rotational velocity are similar to the time-
limited reachable sets for Dubins’ car, which is constrained
to move at unit speed on arcs of fixed curvature.8 This is to
be expected as the paths which mark the upper and lower
bounds of the graph are those in which the steering angle and
hence curvature are at the maximum allowable value, and so
the bounds are similar to those of Dubins’ car.

6. Motion Planning and Obstacle Avoidance
In this section we introduce a method of matching prescribed
boundary conditions on the final position and orientation
by parametrically optimising the free parameters in the

equations derived in Section 4. We then show how the
parametric optimisation can be adapted to create a simple
obstacle avoidance algorithm for static obstacles in a known
environment.

6.1. Parametric optimisation
As the analytical expressions for the angular and translational
displacements of the wheeled robot are functions of several
free parameters, a parametric optimisation can be utilised in
order to drive the robot to the desired target (provided the
target is within the reachable sets of the planner). However,
as noted by LaValle,8 no natural performance metric exists on
SE(2) as the rotational and translational components do not
have matching units. Therefore, difficulties can occur when
targeting both final position (X, Y ) and orientation (θ) using
the standard Euclidean metric:

(X − Xd )2 + (Y − Yd )2 + (θ − θd )2. (65)

However, by using the complex representation of the angular
displacement θ = a + ib, greater accuracy can be achieved.
Therefore, a performance metric of the form

min
H ∗,M,�

{(X − Xd )2 + (Y − Yd )2 + (a − ad )2 + (b − bd )2}

(66)

was used where H ∗, M and � are the free parameters to be
optimised. H ∗ is the optimal Hamiltonian, M is the Casimir
function, � = c is the weight in the arbitrary speed case and
� = λ3(0) is the initial angular velocity in the unit speed
case. The subscript d denotes the desired or target value of
parameters X, Y and θ . A parametric optimisation can then
be carried out to minimise the error between the current and
target position in SE(2) by changing the values of the free
parameters. Formally this involves finding the curve g(t) ∈
SE(2) that matches the boundary conditions g(0) ∈ SE(2)
and g(T ) ∈ SE(2) in some final time T .

The optimal values of the free parameters obtained as
a result of parametric optimisation are then input into
the analytical expressions for the angular and translational
displacements of the wheeled robot to give X–Y position
and orientation reference tracks for the robot’s path. This is
demonstrated in Section 6.2.

6.2. Motion planning and obstacle avoidance for arbitrary
translational and rotational speeds

In this section we demonstrate the planning of motions
for the wheeled robot in the case of arbitrary translational
and rotational speeds. In the absence of obstacles, any
motion which meets the prescribed boundary conditions is
sufficient. Figure 7 shows position tracks for the wheeled
robot, generated using the equations derived in Section 4.1,
from the origin to the randomly selected points [0.18, 2.5, π

2 ],
[0.4, 2, π

2 ] and [1, 3, π
3 ] in 1 s. We see that the paths are

smooth, and that the elliptic functions lead to a variety of
different curves being produced as the free parameters are
varied.

In reality, the configuration space may contain obstacles.
In this case the set of all curves which matches the boundary
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Fig. 7. Smooth paths of wheeled robot in X–Y space for manoeuvres
to (from left to right) [0.18, 2.5, π

2 ], [0.4, 2, π
2 ] and [1, 3, π

3 ].

conditions on X and Y can be probed to determine if a suitable
curve exists which avoids the obstacle. Figure 8 shows the
subset of the curves which match a target position of [1, 3] in
a time of 1 s. It is obvious that there are multiple curves which
satisfy the position constraint. In the simplest case, where the
obstacle is considered to be a point mass, the curves must not
violate the condition:

√
(X − Xo)2 + (Y − Yo)2 = χ, (67)

where the subscript o refers to the position of the obstacle
and χ �= 0 for obstacle avoidance. In reality, a forbidden
“zone” is created in the configuration space, and so a
range of positions must be avoided during the manoeuvre.
Considering the obstacle to be stationary and represented by
a circle of radius χo in the X–Y configuration space, the
condition for obstacle avoidance is then given by (67) where
χ > χo. Given the proposed method outlined in Section 6.1
for the analytical expressions defined in Section 4.1, the
parametric optimisation will return the optimal values of
the free parameters H ∗, M∗, c∗ which satisfy the target
position. In the case that this manoeuvre violates χ > χo∀t ,
a simple algorithm can be devised to overcome this. Defining

Fig. 8. Illustration of a subset of curves which match [1, 3] boundary
conditions.

the forbidden region as a circle in SE(2) with radius χo and
centre [Xo Yo]T , provided χ > χo∀t , the trajectory will avoid
the forbidden region. If χ < χo for H ∗, M∗, c∗ for any t

in the interval (0, T ) then we further optimise parameters
p1, p2, p3 such that p2

1 > η, p2
2 > η, p2

3 > η, where η > 0 is
a small parameter. This leads to a new set of free parameters
H ∗∗ = H ∗ + p1, M∗∗ = M∗ + p2, c∗∗ = c∗ + p3 being
obtained, with the objective function

min
p1,p2,p3

{(X − Xo)2 + (Y − Yo)2} (68)

such that χ > χo∀t . Note that η can be tuned until χ > χo∀t

is satisfied. We follow with an example.
For a manoeuvre from the origin to [1, 3] with a static

obstacle centred at [Xo, Yo] = [0.66, 1.52] and with radius
χf = 0.3, the following approach could be employed. First,
generate a manoeuvre using the motion planning method
described in Section 6.1. Then check to see if the condition
χ > χo∀t is violated at any time step. For instance, for the
1 s repointing manoeuvre to [1, 3, �

3 ] shown in Fig. 7 we
find that the wheeled robot collides with the obstacle at t =
0.56 s. Figure 9 illustrates this. Now a new trajectory can be
generated by using the parameters pi (where i = 1, . . . , 3) to
produce a new set of free parameters which drive the wheeled
robot to the target via (68). This process is repeated, tuning
the value of the parameter η until an appropriate solution is
found which does not violate the constraint and still meets the
desired final position to high precision. One such solution for
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Fig. 9. Error between current position and centre of forbidden zone
of radius χo (solid line). Horizontal (dashed) line marks radius of
the obstacle. Constraint is violated.

Fig. 10. Alternative smooth trajectory for manoeuvre to [1, 3] (solid
line). Also shown is the original path (dashed line) intersecting with
the obstacle (shaded circle).

a constrained manoeuvre from the origin to [1, 3] is shown
in Figs. 10 and 11.

It is evident that the constraint χ > χo∀t is respected
and therefore the wheeled robot would not collide with the
specified obstacle.

Note that while the obstacle avoidance algorithm has
been demonstrated here using the arbitrary speed case,
the analytical expressions for position yielded via Taylor
expansion in the unit speed case enable the obstacle

Fig. 11. Error between the current position and centre of forbidden
zone of radius χo (solid line). Horizontal (dashed) line marks radius
of the obstacle. Constraint is not violated since χ > χo∀t .

avoidance algorithm to be applied in this case also. However,
the forward speed constraint in this case limits the number
of alternative trajectories to the same position. Also note that
while the obstacle avoidance algorithm was implemented for
static obstacles in a known environment, the analytical curves
can be generated swiftly and efficiently and so an extension to
dynamic obstacles in uncertain environments may be feasible
in future. The main limitation of the obstacle avoidance
method detailed above is that while alternative trajectories
can be generated to a specified position in the X–Y plane,
it is not always possible to generate an alternative curve
which does not collide with the obstacle and also satisfies
both position (X, Y ) and orientation (θ) constraints. For
example in Fig. 10 the position constraint [1, 3] is respected,
but the final orientation differs from that of the original
curve.

In the case where an alternative curve has been generated
in the presence of an obstacle and a desired final orientation
is not achievable via a single curve, or indeed if a desired
final state cannot be reached due to sliding and turning
constraints, a more complex motion planning algorithm is
required. For example, while a single curve generated via
the motion planner described in this paper may not be
sufficient in all cases, a combination of curves generated
by the motion planner and straight line segments may enable
the desired final state to be reached. The motion planning
methodology can then be summarised in the following
stages:

1. Use the motion planning method described in Section 6.1
to minimise error between the actual and desired final state
(Xd, Yd, θd ) by changing the values of the free parameters
in the analytical expressions derived in Sections 4.1 and
4.2. If the accuracy of the solution is sufficiently high, and
it does not intersect with any obstacles in the configuration
space, the trajectory is suitable.

2. In the case where the trajectory intersects with a static,
known obstacle, and where final orientation is not of
paramount importance, further optimise the parameters
pi as described above to generate an alternative trajectory
that does not collide with the obstacle and sufficiently
satisfies the desired final position constraint (Xd, Yd ).
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3. If no single suitable trajectory is found, use a combination
of curves generated by the motion planner and straight
lines to achieve the desired final state.

The difficulty in piecing together motions lies in ensuring
that the transition between segments is smooth (as in the
work of Scheuer and Fraichard13) and that there are no
infeasible increase in translational and rotational speeds
between sections. Several methods for achieving this have
been proposed.31–34 These methods consider the workspace
of the robot and any obstacles therein, and then query the
reachable sets to create feasible paths for the robot by
concatenation of different motion primitives. However, this
process is outwith the scope of this paper.

7. Conclusions
In this paper a motion planning method for simple wheeled
robots with a sliding constraint was derived using optimal
control theory for systems defined on Lie groups. Two
cases were considered: (i) the case where translational
and rotational speeds are arbitrary, and (ii) the case
where the robot is constrained to move forwards at unit
speed.

It was found that in the arbitrary speed case the optimal
controls take the form of elliptic functions. This class of
function degenerates to simple trigonometric functions under
certain conditions and so a wide range of curve types are
available for motion planning.

In the unit speed case the rotational velocity was described
in terms of elliptic integrals and the expression for the
position reduced to quadratures. A truncated approximation
was then used to describe the position analytically, resulting
in paths that trace elastic curves.

Reachable sets were defined analytically in the arbitrary
speed case by expressing the final manoeuvre time as
an elliptic integral of the first kind, and were illustrated
numerically in the unit speed case where the time-
limited reachable sets resembled those of Dubins’ car
over short time spans. It was shown that the analytical
expressions for position and orientation can be exploited to
efficiently generate smooth and feasible paths for wheeled
robots via parametric optimisation. Finally an algorithm
for introducing obstacle avoidance into the parametric
optimisation procedure was presented for static obstacles in
a known environment. In this procedure a further parametric
optimisation probes the reachable sets to find a curve
that avoids the static obstacle while satisfying a position
constraint.

Future work will see the implementation of a concatenation
method to feasibly piece together the curves of the motion
planner to give a more complete motion planning algorithm.
This will include amending the motion planning method to
have non-zero initial speeds, and developing an algorithm
to choose the paths most suited to being pieced together.
In addition the possibility of extending the simple obstacle
avoidance algorithm described above to dynamic and
unknown environments will be explored.

References
1. V. Jurdjevic, Geometric Control Theory (Advanced Studies in

Mathematics, Cambridge University Press, Cambridge, UK,
1997) p. 52.

2. A. M. Bloch, Nonholonomic Mechanics and Control (Springer-
Verlag, Berlin, Germany, 2003).

3. N. Leonard and P. S. Krishnaprasad, “Motion control of drift
free, left-invariant systems on Lie groups,” IEEE Trans. Autom.
Control 40, 1539–1554 (1995).

4. J. Biggs and N. Horri, “Optimal geometric motion planning for
spin-stabilized spacecraft,” Syst. Control Lett. 61(4), 609–616
(2012).

5. J. Biggs, “Optimal Path Planning for Nonholonomic Robotics
Systems via Parametric Optimisation,” Proceedings of TAROS
2011, Sheffield, UK (2011).

6. V. G. Boltyanskii, R. V. Gamkrelidze and L.S. Pontryagin,
“Towards a theory of optimal processes,” Reports Acad. Sci.
USSR 110(1), 7–10 (1956).

7. L. E. Dubins, “On curves of minimal length with a constraint
on average curvature, and with prescribed initial and terminal
positions and tangents,” Am. J. Math. 79, 497–516 (1957).

8. S. M. LaValle, Planning Algorithms (Cambridge University
Press, Cambridge, UK, 2006).

9. V. Jurdjevic and F. Monroy-Perez, “Variational Problems on
Lie Groups and their Homogeneous Space: Elastic Curves,
Tops, and Constrained Geodesic Problems,” In: Contemporary
Trends in Nonlinear Geometric Control Theory and Its
Applications (A. Anzaldo-Meneses, B. Bonnard, J. P. Gauthier
and F. Monroy-Perez, eds.) (World Scientific, Singapore, 2002)
pp. 3–19.

10. J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes
both forwards and backwards,” Pac. J. Math. 145(2), 367–393
(1990).

11. A. Tsourdos, B. A. White and M. Shanmugavel, Cooperative
Path Planning of Unmanned Aerial Vehicles (Wiley, Somerset,
New Jersey, 2011).

12. N. Mahmoudian and C. Woolsey, “Underwater Glider Motion
Control,” In: Proceedings of the 47th IEEE Conference on
Decision and Control, Cancun, Mexico (2008) pp. 552–557.

13. A. Scheuer and Th. Fraichard, “Continuous Curvature Path
Planning for Car-Like Vehicles,” In: Proceedings of the IEEE
International Conference on Intelligent Robots and Systems,
Montbonnot-Saint-Martin, France, vol. 2 (1997) pp. 997–1003.

14. A. Scheuer and Th. Fraichard, “Collision-Free and Continuous-
Curvature Path Planning for Car-Like Robots,” In: Proceedings
of International Conference on Robotics and Automation,
Albuquerque, New Mexico (1997) pp. 867–873.

15. Th. Fraichard and J. M. Ahuactzin “Smooth Path Planning
for Cars,” In: Proceedings of International Conference on
Robotics and Automation, Seoul, South Korea, vol. 4 (2001)
pp. 3722–3727.

16. R. Murray and S. Sastry, “Steering Nonholonomic Systems
Using Sinusoids,” In: Proceedings of 29th IEEE Conference
on Decision and Control, Honolulu, Hawaii (1990) pp. 2097–
2101.

17. R. W. Brockett, “Control Theory and Singular Riemannian
Geometry,” In: New Directions in Applied Mathematics
(Springer-Verlag, Berlin, Germany, 1981) pp. 11–27.

18. A. Kelly and B. Nagy, “Reactive nonholonomic trajectory
generation via parametric optimal control,” Int. J. Rob. Res.
22(7–8), 583–601 (2003).

19. R. Murray, Z. Li and S. Sastry, A Mathematical Introduction
to Robotic Manipulation (CRC Press, Boca Raton, Florida,
1994).

20. J. F. Canny, The Complexity of Robot Motion Planning (MIT
Press, Cambridge, Massachusetts, 1988).

21. J. C. Latombe, Robot Motion Planning (Kluwer, Boston,
Massachusetts, 1991).

22. R. W. Brockett and L. Dai, “Non-Holonomic Kinematics and
the Role of Elliptic Functions in Constructive Controllability,”
In: Nonholonomic Motion Planning (Kluwer, Boston,
Massachusetts, 1993) pp. 1–21.

https://doi.org/10.1017/S0263574713000519 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000519


Path planning for simple wheeled robots 1297

23. H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki and S. Thrun, Principles of Robot Motion –
Theory, Algorithms, and Implementation (MIT Press, Boston,
Massachusetts, 2005).

24. H. J. Sussmann, “An Introduction to the Coordinate-Free
Maximum Principle,” In: Geometry of Feedback and Optimal
Control (B. Jakubczyk and W. Respondek, eds.) (Marcel
Dekker, New York, 1997) pp. 463–557.

25. V. Jurdjevic, “Hamiltonian point of view of non-Euclidean
geometry and elliptic functions,” Syst. Control Lett. 43, 25–41
(2001).

26. D. Husemoller, Elliptic Curves (Springer, New York, 2004).
27. F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark,

NIST Handbook of Mathematical Functions (Cambridge
University Press, Cambridge, UK, 2010).

28. K. R. Meyer, “Jacobi elliptic functions from a dynamical
systems point of view,” Am. Math. Mon. 108(8), 729–737
(2001).

29. V. Jurdjevic, “Non-Euclidean elastica,” Am. J. Math. 117(1),
93–124 (1995).

30. M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables
(Dover, Mineola, New York, 1972).

31. E. Mazer, J. M. Ahuactzin, E. G. Talbi and P. Bessiere,
“Robot Motion Planning with the Ariadne’s Clew
Algorithm,” Proceedings of the International Conference on
Intelligent Autonomous Systems, Pittsburgh, Pennsylvania
(1993).

32. P. Svetska and M. H. Overmars, “Probabilistic Path Planning,”
Technical Report UU-CS-1995-22, Utrecht University,
Utrecht, The Netherlands (1995).

33. E. Frazzoli, M. A. Dahleh and E. Feron, “Maneuver-based
motion planning for nonlinear systems with symmetries,”
IEEE Trans. Robot. 21(6), 1077–1091, (December
2005).

34. M. Pivtoraiko and A. Kelly, “Generating Near Minimal
Spanning Control Sets for Constrained Motion Planning in
Discrete State Spaces,” In: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS) (2005), pp. 3231–3237.

https://doi.org/10.1017/S0263574713000519 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000519

