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Nonparametric data envelopment analysis (DEA) estimators based on linear pro-
gramming methods have been widely applied in analyses of productive effi-
ciency. The distributions of these estimators remain unknown except in the simple
case of one input and one output, and previous bootstrap methods proposed for
inference have not been proved consistent, making inference doubtful. This paper
derives the asymptotic distribution of DEA estimators under variable returns to
scale. This result is used to prove consistency of two different bootstrap proce-
dures (one based on subsampling, the other based on smoothing). The smooth
bootstrap requires smoothing the irregularly bounded density of inputs and out-
puts and smoothing the DEA frontier estimate. Both bootstrap procedures allow
for dependence of the inefficiency process on output levels and the mix of inputs
in the case of input-oriented measures, or on input levels and the mix of outputs
in the case of output-oriented measures.

1. INTRODUCTION

Nonparametric data envelopment analysis (DEA) estimators based on the orig-
inal ideas of Debreu (1951), Farrell (1957), and Shephard (1970) and employ-
ing linear programming methods along the lines of Charnes, Cooper, and Rhodes
(1978, 1979) and Fire, Grosskopf, and Lovell (1985) have been widely applied.
Until recently, however, little was known about their statistical properties. Under
certain assumptions, the DEA frontier estimator is a consistent, maximum like-
lihood estimator (Banker, 1993) with a known rate of convergence (Koroste-
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lev, Simar, and Tsybakov, 1995). In addition, consistency and convergence rates
of DEA efficiency estimators have been established (Kneip, Park, and Simar,
1998; for a survey of recent developments regarding statistical properties of
DEA estimators, see Simar and Wilson, 2000b). But until now, the asymptotic
distribution of DEA efficiency estimators has remained unknown except for
the limited case of one input, one output derived by Gijbels, Mammen, Park,
and Simar (1999); there have been no results that would allow one to perform
classical inference regarding efficiency in more general (and more realistic) cases
with multiple inputs and outputs. Moreover, the bootstrap methods proposed
by Simar and Wilson (1998, 2000a) have been the only means for inferences
about efficiency based on DEA estimators in a multivariate framework, but con-
sistency for these procedures has not been proved.

This paper addresses these shortcomings by deriving the asymptotic distribu-
tion of DEA estimators under variable returns to scale, with arbitrary numbers
of inputs and outputs. This is accomplished by characterizing DEA efficiency
scores in a new way and then localizing the problem in Theorem 1, which estab-
lishes that the DEA estimator for a given point is determined by observations in
a small neighborhood of the projection of the given point onto the frontier. The
asymptotic distribution derived in Theorem 2 is then used to prove that two dif-
ferent bootstrap methods—one based on subsampling, the other on smoothing—
yield consistent inference.

It is not surprising that a bootstrap based on subsampling would work in the
DEA context; Swanepoel (1986) discussed this approach for inference about
the boundary of support for a univariate distribution. Our simulation results
presented in Section 4 indicate that the choice of the size of the subsamples is
critical; suboptimal choices can be catastrophic for realized coverages of esti-
mated confidence intervals. Unfortunately, there seems to be no reliable way of
determining a reasonable value of the subsample size in applied settings. Exper-
imentation with an iterated subsampling bootstrap has proved almost useless;
for any realistic original sample size, the inner bootstrap loops contain too few
observations to provide useful information on the “optimal” subsample size.

The second bootstrap approach provides a tractable approach to inference
with DEA estimators but at a cost of increased complexity over the subsam-
pling approach. Our second approach involves smoothing not only the distribu-
tion of the observations as proposed in Simar and Wilson (1998, 2000a) but
also the initial estimate of the frontier itself. This necessitates choosing values
for two smoothing parameters. One of these can be optimized using existing
methods from kernel density estimation; in the second case, we provide a sim-
ple approach for selecting the bandwidth used to smooth the frontier estimate.
We provide simulation results demonstrating that the method works well, pro-
vided that the sample size n is sufficiently large for the given dimensionality of
the problem (this caveat should be of no surprise, because it is now well known
that the curse of dimensionality affects the quality of the initial DEA point esti-
mates; again, for discussion, see Simar and Wilson, 2000b).
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To establish notation for the rest of the paper, suppose that firms use input
quantities x € R% to produce output quantities y € R%. The production set

¥ = {(x,y)|x can produce y} e}

may be described in terms of its sections

V(x) ={yl(x,y) € ¥} (2)
and
X(y) ={x|(x,y) € ¥}, 3)

which form the output feasibility and input requirement sets, respectively. Knowl-
edge of either Y (x) for all x or X'(y) for all y is equivalent to knowledge of ¥;
thus, both )(x) and X(y) inherit the properties of ¥. We denote the boundary
of X(y) by

X(y)=1{xl(x,y) €¥, (6x,y) &V V<1 4)

Various economic assumptions regarding W are possible; we adopt those of
Shephard (1970) and Fire (1988).

Assumption 1. V is closed and strictly convex.

Note that Assumption 1 implies that Y(x) is closed, strictly convex, and
bounded for all x € R% and that X'(y) is closed and strictly convex for all
y € R%. The boundary ¥ of ¥ constitutes the technology. Microeconomic
theory of the firm suggests that in perfectly competitive markets, firms operat-
ing in the interior of ¥ will be driven from the market but makes no prediction
of how long this might take.

Assumption 2. (x,y) € Vifx=0,y=0,y# 0; i.e., all production requires
use of some inputs.

Assumption 3. Forx=x, y <y, if (x,y) € ¥ then (%, y) € ¥ and (x,y) €
V; i.e., both inputs and outputs are strongly disposable.

Here and throughout, inequalities involving vectors are defined on an element-
by-element basis; e.g., for %, x € R?, ¥ = x means that some number ¢ €
{0, 1, ..., p} of the corresponding elements of ¥ and x are equal, whereas
(p — €) of the elements of X are greater than the corresponding elements of x.
Note that Assumption 3 is equivalent to an assumption of monotonicity of the
technology.

Various measures of technical efficiency are possible. We use the Farrell
(1957) measure of input technical efficiency, defined by

0(x,y) = inf{8|(6x,y) €V, 5>0} 5)
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for an arbitrary point (x,y) € R”"? This is the the reciprocal of the Shephard
(1970) input distance function. For (x,y) € ¥, 0 < 6(x,y) < 1. Note that 0
provides a measure of euclidean distance from the point (x,y) € R”" to the
boundary of ¥ in a direction parallel to the input axes and orthogonal to the
output axes. To conserve space, we consider only the input orientation; all of
our results extend to output-oriented measures after straightforward, although
perhaps tedious, changes in notation.

Of course, ¥ and hence 6(x, y) are unknown and must be estimated from a
sample of observations S, = {(X,,Y;)}'_,. The next three assumptions define a
data generating process (DGP); the framework here is similar to that in Simar
(1996), Kneip et al. (1998), and Simar and Wilson (1998, 2000a).

Assumption 4. The n observations in S, are identically, independently dis-
tributed (i.i.d.) random variables on the convex attainable set V.

Assumption 5. (a) The (X,Y) possess a joint density f with support D C ¥;
(b) fis continuous on D; and (¢) f(0(x,y)x,y) > 0 for all (x, y) in the interior
of D.

Clearly, Assumption 5(c) imposes a discontinuity in f at frontier points where
0(x,y) = 1, ensuring a significant, nonnegligible probability of observing pro-
duction units close to the production frontier. For technically nonattainable points
that lie outside ¥, f = 0. In most practical situations, D = ¥; however, Assump-
tion 5 does not exclude the possibility that D is a strict subset of W.

Assumption 6. The function 0 (x, y) is twice continuously differentiable for
all (x,y) € D.

By definition of 6, we obtain 0(x, y) = A0(Ax, y) for any A > 0. Hence, if 0
is twice continuously differentiable at some point (x, y) in the interior of D, it
is also twice continuously differentiable at any point (Ax,y) for arbitrary A.
Essentially, Assumption 6 only requires that the boundary of ¥ is sufficiently
smooth.

To illustrate Assumptions 5 and 6 let us consider the case of a single input,
p = 1. Then x € R, and there exists a well-defined frontier function g(y) :=
inf{x|(x,y) € ¥}, i.e., the well-known production function that for each out-
put y gives the corresponding efficient input g(y). Consequently, 6(x,y) =
g(y)/x, and Assumption 6 is satisfied if the production function g(y) is twice
continuously differentiable. Observations (X;,Y;) may be rewritten in the form
X; = g(Y;) + ¢, where €¢; = X; — g(¥;) = 0. Input-oriented parametric
approaches to frontier analysis then usually rely on explicit modeling of the
structure of g and of the distribution of ¢;. For example, it is frequently assumed
that €; possesses a half-normal distribution and that ¢; is independent of Y;.
Let ¢ denote the density of the half-normal probability density function,
with ¢, (v) = 0 for v < 0, ¢, (v) > 0 for v = 0. If, in addition, ¥; possesses
a continuous density f with f(y) > 0 for all y € R%, then x and y have
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joint density f(x,y) = ¢+ (x — g()f(y). Then f(6(x,y)x,y) = f(g(y),y) =
¢, (0)f(y) > 0 for all (x,y) € ¥, and Assumption 5 holds with D = ¥. Of
course, this only constitutes a particular example with p = 1. Assumption 5
will be fulfilled in much more complex situations.

Assumptions 1-6 describe the statistical model. In the analysis that follows,
we concentrate on a fixed point (x,y) € W¥; interest lies in making inference
about the distance measure 6(x, y).

The DEA estimator of ¥ is merely the convex hull of the free disposal hull
of S, and is given by

¥ ={(x,y)|y = Ya, x = Xa, i'a=1, a €ER"Y, (6)

where Y = [y,...y,], X = [x,...x,], i denotes an (n X 1) vector of ones, and
a is an (n X 1) vector of intensity variables. The corresponding DEA estimator
of O(x,y) is obtained by replacing ¥ with ¥ in (5); i.e.,

O(x,y) =min{6 >0|y=Ya, ©6x=Xa, ia=1, a€ER"}. (7)

Minimization of the linear program in (7) provides a solution for both & and a.
Whereas 6 (x, y) defined in (5) gives a measure of distance from a point (x, y) €
R%" to the boundary of W, 6(x, y) measures distance from the same point to
the boundary of the convex hull of the free-disposal hull of the n sample obser-
vations. Note that necessarily ¥ C W and hence 6(x, y) = 6(x, y) for all (x, y).
The statistical performance of the DEA estimator 6(x,y) of 6(x, y) depends on
the smoothness of the frontier. Kneip et al. (1998) derive different rates of con-
vergence depending on the degree of smoothness. Per Assumption 6, we con-
sider only the case where 0(x,y) is twice-differentiable. For this case, Kneip
et al. (1998) prove that 8(x,y) = 6(x,y) + 0,(n~¥P*4*1); as with many non-
parametric estimators, DEA estimators suffer from the curse of dimensionality.

2. ASYMPTOTIC DISTRIBUTION OF DEA ESTIMATORS

In this section we derive the (previously unknown) asymptotic distribution of
DEA estimators for the general case with arbitrary numbers of inputs p and
outputs g. Along the way, Theorem 1 characterizes the “local” nature of the
estimation problem and provides results on uniform convergence. Theorem 2
establishes the asymptotic distribution. It thus provides a basis to prove consis-
tency of the bootstrap methods that are given in Section 3. All proofs are given
in the Appendix.

Before actually stating our results some conceptual work has to be done. Recall
the definition of the “frontier” X(y) defined in (4) that establishes the sets of
all technologically feasible, efficient input vectors for a given output vector y.
As discussed previously, we have X?(y) = {g(y)} if p = 1. A basic problem
when dealing with multiple inputs and outputs is the nonexistence of a unique,
well-defined production function g(y). If p > 1, then X?(y) defined in (4) con-
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tains a set of efficient input vectors corresponding to the output level y. Ineffi-
cient points with output level y can be projected onto X?(y); e.g., for two linearly
independent vectors x*, x** we have §(x* y)x* € X°(y) and 6(x**, y)x** €
X9(y), but O(x* y)x* # 0(x*, y)x**.

It is then only possible to characterize the frontier as a function of y and of
suitable coordinates of input vectors. There are infinitely many coordinate sys-
tems, and we will concentrate on a decomposition of the vectors X; of inputs
that is specific for a particular point of interest x € R%. Let V(x) denote the
(p — 1)-dimensional linear space of all vectors z € R” such that z7x = 0. Any
input vector X; adopts a unique decomposition of the form
xTX;

1

Ixl”

where [-| denotes the euclidean norm. Let ¥*(x) = V(x) X RZ and note that
the point of interest (x,y) € ¥ has coordinates (0, y) in ¥*(x). We can infer
from Assumption 3 that for any (z,y) € ¥*(x) there exists y > 0 such that
(y(x/|x]l) + z,y) € ¥. The boundary of ¥ can thus be described through the
following function defined for any (z,y) € ¥*(x):

x
X, =, m +Z, forsomeZ, € V(x) and 7y,= 8)

gx(z,y)=inf{7|<7ﬁ+z,y> E‘I’}- ©
This definition implies that

V= {(7& +z,y)|(z,y) EV(x),Vng(z,y)} (10)
and

X(y) = {gx(z,y)ﬁﬂLZIZeV(X)}- (11)

Thus g, may be interpreted as a “frontier function” that characterizes the
frontier X?(y) in the coordinate system (z,y). For any v € R we have v =
(xTv/|x]|*)x + z for z = v — (xTv/||x|?)x. Because 0(v,y)v € X(y) for
all (v,y) € v, (10)—(11) yield

Tv X(07 )
sl 8. (0(v,y)z,y) and 0(x,y)= ﬁ- (12)

Moreover, the DEA estimator of the frontier and of 6(-,-) can be similarly trans-
formed by writing

6(v,y) =l

8.(z,y) = inf{vl(v =4 z,y) € ‘i’} (13)

Bd
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and

xTv

2.(0,y)

O(v,y) — = £,(0(v,y)z,y) and O(x,y) = - (14)

Bd|

Finally, with only a small abuse of notation, one may extend the definition of
g« to all (v, y) with (v — (x"v/|x[*)x, y) € ¥*(x) by taking g.(v,y) = g.(v —
(xTv/||x|?)x, y). Note that in this notation, because of (12), g,(v, y) is contin-
uous in x.

In the case of one input (p = 1), the function g, is simply the production
function and does not depend on x. Then V = {0} and g,(0,y) = g(y) = 0(x, y)x
for all x.

We want to emphasize that the preceding relations hold for an arbitrary choice
of x. When using a different base vector x* # x, then for all possible y the
alternative “frontier” function g - will describe the same frontier X?(y) in a
different coordinate system, and (12) remains true when replacing x by x*. Also
note that g, = g,, for A > 0.

Figure 1 illustrates the definition of g, for the case p = 2. For a given output
vector y, the input requirement set X'(y) is a convex subset of R with effi-

Inputy: X,

X0 |

2] 10 11

Input;: X,

FiGuURE 1. Illustration of g, for the case p = 2 for |x| = 1.
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ciency boundary X?(y), shown by the solid curve. Now consider an input vec-
tor x with | x| = 1. The ray yx, ¥ = 0, is represented by the dashed line passing
through the origin. For a vector z with z7x = 0, yx + z represented by the
dash-dot-dash line is parallel to yx. The intersection between yx + z and X?(y)
then determines the point g.(z, y)x + z.

Let zV,...,z(»~Y be an orthonormal basis of V(x). Every vector Z € V(x)
can be expressed in the form Z = 377/ {2 Let & = (Giny-vslip1)-
Because 6, = 6(X;,Y;) and Z;, = X; — (x"X;/| x|?)x are smooth functions of
(X;,Y;), Assumption 5 implies that (6;,;,Y;) has a density f, on (0,1] X R?~! X
RZ. Let D denote the support of this density.

For any point (x, y) of interest the corresponding frontier function g, and the
density f, will provide the basic tools for our theoretical study. Roughly speak-
ing, our approach provides a decomposition into a function g, characterizing
the technological frontier and a density f, describing the distribution of obser-
vations relative to the frontier. This corresponds to the strategy adopted by all
existing parametric frontier models. If D = ¥ then D = (0,1] X R?~! X R%,
and if fis continuous on ¥ then f, is continuous on its whole domain (0,1] X
R?~! X R%. Nonparametric estimates of g, and f, will play a key role in the
derivation of the smoothed bootstrap of Section 3.2.

The following lemma summarizes the most important properties of g,
and f,.

LEMMA 1. Let (x,y) be in the interior of D. By Assumptions 1-6,

(i) g, and g, are convex functions;

(ii) the function g.(z,y) is twice continuously differentiable for all points
(z,y) € ¥*(x); the matrix g/'(0,y) of second derivatives at (0,y) is
positive semidefinite, and there exists a constant ¢y > 0 such that
wTg?(0,y)w = ¢y V w € V(x) X R? with |w| = 1; moreover, g!'(0, y)
changes continuously in x;

(iii) f.(-,-,-) is continuous on D, and f.(1,0,y) > 0; furthermore, f.(1,0,y)
changes continuously in x.

As noted earlier, Kneip et al. (1998) showed that the rate of convergence of
the input inefficiency estimator is 01,(n’2/ (pra+1)y, The following lemma shows
that the problem of specifying the distribution of 6(x,y)/0(x,y) can be refor-
mulated in terms of g, and of the distribution of 0(X;,Y;), Z;, and Y;.

LEMMA 2. Let (x,y) be in the interior of D. Under Assumptions 1-6 we
obtain for any 6 > 0

(x,y)
0(x,y)

Prob< -1= 5n2/(”+"“>> = Prob(A[§,n]), s)
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where A[ 8, n] denotes the following event: There exist some a; =0,...,a, =0
with 27, a; = 1 such that

zal—Zi=0, 2a,—Y,—=y, and
' i=1

! gx(H[Zi’Yi)

a; — 1 = én~Yptath 16
i=1 ' etgx(()’y) ( )

where 0; = 0(X,;,Y;) and Z; = X; — (x7X; /| x]|*)x.

Theorem 1, which follows, provides a basis for our theoretical development
and for the construction of bootstrap procedures in Section 3. Although Theo-
rem 1(ii) provides results on uniform convergence on suitable subsets, Theo-
rem 1(i) plays an important role by “localizing” the frontier problem. The value
of A(x,y) is essentially determined by those observations that fall into a small
neighborhood of (6 (x, y)x, y). Note that for the proof of the theorem, Assump-
tion 1 is crucial. The theorem does not apply if, e.g., the frontier is linear or
conical, because in such cases (x,y) may be determined by points very far
from the point of interest (x, y).

More precisely, it will be shown that under our assumptions Prob(A[8,n])
asymptotically coincides with the probabilities of events A[8, n; k], which only
depend on observations in a suitable neighborhood of the point (x, y) of inter-
est. Note that the sample of observations S, can be represented equivalently by
the corresponding samples S, = {(6,,Z,,Y,)}-, or S, = {(6,,{:,Y:)}"-,, where
{; is determined by Z, = 27_/ {;;z/. Next, define a set C(x, y;h) by

C(x,y;h) = {(0,2,9) € (0,1]X¥*(x)|1—6=h>

2=z with|gl=h Vj=1,...,p—1,
J

=5 =h Vr=1,...,q}. a”)

The point (1,0, y) in the transformed space {(8 (v, 7),v — (xTv/| x|*)x, §)|(v, §) €
W} corresponds to the boundary point (6(x,y)x,y) in the original space V.
The set C(x, y;h) is a neighborhood of the transformed boundary point (1,0, y).
Then let A[S,n;h] denote the following event: for some k = n and iy,...,
i € {l,...,n}, there exist some (X;,Y;),...,(X;,Y,) with (6,,Z,,Y,),
ces(0,.2,,Y,) € 8, N C(x,y;h-n”"/P*47 D) and some a; = 0,...,a; = 0
with Ej’;, a; = 1 such that Ej’f:, @Y, =y, Ejl;l a;Z; = 0, and
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k 8:(6,Z;.Y;)
2 o ——L 1 | = §n Y (prat) (18)
Jj=1 ! aijgx(oa y)

Again, 0, = 0(X,,Y,) and Z; = X; — (x"X, /| x[?)x.

THEOREM 1. Let (x,y) be in the interior of D. Then under Assumptions
1-6,

(i) for any € > 0 there exists an h, < co such that for all h = h,, every
6 > 0, and all sufficiently large n,

|Prob(A[8,n]) — Prob(A[8,n;h])| < e; (19)
(ii) for any closed, bounded subset N of the interior of D with inf; jcp
f(%5) >0,
Prob( sup M -1 ‘ = n72/(p+q+l)(10g n)2/([7+q+1)) 1
=yen| 0(X,5)
asn — o (20)
and
xTx
A‘<6(f"” <X* wa)x’;)
Prob sup - —1| = n ¥t (log n)V et | 51
(%, )EN XX
gr<9(f,9)<5f* 2)%9)
Ixl
as n — oo. (21)

To examine the probabilities P(A[S,n;h]), still more notation is required.
Let (81,1, 1), (92,45, 7,), ... denote a sequence of i.i.d. random variables uni-
formly distributed on [0,1] X [—1,1]7"" X [—1,1]9. For k € N, let U[v, k]
denote the following event: there exist some «; = 0,...,a, = 0 with
Ef:, a; = 1 such that

>

\.Q
=t

k
=0 and X a;29) =0, (22)
j=1

~.
Il

where z; = 372/ 7,z and
k 1
2 aj 28 (0 y) [ZjTg)’c’,ZZ(O’ y)zj + ZZyTg),c,,Zy(O’ y)f’, + yng!,}y(O’ )’))7]]

k
+ 2 a; 5/- =v. (23)
j=1
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Here we use
"(x:0,9) [gi';zz(O, y) gl y)T] o
g x; 2 y = " "
gx;zvv(09 Y) gx;yy(o’ Y)

to denote the matrix of second derivatives of g, at (0, y). Finally, let 7(h) =
2(ptg=Dp (pta+1)

PROPOSITION 1. Under the conditions of Theorem 1,

7 (W)*£.(1,0, y)*
k!

e TMWAMLOY |

Prob(A[d,n;h]) — i Prob (U[h%,k])

(25)
as n — oo for any h > 0.

We are now ready to state a theorem about the asymptotic distribution of
n? (9 (x, )/6(x,y) = 1).

THEOREM 2. Under the conditions of Theorem 1, let
]F (1 0 y)2/(l7+q+1) ])
x\1ts Yy ,k

(26)

k2/(ptq+1)

F.(8) = lim Prob <U [8
k—o0

for —co < & < oo. Then F, is a continuous distribution function with F, (0)=0,
0=F.(8) =1—exp(—6f(1,0,y)PTatD) < 1, and

lim Prob [n””“’*” (M - 1) = 5]

F.(8) = lim )

lim Prob(A[8,n])

* 5 1\ r(WAF(1,0, )k ]
= ]im E Prob <U|:—,k:| ) M e*T(h)fX(l,O,y). (27)
= h? k!

The theorem shows that the asymptotic distribution F,(8) is stochastically
dominated by the distribution function 1 — exp(—&f,(1,0, y)*>/?*4* D) of an expo-
nential distribution with parameter £,(1,0, y)?/(**9*D_If u  denotes the mean
of F,, we therefore obtain u, < 1/£,(1,0, y)>(»Fa+D,

Indeed, F,(8) =1 — exp(—8f,(1,0, y)*/(»*a* D) in the special case p = 1 and
q = 0. This is easily verified: obviously p = 1 and ¢ = 0 corresponds to the
(rather uninteresting) situation of firms that all produce a common, fixed out-
put using some variable input X; € R_.. The frontier is then given by the min-
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imal possible input x,,;,. Assumption 6 is trivially satisfied for 8(x) = 6(x, y) =
Xin/%x, and Assumption 5 is fulfilled if the density f(x) = f(x, y) of X; is con-
tinuous for x > x,,;, with f(x,,,) > 0. For a sample X, ..., X, we obtain the
trivial DEA estimators £,,;, = min; X; and 6 (x) = £,,;,/x. Because there are no z
or y variables, g, is simply a constant equal to x,,;,, whereas f(8) = f.(6,z,y)
is the density of 6; = x,,;,/X,. Here f(x,,;,) > 0 implies f(1) > 0. With 3§, ..., 7,
denoting i.i.d. random variables uniformly distributed on [0, 1], the event U[y, k]
then corresponds to the event that there exists some a; = 0, X; a; = 1, such that
Ek @ 1? = 7. The latter is equivalent to requiring that D ims k. = = min; 19 =7.
It is well known that for i.i.d. random variables 1‘} ~ Uniform([0, 1]) the sta-
tistics ki, asymptotically follow an exponential distribution with parameter

A = 1. Therefore, in this situation
;(1,0, )2/(p+q+l) B ‘(1
lim Prob (U [8 f > Jk lim Prob{¥,,,., =6 fT)
k—c0

koo k2/(ptatD)
1 — exp(—57(1)). (28)

In the general case p > 1, ¢ = 1, it seems to be difficult to evaluate ana-
lytic expressions for (26). Nevertheless F, is a well-defined, continuous prob-
ability distribution. Recalling the definition of the event U(-,-), it is clear that
the shape of the distribution function F, is then determined by (p + ¢q)(p +
g + 1)/2 + 2 parameters that are (a) the value f,.(1,0,y) of the density f,,
(b) the value g.(0,y) of the function g, at the corresponding frontier point,
and (c) the matrix g.'(0,y) of second derivatives of g, at (0,y). If these
parameters were known, quantiles of the asymptotic distribution could be esti-
mated by Monte Carlo simulations. Unfortunately, however, obtaining reliable
estimates of the matrix g”'(0,y) necessary for this approach to work well
seems particularly difficult. Fortunately, the bootstrap, when bootstrap sam-
ples are drawn appropriately, provides a way out of this difficulty.

We finally note that the condition that (x, y) be in the interior of D does not
impose a substantial restriction. The following corollary shows that Theorem 2
also characterizes the distribution of 6(Ax,y)/0(Ax,y) for any A > 0. The
boundary point (6(x, y)x,y) is a particular case with A = 6(x, y).

COROLLARY 1. Under the conditions of Theorem 2,

0(Ax,y)
F.(8) = lim Prob| n>#*a*V{ ——— — 1| =8| forall A > 0. (29)
n—oo 0(/\X, y)

3. BOOTSTRAPPING DEA ESTIMATORS

Two bootstrap methods are presented in this section, and their consistency for
inference-making purposes is established in Theorems 3 and 4 using the results
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from Section 2. The first bootstrap method is, in principle, easy to apply but
depends critically on a tuning parameter for which to date no reliable method
exists for choosing its value. The second method depends on two tuning param-
eters for which we offer data-based methods for selecting values in real-world
applications.

As in Section 2, we consider a fixed point (x,y) € D satisfying Assump-
tion 6. In this section, we consider suitable bootstrap procedures for estimating
confidence intervals for 6(x, y).

The simplest bootstrap would, on each replication, take n independent draws
from the empirical distribution of the observations in S, to construct a pseudo-
sample S* and then apply (7) to obtain a bootstrap estimate 6*(x, y) (note that
6*(x, y) measures distance from the original point of interest, (x, y), to the bound-
ary of the convex hull of the free-disposal hull of the pseudo-observations in
S). However, this naive bootstrap does not provide consistent inference as
discussed by Simar and Wilson (1999b, 1999a). From Theorem 1 it is clear that
as n — oo, the distribution of n2/(?*4*D(§*/§ — 1) does not tend to the true
distribution F. The empirical distribution of (6;,Z;,Y;) does not converge suf-
ficiently fast to mimic the true probabilities on the sets C(x, y;hn~'/(PFat1))
which are proportional to 1/n. This result is not surprising; it is well known
that the naive bootstrap does not work in the case of estimating the boundary
of support for a univariate distribution (see, e.g., Bickel and Freedman, 1981).

We consider two different bootstrap approaches; the first is based on subsam-
pling, whereas the second is based on smoothing.

3.1. Bootstrap with Subsampling
Let m = n* for some k € (0,1) and consider the following bootstrap scheme.
Algorithm 1.

1. Generate a bootstrap sample S,
(independently, uniformly, and with replacement) m observations from
the original sample, S,,.

2. Apply the DEA estimator in (7) to construct bootstrap estimates 6*(x, y).

3. Repeat steps (1)—(2) B times; use the resulting bootstrap values to approx-
imate the conditional distribution of m>?*4*V(§*(x, y)/0(x,y) — 1) given
S, and use this approximation to approximate the unknown distribution
of n2/P*a*V(§(x,y)/6(x,y) — 1). For a given a € (0,1), use the boot-
strap values to estimate the quantiles 6,2, 61—4/2,» Where

= {(X/,Y)}", by randomly drawing

i=1

0" (x,y) @

Prob [mz/(f“’q“) <A—y — 1) = 6a/2,m|$n} = -, (30)
6(x,y) 2
0"(x,y) a

Prob |:m2/(”+q+l) (W;}) - 1) = 8]a/2,n1|8n:| =1- 5 (31)
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4. Compute [6(x,y)/(1 + n=2/P+atDs, o0, 6(x,y)/(1 + n=2/Prath
8a/2.m)], @ symmetric 1 — a confidence interval estimate for 6(x, y).

Consistency of this bootstrap is easily demonstrated by the following theorem.

THEOREM 3. Under the conditions of Theorem 1, let m = m(n) = n* for
some k € (0,1). Then

0*(x,y)
sup | F.(8) — Prob [m2/<p+q+l> (—y - 1) = 5|3n] 250
5>0 H(X, }’)
as n — oo. (32)

3.2. Bootstrap with Smoothing

Alternatively, a bootstrap procedure that generates pseudo-samples based on a
smoothed empirical distribution and a smoothed estimate of g, allows consis-
tent inference about 6 (x, y). This bootstrap procedure consists of the following
steps (details of the smoothing procedures will be discussed later in this section).

Algorithm 2.

1. Compute a smooth analogue ¢7(z,7) of the frontier function g.(z,¥);
details are given subsequently.

2. Draw a bootstrap sample S = {(67,¢7, Y}, by i.id. sampling from a
smooth, nonparametric estimate fx of the densny f.. Then determine S* =
167,27,y )} using Z7 = 2~ ! £z,

3. Define a bootstrap sample S} = {(X, ,Y*)}'_| of size n by setting

xp= 80t L g (33)
0; ]

4. Apply the original DEA estimator in (7) to obtain a bootstrap estimate
0*(x,y).

5. Repeat steps (2)—(4) B times; use the resulting bootstrap values to approx-
imate the conditional distribution of (6*(x, y)/0(x,y) — 1) given S, and
use this to approximate the unknown distribution of (0(x,y)/0(x,y) —1).
For a given a € (0, 1), use the bootstrap values to estimate the quantiles
0uy2s 61—a/2 Where

P b[(é*(x’y) 1><5 S]—a 34
ro é(x’y) - oz/2| n | 2’ ( )
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0*(x,y) ) ]
Prob| | — —1)=68,_,nlS, [=1-
[( 0(x,y) 1-or2

6. Compute [8(x, y)/(1 + S1—a/2), 6(x,y)/(1 + 8usn)], a symmetric (I — a)
confidence interval estimate for 6(x, y).

(35)

ST

Recall that if p = 1, then g, is the “frontier function” and does not depend
on x. Moreover, in this case, Z; = 0 and fx and g, only depend on y. However,
for p > 1 the preceding steps define g, and f. specifically for the point (x, y)
that is of interest. Consequently, if confidence intervals are to be constructed
for the efficiency measure defined in (5) evaluated at different points in R? "9,
separate bootstraps must be performed for each of these points.

In the simulations described in the next section, we use kernel estimators to
approximate f,. The only particular difficulty is the discontinuity of £,(6,{, )
at points (0,{,¥) with & = 1. This problem is handled by reflecting obser-
vations (6;,;,Y;) to obtain (2 — 6;,{;,Y;) (where 6; denotes the efficiency esti-
mate computed from the smoothed frontier ¢ for the ith observation) and
incorporating the resulting 2n points in the estlmatlon. We use a Gaussian prod-
uct kernel, with separate bandwidths for each marginal dimension chosen using
the univariate two-stage plug-in method described by Sheather and Jones (1991).
Alternatively, one could use least-squares cross-validation as described by Simar
and Wilson (2000a), but the approach employed here imposes much less com-
putational burden.

The specification of the function g in step (1) of Algorithm 2 is crucial
for validity of the bootstrap procedure. Unfortunately, it is not possible to
rely on the estimated DEA frontier. The difference between g, and g, is of
order n~2/(P*a* 1 even more importantly, &, is not differentiable and hence
does not possess the same degree of smoothness as g,. Setting g; = &,
therefore does not seem to lead to a consistent bootstrap. Even if the dis-
tributions of (6;,Z;,Y;) and (60,Z,Y;") were identical, the asymptotic distri-
butions of EJ 1 (g.(60,Z iz Y;)/6;,2,(0,y)) — 1 and E}Ll a;(8.(07Z;,Y")/
078.(0,y)) — 1 Would not in general coincide.

It is important to understand the purpose of smoothing the DEA frontier esti-
mate. We do not require g to be closer to g, than to g,. It suffices if the rela-
tive distances g,(z, ¥)/g.(z, ¥) do not change very much with (z, 7). If, for some
B > 0, we have Bg.(z,7) = g.(z,¥) for all (z,¥), then g.(6;Z;,Y;)/.(0,y) =
8.(0,Z:,Y:)/8.(0,y), and by Lemma 2 the errors of the resulting DEA estima-
tors are identical. In effect, proportionality is not necessary. We can infer from
Proposition 1 that even if the first derivatives of g, and g} are completely dif-
ferent, the limiting distributions will be close as long as the second derivatives
approximately coincide. In smoothing the DEA frontier function in step (1), it
is therefore essential to preserve convexity.

One possibility would be to employ convolution smoothing of g,. This
approach, however, presents a formidable integration problem in (p + ¢ — 1)-
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dimensions, and it seems unlikely that such an approach could be successfully
implemented with real data. Alternatively, one may use a bandwidth b € (0,1)
to define a smooth bootstrap frontier g by

i e L[z y-y .
8:(z,5) = gx(O,y)+b2[gx<l-),y+ T) —gX(O,y)]. (36)
Note that setting » = 1 in (36) results in no smoothing of the frontier; in this
case, the resulting procedure is similar to the “single-smooth” algorithm pro-
posed by Simar and Wilson (2000a).

To understand the motivation for the smoothing in (36), let » < 1 and define

'z, 9) = 2.(0,y) +b2[gx(§,y+ %) —gx(o,y)]. 37)

The following properties are easily verified: (a) ¢! and g are convex func-
tions; (b) £7(0,y) = &.(0,y) = 0(x,y)|x[ and g;(0,y) = £.(0,y) = 6(x,y)|x];
(c) the second derivatives of g and of g, at the point (0, y) are identical, i.e.,
g/(0,y) = g2"(0,y); and (d) by Theorem 1(ii), with probability tending to 1 as

n— oo,

8y gy | |, T\ b )T\ b

8:0,y) £:0,y) 2.(0,y) £.(0,y)
=b2n~¥rrat D ogn (38)

holds for all (1,z,7) € C(x,y;h-n~ Y PTatD) h > 0, if n~V/PFatl/p 0,

By Theorem 1(i), property (d) implies that if b>logn — 0 as n — oo,
the difference between ¢F and g in the relevant neighborhoods C(x,y;
h-n~YPrat Dy of (x,y) is of smaller order than n=2/(?*4+1)  Asymptotically, a
bootstrap based on g will thus provide the same results as a bootstrap
directly relying on g;. On the other hand, it follows from properties (a)—(c)
that the parameters determining the asymptotic distribution of efficiency esti-
mates from g coincide with those from g.,.

It is possible to determine a suitable order of magnitude of b. For purposes
of establishing consistency of the bootstrap, g, need only be twice continu-
ously differentiable (see Assumption 7 later in this section). Here, we assume
that g, is three times continuously differentiable only for selecting a suitable
order of magnitude for b. Of course, one might exploit this assumption to develop
an inefficiency estimator different from the DEA estimator; such a method would
be based on further smoothing of the frontier but would likely be rather more
complicated for practitioners than the DEA estimator that is the focus of this
paper. If g, is replaced by g, then (A.30), which appears in the Appendix in
the proof of Proposition 1, becomes
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k g:(ei,-zi,-’Yi;) K g;ck(zii’Yii) _g:(o’y) :
2o —1=>aq T 20,

=1 6;,8x(0,y) j=1 2:(0,y) j=1

—=3/(p+q+1)
+0,(n~ Y/ rratD)

L

———[Z]g:.(0,y)Z,

j=1 ] 2 *(O )
+2Z7 83,0, ) (Y, — y)
+ (Y, = )78, 0, 9)(Y;, — y)]
k
+ X a;(1-6,)+ 0, (b~ 'n=3/rrar), 39)

Jj=1

Thus, the bootstrap analogue of the assertion in Proposition 1 holds provided
n~Yr+atl/p 5 0. The approximation error in (39) becomes smaller as b
increases. On the other hand, decreasing b reduces the estimation error (38).
The remainder terms in (38) and (39) are of the same order of magnitude (up to
a log n term); summing the remainder terms and then minimizing with respect
to b suggests that b should be chosen proportional to n~/G(r+arD),

An obvious difficulty of the preceding bootstrap consists of the fact that
in most bootstrap samples there will exist points (Z;,Y;") with (Z//b, y +
(Y —y)/b) & ¥*, where ¥* denotes the convex hull of the free-disposal hull
of the bootstrap observations in S,. This phenomenon is not very important in
terms of asymptotic theory because by Theorem 1, the DEA estimator is essen-
tially only determined by points in a neighborhood of (6(x, y)x, y). However,
any implementation of the algorithm requires that one must deal with such
points. Two possibilities exist.

Elimination. Suppose that in the bootstrap sample there are € < n points
with (Z /b,y + (Y —y)/b) & V*, ;E11,...,n}, Jj=1,...,1 Eliminate these
points from the bootstrap samples and calculate 0*(x,y) frorn the remaining
(n — £) bootstrap observations.

Extrapolation. Suppose that for some i € {l,...,n} we have (Z;/b,
y + (Y — y)/b) & ¥*. Let b* denote the smallest possible b such that (Z;/b,
y + (Y* — y)/b) € ¥*. Clearly, b* > b. The structure of the DEA estimator
implies that for all 5 > b* sufficiently close to b*, there exist some By, 8; such
that ¢ (Z7/b, y + (Y — y)/b) = B, + B1(1/b). Then “define” & (Z;/b, y +
(Y;" — y)/b) = By + Bi(l/b) and calculate the Correspondlng value of
8(Z7, Y.

In the simulations described in Section 4, we use the elimination option.

We now consider the asymptotic behavior of the double-smooth bootstrap
proposed earlier. Our analysis rests upon the following additional assumption.
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Assumption 7. The density estimate f; satisfies

sup \f;(ﬂ,z,y) —£(0,z,9)] = 0,(1) asn—o0 (40)

(0,2, 7)EC(x, y; h)
if h is sufficiently small. Furthermore, b — 0 and n~"/?"9"V/b — 0 as n — oo,

It follows from well-known results in kernel density estimation that condi-
tion (40) is fulfilled for a kernel estimator f; as described earlier, provided that
the bandwidths 7; used with respect to the different directions, j =1,...,p + g,
satisfy 7, — 0 and n-HfI,qu/logn — oo as n — oo.

The next theorem ensures consistency of our double-smooth bootstrap.

THEOREM 4. Given Assumptions 1-7,

6*(x,
F.(8) — Prob(n2/<1’+q+l>< (o)) 1) = 8|8ﬂ>

= 250 asn— oo
6(x,y)

sup
5>0
(41)

4. MONTE CARLO EVIDENCE

We conducted two sets of experiments, with p = ¢ = 1 and p = ¢ = 2. All
experiments consist of 1,000 Monte Carlo trials, with 2,000 bootstrap replica-
tions on each trial. Within each set of experiments, we examined seven sample
sizes, with n € {25, 50, 100, 200, 400, 800}. For the case with one output and
one input (p = ¢ = 1), we simulated a DGP by drawing an “efficient” input
observation x, distributed uniformly on [10,20], and setting the output level
y = x2%. We then computed the “observed” input observation x = x,e%2'¢l,
where € ~ N(0,1) and is independent. The DGP for this case can therefore be
written as

y = x048670.2\e\. (42)

We take the point (x,y) = (20.69,7.5) as the fixed point for which efficiency
is estimated on each Monte Carlo trial; the true efficiency for this point is
0(x,y) = 0.6.

For the two-input, two-output (p = g = 2) case, we again generated efficient
input levels x;,, x,, from the uniform distribution on [10,20]. Next, we com-
puted output levels by generating w uniform on [§7%, 57] and setting y, =
x%4x94 X cos(w) and y, = x ) x9:* X sin(w). We then generated the observed
output levels by setting x; = x;,¢%%/¢/ and x, = x,,e%?/¢l where € ~ N(0,1) as
before. Efficiency is estimated for the fixed point x = (22.07,22.07), y =
(5.59,5.59) on each Monte Carlo trial. The true efficiency for this point is

0(x,y) = 0.6, as in the previous case.
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In both cases, the fixed points of interest were chosen to lie roughly in the
middle of the range of the output data. In the case where p = g = 2, the output
quantities, for a given level of inputs, are generated to lie on an arc between
7/18 and 87r/18 radians.

Table 1 shows results for coverages of confidence intervals estimated by the
bootstrap-with-subsampling using Algorithm 1 as described in Section 3.1. For
each sample size n, we examined bootstrap sample sizes m = n” with k €
{0.50,0.55,...,0.95,1.00}. When k = 1 Algorithm 1 is identical to the naive
bootstrap, which is known to provide inconsistent inference. For the case where
p = g = 1 shown in columns 3-5, the results in Table 1 reveal good coverages
for the ratio-based confidence intervals at the three significance levels consid-
ered when « is in the neighborhood of 0.80. The optimal value of k apparently
remains about the same as sample size is increased from 25 to 800.

The results for the case where p = ¢ = 2, shown in columns 6-8 of Table 1,
reveal reduced coverage relative to the results for p = g = 1 for given values of
n and «, because of the curse of dimensionality. However, with p = ¢ = 2, the
coverages of confidence intervals are consistently good across the various sam-
ple sizes when « lies in the neighborhood of 0.65-0.70. Not surprisingly, the
optimal value of k appears to depend on the dimensionality of the problem.
The results also indicate that, as a practical matter, the wrong choice of k, which
determines the size of the subsamples, can lead to very poor coverages.

Results from the double-smooth bootstrap using Algorithm 2 are shown in
Table 2, again for the cases p = ¢ = 1 (shown in columns 3-5) and p = ¢ = 2
(shown in columns 6-8). In either case, bandwidths b € {0.4, 0.6, 0.8, 1.0}
were used to smooth g, in step 1 of the algorithm, using (36). As discussed
previously, this bootstrap is inconsistent when b = 1; we include this case only
for comparison. The results in Table 2 indicate some gains in terms of coverage
of estimated confidence intervals as b is reduced below 1.0. In both cases, b =
0.4 appears too small, and indeed for p = ¢ = 2 results could not be computed
because numerical problems when n = 25 or n = 50 (see the discussion pre-
ceding Assumption 7).

Recall from the discussion surrounding (39) that our theoretical results imply
that the optimal value of b should be proportional to n~/G(»*a*1) Because
b is necessarily bounded between 0 and 1 (as opposed to bandwidths in
ordinary kernel estimators), it is independent of the units of measurement
for x and y. Clearly, b should be close to 1 for small n, and should become
smaller as n increases. Using b = n~/G(PTa*1) a5 a rule of thumb implies
that b = n~'/° for the case where p =g =1,and b = n" " forp = g = 2.
Hence, for p = ¢ = 1, the rule-of-thumb criterion yields b = 0.70, 0.65,
0.60, 0.56, 0.51, and 0.48 corresponding to n = 25, 50, 100, 200, 400, and
800, respectively; for p = ¢ = 2, we have b = 0.81, 0.77, 0.74, 0.70, 0.67,
and 0.64, respectively. The results in Table 2 indicate that the rule of thumb
gives rather reasonable choices for b. It is also interesting to note that, for
sample sizes of 50 or greater, the estimated coverages in Table 2 vary little
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TABLE 1. Coverage of confidence intervals estimated by
subsampling

p=qg=1(0-a) p=q=2(-a)

n K 0.90 0.95 0.99 0.90 0.95 0.99

25 050 0949 0976 0986 0.934 0.967 0.993
25 055 0958 0978 0993 0934 0.966 0.991
25 0.60 0.948 0970 0.993 0.899 0.951 0.990
25 0.65 0.949 0984 0999 0.891 0.940 0.988
25 070 0945 0963 0989 0.822 0.892 0.975
25 0.75 0927 0966 0988 0.779 0.868 0.964
25 0.80 0.920 0.967 099 0.704 0.808 0.935
25 0.85 0908 0.952 0991 0.641 0.752 0.909
25 090 0.877 0926 0972 0.567 0.681 0.853
25 095 0872 0922 0972 0499 0.618 0.821
25 1.00 0.801 0.879 0.956 0419 0.529 0.737

50 050 0975 0990 1.000 0.968 0.988 0.998
50 055 0974 0990 0998 0.943 0.982 0.998
50 0.60 0.969 0989 0994 0.920 0.962 0.996
50 0.65 0968 0.984 0997 0.874 0.926 0.983
50 0.70 0956 0.980 0.995 0.834 0.918 0.979
50 0.75 0952 0976 0994 0.766 0.847 0.942
50 0.80 0.928 0962 099 0.713 0.787 0.904
50 0.85 0902 0952 0.988 0.636 0.723 0.864
50 090 0905 0.947 0.988 0.533 0.629 0.798
50 095 0.857 0913 0971 0437 0.536 0.738
50 1.00 0.827 0.884 0964 0384 0476 0.665

100 0.50 0975 0994 0999 0.962 0.989 1.000
100 0.55 0978 0.997 1.000 0.935 0.972 0.998
100 0.60 0981 0.992 0999 0.905 0.953 0.986
100 0.65 0979 0991 0.998 0.887 0940 0.981
100 0.70 0976 0.990 0.999 0.842 0.890 0.961
100 0.75 0965 0.983 0998 0.787 0.864 0.948
100 0.80 0.939 0968 0.994 0.688 0.768 0.894
100 0.85 0914 0954 0985 0.639 0.732 0.854
100 090 0.890 0.934 0985 0.520 0.624 0.775
100 095 0.808 0.895 0962 0461 0.567 0.720
100 1.00 0.775 0.833 0.938 0.371 0.473 0.645

200 050 0975 0991 0999 0945 0.985 0.999
200  0.55 0983 099 1.000 0.951 0.981 0.996
200 0.60 0.985 0.997 1.000 0.941 0971 0.998
200 0.65 0.984 099 0999 0.910 0.938 0.985
200 0.70 0973 0991 0999 0.863 0.913 0973
200 0.75 0963 0981 1.000 0.770 0.850 0.936

(continued)
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TABLE 1. Continued

p=g=1(0-a) p=qg=2(0-a)

n I 0.90 0.95 0.99 0.90 0.95 0.99

200 0.80 0926 0971 0.995 0.699 0.788 0.904
200  0.85 0901 0948 0993 0.641 0.725 0.871
200 090 0.837 0.914 0976 0.534 0.633 0.791
200 095 0.805 0.876 0.965 0.418 0.518 0.693
200 1.00 0.733 0.821 0.945 0.348 0.435 0.645

400 050 0968 0.993 0.999 0.964 0.996 1.000
400 0.55 0986 099 0.999 0.957 0.983 0.996
400 0.60 0985 0995 1.000 0.954 0.983 0.999
400 0.65 0981 0.997 1.000 0.897 0.948 0.987
400 0.70 0965 0992 0999 0.861 0912 0.971
400 0.75 0953 0983 0994 0.795 0.873 0.955
400 0.80 0933 0967 0998 0.695 0.798 0.915
400 0.85 0.890 0.937 0985 0.623 0.741 0.876
400 090 0.809 0903 0971 0.519 0.608 0.785
400 095 0.768 0.842 0948 0.398 0.518 0.706
400 1.00 0.714 0.791 0.902 0.311 0398 0.573

800 0.50 0.946 0989 0995 0.944 0.985 0.998
800 0.55 0.972 0996 0998 0.954 0.987 0.998
800 0.60 0971 0.992 0998 0.961 0.981 0.995
800 0.65 0.962 0.991 0.999 0.924 0.964 0.988
800 0.70 0971 0991 0998 0.855 0.909 0.975
800 0.75 0951 0973 1.000 0.807 0.877 0.961
800 0.80 0.890 0.946 0.992 0.708 0.789 0.922
800 0.85 0.873 0929 0978 0.611 0.727 0.863
800 0.90 0.814 0.891 0968 0477 0.592 0.773
800 0.95 0.751 0.821 0.927 0.383 0.483 0.653
800 1.00 0.695 0.779 0.902 0.262 0.356 0.548

across b = 0.4 and b = 0.6 when p = ¢ = 1, and b = 0.6 and b = 0.8 when
p=qg=2

The estimated coverages shown in Table 2 reveal that, for the case p =g =1
and when b = 0.4 and n = 200 or 400 or when » = 0.6 and n = 800, the
estimated coverages obtained with the double-smooth bootstrap are similar to
the best coverages obtained with the subsampling bootstrap and shown in Table 1
when p = g =1 and n = 200, 400, or 800. With p = g = 2, Table 2 reveals that
coverages obtained with the double-smooth bootstrap are smaller than the best
coverages for p = g = 2 shown in Table 1 for the subsampling bootstrap. How-
ever, Table 1 also reveals that suboptimal choices of the tuning parameter k
required for the subsampling method can easily result in coverages worse than
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TABLE 2. Coverage of confidence intervals estimated by
double-smooth bootstrap

p=qg=1(0-a) p=q=2(-a)

n b 0.90 0.95 0.99 0.90 0.95 0.99

25 04 0793  0.869 0.953 — — —
50 04 0.831 0911 0.976 — — —
100 04 0870 0931 0973 0.672 0.781 0.937
200 04 0907 0964 0994 0.678 0.814 0.955
400 04 0910 0957 0991 0.762 0.849 0.952
800 0.4 0937 0971 0.997 0.763 0.859 0.962

25 0.6 0.810 0.883 0961 0456 0.589 0.831
50 0.6 0.861 0927 0.978 0.643 0.750 0.899
100 0.6 0.888 0934 0978 0.722 0.815 0.939
200 0.6 0916 0968 0995 0.746 0.856 0.962
400 0.6 0913 0959 0989 0.808 0.887 0.965
800 0.6 0916 0966 0.995 0.821 0.884 0.970

25 0.8 0.833 0900 0.962 0.641 0.753 0.900
50 0.8 0.868 0936 0981 0.665 0.770 0.908
100 0.8 0.881 0933 0980 0.744 0.848 0.950
200 0.8 0907 0962 099 0.794 0.877 0.965
400 0.8 0.892 0950 0986 0.808 0.887 0.967
800 0.8 0.882 0.938 0993 0.813 0.887 0.968

25 1.0 0.844 0913 0977 0.667 0.770  0.904
50 1.0 0.871 0933 0981 0.684 0.786 0.910
100 1.0 0878 0927 0981 0.760 0.855 0.950
200 1.0 0.891 0949 0994 0.793 0.866 0.959
400 1.0 0.866 0923 0982 0.792 0.864 0.955
800 1.0 0.855 0914 0986 0.773 0.848 0.950

those shown in Table 2 when b is chosen according to the rule of thumb dis-
cussed earlier. Moreover, the coverages in Table 2 are typically too small,
whereas coverages shown in Table 1 are either too large or too small, depend-
ing on whether « is chosen too small or too large.

5. CONCLUSIONS

The analysis in Section 2 establishes the asymptotic distribution of the DEA
efficiency estimator for the variable returns to scale case under rather weak
assumptions on the DGP, whereas the analysis in Section 3 establishes consis-
tency of two bootstrap procedures. The bootstrap procedures are necessary for
any practical application because the asymptotic distribution in Theorem 2 con-
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tains unknown terms and would be difficult either to estimate or to simulate.
As noted in Sections 1 and 4, there is at present no reliable way to choose the
size of subsamples in Algorithm 1, and hence we do not recommend the sub-
sampling bootstrap. Although Tables 1 and 2 indicate that in the best cases,
the subsampling bootstrap performs better than the double-smooth bootstrap
in terms of realized coverages, the practitioner—operating outside a Monte
Carlo framework—is unlikely to achieve such performance and is rather likely
to do worse than he or she would using the double-smooth bootstrap. The
second bootstrap procedure—based on smoothing—is, by contrast, readily
implementable and provides better coverage properties than the subsampling
bootstrap is likely to provide without more guidance on choice of the tuning
parameter . For finite samples in applications, one might optimize the choice
of the bandwidth b in Algorithm 2. This could be accomplished by iterating
the bootstrap procedures along the lines of Hall (1992).
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APPENDIX

Proof of Lemma 1. For all (zy,y;), (z2,y2) € ¥*(x) and every a € [0,1], the def-
inition of 8x lmphes that [agx(zhyl) + (1 - a)gx(z% yZ)] (.X/”)C”) tZ.= gx(zou 5)01)
(x/||x]) + 24 with (24, %) = (az; + (1 — @)z2,ay; + (1 — a)y,) € ¥*(x). Conse-
quently, g, is a convex function. The same arguments apply to ¢,. In view of Assump-
tion 6 twice-differentiability of g, and continuity of g”(0,y) in x are immediate
consequences of (12). Assumption 1 implies that

X X
1= a0<gx(z.,y1) [ + zl,y.> +(1- a)0<gx(12,yz) Tl +z2,yz>

>0<(agx(z1,y1) + (1 —a)gx(Zz,yz))ﬁ,y> (A1)

holds for all (z,y1),(z2,y2) € ¥*(x), (z1,y1) # (22,y2), and every a € [0,1] with
az; + (1 — a)z, = 0 and ay; + (1 — a)y, = y. Because 6(g,(0, y)(x/||x]),y) = 1, we
can conclude that ag(z1, y1) + (1 — @)g.(z5, y2) > g,(0, y), which leads to the asserted
structure of g.'.

By our assumptions and assertion (ii) 7(6,Z,y) = ((g.(6 Ef;f 429, 9)/60)(x/
[x]) + Ef;ll ;2. y) is a twice continuously differentiable, bijective mapping from
(0,11 X RP~! X RY, into W. Note that T(0,Z,y) = T\(T»(6,<,y)), where Ti(y,Z,y) =
(y(x/lx]) + 221 429, y) and T2(0,4,y) = ((g,(0 2= £;29,9)/6,),{, ). Here T,
corresponds to a simple change of the coordinate system, and |det(J,(y,{,y))| > 0 for
all (y,{,y), where J; denotes the Jacobian matrix of partial derivatives of Ty; 75 is a
twice continuously differentiable, injective mapping. All rows of the Jacobian matrix J,
of partial derivatives of T, are linearly independent, and therefore |det(J,(6,Z,y))| > 0
for all (6,¢,y). Therefore, by well-known results on variable transformation we have

p—1
gx(ﬁ > Z,-z<“,y>
j=1

f_:r(a,g»Y)z det Jy #757})

X |det(‘]2(9’§,)’))| Xf(Tl(T2(07§5 )’))), (A.Z)

and continuity of f, on D = T~!(D) follows from the continuity of f on D. Furthermore,

f(0(x,y)x,y) > 0 implies f,(1,0,y) = |det(J;(g:(0,y),{, y))| X |det(J>(1,0,y))| X
f(6(x,y)x,y) > 0. The continuity of f,(1,0, y) in x follows from the preceding structure
of f, together with 6(x,y) = g.(0,y)/| x| and our assumption on 6(x, y). n
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Proof of Lemma 2. By definition of a DEA frontier we have 0(x,v)/0(x,y) —1=
Sn=(r+tatD if and only if there exists a B8 > 0 with B/6(x,y) — 1 =
Sn~2/(rat D guch that

k
Y, =y and > a,X;,=px (A.3)

1 i=1

-

i

n

hold for some a; =0, ..., @, = 0 with 27_, a; = 1. The relations in (8) and (12) imply
X; = (g.(6,Z;,Y:)/6;| x|)x + Z;. Because all Z; are orthogonal to x, (A.3) holds if and
only if (16) is satisfied and X/, ;(g,(6, Z;,Y;)/0;| x|) = B. The lemma now follows
from g,(0,y) = [x[6(x,y). u

LEMMA Al. Suppose that Assumptions 1-6 hold for a given (x,y) € D and let b, h
be real numbers with 0 < b = h/2. Consider k € N arbitrary points (01,21, 1),
ey (O, 24, yi) € D satisfying

k k
Earzr:()’ Earyr:y (A'4)
r=1 r=1

or some ay, ... o, = 0 with 25 a, = 1. If (0, 4, yo) & C(x, y; hn = V/PTaTDY thep
r=1%r A y

for all sufficiently large n there exists some (Z,5) € V*(x) with (1,%,5) € C(x,y;

bn~VPra+ Dy sych that

k—1
&z, +@i=0, 2 &y t&y=y (A.5)
r=1

for some &y, ..., & = 0 with Ele &, = 1 and such that

Looe0z,y) D ed0,z,,y,) | gdZ49)
S o, el L S g +

, o
S 0.8.0,y) ST 6,80,y Fg(0,y)

+ oy -@hbn YTt (AL6)

where ¢, = min{3},(co/8¢.(0,y))} and c is defined as in Lemma 1(ii).

Proof. Assume that (A.4) holds with (6, zi, vi) & C(x, y; in~"/Ta+ D) Then either
O = 1 — h2n 2@ra*tD and (1,z4, v0) € C(x,y;hn~V@+ratDy or (1,24, yi) &
C(x,y;hn~ l/(p+q+1)).

First consider the case where 6, = 1 — h%n=2/P+a*D but (1,74, v) € Clx,y;
hn~V(rTa+t D) Because (1/6,) — 1 = 1 — 6, we obtain g.(0czr, vi)/0kg:(0,y) =
8x(Okzie, ¥1)/ 8:(0,y) + (1 — 6,)(gx(Oxzrs yi)/8x(0, y)). Straightforward Taylor ex-
pansions of g, can be used to show that for all sufficiently large n,

gx(ekzlw yI\) - gx(zk7 yI\)
gkgx(oa )’) gx(oy Y)

1 (Zps 1
+-(1-6)= M T+ = 2 rarD), (A7)
2 g:0,y) 2
Note that (1, 74, yi) € C(x, y;in~YPTa V) implies that (1, (b/h)zy, y + (b/h) (ye — y)) E
C(x,y;bn~"(rtat 1)) Relation (A.5) thus holds for (Z,%) := ((b/h)zx,y + (b/h)
(ye — ) and & = a,((b/h)/((b/h) + ax(1 = (b/h)))) and & = ay(1/((b/h) + ay(1 —
(b/h)))). Then (A.7) and convexity of g, lead to
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k X(GrZI" r‘)
Sa b ) _

r=1 grgx(O, }’)

( gx(ﬁrz”yr)>
a—————
r=1 argx(ory)

+ A.8
b i <1 ) (A.8)
PR
’ ( )
7 8\ Lk
g0,z | RSN ( b> 2.(0,y)
=2 a & - )
r=1 argx(o’ y) gx(ov y) h g.x(o’ )’)
v a2 Ly (A.9)
“h2
'S gd6,z,,y,) (Z,5) 1
=3 g % & % + @, = bhn~YP ). (A10)
r=1 0rgx(oay) gx(ov y) 2

It now only remains to prove (A.6) for the case where (1,zi,yr) & C(x,y;
hn~V@*ar D) Let v = max{8|(1,8zr,y + 8(ye — y)) € C(x,y;hn~/P+ratD)L and
af = a,(y/(y + a, (1 — 7))) and o = ak(l/(y + a,(1 — y))) This yields

k=1 k=1
Saiz taiya =0, 3y +ailyty(-) -y (a1D
r=1 r=1

By definition of g, we have g,(6xz, yi)/60k = g.(zx, yx). Convexity of g, and arguments
similar to (A.10) then imply

v

X _
26! @ QX +(1—-7v)

gx(aanYr) Kl % gx(arznyr) *<‘ygx(zk7yk) gx(Q)’))
S 6,80, ST 6,8.0,y) 8.(0,y) £.(0,y)

(A.12)

-1

L e02,,y) e (v y v (v —y)
= Z a, ay
=i 0,80, 8:(0,y)

Finally, define (Z,5) 1= ((b/h)yzi,y + (b/h)y(yi — ¥)), & = a((b/h)/((b/h) +
a;(1 = (b/h)))), and & = a;(1/((b/h) + a;(1 — (b/h)))). Clearly, then, (1,%,5) €
C(x,y;bn="/(PTa+ 1)) "and relation (A.5) is a direct consequence of (A.11). Moreover,
for sufficiently large n,
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L 80,2.,Y) | g(vzy (v — )

al a;
r=1 erg,x(ovy) ! gv(07y)
’ ( +( )
- g.(yze, —_
U g8z,y,) | p STV ( b) 2.(0,)
r=1 Hrgx(oﬁy) gx(()’y) h gx(()’y)
S ad8z,,y,) (21 1) b coh?n” /vty
=3 a g el g 2 (A13)
r=1 Grgx(o’y) gx((),y) h 8gx(07y)

By using Lemma 1(ii) the second inequality follows from Taylor expansions of
&:(yzi,y + y(y — y)) and g.(0,y) at the point (Z,5) = ((b/h)yzi,y + (b/h)
v(yx — y)). Note that the first derivatives cancel out because of (b/h)/(yzx — (b/h)yz;) +
(1 = (/) (=(b/h)yzi) = 0 and (b/h)(y(yx — y) = (b/h)y(yx — ¥)) + (1 — (b/h))-
(=(b/h)y(yx — y)) = 0. The bound given in (A.13) is then obtained by an analysis of
( YZk ? >
v (—y)

h?, and that inf(;, _ (e ypn- ey infl, 2 078l (z,w)v = (co/2) for all sufficiently
large n, where ¢ is defined in Lemma 1(ii). Combining (A.12) and (A.13) yields (A.6).
|

the second derivatives while taking into account that 1 — (b/h) = 3,

Proof of Theorem 1. Let z(V, ..., z»~ Y denote the orthonormal basis of V(x) used
in the definition of f,. Note that the sample S, of observations can be equivalently rep-
resented by the corresponding samples S, = {(6,,Z,,Y,)}, and S, = {(6,,¢,, V)V,
where ¢; is determined by Z; = /- £;z/).

Choose an arbitrary b > 0 and set b, = b-n~"/PTa™D p* = p /(2(p — 1) + 2q). For
i=1,...,p—landj=1,...,q, define

By, = {(v,W) € R”™' X R max|v,| = b, |v; = b,| = by,
r#EQ
max \yx—wslsb:}, (A.14)
s=1,..., q

n’ n’

B, = {(v,w) € R X RY|max|v,| = b}, |v;, + b,| = b}
r#i
max |y, —w,| =b:l, (A.15)
s=1

Byreapon = { (0w) €RIXRY _max  [o,| =B,
1 p—1

=

maxly;wslsb:,|y,-+b,rw,-|sb:}, (A.16)
SF] ;
Byjiagp1) = {(u,w> SRV XRY| max [v,|=b;

ns
r=1,..., P

max|y, = w,| = b7, 1y, = b, — wj| Sb':}. (A.17)
SFj
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Finally, forj =1,...,2(p — 1) + 2g let B; denote the set of all (z,w) € V(x) X R% with
(z,w) = (3 v,z(f),w) for some (v,w) € B
It follows from Assumptions 4 and 5 that if n is sufficiently large,

D,,:==[1—-b21]1XB,CD (A.18)

forall j=1,...,2(p — 1) + 2q. Recall that D denotes the support of f.

Foreachj=1,...,2(p — 1) + 2q the set 51«’,, has Lebesgue measure equal to (2/(2(p —
1) + 2g))Pta~1pP*Ta+1.(1/n), and our assumptions on the distribution of the random
variables (6;,¢;,Y;) thus imply Prob[(6;,{:,y:) € D;,]1 = agh?* 7" -(1/n) + o(1/n)
for ag = £.(1,0,)(2/(2(p — 1) + 2¢))?"9~'. Because (6;,;,Y;), i = 1,...,n, are
independent we have lim,_,., Prob(S, N D;,, = &) = lim, (1 = (agh?* 7" 1)/n)" =
exp(—aoh?*9"1), When additionally using the Bonferroni inequality, we can thus infer
that there exist some 0 < dy, d; < oo such that for all n sufficiently large,

1= Q2(p—1) +2q)-exp(—dyb?* 1)
=Prob(S,ND,,#< Vj=1,...,2(p—1) +2q)
=1—exp(—d, br+e"). (A.19)

Hence for every € > 0, there exists a b < oo such that for all b = b, and all n suffi-
ciently large,

Prob(S,N D, ,#J Vj=1,...2(p—1)+2¢9)=1-e. (A.20)

By (A.20), assertion (i) of the theorem holds if there is an h. > 0 such that for all
h > h, the following conditional probabilities are equivalent for sufficiently large n:

Prob(A[8,n]|S, N D, ,# T Vj)
= Prob(A[8,n;h-n VP " VS ND,,#T Vj). (A.21)
Now we will demonstrate that (A.21) is satisfied for all 7 = ¢3-b, where ¢3 < oo denotes

a suitable constant that will be specified in what follows.
By construction of B; and B;, for any (2, §) € ¥*(x) with (1,Z,7) € C(x,y;b;) and

arbitrary vectors (é],Zl,wl) € [1 - b;fal] X Bla---7(02(pfl)+2qa ZZ(p*I)Jqu,
wz((, 1)+2q) € [1 = b2, 1] X Ba(p—1)+24, there exist some vy, ..., ¥a(p—1)+24 = 0 with
{p=1+24 = 1 such that
2(p—1)+2q 2(p—1)+2¢q
D RS ED S (A.22)
j=1 j=1

By definition of (6, %;,i;), for sufficiently large n (g.(6;%;,#;)/g.(0,y)) = 1.5
” ( 7y)) H 2(p —1) +29)b;;, and

sup [ sup UTgX”(z,w)v] =c; (A.23)

(1, z,w)EC(x, y;b6)) Llvl=1
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for some ¢; < oo. Therefore, for all n sufficiently large,

8:(53) 0L .(6,7,%)

= Y =
gx(oyy) Jj=1 ! ajgx(o’y)
2(p—1)+2¢q 0.5, 7. 7,y
- E yj(gx(e_z Z‘,,W_/) I 1.5<i _ 1)) - 2.(2,7) + Czbzn—z/(ﬁﬂﬁl)’
= 8:(0,y) 6; 8.(0,y)

(A.24)

where ¢ = (2(p — 1) + 29)¢3)/28,(0,y) + 2.

Using the continuity of g, the second inequality can be derived from second-order
Taylor expansions of gx(e”,z,,w_,) at (Z, ). Note that because of (A.22) all first-order
terms cancel out.

Set c3 = ¢,(2(p — 1) + 2q)/cy, where ¢ is defined by Lemma A1, and let b = b, and
h = c3b. Consider an arbitrary (6, z,w) € S, with (6, z,w) & C(x, y;hn~"/(7+atD) and
assume that for k < n there exist some (01,21, 1), - .., (6c—1,2k—1, Vi—1) € S, such that
(A.4) holds with (6, zx, v) = (6,z,w). Lemma Al then implies that there is a (Z, ¥)
with (1,Z,5) € C(x, y;(b/(2(p — 1) + 2g))n~"/(P*a+ 1)) such that relations (A.5) and
(A.6) are satisfied when b is replaced by (b/2(p — 1) + 2q)).

On the other hand, S, N D, #JVYj=1,...,2(p — 1) + 2q imposes the exis-
tence of 2(p — 1) + 2g points (6,,Z,,m) € S, N [I — b2,1] X By,...,
(52(1,71)4,(1,22(1,71)4,(1,%2(1,71)4,%) € S, N [1 = b2,1] X By(p—1)+4 For some suitable
V1w Ya(p—1)+q = 0 with Eji’fflﬂq'yj = 1, we then obtain (A.22)—(A.24), and one
can conclude from (A.6) that

k—1

- &l(0.7,,5) g:(0z,w)
E @, 273
r=1 ergx(oay) egx(oyy)

gx(erzr’yr) +a gx(z7y) ta €163
S 0,80, fg0,y)  f20p-1+2¢

25, =2/(ptq+1)

] Y(0r2r7 r) 2p +2q x(ész)
8, Y ~ M (A.25)
=1

=Yg 2L :
= 0,6,00,y) i 12 e 6,8.(0,y)
where a,, @, are defined as in Lemma A1. Clearly, >} &, + Efi’f_l)”q a@,y; =1and

1@z, + BTV Gy 5 = 0and B &y, + 270 ay = .

Note that (6;,%,i%;) € S, N C(x,y;in~YP*a*V) for all j. From (A.25), if S, N
D;, # & VY j, then the minimal value of X;a;(g.(6;Z;,Y:)/0,8.(0,y)) over all
ay,...,a, =0 with D a; = 1 is achieved by those linear combinations that assign zero
weight a; = 0 to all observations with (6, z,w) := (6;,Z;,Y;) & C(x,y;hn~Vr+a+),
This leads to (A.21) and thus completes the proof of part (i).

Consider part (ii). First note that our assumption on N implies that sup(, .. . men
(lo =] + |w — W[) < oo. Therefore, ¢; := inf(z jen fr, (1,0, 5) > 0, and g:(0, ) and
supy, -, v7g¢(0,5)v are uniformly bounded for (%,7) € N. Let b = by((logn)/
(loglogn))/ptath p = p.p=Vwtath and b* = (b,/(2(p — 1) + 24)) for some
by > 0. For sufficiently large 7 it is then possible to construct a grid (x,,y,) € N, r =1,
e, n P V/(PF0) of y(Pra=D/(p+a) points with the property that N C {(y(x,/]x.[) +
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¥ EV¥|(1,z,¥) € C(x,,y,,b ) r e{l,...,n+ta= /9 o > 0}, Replace (x, y) by
(x,,y,) to define sets B;"’ and D analogoue to those used in the proof of assertion (i).
Because the values 1an S, O y,) = ¢; > 0 are uniformly bounded for all r, proba-

bility bounds analogous to (A.19) can be established for constants 0 < dj, d; < oo that
can be chosen independent of r. The Bonferroni inequality then yields

Prob(S, N D) # & forallj=1,...,2(p— 1) +2¢q

and all r=1,...,n@®r+2a=D/Cr+2q+1))

logn

=1—prra Ve (p—1) + 2q)-exp< dob{ ! ) -1 (A.26)

loglogn

as n — co. Now assume that S, N D(’) # & for all j,r. There then exist some
@7,z2"w") € 8, N D(’) such that for all r and all (1,7, 5) € C(x,,y,;b")
we obtam Z= 22(" 1)Jrz"'y Z ) and § = 22(” Dt2a 'yj~(r for some suitable y; = 0
with X;y; = 1. Because ((g,, (0(') ) ~(’))/0(r))(x /lx ) + Z;,w;) € S,, definition

of ¢, and g, and arguments 31m11ar to (A 24) lead to

o g, 00505

gx,(za }N)) = g}c,(za 5)) = 7j A
j= b

J

log n 2/(p+q+1)
—) s (A.27)

=g, (3,5) + & b3n ¥ rrath
' loglogn

where &, may be chosen independent of r because g, (0,y,) and g}’ (0, y,) are uniformly
bounded. Note that also the partial derivatives of 6(X%,¥) are uniformly bounded for
(%,¥) € N. By suitable Taylor expansions of 6 it therefore follows from (A.27) that
there exists a constant & < oo, independent of r, (Z, ¥), so that

1- (gx,(z J)— T2, y)
HX,H

'xr - o~ A ~ o~ xr ~ o~
0 <gx,(2, ) — +12, y) -0 <gx,(z, y)— +32, y)
x| Ix, |

logn )2/(p+q+l)

(A.28)
loglogn

=¢, bgn*Z/(erqH) <

We can then conclude that for some & < &, < oo, all rand all (1,Z,5) € C(x,,y,;b))

. X,

9<gx,.(2, J)— + z,y>
x|

A ~ o~ xr ~ o~

018, (25— +Z,7
x|
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logn 2/(p+q+1)
—1= 54b§n*2/(p+q+l) -z

loglogn
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Consider an arbitrary (%, §) € N. By construction, (%, §) = (g, (Az, 7)/M) (x,/|x.[) +
z,y) for some 7, (1,z,9) € C(x,,y,,b;), and some A = 1, which implies (0(%, $)/
0(%,35) = (008, (Z,9)(x./]x) + Z,9/(0(8,,(Z,9)(x,/|x,]) + Z7)) for Z = Az
Assertion (20) then is a consequence of (A.26) and (A.29). Furthermore, note that con-
vexity of g, implies that £,(A;z,5) = &.(A,z,¥) for A; > A, > 0. Therefore, with z =
% — (x"%/[x|?)x (21) follows from (20) and (6(%,5)/0(%, 7)) = (£.(0(%,7)z, y))/
(8:(0(X,9)z, 7)) = (8.(0(X,7)z,7))/(g:(0(%,57)z,5)) = L.

Proof of Proposition 1. Recall the definition of A[S,n;h]. Because z, =
Op(n~VPHat D)y — Y| = 0p(n~VP*a* V) and 1 — 6, = O,(n~ > rra* D), Taylor
expansions of g, yield

8.(6,Z;,Y,) Fooog(6,Z,,Y,) — 8.0, y)
E a Jj 7 J _ 1 — E a] J J 7
=t 0,8.00,y) = 8.0, y)

+2 (1= 6}_)+()p(n’2/(”+‘1+1))

Il
M
\Q

[ 78020, 9)Zy + 22 g (0, 9) (Y, — )
+ (Y, = 9)78:, (0, ) (Y, — ¥)]
k
+ 2 a;(1=6,) + 0,(n/7rar V), (A.30)
j=1

where the convergence is uniform for all possible (X;,Y;) € C(x,y;hn~ Vptat)y,
Note that necessarily 2/ 12[8::(0,9)-Z; + g1.,(0,y)- (Y —y)] =0, where g.(0,y) =
(8+:2(0, ), 8;,(0,y)")” denotes the vector "of first derivatives of g at (0, y).

The density f; is continuous at (1,0, y). Hence, the probability that there is an obser-
vation in C(x, y;h-n~"/(P*a+1D) is asymptotically equivalent to 7 (k) f, (1,0, y)-n~'. Thus
for large n, the distribution of the number k of points in C(x, y;h-n~ /T4t D) follows
approximately a Poisson distribution with parameter 7(h)f,(1,0, y). Continuity of the
densities implies that the conditional distribution of (6;,¢;,Y;), given (6;,Z,,Y;) €
C(x,y;h-n~"/w*rat D)) ig uniform on C(h-n~ Vet D) 1= [1 — p2p=2/ et 1] X
[_hn—1/(p+q+1)’hn—1/(p+q+1):|n—l X [y, — hn_]/(”“’“),yl + hn—l/(P+q+1)] X oo X
[y, — hn~VPFatl y 4 pp=1/(p+a+ D] Combining these arguments with (A.30) reveals
that

i - 7(h k_x(170a )k =
Prob(A[8,n;1]) — >, Prob(A[8, n; h; k]) ()fk—'y e TWLLOMT 50 (A31)
k=1 !

as n — oo, where for a sequence (0, ,, &1 Y10y -« s (O nir Cims Vi) OF k i.i.d. random
variables uniformly distributed on C(h-n~"(*4tD) we use A[8,n;h;k] to describe
the following event: there exist some «; = 0,...,a; = 0 with 2;‘:1 a; = 1 such that
2] ya;¥,, = yand
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k p—1
zaj n=0 forZ k= Elgj,n,,_z“) (A.32)
j= r=
and
K 1
o ——— 0,y)Z; , +2ZF " (0,y)(Y,, —
; /2gx(0,y)[ Z! 8. 0,9)Z; , +2Z] g (0, y)(Y,, —y)
+ (Y, =978l (0,9)(Y,, — )]

k
+ > a(1—6;,) =8-n rtath, (A.33)
j=1

The assertion of the proposition now follows from the fact that A[8,n;h; k] is realized
iff the event U[(8/h?),k] is realized for &, = (1/h2n~2/PFa*V)(1 = §; ), & = (1/
hn~ Vet D) F o and §; = (1/hn = VY(PFatD) (¥, , — y). It then follows that uniformity of
(0.0 ns ¥ n) on C(h-n~1r+a+D) i equivalent to uniformity of (3;,;, ;) on [0,1] X
[—1,1]77" X [—1,1]7 and that (A.32) corresponds to (22). Finally, (A.33) implies (23)
when v is replaced by §/h2. [ ]

Proof of Theorem 2. Let

0 k]) 7(h)*/(1,0,y)

— =7 (h)£:(1,0, y)
R o e . (A.34)

Fx,/i((s) = i PrOb <U|:

Clearly, F, ,(-) is a distribution function with F, ,(0) = 0 and F, ,(c0) = 1. By defini-
tion of the respective events we obtain

Prob(A[8,n;h]) = Prob(A[8,n;h*]) = Prob(A[8,n]) =1 (A.35)

for all 8,n and all 1 > h. From Proposition 1 F, ,(8) = F, ,+(6) = 1 for any 6§ > 0,
implying that {F, ,(8)},=¢ is a bounded sequence of monotonically increasing real num-
bers and thus necessarily converges to a limit value. Together with Theorem 1(i) we can
therefore conclude that there exists a monotone function F,(5) such that

F.(8) = hm F, ,(8) = lim Prob(A[8,n]). (A.36)

Clearly, F, is a distribution function with F,(0) = 0 and F,(c0) = 1.

It only remains to verify relation (26) and to show that F, is continuous and that
F(8) =1 — exp(—8f,(1,0, y)>(P+a+ D) < 1, This requires a closer analysis of Prob(U[(8/
h?),k]). There exists a 0 < dy < oo such that for all y > 0 and all sufficiently large k,
[Prob(U[y, k]) — Prob(U[y, k + 1])| = dy/k. Consequently, if [¢] is the largest integer
that is smaller than or equal to ¢,

|Prob(U[y, k]) — Prob(U[y,[Ak]])| = d,- max {A - 1,% — 1} (A.37)
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holds for any y > 0, A > 0 and all sufficiently large k. Otherwise, for large h a
Poisson distribution with parameter 7(h)f.(1,0,y) can be well approximated
by an N(7(h)f.(1,0,y), 7(h)f(1,0,y))-distribution. In particular, with s, _ = 7(h)

F(1,0,y) = log h-NT(h) f(1,0,), 5, = 7(h)£(1,0,y) + logh-N7(h)£.(1,0,y) we
obtain L (7 (h)4F, (1,0, y)* /k)e " WA1:00) — 0 and 2o (T (W (1,0, y)* /k!)
e 7WLL0Y) 5 0 as h — oo. Combining these arguments reveals

F,(((S) = hle Fx,h((s)

= }}im {Prob <U[h—i,[7(h)ﬂ(1,0,y)]]>
[sp,+1 S
+ > [Prob (UI:—Z,k:|>
k=[sp, -] h
) _
— Prob (U [ PR [7(h)£.(1,0, y)]] )]

7(h)*£.(1,0,y)*
X i —

e T(MA0.0.7)
k!

)
= lim Prob <U|:h—2,[’r(h)]i(l,0,y)]:|>, (A.38)

h—oo

when noting that for k € [[s;,—],[ss+]] relation (A.17) implies that |Prob(U[(8/h?),
k]) = Prob(U[(8/h?),[7(h) f:(1,0,ID] = domax{([ss+1/[7(h)f(1,0,y)]) — 1,
([7(h) f:(1,0,y)]/[sn,—1) — 1} = 0 as h — oo. Relation (26) then follows from

8 . Fo(1,0, y)>/(rrarD
lim Prob (U I: ﬁ, [7(h)f.(1,0, y)]:l) = g;rg Prob <U |:5 W,k] >,

h—oo

(A.39)

and by using (27) the continuity of F,(8) for § > 0 is a consequence of

F.(1,0, y)/prarh g pra+/2 ])
Prob (U |:6 -

(k//\(17+q+1)/2)2/(,,+q+1), etz
s (] s B0
TO (k/)\(l;+q+l)/2)2/(p+q+1), NI

1
= d,-max {)\(1’“1“)/2 -1, — - 1}. (A.40)

|F,(A8) — F,(8)| = lim
k—co

> A\(ptatD/2
Clearly, the event U[8(f(1,0,y)>/P+a+D/k2/(p*a+D) k] implies that (9,7,

V) € s = [0,8(fi(1,0,y)¥ prat ) g2/(prat Dyl 5 [(—1/kM/(pratD)) (1/
kVrrat Dy =l o [(—1/kV/(rat D) (1/k"V/(Pta+tD)]4 for at least one observation
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jE{l,...,k}. Because Prob(I; 5) = 8( £(1,0, y)?/(?*a+ 1 /&) for all sufficiently large k,
standard arguments now lead to

'X 1,0, 2/(p+q+1)
pon{ o[ 0077 ]

k2/(pra+1)
= Prob((ﬁj,@,g) €1, s forsomej€E{l,..., k})
=1—exp(—8f.(1,0, y)¥PTatD) a5k — co. (A.41)

Consequently F, is continuous at § = 0, and F,(8) < 1 for all § > 0. u

Proof of Corollary 1. By definition of 6,  we have 6 (x, y)/A =60(Ax,y) and 0 (x, v)/

A = 0(\x,y). Consequently, (0(Ax,y)/0(Ax,y)) = (6(x,y)/0(x,y)) for all A > 0. Fur-
thermore, F), = F, because x/| x| = Ax/|Ax| implies that g, = g,, and also f, = fy..
|

Proof of Theorem 3. The bootstrap samples S,, can be represented equivalently by
the samples S* = {(07,Z;, Y/ )}, or S = {(07,¢F,Y)}",. Recall the definitions of
the events A[ 8, n; h] and A[ 8, n]; replace n by m and (6;,Z;,Y;) by (67,Z7,Y;) to define
events A[5,m;h]* and A[S,m]* and note that by a straightforward generalization of
Lemma 2 Prob[m2/(P*4+D((9*(x, y)/6(x,y)) — 1) = 8|S,] = Prob(A[8, m]*|S,) holds
for all m, 8. Theorem 2 implies |m¥ P4tV ((A(x, y)/6(x,y)) — 1)| > 0 as n — oo, and

hence

2/(p+q+1) é*(x,y) *
sup | Prob | m?/(»*4 ——— — 1] =4S, | — Prob(A[6,m]*|S,)| = 0,(1).
5 0(x,y)

(A42)

Now consider the sets C(x,y;am~/(PT4TD) and note that Prob((6],Z},Y*) €
C(x,y; hm~"(r+a+tD)|S Y is equivalent to the relative frequency of points in S, falling
into C(x, y; hm~"/(P*atD) Consequently,

i

Prob((@i,Zi,Yi) e C(x,y;hm‘1/<1’+‘/+1)))

Prob((07,Z;,Y) € C(x, y; hm ™V rrat)|S )

1 ‘ = 0,(n'*"172), (A43)

Standard results on the convergence of the empirical distribution now can be used
to show that also the conditional distributions of the points falling into C(x,y;
hn~Yrtat Dy agymptotically coincide:

Prob[(6;,Z7,Y") € C|S,]
Prob[(6;, Z;,Y;) € C(x,y;hm™"/(r*a*)[S ]

i

sup
c

Prob[(ﬁ,-,Z,-,Yi) € C]
PrOb[(OhZth) € C()C, y;hmil/(erqul))]

= ()p(l), (A.44)

where the supremum refers to all (p + ¢)-dimensional subintervals C of C(x,y;
hm—l/(l)+q+l)).
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This leads to sups|Prob(A[8,m;h]*|S,) — Prob(A[8,m;h])| 2> 0 as n — oo.
By arguments similar to those used to prove Theorem 1, it follows that for all
€ > 0 there exists an &, such that for every h = h,, Prob(sups |Prob(A[8, m; h]*|S,) —
Prob(A[8,m])| = €) > 0 and Prob(sups|P(A[8,m;h]*|S,) — P(A[8,m]*|S,)| =
€) 25 0 as n — oo. The assertion of the theorem now follows from (A.42) and Theo-
rems 1 and 2. u

Proof of Theorem 4. Recall the definitions of the events A[8,n;h] and A[S,n].
Replace (6;,Z;,Y;) by (67,Z:,Y") and g, by g! to define events A[S,n;h]* and
A[8,n]*. First, note that for all n,

2/(p+q+1) é*(x,y) *
Prob (| n?/(»*a R —1) =85S, | =Prob(A[8,n]*|S,). (A.45)
60(x,y)

Conditional on S, the essential parts of the arguments used in the proofs of Lemma
Al and Theorem 1 remain valid when applied to ¢; and f; instead of g, and f,. This is
easily seen when noting that g7 is necessarily convex and that with probability converg-
ing to 1 as n — oo the bounds given in (A.13) and (A.25) also apply to g:. Because
n~Yprath/p 5 0, the latter follows from (38) and Taylor expansions of g* similar
to (39). Furthermore, because of (40) relations (A.19)—(A.21) generalize to S, and £
Therefore for any € > 0 there exists an . > 0 such that for all h = A,

Prob (sup[Prob(A[b‘,n]* |S,) — Prob(A[8,n,h]*|S,)] = e> —1 asn—o. (A.46)
)

On the other hand, in view of (38)-(40), one can invoke arguments similar to those
used in the proof of Proposition 1 to obtain

8 ]) 7(h)*£.(1,0, )

Prob(A[8,n,h]*|S,) — > Prob (Ul:;, k 0 e TNA(1,0.7)
= !

sup
5
=o0,(1).

The theorem now follows from Theorem 2. u
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