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In fond memory of Dick Schelp

We show that the list chromatic number of a simple d-regular r-uniform hypergraph is at

least (1/2r log(2r2) + o(1)) log d if d is large.

1. Introduction

A hypergraph G is said to be k-choosable if, whenever we assign to each vertex v a list Lv

of k colours, there is a proper vertex colouring of G in which the colour of v is chosen

from Lv . (Here, as usual, proper means that no edge has vertices of just one colour.) The

list chromatic number χ�(G) (also called the choice number) is the smallest k such that G

is k-choosable. Clearly χ�(G) is at least χ(G), the ordinary chromatic number of G.

The notion of choosability for graphs is due to Vizing [9] and Erdős, Rubin and

Taylor [5]. One of the main discoveries of [5] is that χ�(G) can be much larger than χ(G);

it is shown that χ�(Kd,d) = (1 + o(1)) log2 d, whereas of course χ(Kd,d) = 2.

In fact, unlike χ(G), χ�(G) must grow with the minimum degree of the graph G. Alon [2],

improving on an earlier result [1], showed that χ�(G) � (1/2 + o(1)) log2 d holds for any

graph G of minimum degree d. It is natural to ask whether a similar phenomenon holds

for r-uniform hypergraphs. Very little is known about the answer, though, except in

certain special cases. A hypergraph is said to be simple, sometimes called linear , if no

two edges share more than one vertex. Haxell and Pei [6] showed that the list chromatic

number of a Steiner triple system on n vertices (this is a simple 3-uniform (n − 1)/2-regular

hypergraph) is of order at least log n/ log log n, and Haxell and Verstraëte [7] proved that

χ�(G) � (log d/5 log log d)1/2 for every simple, d-regular 3-uniform hypergraph G when d

is large. Alon and Kostochka [4] showed that if at least half the (r − 1)-tuples of vertices
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of G lie in at least m edges then χ�(G) � cr logm. The same authors [3] showed that the

list chromatic number of a simple d-regular hypergraph is of order at least (log d)1/(r−1).

We show that χ�(G) must be of order at least log d for any simple uniform d-regular

hypergraph G.

Theorem 1.1. Let G be a simple d-regular r-uniform hypergraph. Then

χ�(G) �
(

1

2r log(2r2)
+ o(1)

)
log d,

where the o(1) term is as d → ∞.

Note that this theorem is best possible (up to a constant factor). Haxell and Verstraëte [7]

showed that χ�(K(r × n)) = (1 + o(1)) logr n, where K(r × n) is the complete r-uniform r-

partite hypergraph with n vertices in each class. It is not difficult to construct a simple

d-regular sub-hypergraph G of K(r × n) with n not much larger than d, and therefore

χ�(G) = O(log d).

The proof gives more than is stated in the theorem. Indeed if the ratio of the minimum to

maximum degree is bounded then the result holds (but with a smaller constant). Moreover

the proof readily extends to more general colourings, not just proper colourings. It is

also possible to give a good bound for regular hypergraphs even if they are not simple.

However, the method does not give much information about hypergraphs which are not

close to being regular. These matters are discussed in Section 4.

The proof method is different in nature to those in [1], [2], [3], [4], [6] and [7]. The

central idea is that if there can be found some small collection C of sets, each of size say

(1 − 1/r)n, where n is the number of vertices of G, such that every independent set is a

subset of one of the sets in the collection, then χ�(G) must be large. This idea is made

explicit in Theorem 2.1 in Section 2.

Given Theorem 2.1, what remains to be done to prove Theorem 1.1 is to find a

collection C that satisfies the conditions of Theorem 2.1. Of course, each independent set

is contained in a maximal independent set which, in a regular hypergraph, is of size at

most (1 − 1/r)n. However, the collection of maximal independent sets does not in general

satisfy the conditions of Theorem 2.1 because it is too large: it is necessary that |C| = 2o(n),

whereas there can be many more maximal independent sets than this. For example, if

r = 2 and d is odd, let F be Kd−1,d−1 with (d − 1)/2 independent edges added to each

vertex class. Then the graph consisting of n/2(d − 1) disjoint copies of F is d-regular and

has more than 2n/4 maximal independent sets.

So, in order to make use of Theorem 2.1, it is necessary to find a suitable collection C
by some other means. This is the subject of Section 3.

2. Small covers for independent sets

We use standard notation, such as [n] = {1, . . . , n}, [n](l) = {A : A ⊂ [n], |A| = l} and 2[n] =

{A : A ⊂ [n]}. Throughout the paper, we shall assume that the hypergraph G has n vertices

and that its vertex set is [n].

https://doi.org/10.1017/S0963548311000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548311000502


List Colourings of Regular Hypergraphs 317

A vertex colouring of a hypergraph is a partition A1, . . . , At of its vertex set. The colour

given to the vertex v is i, where v ∈ Ai. Often we are interested in proper colourings,

namely those in which each set Ai is an independent set, but we do not always make this

restriction. Colourings allowed by vertex lists are defined as follows.

Definition. A collection of lists {Lv : v ∈ [n]} admits a partition A1, . . . , At if the colour

given to each v ∈ [n] belongs to Lv , i.e., for each i ∈ [t], Ai ⊂ {v : i ∈ Lv}.

The next definition relates a colouring, or indeed any partition of the vertices, to a

covering collection C.

Definition. Let C ⊂ 2[n] be a collection of subsets of [n] and let A1, . . . , At be a partition

of [n]. The partition is C-compatible if, for 1 � i � t, Ai ⊂ C for some C ∈ C.

The result of this section shows that, provided C is not large and no set in C is close

to [n], then there is a collection of quite large lists that do not admit a C-compatible

colouring.

Theorem 2.1. For c > 0 and k < n, let C ⊂ 2[n] satisfy

(i) |C| � 2n/k ,

(ii) |C| � (1 − c)n for all C ∈ C.

Then there exists a collection of lists {Lv : v ∈ [n]}, each of size

|Lv| � (1 + o(1)) log k/ log(1/c)

(where o(1) → 0 as k → ∞ with c fixed ), which does not admit a C-compatible partition.

Proof. Let ε > 0, let l = �(1 − ε) log k/ log(1/c)� and let t = �2l2/c�. For each v ∈ [n], let

Lv ∈ [t](l) be a subset of [t] of size l chosen uniformly and independently at random. It

suffices to show that, if k is sufficiently large (depending on ε and c), then the probability

of the lists {Lv : v ∈ [n]} admitting any C-compatible partition is less than one.

Suppose that the collection of lists {Lv : v ∈ [n]} does admit some C-compatible partition

A1, . . . , At. Then there exists a tuple (C1, . . . , Ct) ∈ Ct such that Ai ⊂ Ci for each i ∈ [t].

Given a tuple (C1, . . . , Ct), define

Bv = Bv(C1, . . . , Ct) = {i ∈ [t] : v ∈ Ci}.

Since {Lv : v ∈ [n]} admits A1, . . . , At, it must be that, for each v ∈ [n], there exists i ∈ Lv

with v ∈ Ai ⊂ Ci; that is, Bv ∩ Lv 
= ∅. We aim to show that, with positive probability, this

does not happen for any tuple (C1, . . . , Ct) ∈ Ct; that is, with positive probability, for every

tuple (C1, . . . , Ct) there is some v ∈ [n] with Bv ∩ Lv = ∅. This will complete the proof of

the lemma.

Given a tuple (C1, . . . , Ct), let pv be the probability that Bv ∩ Lv = ∅, which is to say,

Lv ⊂ [t] \ Bv . Putting zv = max{l − 1, t − |Bv|}, we observe that

pv = Pr(Bv ∩ Lv = ∅) =

(
zv

l

)(
t

l

)−1

.
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Let z be the average of the values zv; then we have

nz =
∑
v

zv �
∑
v

t − |Bv| = nt −
∑
v

|Bv| = nt −
t∑

i=1

|Ci| � nct.

So, since the function
(
zv
l

)
is convex for zv � l − 1, we have

∑
v

pv =
∑
v

(
zv

l

)(
t

l

)−1

� n

(
z

l

)(
t

l

)−1

� n

(
ct

l

)(
t

l

)−1

� n(c − (l − 1)/t)l � ncl/2,

using the fact that when k is large then l is also large and (l − 1)/t � c/2l. Hence

Pr(Bv ∩ Lv 
= ∅ for all v ∈ [n]) =
∏
v

(1 − pv) � exp
{

−
∑
v

pv

}
� exp{−ncl/2}.

Finally, summing this probability over all tuples (C1, . . . , Ct), the probability that some

tuple (C1, . . . , Ct) satisfies Bv ∩ Lv 
= ∅ for all v is at most

|C|te−ncl/2 = exp{(nt/k) log 2 − ncl/2} � exp

{
n

2k

[
4 log 2

c

(
(1 − ε) log k

log 1/c

)2

− kε
]}

,

which is less than one for k sufficiently large. Hence with positive probability the collection

of lists does not admit a C-compatible colouring.

3. Finding a small cover

We turn our attention now to the question of finding a collection C of sets covering the

independent subsets of the hypergraph G, suitable for the application of Theorem 2.1. Our

aim is to describe how to construct, for each small set T , a set C(T ) with |C(T )| � (1 − c)n,

so that for every independent set I there is some T with I ⊂ C(T ). Provided T is small,

the number of such sets C(T ) is not large, so we can apply Theorem 2.1.

In fact, our construction is most easily described in terms of three small sets R, S

and T , but the principle is the same.

Theorem 3.1. For r � 2, c > 0 and b sufficiently large (depending on c and r), let G be

a simple r-graph of order n such that every set A ⊂ V (G) = [n] of size |A| � (1 − 2rc)n

contains at least nb edges of G. Then there exists a collection of sets C ⊂ 2[n] satisfying:

(i) |C| � 2n/b
1/2r

,

(ii) |C| � (1 − c)n for every C ∈ C,

(iii) for every independent set I ⊂ V (G), there is some C ∈ C with I ⊂ C .

Proof. Let V = V (G) = [n] be the vertex set of G and let E = E(G) be the edge set. For

sets R, S ⊂ V and 0 � j � r − 1, let

Γj(R, S) = {v ∈ V : there exist f ∈ R(j) and g ∈ S (r−j−1) with {v} ∪ f ∪ g ∈ E}.

For example, when r = 2, we have Γ1(R, S) = Γ(R), the usual neighbourhood of R, and

Γ0(R, S) = Γ(S).
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Given subsets R, S, T ⊂ V , let

Cj(R, S, T ) =

{
(V \ Γj(R, S)) ∪ T if n − |Γj(R, S)| + |T | � (1 − c)n,

∅ otherwise.

Note that |Cj(R, S, T )| � (1 − c)n by definition. We will show that for every independent

set I , there are small subsets R, S, T ⊂ V such that I ⊂ Cj(R, S, T ). Letting C be the

collection of all such sets Cj(R, S, T ), the size of C will be small because each of R, S and

T is small. Specifically, let

u =
1√

3r2r−1

(
3

b

)1/2(r−1)

and q = 15r2r−1u.

Let C = {Cj(R, S, T ) : 0 � j � r − 1, |R|, |S |, |T | � qn}. Then

|C| � r(qn)3
(

n

qn

)3

� r(qn)3
(
ne

qn

)3qn

� 2n/b
1/2r

for b sufficiently large (depending on c and r). This collection C will satisfy the conditions

of the lemma.

Fix an independent set I . For A ⊂ V and 0 � j � r, say that an edge e ∈ E is a

(j, A)-edge if it has a partition e = f ∪ g, f ∈ I (j), g ∈ A(r−j). Let P (j) be the statement

for all A ⊂ V with |A| � (1 − 2(r − j)c)n, there are at least nbuj (j, A)-edges.

The statement P (r) is false since an (r, A)-edge is one contained inside I , of which there

are none. Statement P (0) is true by assumption on G, since a (0, A)-edge is one contained

inside A.

There must therefore exist j ∈ {0, 1, . . . , r − 1} such that P (j) is true and P (j + 1) is

false. Fix a set A witnessing the falsity of P (j + 1); thus |A| � (1 − 2(r − j − 1)c)n and

there are fewer than nbuj+1 (j + 1, A)-edges.

By analogy with Γj(R, S), for a vertex v ∈ V , let

dj(v) = |{e ∈ E : there exist f ∈ I (j) and g ∈ A(r−j−1) with e = {v} ∪ f ∪ g}|.

We define a set D = {v1, . . . , v�2cn�} ⊂ A in the following way. Given v1, . . . , vi−1 with i � 2cn,

let Ai = A \ {v1, . . . , vi−1}. Since |Ai| � (1 − 2(r − j)c)n, P (j) implies that Ai contains at least

nbuj (j, Ai)-edges, and these edges are all (j, A)-edges. Therefore∑
v∈Ai

dj(v) � (r − j)nbuj � nbuj .

Let vi ∈ Ai be a vertex with dj(vi) � buj .

Let p = (3/buj)1/(r−1), so pr−1buj = 3. Since j � r − 1, we observe that

p �
(

3

b

)1/(r−1)
1

u
=

√
3r2r−1

(
3

b

)1/2(r−1)

= 3r2r−1u =
q

5
.

Let R ⊂ I and S ⊂ A be random sets where each vertex (of I and A respectively) is

included independently with probability p. By Markov’s inequality, |R|, |S | � 5pn � qn

with probability at least 3/5. Let T = Γj(R, S) ∩ I . Then clearly, I ⊂ Cj(R, S, T ) provided
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n − |Γj(R, S)| + |T | � (1 − c)n. So to complete the proof, it is enough to show that the

inequalities |T | � qn and |Γj(R, S)| � (c + q)n each hold with probability at least 4/5.

A vertex v ∈ I will be included in Γj(R, S) (i.e., in T ) if it lies in a (j + 1, A)-edge

e with e = {v} ∪ f ∪ g, f ∈ R(j), g ∈ S (r−j−1). The number of (j + 1, A)-edges is at most

nbuj+1. For each such edge e and each vertex v ∈ e there are are most 2r−1 ways to

partition e − {v} as f ∪ g, and for each such partition, the probability that both f ∈ R(j)

and g ∈ S (r−j−1) is pr−1. So the expected size of T is at most

r2r−1pr−1nbuj+1 = 3r2r−1un = qn/5.

Applying Markov’s inequality again implies that |T | � qn with probability at least 4/5.

Now fix a vertex d ∈ D. This lies in at least buj edges e of the form e = {d} ∪ f ∪ g with

f ∈ I (j) and g ∈ A(r−j−1). For each e with d ∈ e, fix such a partition e \ {d} = f ∪ g. The

probability that f ⊂ R and g ⊂ S is pr−1 and, because G is simple, these events over all e

are independent. Hence the probability that d 
∈ Γj(R, S) is at most

(1 − pr−1)bu
j � exp{−pr−1buj} = exp{−3} < 1/20.

Markov’s inequality implies that with probability at least 4/5, the number of vertices

from D not in Γj(R, S) is at most |D|/4. Hence with probability at least 4/5, |Γj(R, S)| �
3|D|/4 � �3cn/2� � (c + q)n if b is large. This completes the proof.

Now we can easily derive Theorem 1.1.

Proof of Theorem 1.1. Let ε > 0 and c = 1/2r2 − ε. Let G be a simple d-regular r-

uniform hypergraph and let A ⊂ V (G) satisfy |A| � (1 − 2rc)n. Let e be the number of

edges inside A and let f be the number meeting both A and V (G) \ A. Then er + f(r − 1) �
|A|d � (1 − 2rc)nd, because G is d-regular. On the other hand, f � |V (G) \ A|d � 2rcnd.

Thus er + 2r(r − 1)cnd � (1 − 2rc)nd, so er � (1 − 2r2c)nd = 2r2εnd.

Hence, provided d is large enough (depending on r and ε) we may apply Theorem 3.1

to G with b = 2εrd to obtain a collection C covering the independent sets of G, with

|C| � 2n/k where k = b1/2r . Any vertex colouring A1, . . . , At with t colours is C-compatible.

Thus Theorem 2.1 now shows that there are lists {Lv : v ∈ V (G)}, each of size (1 +

o(1)) log k/ log(1/c), admitting no proper vertex colouring.

Hence

χ�(G) � (1 + o(1)) log k/ log(1/c) = (1/2r + o(1)) log d/[log(2r2) − log(1 − 2εr2)]

if d is large. This is true for every ε > 0, and the theorem follows.

4. Further remarks

We finish with some remarks about extensions to Theorem 1.1.

4.1. Hypergraphs that are not regular

It is easy to see that the proof of Theorem 1.1 works just as well for simple hypergraphs

whose degrees are all in the range d/C to Cd for some constant C , at the expense of
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reducing the value of the constant 1/2r log(2r2) in the theorem. Hence the list chromatic

number of such a graph is Ω(log d). The same is true for any graph containing a subgraph

whose degrees are in the range d/C to Cd, or in the range dδ/C to Cdδ for any constant δ.

However, so far as we can tell, not all simple hypergraphs of average degree d contain

such a subgraph. Indeed it appears that extending Theorem 1.1 to hypergraphs of average

degree d is not at all straightforward. A similar difficulty was noted in [3]. A proof for

hypergraphs of average degree d is expected to be much more complicated than the one

here; we hope to attempt it elsewhere [8].

4.2. Colouring by hereditary properties

The role of independent sets in the proof of Theorem 3.1 is very slight: indeed, the fact

that I is an independent set is used only once in the proof, which is to guarantee that

P (r) is false. Now P (r) is the claim that I contains at least nbur edges, and this is false

even if I contains o(nb(r−2)/2(r−1)) edges.

A hereditary property P of r-uniform hypergraphs is one closed under isomorphism and

under taking induced subgraphs. Every hypergraph G has a P-chromatic number χP (G),

which is the smallest value of t for which G has a partition A1, . . . , At such that each set

Ai induces a subgraph having property P . The P-list chromatic number χP� (G) is defined

similarly.

It follows from the proof of Theorem 1.1 that if P is a property such that the average

degree of a hypergraph having P must be, say, o(d(r−2)/2(r−1)), then χP� (G) = Ω(log d)

for simple r-uniform d-regular hypergraphs G. There is plenty of room in the proof of

Theorem 3.1 to permit a similar result even if P allows larger average degrees. Again, we

hope to be able to say more in [8].

4.3. Hypergraphs that are not simple

The co-degree of two vertices of a hypergraph is the number of edges containing them

both, and the maximum co-degree D(G) is the maximum co-degree taken over all pairs of

vertices. Thus G is simple if and only if D(G) = 1.

Examples given in [3] show that the list chromatic number of a d-regular hypergraph

can be as low as O(log(d/D(G))). We show that it cannot be smaller.

Corollary 4.1. Let G be an r-uniform d-regular hypergraph. If d/D(G) is large then χ�(G) =

Ω(log(d/D(G))).

Proof. We only sketch the proof, because once again we hope to give a stronger result

in [8]. Let p = 1/8r2D and let G′ be a sub-hypergraph of G formed by choosing edges

independently with probability p. Let c = 1/4r2. Given A ⊂ V (G) with |A| � (1 − 1/c)n

then, as in the proof of Theorem 1.1, there must be at least nd/2r edges of G within A.

The expected number of edges G′ within A is thus at least pnd/2r, and the probability

that there are fewer than half this many is at most exp{−pnd/16r}, by standard estimates.

Hence the probability that some subset of A contains fewer than pnd/4r edges of G′ is at

most 2n exp{−pnd/16r} < 1/2, since pd/16r = d/128r3D is large.
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A butterfly is two edges having more than one vertex in common. Each edge is in at most(
r
2

)
D butterflies so the number of butterflies in G is at most ndDr/2. Let B be the number

of butterflies in G′; then the expected value of B is at most p2ndDr/2 = pnd/16r. Hence

B � pnd/8r holds with probability at least 1/2. From this and the previous paragraph it

follows that there is a choice of G′ with B � pnd/8r and for which every subset A with

|A| � (1 − 1/c)n contains at least pnd/4r edges of G′.

Take such a G′ and remove an edge from each butterfly to form a simple sub-hypergraph

G′′. Each subset A contains at least pnd/8r = nd/64r3D edges of G′′. By Theorems 3.1

and 2.1 it follows that χ�(G) � χ�(G
′′) = Ω(log(d/D)).
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