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Analysis of thermostat models
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We present two new models describing the dynamic behavior of an automotive thermostat,

involving delay-differential equations with hysteresis. Existence, uniqueness, and regularity of

the solutions for both models are obtained by a continuation argument. We establish sufficient

conditions for the models to exhibit intrinsic oscillations. We also present an algorithm for

numerical approximations of the solutions and give some representative numerical simulations.

These reveal a rather interesting dynamical behavior of the solutions.

1 Introduction

We present mathematical analysis of two new models for automotive thermostats. Each of

the models is in the form of a delay-differential equation and a functional relation which

represents the hysteresis behaviour of the system. The main interest of our investigation is

to understand the oscillatory behaviour of the solutions to these models. These represent

intrinsic oscillations which are observed in real systems. Understanding the source of

such oscillations is the first step in controlling them, possibly reducing or removing them

completely. In automotive applications, temperature oscillations are undesirable, and,

by controlling them, better cooling systems may be designed. In this paper we obtain

sufficient conditions for all the solutions to oscillate.

Thermostats in cars are devices that control the operating temperature of the engine.

They are set to adjust the cooling so that an essentially constant and optimal operating

temperature exists in the engine. The thermostat senses the coolant temperature and sends

a larger or smaller flow of coolant through the radiator. In this way it keeps the coolant

temperature at an almost constant value under normal operating conditions. They are

very common devices, one per engine, and have been in operational use for many years;

yet, there is little literature on their dynamic behaviour. Although they are conceptually

simple, their dynamic behaviour is not, since they exhibit hysteresis, (see, e.g., [1]), i.e.

the way they open when the temperature rises differs from the way they close when the

temperature falls.

Hysteresis has recently received considerable attention in the mathematical literature,

(see, e.g., [1–4] and the references there). Topics of delay-differential equations are well

known and under current research. For reference, see for example References [5–10]. The

mathematical novelty in this paper lies in the combination of the two. Moreover, our

main interest lies in identifying the conditions for all the solutions to be oscillatory.

New models for the dynamic behaviour of automotive engine outlet or inlet thermostats,

using systems of delay differential equations with hysteresis, have been derived [11, 12].
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Figure 1. Schematic setting of the cooling system, thermostat, radiator, bypass, and engine.

Here we derive simpler models, which may be viewed as approximations, to better

understand mathematically the interplay between hysteresis and delay.

We wish in particular to investigate the dependence of the appearance of oscillations

on the hysteresis curves of the thermostat. It turns out that the mathematical analysis is

fairly involved since we have both a delay and hysteresis in the model and their interplay

is what characterizes the system behaviour.

We will employ Euler’s explicit method to construct a numerical algorithm for solving

the two models. Although we have not established any convergence results for the method,

the numerical simulations indicate that it is well behaved. The simulations themselves

give a very strong support for using both models to gain insight and understanding of

the relationship among hysteresis, delays and oscillations.

The paper is organized as follows. The two models are derived in § 2. Both are in the

form of a delay differential equation for the system temperature, and a functional relation

for the hysteresis. All our mathematical results are summarized in § 3. The proofs of the

theorems are given in § 4. In § 5 we present a numerical algorithm and some representative

numerical solutions to both models. We conclude the paper in § 6.

2 The two models

In this section we present two versions of a model for the dynamic evolution of a

thermostat. Other models can be found in [11, 12]. Here, as was mentioned above, our

interest is in a simple setting so we can concentrate on the interplay between the delay

and the hysteresis behaviour.

We consider a setting, depicted in Figure 1, where a thermostat is situated in the cooling

loop at the outlet of the engine. Heat is being generated by the engine and carried by

the coolant to the radiator or the bypass. The coolant from these two returns to the
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Figure 2. The hysteresis curves of β.

engine, the part which passed through the radiator being colder. In this manner the engine

operating temperature is being controlled with the aim of having a steady and specified

temperature. The model is based on many simplifying assumptions. We deal only with the

thermal aspects of the situation by assuming that the coolant flow is known. We do not

take into account any spatial behaviour, thus considering the various system elements as

‘lumped masses’. We assume that the temperature of the fluid reaching the thermostat is

the same as that of the thermostat itself, denoted by θ = θ(t). The fractional thermostat

opening is denoted by ω = ω(t). The engine heat generation is denoted by qe and the

cooling power of the radiator by qr , both assumed to be positive constants. Some of the

results below hold when these are known functions of time. For convenience, we set the

thermal capacity of the coolant and the total flow rate to be one.

We next describe the way the thermostat operates. When the engine is running, say

starting from cold, it produces heat, part of which is carried away by the coolant. When

the coolant reaches a prescribed temperature TL, the thermostat starts opening, and a

fraction ω of the flow is diverted to the radiator where it is cooled. The remaining

fraction, 1 − ω, flows via the bypass, without changing its temperature. At the entrance

to the engine both flows merge again. If the engine outlet temperature, which is taken

as the thermostat temperature, continues to rise, the thermostat continues to open until

fully open, ω = 1, when it reaches the temperature TR . Then the full flow is via the

radiator and the bypass is closed. When the engine coolant temperature falls below TR ,

the thermostat starts closing and is fully closed when the temperature is below TL.

We require that the fractional opening ω = ω(t) satisfy

0 6 ω 6 1.

When ω = 0 the path to the radiator is closed, when ω = 1 all the coolant flows through

the radiator, and when 0 < ω < 1 the path to the radiator is partially open.

Our interest lies in the fact that the way the thermostat opens, as the temperature rises,

is different from the way it closes, when the temperature drops. This is the hysteresis
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behaviour, which is depicted in Figure 2 where the hysteresis graph β is shown. Therefore,

we require that the function ω = ω(t) be a selection from the graph β. In turn β depends

on the temperature θ and on the temperature rate of change θ̇ = dθ/dt; that is,

β = β(θ, θ̇).

Actually, β depends only on the sign of θ̇.

Hysteresis affects the dynamic behaviour as follows. When the initial state of the system

{θ, ω} is on the curve fR and the temperature is rising, i.e. θ̇ > 0, the system will continue

moving along the curve fR . When the system is on the curve fL and the temperature is

decreasing, i.e. θ̇ < 0, the system will continue moving along the curve fL. When the

temperature rises with the system on fR and then reverses at a temperature between TL
and TR , the system will move along the straight horizontal segment that connects fR with

fL to the curve fL at constant valve opening ω. Then it will continue moving down on

fL. The assumption that the motion is on horizontal segments represents the so-called

‘generalized play’ model (see, e.g., [1]). Other choices of families of curves that fill the

area between fL and fR , the hysteresis region H, are possible, leading to different models

and possibly to different types of behaviour. Based on the description above we denote

by Hβ the ‘generalized play hysteresis’ operator so that for a given temperature function

θ the valve opening is w(t) = Hβ(θ(t)). A more detailed description of Hβ can be found

in § 4.

We employ energy balance considerations to model the dynamics of the system. The

rate of change of the total energy of the coolant is

rate of change = cv
dθ

dt
,

where c is the total heat capacity of the coolant and v is the volume flow rate. Below we

set both equal to one by rescaling the variables. The engine energy rate of heating is vqe,

and the radiator’s cooling power, i.e. the rate of energy loss, is ωvqr .

Next we address the issue of the delay that exists in the system. Let τ be the time of

flow from the radiator to the engine, assumed to be constant. We neglect the flow time

from the engine to the thermostat. Then the cooling effect at the engine is felt τ units of

time later, which means that at time t the cooling effect of the radiator is that of the fluid

that was there at t− τ.
Combining all the above yields the first model.

First model for the thermostat. Find a pair {θ, ω} such that

dθ(t)

dt
= qe − qrω(t− τ) 0 6 t, (2.1)

ω(t) = Hβ(θ(t)) − τ 6 t. (2.2)

To complete the model we have to impose the initial conditions

θ(t) = θ0(t) for − τ 6 t 6 0, (2.3)

ω(−τ) = ω0. (2.4)

Here, due to the delay, the initial condition for the temperature over the interval [−τ, 0] is

needed, which is typical for problems with delays. We assume that β is specified, which in
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the ‘play model’ means that fL and fR are given. In applications, these curves should be

found experimentally. Moreover, we must supply the initial value ω0 that is compatible

with β and θ0(−τ).
The model consists of these three elements: the energy equation, the initial conditions,

and the hysteresis domain and curves. From the mathematical point of view, we consider

a system of differential equations (2.1) and (2.3) where the right-hand side is chosen from

an infinite family of curves.

We assume that qe < qr , since otherwise the system does not have enough cooling

power and thus the engine temperature will grow without bound as time goes on.

In the first model it was assumed that the cooling power of the radiator is fixed. In a

real radiator it depends on the air flow and the air ambient temperature Tamb. For this

reason, we assume that the cooling power is given by Newton’s law of cooling

qr = h(θ − Tamb),

where h is the radiator coefficient of heat exchange. Substituting this expression in equation

(2.1) and choosing Tamb as the reference temperature for the rescaled temperature yields

the second model which we shall consider. We assume, as above, that qe < hTR , to

guarantee enough cooling power. Also, we assume that Tamb < TL, which is always

satisfied in applications, so 0 < TL after rescaling.

Second thermostat model. Find a pair {θ, ω} such that

dθ(t)

dt
= qe − hω(t− τ)θ(t− τ) 0 6 t, (2.5)

ω(t) = Hβ(θ(t)) − τ 6 t, (2.6)

θ(t) = θ0(t) for − τ 6 t 6 0, (2.7)

ω(−τ) = ω0. (2.8)

The meaning of the initial conditions is the same as above.

Remark The hysteresis conditions (2.2) or (2.6) may be written in the form of a variational

inequality, (see, e.g., [4, p. 65]). To this end we define, for each θ ∈ R, the vertical interval

J(θ) = [fR(θ), fL(θ)], (2.9)

and let IJ(θ) be the indicator function of this interval. Thus, IJ(θ)(ω) = 0 if ω ∈ J(θ) and

IJ(θ)(ω) = +∞ if ω^J(θ).

Then (2.2) or (2.6) may be written as the variational inequality

ω(t) ∈ J(θ),
dω

dt
(ω(t)− ξ) 6 0 for all ξ ∈ J(θ(t)), (2.10)

for each 0 6 t. Equivalently, we may write it as

dω(t)

dt
∈ −∂IJ(θ(t))(ω(t)), (2.11)
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where the subdifferential of IJ(θ) is defined by

− ∂IJ(θ)(ω) =


R+ if ω = fR(θ) < fL(θ),

{0} if fR(θ) < ω < fL(θ),

R− if ω = fL(θ) > fR(θ),

R if ω = fL(θ) = fR(θ).

(2.12)

3 Main results

In this section we present the results of our mathematical analysis of both models. We

are concerned with existence, uniqueness, and regularity of solutions first. Then we

concentrate on conditions for intrinsic oscillations. Here we state all the results; the

proofs will be given in § 4.

We make the following assumptions on the data. θ0 is continuous on [−τ, 0], and ω0 is

consistent with the hysteresis curves β and θ0(−τ), i.e. fR(θ0(−τ)) 6 ω0 6 fL(θ0(−τ)). The

system coefficients satisfy

qe < qr, in the first model, (3.1)

qe < hTR, in the second model. (3.2)

The hysteresis curves fL and fR are Lipschitz continuous functions (with uniformly

bounded left and right derivatives) defined on (−∞, ∞), such that fL(r) = fR(r) = 0 for

−∞ < r 6 TL, fL(r) = fR(r) = 1 for TR 6 r < ∞, and for 0 < TL < r < TR they are

monotone increasing with fL(r) < fR(r), as depicted in Figure 2. We begin with the first

model.

Theorem 3.1 Under the above assumptions there exists a unique solution {θ, ω} to problem

(2.1)–(2.4) satisfying

θ ∈ C1((0,∞)) ∩ C([0,∞)), (3.3)

ω ∈ Lip ([0, ∞)). (3.4)

Moreover, θ is bounded on [0,∞).

We turn next to system oscillations. Let θ̃L and θ̃R be the solutions of

fL(θ̃L) = qe/qr; fR(θ̃R) = qe/qr,

respectively, and let α be the minimum of the one-sided slopes of the hysteresis curves at

these values, i.e.

α = min{f′L(θ̃L − 0), f′L(θ̃L + 0), f′R(θ̃R − 0), f′R(θ̃R + 0)}.

We have

Theorem 3.2 Assume that

qr τα >
1

e
. (3.5)

Then, for every solution {θ, ω} to (2.1)–(2.4) such that θ is not eventually constant, θ oscil-

lates about the interval [θ̃L, θ̃R], and ω oscillates about ω∗ = qe/qr .
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To say that θ oscillates about the interval [θ̃L, θ̃R] means that θ − θ̃L and θ − θ̃R both

have zeros for arbitrarily large values of t. Moreover, there may be oscillatory solutions

for some values of qr τα which do not satisfy (3.5). θ is eventually constant if θ(t) = θ∗ for

t0 6 t, for some t0 > 0. We do not have a complete characterization of all the solutions

that are eventually constant, but we conjecture that they are rare.

It will follow from the proof of Theorem 3.2 that

Corollary 3.3 Even when (3.5) does not hold, every solution {θ, ω} of (2.1)–(2.4) satisfies

one of the following:

(a) θ and ω are eventually constant, and

θ(t) = θ∗ ∈ [θ̃L, θ̃R], ω(t) = ω∗ for t > t0;

(b) θ and ω are oscillatory, as in Theorem 3.2;

(c) θ converges to θ̃R or θ̃L as t→∞, and for t sufficiently large

θ ↗ θ̃R, or θ ↘ θ̃L.

We turn to the second model.

Theorem 3.4 Under the above assumptions there exists a unique solution {θ, ω} to problem

(2.5)–(2.8) satisfying

θ ∈ C1((0,∞)) ∩ C([0,∞)), (3.6)

ω ∈ Lip ([0, ∞)), (3.7)

and θ is bounded on (0, ∞).

It is well known (see, e.g., [6] or [7]) that delay-differential equations of the type

(2.5), without hysteresis, can have unbounded oscillating solutions. It turns out that the

hysteresis structure in the second model prevents this from occurring in (2.5)–(2.8), which

guarantees the boundedness assertion in the theorem.

To describe our next result, analogous to condition (3.5), let θL and θR be the unique

solutions of
qe

hθ
= fL(θ), and

qe

hθ
= fR(θ),

respectively. We note that 0 < TL < θR < TR , since qe < hTR . The singular values of

(2.5)–(2.8) are all the elements of the interval [θL, θR]. We have

Theorem 3.5 A sufficient condition that all the solutions of (2.5)–(2.8) oscillate about a

singular value is

fR(θR) >
1

hτe
. (3.8)

Remark In the second model there are two possible types of oscillations. The first

type involves changes in both θ and ω, in the second type only θ oscillates while ω
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remains constant. Moreover, for a certain choice of the parameters we have explicit

periodic solutions of the second type to problem. Indeed, let τ = π/2hω0 and θ0(t) =

A cos(hω0t+ γ) + qe/hω0; then it is easy to verify that

θ(t) = A cos(hω0t+ γ) +
qe

hω0
, (3.9)

ω(t) = ω0, (3.10)

is a solution of the second type for any constant γ.

The next theorem clarifies the asymptotic nature of solutions of (2.5)–(2.8) and serves

as part of the proof of Theorem 3.5.

Theorem 3.6 Let {θ, ω} be a solution of (2.5)–(2.8).

(a) If θ(t) → θR as t → ∞, then ω(t) 6 ωR := qe
hθR

for all sufficiently large t, and θ is

eventually increasing.

(b) If θ(t) → θL as t → ∞, then ω(t) > ωL := qe
hθL

for all sufficiently large t, and θ is

eventually decreasing.

(c) If θ → θ∗ as t→∞ where θL < θ∗ < θR , then ω(t) is eventually constant.

4 Proofs of the theorems

We begin with defining the ‘play hysteresis operator’ and establishing an important and

useful property.

Define F : R2 → [0, 1] by

F(θ, γ) = median{fL(θ), fR(θ), γ} =


fL(θ) if γ > fL(θ),

γ if fR(θ) < γ < fL(θ),

fR(θ) if γ 6 fR(θ).

(4.1)

The play hysteresis operator Hβ : (θ, ω0) → ω is defined as follows. The input consists

of all pairs (θ, ω0) where θ is a continuous piecewise monotone function defined on

[−τ,∞), and fR(θ(−τ)) 6 w0 6 fL(θ(−τ)). The output consists of continuous functions ω

from [−τ,∞) to [0, 1]. Let

− τ = t0 < t1 < · · · (4.2)

be the points where the monotonicity of θ changes. Define inductively

ω(t) = F(θ(t), ω0), t0 6 t 6 t1, (4.3)

ω(t) = F(θ(t), ω(ti)), ti 6 t 6 ti+1; i = 1, 2, · · · (4.4)

Note that fR(θ(t0)) 6 ω0 6 fL(θ(t0)) means that ω(t0) = ω0, and fR 6 F(·, γ) 6 fL
implies that ω(ti) = F(θ(ti), ω(ti)) (i = 1, 2, · · ·). We also note that the points in (4.3) and

(4.4) need only be chosen so that θ is monotone on each interval [ti, ti+1], (i = 0, 1, · · ·).
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That is, we only require that the points in (4.3) and (4.4) include the points of (4.2).

To see this, suppose that θ is monotone on [u, v], ω(t) = F(θ(t), ω(u)) for u 6 t 6 v,

and that u < s < v. Without loss of generality, suppose that θ is increasing on [u, v]. If

ω(s) = ω(u), then clearly ω(t) = F(θ(t), ω(s)) for s 6 t 6 v. Suppose ω(s) > ω(u) (F(·, ω(u))

is increasing so ω(s) < ω(u) would imply that θ is not increasing on [u, v]). Since ω(s) =

median{fL(θ(s)), fR(θ(s)), ω(u)}, we have that fL(θ(s)) > fR(θ(s)) = ω(s) > ω(u). Since θ

is increasing, fL > fR , and fR is increasing, fL(θ(t)) > fR(θ(t)) > fR(θ(s)) = ω(s) > ω(u)

for s 6 t 6 u, and so ω(t) = F(θ(t), ω(u)) = F(θ(t), ω(s)) for s 6 t 6 v. The assertion now

follows by inserting one point at a time in (4.2).

As is given in [4, p. 66] for T > −τ

‖ω1 − ω2‖[−τ,T ] 6 max{‖θ1 − θ2‖[−τ,T ], |ω1
0 − ω2

0 |} (4.5)

where for j = 1, 2, θj is a continuous piecewise monotone function on [−τ,∞), fR(θj(−τ)) 6
ω
j
0 6 fL(θj(−τ)), and Hβ: (θj , ω

j
0) 7→ ωj . Here we have used the uniform norms. It follows

that the hysteresis operator defined above is uniformly continuous on its domain, and

thus extends continuously to a unique operator on the set of all (θ, ω0) when θ ∈ C[−τ,∞)

and fR(θ(−τ)) 6 ω0 6 fL(θ(−τ)).
For 0 < γ < 1, let

f−1
L (γ) = inf{θ : fL(θ) = γ},
f−1
R (γ) = sup{θ : fR(θ) = γ}. (4.6)

Then we have the following:

Lemma 4.1 Let Hβ: (θ, ω0) 7→ ω.

(a) If ω(u) > γ > ω(v) where u < v, then θ(t) = f−1
L (γ) for some u < t < v.

(b) If ω(u) < γ < ω(v) where u < v, then θ(t) = f−1
R (γ) for some u < t < v.

Proof We only prove (a). Also, it suffices to assume that θ is piecewise monotone.

Let s be the largest value less than v for which ω(s) = γ. We may also assume that

ω and θ are decreasing on [s, v]. By the preceding remarks, ω(t) = F(θ(t), ω(s)) for

s 6 t 6 v. Since fL(θ(s)) > ω(s) = γ, θ(s) > f−1
L (γ). Also, ω(v) < γ = ω(s) implies

that fR(θ(v)) 6 fL(θ(v)) < ω(s). So ω(v) = fL(θ(v)) < γ. Thus θ(v) < f−1
L (γ). Hence,

θ(t) = f−1
L (γ) for some s < t < v. q

We now prove Theorem 3.1.

Proof We proceed by using the method of time steps (see, e.g., [5] or [8]) and take

advantage of the ‘history dependence’ of hysteresis. For −τ 6 t 6 0 the function θ is

given and ω(t) is determined by the condition ω(−τ) = ω0 and θ(s) for −τ 6 s 6 t.
Next, equation (2.1) is solved on the interval 0 6 t 6 τ, where ω(t) is determined for

−τ 6 t 6 0 from θ0, (2.2) and (2.3). Clearly, θ has a continuous derivative on (0, τ].

But it is easy to see that θ̇ may have a jump at t = 0. Then ω(t) is obtained for

0 < t 6 τ. We proceed with the construction step by step. Assume that θ and ω have
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been found on [0, nτ]. Then ω(t − τ) is known on the interval [nτ, (n + 1)τ], and we

obtain a unique solution θ(t) such that θ(nτ−) = θ(nτ+). Then ω(t) is obtained from

the hysteresis operator. Note that now θ̇(nτ−) = θ̇(nτ+). To complete the proofs of

(3.3) and (3.4) we need to show that θ is bounded and that ω is Lipschitz continuous.

We omit them as they are similar to, but more elementary than, the proofs for the model

(2.5)–(2.8). q

Before proving the basic oscillation result, Theorem 3.2, for (2.1)–(2.4), we recall an

oscillation theorem from the theory of delay differential equations. We say that a function

θ, which is defined on [−τ,∞), oscillates about θ∗ if θ − θ∗ has zeros for arbitrarily large

values of t. Then

Theorem 4.2 Let f be a continuous decreasing function on (−∞,∞) such that f(θ∗) = 0. If

the one-sided derivatives f′(θ∗ + 0) and f′(θ∗ − 0) exist and

min{|f′(θ∗ + 0)|, |f′(θ∗ − 0)|} > 1

τe
, (4.7)

then all solutions of the delay differential equation

dθ(t)

dt
= f(θ(t− τ)) (4.8)

oscillate about θ∗.

Theorem 4.2 can be obtained in a number of ways from existing oscillations theorems.

One way is as a combination of Theorems 2.2.3 and 4.1.1 in Györi and Ladas [7].

We use this result in the proof of Theorem 3.2 below.

Proof If ω(t) = ω∗ eventually, then θ′ = 0 eventually, and θ is a constant solution

of (2.1). Suppose now that ω(t1) > ω∗. Then θ(t1) > θL. We argue that for some

t2 > t1, ω(t2) < ω∗. In this case, Lemma 4.1 implies that θ(t) = θL = f−1
L (ω∗) for

some t in the interval (t1, t2). A similar argument yields that if ω(t1) < ω∗, then there

exits t2 > t1 such that ω(t2) > ω∗ and there is a t1 < t < t2 so that θ(t) = θR =

f−1
R (ω∗).

Assume that ω(t) > ω∗ for all t > t1. It follows from (2.1) that θ′(t) 6 0 for

all t > t1 + τ. Then θ is decreasing on the interval [t1 + τ,∞), and thus ω(t) =

F(θ(t), ω1) for all t > t1 + τ, where ω1 = ω(t1 + τ). If ω(t1 + τ) = ω∗, then ω

is eventually constant, contrary to the assumption. Thus ω1 > ω∗, and therefore

dθ(t)

dt
= qe − qrF(θ(t− τ), ω1), (4.9)

and θL is the singular value of the delay differential equation (4.9). Also note that in a

neighborhood of θL, F(θ, ω1) = fL(θ). Thus the conditions on fL imply the conditions of

Theorem 4.2, and therefore θ oscillates about θL. We may select the smallest s > t1 +τ such
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that θ(s) = θL. Now θ′(t) > 0 for s− τ < t < s and thus θ is strictly decreasing on [s, s+ τ].

In particular, θ(s+ τ) < θL. But ω(s+ τ) = F(θ(s+ τ), ω1) = fL(θ(s+ τ)) < fL(θL) = ω1,

a contradiction. q

We next prove Theorem 3.4.

Proof Existence and uniqueness for (2.5)–(2.8) can be established in the same manner

as those for (2.1)–(2.4), and thus we shall omit these details. We need to prove the

boundedness of θ and the Lipschitz property of ω. We consider now the boundedness of

θ.

We first observe that the function w(t)θ(t) is bounded below since ω(t) = 0 when

θ(t) 6 TL.

We also observe that if qe − hω(t)θ(t) = 0 then θ(t) ∈ [TL, TR], since we assume that

qe < hTR . Indeed, if TR < θ(t) then ω(t) = 1, so qe − hθ(t) = 0, thus θ(t) = qe/h < TR ,

which is a contradiction. Similarly, assume that θ(t) < TL, then ω(t) = 0, and thus qe = 0,

a contradiction since qe > 0.

Assume that θ is unbounded from above. Then for θ(t) sufficiently large ω(t) = 1 and

θ′(t+ τ) = qe − hθ(t) < 0.

Therefore, θ cannot be a monotone increasing function, so we can find a sequence (tk, θ(tk))

where tk → ∞ such that θ(tk) is a local maximum, θ(tk) < θ(tk+1), and θ(tk) → ∞ as

k →∞.

It follows from the differential equation (2.5) that

qe − hω(tk − τ))θ(tk − τ)) = 0,

so θ(tk − τ) ∈ [TL, TR]. By the Mean Value Theorem τθ′(t̂k) = θ(tk) − θ(tk − τ) for some

t̂k ∈ (tk − τ, tk). Then (2.5) yields

θ(tk)− θ(tk − τ)
τ

= θ′(t̂k)

= qe − hω(t̂k − τ)θ(t̂k − τ).

Thus,

ω(t̂k − τ)θ(t̂k − τ) =
1

h

[
q − θ(tk)− θ(tk − τ)

τ

]
.

Now, θ(tk)→∞ and θ(tk− τ) remains bounded and therefore the right-hand side tends to

−∞, thus ω(t̂k − τ)θ(t̂k − τ) → −∞, contradicting the fact that ω(t)θ(t) is bounded from

below. Hence θ is bounded from above.

The proof that θ is bounded from below is similar. Assume that θ is unbounded from

below. Equation (2.5) implies that when θ(t) is sufficiently negative, then θ′(t+τ) > qe > 0.
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Therefore, there exists a sequence (sk, θ(sk)), where θ(sk) are local minima of θ, sk → ∞,
and θ(sk)→ −∞. Now

0 = θ′(sk) = qe − hω(sk − τ)θ(sk − τ)).

Thus θ(sk − τ) ∈ [TL, TR].

We invoke the Mean Value Theorem again to obtain

θ′(ŝk) =
θ(sk)− θ(sk − τ)

τ

for some ŝk ∈ (tk − τ, tk). Then by (2.5),

θ(sk)− θ(sk − τ)
τ

= qe − hω(ŝk − τ)θ(ŝk − τ).

Now, when k is sufficiently large the left-hand side is as negative as we wish while the

right-hand side remains bounded. Thus θ is bounded.

We turn to the Lipschitz continuity and show that for 0 6 s 6 t < ∞,

|ω(t)− ω(s)| 6M|t− s|, (4.10)

for a positive constant M which we derive below. First, we assume that θ is piecewise

monotone and thus ω is piecewise monotone too. For s < t, we select

s = t0 < · · · < tk = t,

such that ω is either strictly monotone or is constant on [ti, ti+1]. On each of the intervals

where ω is strictly monotone we may write ω(t) = f(θ(t)) where f = fL or f = fR . In

either case

|ω(ti+1)− ω(ti)| = |f(θ(ti+1))− f(θ(ti))|
= |f′(θ(t+ η1∆ti))θ

′(t+ η1∆ti)|∆ti
6 LB∆ti,

where L is the larger of the Lipschitz constants of fL and fR , B is an upperbound for

|θ′|, and ∆ti = ti+1 − ti. We note that θ′(t) = qe − hθ(t − τ)ω(t − τ) is bounded since θ is

bounded.

When ω is constant on [ti, ti+1] then ω(t+ ∆t)− ω(t) = 0. Then (4.10) follows.

When θ is not piecewise monotone, we can approximate θ, in the uniform norm by

piecewise monotone functions with the same bounds, and then we apply the continuity of

the hysteresis operator. q

We first prove Theorem 3.6 as it is used in the proof of Theorem 3.5.

To prove Theorem 3.6, we examine the convergence of a solution of (2.5)–(2.8) to a
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singular value as t → ∞. The singular values for the differential equation and fixed γ

correspond to

qe − hF(θ, γ)θ = 0, (4.11)

or

F(θ, γ) =
qe

hθ
. (4.12)

Recall that qe/hTR < 1.

The singular values are θL (the solution of fL(θ) = qe/hθ), θR (the solution of fR(θ) =

qe/hθ), and all the values θL < θ < θR . The value θL is the singular value for γ > qe/hθL,

θR is the singular value for γ 6 qe/hθR , and θL < θ < θR are the singular values for

qe/hθR < γ < qe/hθL.

Lemma 4.3 Let θ be a solution of

θ′(t) = qe − hF(θ(t− τ), γ)θ(t− τ). (4.13)

If θ(t)→ θ∗ as t→∞, then θ0 is the singular value for γ.

Proof If θ(t − τ) → θ∗ as t → ∞, then by continuity of F(·, γ), θ′(t) → q − hF(θ0, γ)θ∗.

If q − hF(θ0, γ)θ∗� 0, θ′ would eventually be bounded away from 0 and θ(t) → ±∞, a

contradiction. q

Now we are ready to prove Theorem 3.6.

Proof We first prove (c). Choose t1 so that θ(t) ∈ (θL, θR) for t > t1. Suppose that

ω(t2) > ω0 := qe/hθ∗ for some t2 > t1. If ω(t2) 6 ωL := qe/hθL, then ω(t) would be

constant on [t1,∞). Otherwise, by Lemma 4.1, θ(t) would be f−1
L (γ) or f−1

R (γ) for some

ω0 < γ < ωL. This lies outside (θL, θR). With ω(t) constant, θ would eventually be a

solution of θ′(t) = qe− hF(θ(t− τ), γ)θ(t− τ), ω0 < γ < ωL. By Lemma 4.3, θ(t) converges

to the singular value for this differential equation which is different from θ0. Now if

ω(t2) > ωL, then either ω(t) > ωL for all t > t2 or θ(t) = f−1
L (ωL) 6 θL for some t > t2

using Lemma 4.1. If ω(t) > ωL for all t > t2, then θ′(t) = qe − hω(t − τ)θ(t − τ) < 0

for all t > t1 + τ. So θ is decreasing on [t1 + τ,∞), Thus θ eventually satisfies the

differential equation θ′(t) = qe − hF(θ(t− τ), ω(t1))θ(t− τ) and by Lemma 4.3, θ(t)→ θL,

a contradiction. The remaining cases are similar.

We now prove (a). Choose t1 so that if t > t1, then θ(t) > θL. Suppose ω(t2) > ωR :=

qe/hθR for some t2 > t1. If ω(t) > ωL for some t > t2, we obtain contradiction as in the

proof of (c) above. Suppose ω(t) 6 ωL for all t > t2. If ω(t) < ω(t2) for some t > t2,

then Lemma 4.1 yields that θ(t) 6 θL for some t > t2. Thus ω(t2) 6 ω(t) 6 ωL for all

t > t2. Lemma 4.1 again implies that ω is increasing on [t0,∞). If ω is eventually constant,

then as above Lemma 4.3 implies that θ(t) converges to a singular value less than θR . If

ω is not eventually constant, select t2 < u1 < v1 < u2 < v2 < · · · so that ui → ∞ and

ω(vi) > ω(ui). Select ω(ui) < γi < ω(vi). Then ωR < γ1 < γ2 < · · ·. By Lemma 4.3, there
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exists ui < si < vi so that θ(si) = f−1
R (γi). But f−1

R (γ1) > θR and {θ(si)} is an increasing

sequence for which θ(si)→ θR . This is a contradiction.

The proof of (b) is similar to that of (a). q

Finally, we prove Theorem 3.5.

Proof Suppose lim inf t→∞ θ(t) < lim supt→∞ θ(t). Then θ oscillates about a nontrivial

interval. Otherwise, limt→∞ θ(t) = θ∗ for some θL 6 θ∗ 6 θR by Lemma 4.3. By Theorem

3.6, θ is eventually a solution of the delay differential equation

θ′(t) = q − hF(θ(t− τ), ω)θ(t− τ). (4.14)

We examine the conditions of Theorem 4.2. If ω 6 ωR , then the singular value is θR
and

f(θ) = q − hfR(θ)θ.

Then f is decreasing and

min{−f′(θR − 0),−f′(θR + 0)}
= hmin{fR(θR) + f′R(θR + 0)θR, fR(θR) + f′R(θR − 0)θR}

> hfR(θR) >
1

τe
.

If ω = ω0 and θ = θ∗ ∈ (θL, θR), then f(θ) = q − hω0θ, and −f′(θ0) = hω0 > hfR(θR) >

1/τe.

All the other cases can be dealt with similarly, and by Theorem 4.2, θ oscillates

about θ∗. q

5 Numerical scheme and examples

In this section we present the algorithm used to solve the two models numerically. Then

we show a number of examples of numerical simulations. Since both models are based

on autonomous differential equations, it suffices to use Euler’s method of time marching

(explicit) to solve them numerically. Let ∆t be the time step, and let

θj = θ(j∆t); ωj = ω(j∆t),

denote the approximations, at time j∆t, to the thermostat temperature and opening,

respectively. Let nτ be the closest integer to τ/∆t. Then the first model, (2.1)–(2.4), is

approximated as follows. Equation (2.1) is discretized as

θj+1 = θj + ∆t(qe − qrwj−nτ ). (5.1)

Equation (2.5) is discretized as

θj+1 = θj + ∆t(qe − hθj−nτwj−nτ ). (5.2)
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Next, ωj+1 is determined by a discretized version of the hysteresis conditions (2.2) or

(2.6). It consists of following the hysteresis curves: when ωj = fR(θj) and θ is increasing,

θj+1 > θj then ω is determined by fR , wj+1 = fR(θj+1). But when θ is not increasing,

θj+1 6 θj then the opening remains constant, that is wj+1 = ωj . And similarly when

ωj = fL(θj) and θ is decreasing.

The full discretized hysteresis algorithm is

if ( wj = fR(θj) ) then

if (θj+1 > θj) then

wj+1 = fR(θj+1)

else

wj+1 = wj

endif

else if ( wj = fL(θj) ) then

if (θj+1 < θj) then

wj+1 = fL(θj)

else

wj+1 = wj

endif

else if (fL(θj) > wj > fR(θj) ) then

wj+1 = wj

endif

if (wj+1 < fR(θj+1) set wj+1 = fR(θj+1)

if (wj+1 > fL(θj+1) set wj+1 = fL(θj+1)

Numerical approximations for the first model The θj are given by θ0(j∆t) for −nτ 6
j 6 0, and ωj are computed from them and the hysteresis algorithm.

Then on each interval nnτ 6 j 6 (n+ 1)nτ we use (5.1) to compute θj , since the values

of ωj−nτ are known. Then we use the hysteresis algorithm to compute the ωj .

Numerical approximations for the second model The procedure is the same as above,

but using (5.2).

The question of accuracy and convergence analysis of the numerical schemes is left

open. Clearly such an analysis is rather involved and needs special considerations since

the models include delay and hysteresis. However, we have computed numerically the

solution corresponding to the exact solution (3.9) and (3.10) and obtained good accuracy.

Indeed, the maximal error is found to be less than 2.0 × 10−2. The boundedness of

solutions and their Lipschitz continuity in time indicate that the numerical scheme should

be stable, a fact supported by our experience with the numerical solutions.

We present a number of representative numerical results for the two models. For

simplicity, we have assumed that the hysteresis curves are simply straight parallel lines as

depicted below.

In Figure 3 we show two numerical solutions to the first model. On the left of each

pair of frames is the graph of the thermostat temperature vs. time, while on the right

we present the fractional opening vs. time. In both cases, the system starts with ambient
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Figure 3. Two solutions to the first model. Temperature oscillations in time on the left, and
opening as a function of time on the right.

Figure 4. A decaying solution to the second model.

temperature 60 and 0 opening. In the first case the oscillations decay in time and their

frequency decreases. In the second case the oscillations seem to persist. The parameters

used in the two cases are as follows. Top: qe = 5.0, qr = 13.5, τ = 3.0, the slope of the

hysteresis curve is 0.036, TL = 180, TR = 220; Bottom: qe = 8.0, qr = 10.5, τ = 3.0,

the slope of the hysteresis curve is 0.025, TR and TL are the same. So in the first case

qrτα = 1.458 > 1/e, and in the second case qrτα = 0.7875 > 1/e.

In Figure 4 we depict a solution of the second model. On the left we show θ as a

function of time, and on the right the opening ω as a function of time. Clearly, the

oscillations decay and their frequency decrease visibly. The parameters used are: qe = 5.0,

hr = 0.215, τ = 1, TL = 180, TR = 220, the slope of the hysteresis is 0.0357.
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Figure 5. Comparison of two solutions to the first model with different slopes of the hysteresis
graphs.

Figure 6. Comparison of two solutions to the second model with different slopes of the hysteresis
graphs.

We next present our investigation of the effects of the slope of the hysteresis curves on

the oscillations.

In Figure 5 we depict a comparison between two solutions of the first model in the

cases when the slopes of fL and fR are increased. The left frame now represents the

hysteresis graph, i.e. the fractional opening vs. temperature. The middle frame depicts the

temperature, and the right one the opening. As can be seen in the second case, increasing

the slope of the hysteresis curves causes very rapid oscillations in the temperature θ and

the opening ω fluctuates between being fully closed and fully open. It seems as the

oscillations in the upper case are moderate and decaying in time.

In Figure 6 we show a comparison for solutions of the second model. The display is as
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in Figure 5. The conclusions are similar, except that in both cases the oscillations seem to

be steady. Moreover, the opening ω oscillates very sharply in Figures 5 and 6 for steep

slopes of the hysteresis curves.

6 Conclusions

We have constructed two models describing the dynamics of an automotive thermostat

situated in the engine cooling loop. Each of the models consists of a delay-differential

equation and a hysteresis functional relation. The mathematical novelty is in the combi-

nation of these two in a system of equations. The existence, uniqueness, and regularity

of solutions to both models have been established. Moreover, we have derived sufficient

conditions for the appearance of oscillatory solutions. These, in addition to their theoret-

ical interest, have considerable practical importance since it is the aim of engine designers

to eliminate them if possible, and to minimize them if not.

It is seen that the sufficient conditions for all the solutions to be oscillatory, (3.5) and

(3.8), have a somewhat different structure. Nevertheless, they both relate the delay, the

slope of the hysteresis curve, and the cooling power in ways that are observed in real

situations.

We conclude that even such ‘simple’ models for thermostats, which include hysteresis

and delays show very interesting types of behaviour, leading to insight into the relationship

among delay, hysteresis and system oscillations.

A number of interesting questions remain open. Indeed, what can be said about

oscillatory solutions when (3.5) or (3.8) do not hold? Under which conditions will the

oscillations be periodic, quasiperiodic, decaying, or possibly chaotic? Also, the numerical

analysis of our algorithm remains to be investigated.
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