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Nonparametric data envelopment analysis ~DEA! estimators based on linear pro-
gramming methods have been widely applied in analyses of productive effi-
ciency+ The distributions of these estimators remain unknown except in the simple
case of one input and one output, and previous bootstrap methods proposed for
inference have not been proved consistent, making inference doubtful+ This paper
derives the asymptotic distribution of DEA estimators under variable returns to
scale+ This result is used to prove consistency of two different bootstrap proce-
dures ~one based on subsampling, the other based on smoothing!+ The smooth
bootstrap requires smoothing the irregularly bounded density of inputs and out-
puts and smoothing the DEA frontier estimate+ Both bootstrap procedures allow
for dependence of the inefficiency process on output levels and the mix of inputs
in the case of input-oriented measures, or on input levels and the mix of outputs
in the case of output-oriented measures+

1. INTRODUCTION

Nonparametric data envelopment analysis ~DEA! estimators based on the orig-
inal ideas of Debreu ~1951!, Farrell ~1957!, and Shephard ~1970! and employ-
ing linear programming methods along the lines of Charnes, Cooper, and Rhodes
~1978, 1979! and Färe, Grosskopf, and Lovell ~1985! have been widely applied+
Until recently, however, little was known about their statistical properties+ Under
certain assumptions, the DEA frontier estimator is a consistent, maximum like-
lihood estimator ~Banker, 1993! with a known rate of convergence ~Koroste-
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lev, Simar, and Tsybakov, 1995!+ In addition, consistency and convergence rates
of DEA efficiency estimators have been established ~Kneip, Park, and Simar,
1998; for a survey of recent developments regarding statistical properties of
DEA estimators, see Simar and Wilson, 2000b!+ But until now, the asymptotic
distribution of DEA efficiency estimators has remained unknown except for
the limited case of one input, one output derived by Gijbels, Mammen, Park,
and Simar ~1999!; there have been no results that would allow one to perform
classical inference regarding efficiency in more general ~and more realistic! cases
with multiple inputs and outputs+ Moreover, the bootstrap methods proposed
by Simar and Wilson ~1998, 2000a! have been the only means for inferences
about efficiency based on DEA estimators in a multivariate framework, but con-
sistency for these procedures has not been proved+

This paper addresses these shortcomings by deriving the asymptotic distribu-
tion of DEA estimators under variable returns to scale, with arbitrary numbers
of inputs and outputs+ This is accomplished by characterizing DEA efficiency
scores in a new way and then localizing the problem in Theorem 1, which estab-
lishes that the DEA estimator for a given point is determined by observations in
a small neighborhood of the projection of the given point onto the frontier+ The
asymptotic distribution derived in Theorem 2 is then used to prove that two dif-
ferent bootstrap methods—one based on subsampling, the other on smoothing—
yield consistent inference+

It is not surprising that a bootstrap based on subsampling would work in the
DEA context; Swanepoel ~1986! discussed this approach for inference about
the boundary of support for a univariate distribution+ Our simulation results
presented in Section 4 indicate that the choice of the size of the subsamples is
critical; suboptimal choices can be catastrophic for realized coverages of esti-
mated confidence intervals+ Unfortunately, there seems to be no reliable way of
determining a reasonable value of the subsample size in applied settings+ Exper-
imentation with an iterated subsampling bootstrap has proved almost useless;
for any realistic original sample size, the inner bootstrap loops contain too few
observations to provide useful information on the “optimal” subsample size+

The second bootstrap approach provides a tractable approach to inference
with DEA estimators but at a cost of increased complexity over the subsam-
pling approach+ Our second approach involves smoothing not only the distribu-
tion of the observations as proposed in Simar and Wilson ~1998, 2000a! but
also the initial estimate of the frontier itself+ This necessitates choosing values
for two smoothing parameters+ One of these can be optimized using existing
methods from kernel density estimation; in the second case, we provide a sim-
ple approach for selecting the bandwidth used to smooth the frontier estimate+
We provide simulation results demonstrating that the method works well, pro-
vided that the sample size n is sufficiently large for the given dimensionality of
the problem ~this caveat should be of no surprise, because it is now well known
that the curse of dimensionality affects the quality of the initial DEA point esti-
mates; again, for discussion, see Simar and Wilson, 2000b!+
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To establish notation for the rest of the paper, suppose that firms use input
quantities x � R�

p to produce output quantities y � R�
q + The production set

C � $~x, y!6x can produce y% (1)

may be described in terms of its sections

Y~x! [ $ y 6~x, y! � C% (2)

and

X ~ y! [ $x 6~x, y! � C%, (3)

which form the output feasibility and input requirement sets, respectively+ Knowl-
edge of either Y~x! for all x or X ~ y! for all y is equivalent to knowledge of C;
thus, both Y~x! and X ~ y! inherit the properties of C+ We denote the boundary
of X ~ y! by

X ]~ y! � $x 6~x, y! � C, ~dx, y! � C ∀ d � 1%+ (4)

Various economic assumptions regarding C are possible; we adopt those of
Shephard ~1970! and Färe ~1988!+

Assumption 1. C is closed and strictly convex+

Note that Assumption 1 implies that Y ~x! is closed, strictly convex, and
bounded for all x � R�

p and that X ~ y! is closed and strictly convex for all
y � R�

q + The boundary C] of C constitutes the technology+ Microeconomic
theory of the firm suggests that in perfectly competitive markets, firms operat-
ing in the interior of C will be driven from the market but makes no prediction
of how long this might take+

Assumption 2. ~x, y! � C if x � 0, y � 0, y � 0; i+e+, all production requires
use of some inputs+

Assumption 3. For Ix � x, Iy � y, if ~x, y! � C then ~ Ix, y! � C and ~x, Iy! �
C; i+e+, both inputs and outputs are strongly disposable+

Here and throughout, inequalities involving vectors are defined on an element-
by-element basis; e+g+, for Ix, x � R�

p , Ix � x means that some number � �
$0, 1, + + + , p% of the corresponding elements of Ix and x are equal, whereas
~ p � �! of the elements of Ix are greater than the corresponding elements of x+
Note that Assumption 3 is equivalent to an assumption of monotonicity of the
technology+

Various measures of technical efficiency are possible+ We use the Farrell
~1957! measure of input technical efficiency, defined by

u~x, y! [ inf $d6~dx, y! � C, d � 0% (5)

ASYMPTOTICS AND CONSISTENT BOOTSTRAPS FOR DEA 1665

https://doi.org/10.1017/S0266466608080651 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466608080651


for an arbitrary point ~x, y! � R�
p�q+ This is the the reciprocal of the Shephard

~1970! input distance function+ For ~x, y! � C, 0 � u~x, y! � 1+ Note that u
provides a measure of euclidean distance from the point ~x, y! � R�

p�q to the
boundary of C in a direction parallel to the input axes and orthogonal to the
output axes+ To conserve space, we consider only the input orientation; all of
our results extend to output-oriented measures after straightforward, although
perhaps tedious, changes in notation+

Of course, C and hence u~x, y! are unknown and must be estimated from a
sample of observations Sn � $~Xi ,Yi !%i�1

n + The next three assumptions define a
data generating process ~DGP!; the framework here is similar to that in Simar
~1996!, Kneip et al+ ~1998!, and Simar and Wilson ~1998, 2000a!+

Assumption 4. The n observations in Sn are identically, independently dis-
tributed ~i+i+d+! random variables on the convex attainable set C+

Assumption 5. ~a! The ~X,Y ! possess a joint density f with support D � C;
~b! f is continuous on D; and ~c! f ~u~x, y!x, y! � 0 for all ~x, y! in the interior
of D+

Clearly,Assumption 5~c! imposes a discontinuity in f at frontier points where
u~x, y!� 1, ensuring a significant, nonnegligible probability of observing pro-
duction units close to the production frontier+ For technically nonattainable points
that lie outside C, f [ 0+ In most practical situations, D �C; however,Assump-
tion 5 does not exclude the possibility that D is a strict subset of C+

Assumption 6. The function u~x, y! is twice continuously differentiable for
all ~x, y! � D+

By definition of u, we obtain u~x, y!� lu~lx, y! for any l � 0+ Hence, if u
is twice continuously differentiable at some point ~x, y! in the interior of D, it
is also twice continuously differentiable at any point ~lx, y! for arbitrary l+
Essentially, Assumption 6 only requires that the boundary of C is sufficiently
smooth+

To illustrate Assumptions 5 and 6 let us consider the case of a single input,
p � 1+ Then x � R�, and there exists a well-defined frontier function g~ y! :�
inf $x 6~x, y! � C% , i+e+, the well-known production function that for each out-
put y gives the corresponding efficient input g~ y!+ Consequently, u~x, y! �
g~ y!0x, and Assumption 6 is satisfied if the production function g~ y! is twice
continuously differentiable+ Observations ~Xi ,Yi ! may be rewritten in the form
Xi � g~Yi ! � ei , where ei � Xi � g~Yi ! � 0+ Input-oriented parametric
approaches to frontier analysis then usually rely on explicit modeling of the
structure of g and of the distribution of ei + For example, it is frequently assumed
that ei possesses a half-normal distribution and that ei is independent of Yi +
Let f� denote the density of the half-normal probability density function,
with f�~v! � 0 for v � 0, f�~v! � 0 for v � 0+ If, in addition, Yi possesses
a continuous density Df with Df ~ y! � 0 for all y � R�

q , then x and y have
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joint density f ~x, y! � f�~x � g~ y!! Df ~ y!+ Then f ~u~x, y!x, y! � f ~g~ y!, y! �
f�~0! Df ~ y! � 0 for all ~x, y! � C, and Assumption 5 holds with D � C+ Of
course, this only constitutes a particular example with p � 1+ Assumption 5
will be fulfilled in much more complex situations+

Assumptions 1– 6 describe the statistical model+ In the analysis that follows,
we concentrate on a fixed point ~x, y! � C; interest lies in making inference
about the distance measure u~x, y!+

The DEA estimator of C is merely the convex hull of the free disposal hull
of Sn and is given by

ZC � $~x, y!6y � Ya, x � Xa, i 'a � 1, a � R�
n %, (6)

where Y � @ y1 + + + yn# , X � @x1 + + + xn# , i denotes an ~n � 1! vector of ones, and
a is an ~n � 1! vector of intensity variables+ The corresponding DEA estimator
of u~x, y! is obtained by replacing C with ZC in ~5!; i+e+,

Zu~x, y! � min$d � 0 6y � Ya, dx � Xa, i 'a � 1, a � R�
n %+ (7)

Minimization of the linear program in ~7! provides a solution for both d and a+
Whereas u~x, y! defined in ~5! gives a measure of distance from a point ~x, y! �

R�
p�q to the boundary of C, Zu~x, y! measures distance from the same point to

the boundary of the convex hull of the free-disposal hull of the n sample obser-
vations+ Note that necessarily ZC � C and hence Zu~x, y!� u~x, y! for all ~x, y!+
The statistical performance of the DEA estimator Zu~x, y! of u~x, y! depends on
the smoothness of the frontier+ Kneip et al+ ~1998! derive different rates of con-
vergence depending on the degree of smoothness+ Per Assumption 6, we con-
sider only the case where u~x, y! is twice-differentiable+ For this case, Kneip
et al+ ~1998! prove that Zu~x, y!� u~x, y!� Op~n�20~ p�q�1! !; as with many non-
parametric estimators, DEA estimators suffer from the curse of dimensionality+

2. ASYMPTOTIC DISTRIBUTION OF DEA ESTIMATORS

In this section we derive the ~previously unknown! asymptotic distribution of
DEA estimators for the general case with arbitrary numbers of inputs p and
outputs q+ Along the way, Theorem 1 characterizes the “local” nature of the
estimation problem and provides results on uniform convergence+ Theorem 2
establishes the asymptotic distribution+ It thus provides a basis to prove consis-
tency of the bootstrap methods that are given in Section 3+ All proofs are given
in the Appendix+

Before actually stating our results some conceptual work has to be done+ Recall
the definition of the “frontier” X ]~ y! defined in ~4! that establishes the sets of
all technologically feasible, efficient input vectors for a given output vector y+
As discussed previously, we have X ]~ y! � $g~ y!% if p � 1+ A basic problem
when dealing with multiple inputs and outputs is the nonexistence of a unique,
well-defined production function g~ y!+ If p � 1, then X ]~ y! defined in ~4! con-
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tains a set of efficient input vectors corresponding to the output level y+ Ineffi-
cient points with output level y can be projected onto X ]~ y!; e+g+, for two linearly
independent vectors x *, x ** we have u~x *, y!x * � X ]~ y! and u~x **, y!x ** �
X ]~ y!, but u~x *, y!x * � u~x **, y!x **+

It is then only possible to characterize the frontier as a function of y and of
suitable coordinates of input vectors+ There are infinitely many coordinate sys-
tems, and we will concentrate on a decomposition of the vectors Xi of inputs
that is specific for a particular point of interest x � R�

p + Let V~x! denote the
~ p � 1!-dimensional linear space of all vectors z � R

p such that z Tx � 0+ Any
input vector Xi adopts a unique decomposition of the form

Xi � gi

x

7x7
� Zi for some Zi � V~x! and gi �

x TXi

7x7
, (8)

where 7{7 denotes the euclidean norm+ Let C*~x! � V~x! � R�
q and note that

the point of interest ~x, y! � C has coordinates ~0, y! in C*~x!+ We can infer
from Assumption 3 that for any ~z, y! � C*~x! there exists g � 0 such that
~g~x07x7! � z, y! � C+ The boundary of C can thus be described through the
following function defined for any ~z, y! � C*~x!:

gx ~z, y! � inf�g 6�g x

7x7
� z, y� � C� + (9)

This definition implies that

C � ��g x

7x7
� z, y�6~z, y! � V~x!,g� gx ~z, y!� (10)

and

X ]~ y! � �gx ~z, y!
x

7x7
� z 6z � V~x!� + (11)

Thus gx may be interpreted as a “frontier function” that characterizes the
frontier X ]~ y! in the coordinate system ~z, y!+ For any v � R�

p we have v �
~x Tv07x72 !x � z for z � v � ~x Tv07x72 !x+ Because u~v, y!v � X ]~ y! for
all ~v, y! � C, ~10!–~11! yield

u~v, y!
x Tv

7x7
� gx ~u~v, y!z, y! and u~x, y!�

gx ~0, y!

7x7
+ (12)

Moreover, the DEA estimator of the frontier and of u~{,{! can be similarly trans-
formed by writing

[gx ~z, y! � inf�g 6�g x

7x7
� z, y� � ZC� (13)
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and

Zu~v, y!
x Tv

7x7
� [gx ~ Zu~v, y!z, y! and Zu~x, y!�

[gx ~0, y!

7x7
+ (14)

Finally, with only a small abuse of notation, one may extend the definition of
gx to all ~v, y! with ~v� ~x Tv07x72!x, y! � C*~x! by taking gx~v, y!� gx~v�
~x Tv07x72!x, y!+ Note that in this notation, because of ~12!, gx~v, y! is contin-
uous in x+

In the case of one input ~ p � 1!, the function gx is simply the production
function and does not depend on x+ Then V � $0% and gx~0, y! [ g~ y!� u~x, y!x
for all x+

We want to emphasize that the preceding relations hold for an arbitrary choice
of x+ When using a different base vector x * � x, then for all possible y the
alternative “frontier” function gx * will describe the same frontier X ]~ y! in a
different coordinate system, and ~12! remains true when replacing x by x *+Also
note that gx � glx for l � 0+

Figure 1 illustrates the definition of gx for the case p � 2+ For a given output
vector y, the input requirement set X ~ y! is a convex subset of R�

2 with effi-

Figure 1. Illustration of gx for the case p � 2 for 7x7 � 1+
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ciency boundary X ]~ y!, shown by the solid curve+ Now consider an input vec-
tor x with 7x7� 1+ The ray gx, g� 0, is represented by the dashed line passing
through the origin+ For a vector z with z Tx � 0, gx � z represented by the
dash-dot-dash line is parallel to gx+ The intersection between gx � z and X ]~ y!
then determines the point gx~z, y!x � z+

Let z ~1!, + + + , z ~ p�1! be an orthonormal basis of V~x!+ Every vector Z � V~x!
can be expressed in the form Z � �j�1

p�1 zj z ~ j ! + Let zi � ~zi1, + + + ,zi, p�1!+
Because ui � u~Xi ,Yi ! and Zi � Xi � ~x TXi07x72!x are smooth functions of
~Xi ,Yi !, Assumption 5 implies that ~ui ,zi ,Yi ! has a density Nfx on ~0,1#� R

p�1 �
R�

q + Let OD denote the support of this density+
For any point ~x, y! of interest the corresponding frontier function gx and the

density Nfx will provide the basic tools for our theoretical study+ Roughly speak-
ing, our approach provides a decomposition into a function gx characterizing
the technological frontier and a density Nfx describing the distribution of obser-
vations relative to the frontier+ This corresponds to the strategy adopted by all
existing parametric frontier models+ If D � C then OD � ~0,1# � R

p�1 � R�
q ,

and if f is continuous on C then Nfx is continuous on its whole domain ~0,1# �
R

p�1 � R�
q + Nonparametric estimates of gx and fx will play a key role in the

derivation of the smoothed bootstrap of Section 3+2+
The following lemma summarizes the most important properties of gx

and fx +

LEMMA 1+ Let ~x, y! be in the interior of D. By Assumptions 1–6,

(i) gx and [gx are convex functions;
(ii) the function gx~z, y! is twice continuously differentiable for all points
~z, y! � C*~x!; the matrix gx

''~0, y! of second derivatives at ~0, y! is
positive semidefinite, and there exists a constant c0 � 0 such that
w Tgx

''~0, y!w � c0 ∀ w � V~x! � R
q with 7w7 � 1; moreover, gx

''~0, y!
changes continuously in x;

(iii) Nfx~{,{,{! is continuous on OD, and Nfx~1,0, y! � 0; furthermore, Nfx~1,0, y!
changes continuously in x.

As noted earlier, Kneip et al+ ~1998! showed that the rate of convergence of
the input inefficiency estimator is Op~n�20~ p�q�1! !+ The following lemma shows
that the problem of specifying the distribution of Zu~x, y!0u~x, y! can be refor-
mulated in terms of gx and of the distribution of u~Xi ,Yi !, Zi , and Yi +

LEMMA 2+ Let ~x, y! be in the interior of D. Under Assumptions 1–6 we
obtain for any d � 0

Prob� Zu~x, y!
u~x, y!

� 1 � dn�20~ p�q�1!�� Prob~A@d, n# ! , (15)
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where A@d, n# denotes the following event: There exist some a1 � 0, + + + ,an � 0
with �j�1

n aj � 1 such that

�
i�1

n

ai Zi � 0, �
i�1

n

ai Yi � y, and

�
i�1

n

ai

gx ~ui Zi ,Yi !

ui gx ~0, y!
� 1 � dn�20~ p�q�1!, (16)

where ui � u~Xi ,Yi ! and Zi � Xi � ~x TXi07x72!x.

Theorem 1, which follows, provides a basis for our theoretical development
and for the construction of bootstrap procedures in Section 3+ Although Theo-
rem 1~ii! provides results on uniform convergence on suitable subsets, Theo-
rem 1~i! plays an important role by “localizing” the frontier problem+ The value
of Zu~x, y! is essentially determined by those observations that fall into a small
neighborhood of ~u~x, y!x, y!+ Note that for the proof of the theorem, Assump-
tion 1 is crucial+ The theorem does not apply if, e+g+, the frontier is linear or
conical, because in such cases Zu~x, y! may be determined by points very far
from the point of interest ~x, y!+

More precisely, it will be shown that under our assumptions Prob~A@d, n# !
asymptotically coincides with the probabilities of events A@d, n;h# , which only
depend on observations in a suitable neighborhood of the point ~x, y! of inter-
est+ Note that the sample of observations Sn can be represented equivalently by
the corresponding samples DSn � $~ui , Zi ,Yi !%i�1

n or NSn � $~ui ,zi ,Yi !%i�1
n , where

zi is determined by Zi � �j�1
p�1 zij z ~ j ! + Next, define a set C~x, y;h! by

C~x, y;h! � �~u, Iz, Iy! � ~0,1#�C*~x! 6 1 � u� h 2,

z � �
j

zj z ~ j ! with 6zj 6� h ∀ j � 1, + + + , p � 1,

6yr � Iyr 6 � h ∀ r � 1, + + + ,q� + (17)

The point ~1,0, y! in the transformed space $~u~v, Iy!, v� ~x Tv07x72!x, Iy!6~v, Iy!�
C% corresponds to the boundary point ~u~x, y!x, y! in the original space C+
The set C~x, y;h! is a neighborhood of the transformed boundary point ~1,0, y!+
Then let A@d, n; h# denote the following event: for some k � n and i1, + + + ,
ik � $1, + + + , n% , there exist some ~Xi1 ,Yi1 !, + + + , ~Xik ,Yik ! with ~ui1 , Zi1 ,Yi1 !,
+ + + , ~uik , Zik ,Yik ! � DSn � C~x, y;h{n�10~ p�q�1! ! and some a1 � 0, + + + ,ak � 0
with �j�1

k aj � 1 such that �j�1
k aj Yij � y, �j�1

k aj Zij � 0, and
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�
j�1

k

aj

gx ~uij Zij ,Yij !

uij gx ~0, y!
� 1 � dn�20~ p�q�1!+ (18)

Again, uij � u~Xij ,Yij ! and Zij � Xij � ~x TXij 07x7
2 !x+

THEOREM 1+ Let ~x, y! be in the interior of D. Then under Assumptions
1–6,

(i) for any e � 0 there exists an he � ` such that for all h � he, every
d � 0, and all sufficiently large n,

6Prob~A@d, n# !� Prob~A@d, n;h# !6 � e; (19)

(ii) for any closed, bounded subset N of the interior of D with inf Ix, Iy�N
f ~ Ix, Iy! � 0,

Prob� sup
~ Ix, Iy!�N �

Zu~ Ix, Iy!

u~ Ix, Iy!
� 1� � n�20~ p�q�1! ~ log n!20~ p�q�1!�r 1

as nr ` (20)

and

Prob� sup
~ Ix, Iy!�N� [gx�u~ Ix, Iy!� Ix �

x T Ix

7x72�x, Iy�
gx�u~ Ix, Iy!� Ix �

x T Ix

7x72�x, Iy� � 1� � n�20~ p�q�1! ~ log n!20~ p�q�1!� r 1

as nr `. (21)

To examine the probabilities P~A@d, n;h# !, still more notation is required+
Let ~ Eq1, Dz1, Iy1!, ~ Eq2, Dz2, Iy2!, + + + denote a sequence of i+i+d+ random variables uni-
formly distributed on @0,1# � @�1,1# p�1 � @�1,1# q + For k � N, let U @g, k#
denote the following event: there exist some a1 � 0, + + + ,ak � 0 with
�j�1

k aj � 1 such that

�
j�1

k

aj Iyj � 0 and �
j�1

k

aj Iz ~ j ! � 0, (22)

where Izj � �r�1
p�1 Dzjr z ~r! and

�
j�1

k

aj

1

2gx ~0, y!
@ Izj

T gx; zz
'' ~0, y! Izj � 2 Izj

T gx; zy
'' ~0, y! Iyj � Iyj

T gx; yy
'' ~0, y! Iyj #

� �
j�1

k

aj Eqj � g+ (23)
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Here we use

g ''~x;0, y! � �gx; zz
'' ~0, y! gx; zy

'' ~0, y!T

gx; zy
'' ~0, y! gx; yy

'' ~0, y! 	 (24)

to denote the matrix of second derivatives of gx at ~0, y!+ Finally, let t~h! �
2~ p�q�1!h ~ p�q�1! +

PROPOSITION 1+ Under the conditions of Theorem 1,

�Prob~A@d, n;h# !� �
k�1

`

Prob�U� d
h 2
, k	� t~h!k Nfx ~1,0, y!k

k!
e�t~h! Nfx ~1,0, y!�r 0

(25)

as n r ` for any h � 0.

We are now ready to state a theorem about the asymptotic distribution of
n20~ p�q�1!~ Zu~x, y!0u~x, y! � 1!+

THEOREM 2+ Under the conditions of Theorem 1, let

Fx ~d! � lim
kr`

Prob�U�d Nfx ~1,0, y!20~ p�q�1!

k 20~ p�q�1!
, k	� (26)

for �` � d � `. Then Fx is a continuous distribution function with Fx~0!� 0,
0 � Fx~d! � 1 � exp~�d Nfx~1,0, y!20~ p�q�1! ! � 1, and

Fx ~d! � lim
nr`

Prob�n20~ p�q�1!� Zu~x, y!
u~x, y!

� 1� � d	
� lim

nr`
Prob~A@d, n# !

� lim
hr`

�
k�1

`

Prob�U� d
h 2
, k	� t~h!k Nfx ~1,0, y!k

k!
e�t~h! Nfx ~1,0, y!. (27)

The theorem shows that the asymptotic distribution Fx~d! is stochastically
dominated by the distribution function 1 � exp~�d Nfx~1,0, y!20~ p�q�1!! of an expo-
nential distribution with parameter Nfx~1,0, y!20~ p�q�1! + If mx denotes the mean
of Fx , we therefore obtain mx � 10 Nfx~1,0, y!20~ p�q�1!+

Indeed, Fx~d!� 1 � exp~�d Nfx~1,0, y!20~ p�q�1! ! in the special case p � 1 and
q � 0+ This is easily verified: obviously p � 1 and q � 0 corresponds to the
~rather uninteresting! situation of firms that all produce a common, fixed out-
put using some variable input Xi � R�+ The frontier is then given by the min-
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imal possible input xmin+Assumption 6 is trivially satisfied for u~x! [ u~x, y!�
xmin0x, and Assumption 5 is fulfilled if the density f ~x! [ f ~x, y! of Xi is con-
tinuous for x � xmin with f ~xmin! � 0+ For a sample X1, + + + , Xn we obtain the
trivial DEA estimators [xmin � mini Xi and Zu~x!� [xmin0x+ Because there are no z
or y variables, gx is simply a constant equal to xmin, whereas Nf ~u! [ Nfx~u, z, y!
is the density of ui � xmin0Xi + Here f ~xmin!� 0 implies Nf ~1!� 0+With Eq1, + + + , Eqk

denoting i+i+d+ random variables uniformly distributed on @0,1# , the event U @g, k#
then corresponds to the event that there exists some aj � 0, �j aj � 1, such that
�j�1

k aj Eqj � g+ The latter is equivalent to requiring that Eqmin; k � minj Eqj � g+
It is well known that for i+i+d+ random variables Eqj ; Uniform~ @0,1# ! the sta-
tistics k Eqmin; k asymptotically follow an exponential distribution with parameter
l � 1+ Therefore, in this situation

lim
kr`

Prob�U�d Nfx ~1,0, y!20~ p�q�1!

k 20~ p�q�1!
, k	� � lim

kr`
Prob� Eqmin; k � d

Nf ~1!

k
�

� 1 � exp~�d Nf ~1!!+ (28)

In the general case p � 1, q � 1, it seems to be difficult to evaluate ana-
lytic expressions for ~26!+ Nevertheless Fx is a well-defined, continuous prob-
ability distribution+ Recalling the definition of the event U~{,{!, it is clear that
the shape of the distribution function Fx is then determined by ~ p � q!~ p �
q � 1!02 � 2 parameters that are ~a! the value Nfx~1,0, y! of the density Nfx ,
~b! the value gx~0, y! of the function gx at the corresponding frontier point,
and ~c! the matrix gx

''~0, y! of second derivatives of gx at ~0, y!+ If these
parameters were known, quantiles of the asymptotic distribution could be esti-
mated by Monte Carlo simulations+ Unfortunately, however, obtaining reliable
estimates of the matrix gx

''~0, y! necessary for this approach to work well
seems particularly difficult+ Fortunately, the bootstrap, when bootstrap sam-
ples are drawn appropriately, provides a way out of this difficulty+

We finally note that the condition that ~x, y! be in the interior of D does not
impose a substantial restriction+ The following corollary shows that Theorem 2
also characterizes the distribution of Zu~lx, y!0u~lx, y! for any l � 0+ The
boundary point ~u~x, y!x, y! is a particular case with l � u~x, y!+

COROLLARY 1+ Under the conditions of Theorem 2,

Fx ~d! � lim
nr`

Prob�n20~ p�q�1!� Zu~lx, y!

u~lx, y!
� 1� � d	 for all l � 0. (29)

3. BOOTSTRAPPING DEA ESTIMATORS

Two bootstrap methods are presented in this section, and their consistency for
inference-making purposes is established in Theorems 3 and 4 using the results
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from Section 2+ The first bootstrap method is, in principle, easy to apply but
depends critically on a tuning parameter for which to date no reliable method
exists for choosing its value+ The second method depends on two tuning param-
eters for which we offer data-based methods for selecting values in real-world
applications+

As in Section 2, we consider a fixed point ~x, y! � D satisfying Assump-
tion 6+ In this section, we consider suitable bootstrap procedures for estimating
confidence intervals for u~x, y!+

The simplest bootstrap would, on each replication, take n independent draws
from the empirical distribution of the observations in Sn to construct a pseudo-
sample Sn

* and then apply ~7! to obtain a bootstrap estimate Zu*~x, y! ~note that
Zu*~x, y! measures distance from the original point of interest, ~x, y!, to the bound-

ary of the convex hull of the free-disposal hull of the pseudo-observations in
Sn
*!+ However, this naive bootstrap does not provide consistent inference as

discussed by Simar and Wilson ~1999b, 1999a!+ From Theorem 1 it is clear that
as n r `, the distribution of n20~ p�q�1!~ Zu*0 Zu � 1! does not tend to the true
distribution F+ The empirical distribution of ~ui , Zi ,Yi ! does not converge suf-
ficiently fast to mimic the true probabilities on the sets C~x, y;hn�10~ p�q�1! !
which are proportional to 10n+ This result is not surprising; it is well known
that the naive bootstrap does not work in the case of estimating the boundary
of support for a univariate distribution ~see, e+g+, Bickel and Freedman, 1981!+

We consider two different bootstrap approaches; the first is based on subsam-
pling, whereas the second is based on smoothing+

3.1. Bootstrap with Subsampling

Let m � nk for some k � ~0,1! and consider the following bootstrap scheme+

Algorithm 1.

1+ Generate a bootstrap sample Sm
* � $~Xi

*,Yi
*!%i�1

m by randomly drawing
~independently, uniformly, and with replacement! m observations from
the original sample, Sn+

2+ Apply the DEA estimator in ~7! to construct bootstrap estimates Zu*~x, y!+
3+ Repeat steps ~1!–~2! B times; use the resulting bootstrap values to approx-

imate the conditional distribution of m20~ p�q�1!~ Zu*~x, y!0 Zu~x, y!�1! given
Sn and use this approximation to approximate the unknown distribution
of n20~ p�q�1!~ Zu~x, y!0u~x, y! � 1!+ For a given a � ~0,1!, use the boot-
strap values to estimate the quantiles da02,m, d1�a02,m where

Prob�m20~ p�q�1!� Zu*~x, y!Zu~x, y!
� 1� � da02,m 6Sn	�

a

2
, (30)

Prob�m20~ p�q�1!� Zu*~x, y!Zu~x, y!
� 1� � d1�a02,m 6Sn	� 1 �

a

2
+ (31)
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4+ Compute @ Zu~x, y!0~1 � n�20~ p�q�1!d1�a02,m!, Zu~x, y!0~1 � n�20~ p�q�1!

da02,m!# , a symmetric 1 � a confidence interval estimate for u~x, y!+

Consistency of this bootstrap is easily demonstrated by the following theorem+

THEOREM 3+ Under the conditions of Theorem 1, let m [ m~n! � nk for
some k � ~0,1! . Then

sup
d�0

�Fx ~d!� Prob�m20~ p�q�1!� Zu*~x, y!Zu~x, y!
� 1� � d6Sn	� p

&& 0

as nr `. (32)

3.2. Bootstrap with Smoothing

Alternatively, a bootstrap procedure that generates pseudo-samples based on a
smoothed empirical distribution and a smoothed estimate of gx allows consis-
tent inference about u~x, y!+ This bootstrap procedure consists of the following
steps ~details of the smoothing procedures will be discussed later in this section!+

Algorithm 2.

1+ Compute a smooth analogue [gx
*~z, Iy! of the frontier function [gx~z, Iy!;

details are given subsequently+
2+ Draw a bootstrap sample NSn

* � $~ui
*,zi
*,Yi

*!%i�1
n by i+i+d+ sampling from a

smooth, nonparametric estimate Zfx of the density Nfx + Then determine DSn
*�

$~ui
*, Zi

*,Yi
*!%i�1

n using Zi
* � �j�1

p�1 zij
* z ~ j ! +

3+ Define a bootstrap sample Sn
* � $~Xi

*,Yi
*!%i�1

n of size n by setting

Xi
* �

[gx
*~ui
*Zi
*,Yi

*!

ui
*

x

7x7
� Zi

*+ (33)

4+ Apply the original DEA estimator in ~7! to obtain a bootstrap estimate
Zu*~x, y!+

5+ Repeat steps ~2!–~4! B times; use the resulting bootstrap values to approx-
imate the conditional distribution of ~ Zu*~x, y!0 Zu~x, y! � 1! given Sn and
use this to approximate the unknown distribution of ~ Zu~x, y!0u~x, y!� 1!+
For a given a � ~0,1!, use the bootstrap values to estimate the quantiles
da02, d1�a02 where

Prob�� Zu*~x, y!Zu~x, y!
� 1� � da02 6Sn	�

a

2
, (34)
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Prob�� Zu*~x, y!Zu~x, y!
� 1� � d1�a02 6Sn	� 1 �

a

2
+ (35)

6+ Compute @ Zu~x, y!0~1 � d1�a02!, Zu~x, y!0~1 � da02!# , a symmetric ~1 � a!
confidence interval estimate for u~x, y!+

Recall that if p � 1, then gx is the “frontier function” and does not depend
on x+ Moreover, in this case, Zi [ 0 and Zfx and gx only depend on y+ However,
for p � 1 the preceding steps define gx and Zfx specifically for the point ~x, y!
that is of interest+ Consequently, if confidence intervals are to be constructed
for the efficiency measure defined in ~5! evaluated at different points in R�

p�q ,
separate bootstraps must be performed for each of these points+

In the simulations described in the next section, we use kernel estimators to
approximate Nfx + The only particular difficulty is the discontinuity of Nfx~u,z, Iy!
at points ~u,z, Iy! with u � 1+ This problem is handled by reflecting obser-
vations ~ Zui ,zi ,Yi ! to obtain ~2 � Zui ,zi ,Yi ! ~where Zui denotes the efficiency esti-
mate computed from the smoothed frontier [gx

* for the ith observation! and
incorporating the resulting 2n points in the estimation+We use a Gaussian prod-
uct kernel, with separate bandwidths for each marginal dimension chosen using
the univariate two-stage plug-in method described by Sheather and Jones ~1991!+
Alternatively, one could use least-squares cross-validation as described by Simar
and Wilson ~2000a!, but the approach employed here imposes much less com-
putational burden+

The specification of the function [gx
* in step ~1! of Algorithm 2 is crucial

for validity of the bootstrap procedure+ Unfortunately, it is not possible to
rely on the estimated DEA frontier+ The difference between [gx and gx is of
order n�20~ p�q�1! ; even more importantly, [gx is not differentiable and hence
does not possess the same degree of smoothness as gx + Setting [gx

* � [gx

therefore does not seem to lead to a consistent bootstrap+ Even if the dis-
tributions of ~ui , Zi ,Yi ! and ~ui

*, Zi
*,Yi

*! were identical, the asymptotic distri-
butions of �j�1

k aj ~gx ~uj Zj ,Yj !0uj gx ~0, y!! � 1 and �j�1
k aj ~ [gx ~uj

*Zj
*,Yj

*!0
uj
* [gx ~0, y!! � 1 would not in general coincide+
It is important to understand the purpose of smoothing the DEA frontier esti-

mate+ We do not require [gx
* to be closer to gx than to [gx + It suffices if the rela-

tive distances Igx~z, Iy!0gx~z, Iy! do not change very much with ~z, Iy!+ If, for some
b � 0, we have bgx~z, Iy! � Igx~z, Iy! for all ~z, Iy!, then gx~ui Zi ,Yi !0gx~0, y! �
Igx~ui Zi ,Yi !0 Igx~0, y!, and by Lemma 2 the errors of the resulting DEA estima-

tors are identical+ In effect, proportionality is not necessary+ We can infer from
Proposition 1 that even if the first derivatives of gx and Igx

* are completely dif-
ferent, the limiting distributions will be close as long as the second derivatives
approximately coincide+ In smoothing the DEA frontier function in step ~1!, it
is therefore essential to preserve convexity+

One possibility would be to employ convolution smoothing of [gx + This
approach, however, presents a formidable integration problem in ~ p � q � 1!-
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dimensions, and it seems unlikely that such an approach could be successfully
implemented with real data+ Alternatively, one may use a bandwidth b � ~0,1!
to define a smooth bootstrap frontier [gx

* by

[gx
*~z, Iy! � [gx ~0, y!� b2� [gx� z

b
, y �

Iy � y

b
�� [gx ~0, y!	 + (36)

Note that setting b � 1 in ~36! results in no smoothing of the frontier; in this
case, the resulting procedure is similar to the “single-smooth” algorithm pro-
posed by Simar and Wilson ~2000a!+

To understand the motivation for the smoothing in ~36!, let b � 1 and define

gx
*~z, Iy! � gx ~0, y!� b2�gx� z

b
, y �

Iy � y

b
�� gx ~0, y!	 + (37)

The following properties are easily verified: ~a! [gx
* and gx

* are convex func-
tions; ~b! [gx

*~0, y!� [gx~0, y!� Zu~x, y!7x7 and gx
*~0, y!� gx~0, y!� u~x, y!7x7;

~c! the second derivatives of gx
* and of gx at the point ~0, y! are identical, i+e+,

gx
''~0, y!� gx

*''~0, y!; and ~d! by Theorem 1~ii!, with probability tending to 1 as
n r `,

� [gx
*~z, Iy!

[gx
*~0, y!

�
gx
*~z, Iy!

gx
*~0, y! � � �b2

[gx� z

b
, y �

Iy � y

b
�

[gx ~0, y!
� b2

gx� z

b
, y �

Iy � y

b
�

gx ~0, y!
�

� b2n�20~ p�q�1! log n (38)

holds for all ~1, z, Iy! � C~x, y;h{n�10~ p�q�1! !, h � 0, if n�10~ p�q�1!0b r 0+
By Theorem 1~i!, property ~d! implies that if b2 log n r 0 as n r `,

the difference between [gx
* and gx

* in the relevant neighborhoods C~x, y;
h{n�10~ p�q�1! ! of ~x, y! is of smaller order than n�20~ p�q�1! + Asymptotically, a
bootstrap based on [gx

* will thus provide the same results as a bootstrap
directly relying on gx

*+ On the other hand, it follows from properties ~a!–~c!
that the parameters determining the asymptotic distribution of efficiency esti-
mates from gx

* coincide with those from gx +
It is possible to determine a suitable order of magnitude of b+ For purposes

of establishing consistency of the bootstrap, gx need only be twice continu-
ously differentiable ~see Assumption 7 later in this section!+ Here, we assume
that gx is three times continuously differentiable only for selecting a suitable
order of magnitude for b+ Of course, one might exploit this assumption to develop
an inefficiency estimator different from the DEA estimator; such a method would
be based on further smoothing of the frontier but would likely be rather more
complicated for practitioners than the DEA estimator that is the focus of this
paper+ If gx is replaced by gx

*, then ~A+30!, which appears in the Appendix in
the proof of Proposition 1, becomes
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�
j�1

k

aj

gx
*~uij Zij ,Yij !

uij gx
*~0, y!

� 1 � �
j�1

k

aj

gx
*~Zij ,Yij !� gx

*~0, y!

gx
*~0, y!

� �
j�1

k

aj ~1 � uij !

� Op~n
�30~ p�q�1! !

� �
j�1

k

aj

1

2gx
*~0, y!

@Zij
T gx; zz
*'' ~0, y!Zij

� 2Zij
T gx; zy
*'' ~0, y!~Yij � y!

� ~Yij � y!Tgx; yy
*'' ~0, y!~Yij � y!#

� �
j�1

k

aj ~1 � uij !� Op~b
�1n�30~ p�q�1! !+ (39)

Thus, the bootstrap analogue of the assertion in Proposition 1 holds provided
n�10~ p�q�1!0b r 0+ The approximation error in ~39! becomes smaller as b
increases+ On the other hand, decreasing b reduces the estimation error ~38!+
The remainder terms in ~38! and ~39! are of the same order of magnitude ~up to
a log n term!; summing the remainder terms and then minimizing with respect
to b suggests that b should be chosen proportional to n�10~3~ p�q�1!! +

An obvious difficulty of the preceding bootstrap consists of the fact that
in most bootstrap samples there will exist points ~Zi

*,Yi
*! with ~Zi

*0b, y �
~Yi
*� y!0b! � ZC*, where ZC* denotes the convex hull of the free-disposal hull

of the bootstrap observations in Sn
*+ This phenomenon is not very important in

terms of asymptotic theory because by Theorem 1, the DEA estimator is essen-
tially only determined by points in a neighborhood of ~u~x, y!x, y!+ However,
any implementation of the algorithm requires that one must deal with such
points+ Two possibilities exist+

Elimination+ Suppose that in the bootstrap sample there are � � n points
with ~Zij

*0b, y � ~Yij
*� y!0b! � ZC*, ij � $1, + + + , n% , j � 1, + + + , l+ Eliminate these

points from the bootstrap samples and calculate Zu*~x, y! from the remaining
~n � �! bootstrap observations+

Extrapolation+ Suppose that for some i � $1, + + + , n% we have ~Zi
*0b,

y � ~Yi
* � y!0b! � ZC*+ Let b* denote the smallest possible Db such that ~Zi

*0b,
y � ~Yi

* � y!0 Db! � ZC*+ Clearly, b* � b+ The structure of the DEA estimator
implies that for all Db � b* sufficiently close to b*, there exist some b0,b1 such
that [gx ~Zi

*0 Db, y � ~Yi
* � y!0 Db! � b0 � b1~10 Db!+ Then “define” [gx ~Zi

*0b, y �
~Yi
* � y!0b! :� b0 � b1~10b! and calculate the corresponding value of
[gx
*~Zi

*,Yi
*!+

In the simulations described in Section 4, we use the elimination option+
We now consider the asymptotic behavior of the double-smooth bootstrap

proposed earlier+ Our analysis rests upon the following additional assumption+
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Assumption 7. The density estimate Zfx satisfies

sup
~u, z, Iy!�C~x, y;h!

� Zfx ~u, z, Iy!� Nfx ~u, z, Iy! � � op~1! as nr ` (40)

if h is sufficiently small+ Furthermore, br 0 and n�10~ p�q�1!0br 0 as nr `+

It follows from well-known results in kernel density estimation that condi-
tion ~40! is fulfilled for a kernel estimator Zfx as described earlier, provided that
the bandwidths tj used with respect to the different directions, j � 1, + + + , p � q,
satisfy tj r 0 and n{	 j�1

p�q tj 0log n r ` as n r `+
The next theorem ensures consistency of our double-smooth bootstrap+

THEOREM 4+ Given Assumptions 1–7,

sup
d�0

�Fx ~d!� Prob�n20~ p�q�1!� Zu*~x, y!Zu~x, y!
� 1� � d6Sn�� p

&& 0 as nr `.

(41)

4. MONTE CARLO EVIDENCE

We conducted two sets of experiments, with p � q � 1 and p � q � 2+ All
experiments consist of 1,000 Monte Carlo trials, with 2,000 bootstrap replica-
tions on each trial+Within each set of experiments, we examined seven sample
sizes, with n � $25, 50, 100, 200, 400, 800% + For the case with one output and
one input ~ p � q � 1!, we simulated a DGP by drawing an “efficient” input
observation xe distributed uniformly on @10,20# , and setting the output level
y � xe

0+8+ We then computed the “observed” input observation x � xe e0+26e 6 ,
where e ; N~0,1! and is independent+ The DGP for this case can therefore be
written as

y � x 0+8e�0+26e 6+ (42)

We take the point ~x, y! � ~20+69,7+5! as the fixed point for which efficiency
is estimated on each Monte Carlo trial; the true efficiency for this point is
u~x, y! � 0+6+

For the two-input, two-output ~ p � q � 2! case, we again generated efficient
input levels x1e, x2e from the uniform distribution on @10,20# + Next, we com-
puted output levels by generating v uniform on @ 19

_ p
2
_ , 8

9
_ p

2
_ # and setting y1 �

x1e
0+4 x2e

0+4 � cos~v! and y2 � x1e
0+4 x2e

0+4 � sin~v!+ We then generated the observed
output levels by setting x1 � x1e e0+26e 6 and x2 � x2e e0+26e 6 where e ; N~0,1! as
before+ Efficiency is estimated for the fixed point x � ~22+07,22+07!, y �
~5+59,5+59! on each Monte Carlo trial+ The true efficiency for this point is
u~x, y! � 0+6, as in the previous case+
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In both cases, the fixed points of interest were chosen to lie roughly in the
middle of the range of the output data+ In the case where p � q � 2, the output
quantities, for a given level of inputs, are generated to lie on an arc between
p018 and 8p018 radians+

Table 1 shows results for coverages of confidence intervals estimated by the
bootstrap-with-subsampling using Algorithm 1 as described in Section 3+1+ For
each sample size n, we examined bootstrap sample sizes m � nk with k �
$0+50,0+55, + + + ,0+95,1+00% + When k � 1 Algorithm 1 is identical to the naive
bootstrap, which is known to provide inconsistent inference+ For the case where
p � q � 1 shown in columns 3–5, the results in Table 1 reveal good coverages
for the ratio-based confidence intervals at the three significance levels consid-
ered when k is in the neighborhood of 0+80+ The optimal value of k apparently
remains about the same as sample size is increased from 25 to 800+

The results for the case where p � q � 2, shown in columns 6–8 of Table 1,
reveal reduced coverage relative to the results for p � q � 1 for given values of
n and k, because of the curse of dimensionality+ However, with p � q � 2, the
coverages of confidence intervals are consistently good across the various sam-
ple sizes when k lies in the neighborhood of 0+65–0+70+ Not surprisingly, the
optimal value of k appears to depend on the dimensionality of the problem+
The results also indicate that, as a practical matter, the wrong choice of k, which
determines the size of the subsamples, can lead to very poor coverages+

Results from the double-smooth bootstrap using Algorithm 2 are shown in
Table 2, again for the cases p � q � 1 ~shown in columns 3–5! and p � q � 2
~shown in columns 6–8!+ In either case, bandwidths b � $0+4, 0+6, 0+8, 1+0%
were used to smooth [gx in step 1 of the algorithm, using ~36!+ As discussed
previously, this bootstrap is inconsistent when b � 1; we include this case only
for comparison+ The results in Table 2 indicate some gains in terms of coverage
of estimated confidence intervals as b is reduced below 1+0+ In both cases, b �
0+4 appears too small, and indeed for p � q � 2 results could not be computed
because numerical problems when n � 25 or n � 50 ~see the discussion pre-
ceding Assumption 7!+

Recall from the discussion surrounding ~39! that our theoretical results imply
that the optimal value of b should be proportional to n�10~3~ p�q�1!! + Because
b is necessarily bounded between 0 and 1 ~as opposed to bandwidths in
ordinary kernel estimators!, it is independent of the units of measurement
for x and y+ Clearly, b should be close to 1 for small n, and should become
smaller as n increases+ Using b � n�10~3~ p�q�1!! as a rule of thumb implies
that b � n�109 for the case where p � q � 1, and b � n�1015 for p � q � 2+
Hence, for p � q � 1, the rule-of-thumb criterion yields b � 0+70, 0+65,
0+60, 0+56, 0+51, and 0+48 corresponding to n � 25, 50, 100, 200, 400, and
800, respectively; for p � q � 2, we have b � 0+81, 0+77, 0+74, 0+70, 0+67,
and 0+64, respectively+ The results in Table 2 indicate that the rule of thumb
gives rather reasonable choices for b+ It is also interesting to note that, for
sample sizes of 50 or greater, the estimated coverages in Table 2 vary little
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Table 1. Coverage of confidence intervals estimated by
subsampling

p � q � 1 ~1 � a! p � q � 2 ~1 � a!

n k 0+90 0+95 0+99 0+90 0+95 0+99

25 0+50 0+949 0+976 0+986 0+934 0+967 0+993
25 0+55 0+958 0+978 0+993 0+934 0+966 0+991
25 0+60 0+948 0+970 0+993 0+899 0+951 0+990
25 0+65 0+949 0+984 0+999 0+891 0+940 0+988
25 0+70 0+945 0+963 0+989 0+822 0+892 0+975
25 0+75 0+927 0+966 0+988 0+779 0+868 0+964
25 0+80 0+920 0+967 0+990 0+704 0+808 0+935
25 0+85 0+908 0+952 0+991 0+641 0+752 0+909
25 0+90 0+877 0+926 0+972 0+567 0+681 0+853
25 0+95 0+872 0+922 0+972 0+499 0+618 0+821
25 1+00 0+801 0+879 0+956 0+419 0+529 0+737

50 0+50 0+975 0+990 1+000 0+968 0+988 0+998
50 0+55 0+974 0+990 0+998 0+943 0+982 0+998
50 0+60 0+969 0+989 0+994 0+920 0+962 0+996
50 0+65 0+968 0+984 0+997 0+874 0+926 0+983
50 0+70 0+956 0+980 0+995 0+834 0+918 0+979
50 0+75 0+952 0+976 0+994 0+766 0+847 0+942
50 0+80 0+928 0+962 0+990 0+713 0+787 0+904
50 0+85 0+902 0+952 0+988 0+636 0+723 0+864
50 0+90 0+905 0+947 0+988 0+533 0+629 0+798
50 0+95 0+857 0+913 0+971 0+437 0+536 0+738
50 1+00 0+827 0+884 0+964 0+384 0+476 0+665

100 0+50 0+975 0+994 0+999 0+962 0+989 1+000
100 0+55 0+978 0+997 1+000 0+935 0+972 0+998
100 0+60 0+981 0+992 0+999 0+905 0+953 0+986
100 0+65 0+979 0+991 0+998 0+887 0+940 0+981
100 0+70 0+976 0+990 0+999 0+842 0+890 0+961
100 0+75 0+965 0+983 0+998 0+787 0+864 0+948
100 0+80 0+939 0+968 0+994 0+688 0+768 0+894
100 0+85 0+914 0+954 0+985 0+639 0+732 0+854
100 0+90 0+890 0+934 0+985 0+520 0+624 0+775
100 0+95 0+808 0+895 0+962 0+461 0+567 0+720
100 1+00 0+775 0+833 0+938 0+371 0+473 0+645

200 0+50 0+975 0+991 0+999 0+945 0+985 0+999
200 0+55 0+983 0+996 1+000 0+951 0+981 0+996
200 0+60 0+985 0+997 1+000 0+941 0+971 0+998
200 0+65 0+984 0+996 0+999 0+910 0+938 0+985
200 0+70 0+973 0+991 0+999 0+863 0+913 0+973
200 0+75 0+963 0+981 1+000 0+770 0+850 0+936

~continued !
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across b � 0+4 and b � 0+6 when p � q � 1, and b � 0+6 and b � 0+8 when
p � q � 2+

The estimated coverages shown in Table 2 reveal that, for the case p � q � 1
and when b � 0+4 and n � 200 or 400 or when b � 0+6 and n � 800, the
estimated coverages obtained with the double-smooth bootstrap are similar to
the best coverages obtained with the subsampling bootstrap and shown in Table 1
when p � q � 1 and n � 200, 400, or 800+With p � q � 2, Table 2 reveals that
coverages obtained with the double-smooth bootstrap are smaller than the best
coverages for p � q � 2 shown in Table 1 for the subsampling bootstrap+ How-
ever, Table 1 also reveals that suboptimal choices of the tuning parameter k
required for the subsampling method can easily result in coverages worse than

Table 1. Continued

p � q � 1 ~1 � a! p � q � 2 ~1 � a!

n k 0+90 0+95 0+99 0+90 0+95 0+99

200 0+80 0+926 0+971 0+995 0+699 0+788 0+904
200 0+85 0+901 0+948 0+993 0+641 0+725 0+871
200 0+90 0+837 0+914 0+976 0+534 0+633 0+791
200 0+95 0+805 0+876 0+965 0+418 0+518 0+693
200 1+00 0+733 0+821 0+945 0+348 0+435 0+645

400 0+50 0+968 0+993 0+999 0+964 0+996 1+000
400 0+55 0+986 0+996 0+999 0+957 0+983 0+996
400 0+60 0+985 0+995 1+000 0+954 0+983 0+999
400 0+65 0+981 0+997 1+000 0+897 0+948 0+987
400 0+70 0+965 0+992 0+999 0+861 0+912 0+971
400 0+75 0+953 0+983 0+994 0+795 0+873 0+955
400 0+80 0+933 0+967 0+998 0+695 0+798 0+915
400 0+85 0+890 0+937 0+985 0+623 0+741 0+876
400 0+90 0+809 0+903 0+971 0+519 0+608 0+785
400 0+95 0+768 0+842 0+948 0+398 0+518 0+706
400 1+00 0+714 0+791 0+902 0+311 0+398 0+573

800 0+50 0+946 0+989 0+995 0+944 0+985 0+998
800 0+55 0+972 0+996 0+998 0+954 0+987 0+998
800 0+60 0+971 0+992 0+998 0+961 0+981 0+995
800 0+65 0+962 0+991 0+999 0+924 0+964 0+988
800 0+70 0+971 0+991 0+998 0+855 0+909 0+975
800 0+75 0+951 0+973 1+000 0+807 0+877 0+961
800 0+80 0+890 0+946 0+992 0+708 0+789 0+922
800 0+85 0+873 0+929 0+978 0+611 0+727 0+863
800 0+90 0+814 0+891 0+968 0+477 0+592 0+773
800 0+95 0+751 0+821 0+927 0+383 0+483 0+653
800 1+00 0+695 0+779 0+902 0+262 0+356 0+548
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those shown in Table 2 when b is chosen according to the rule of thumb dis-
cussed earlier+ Moreover, the coverages in Table 2 are typically too small,
whereas coverages shown in Table 1 are either too large or too small, depend-
ing on whether k is chosen too small or too large+

5. CONCLUSIONS

The analysis in Section 2 establishes the asymptotic distribution of the DEA
efficiency estimator for the variable returns to scale case under rather weak
assumptions on the DGP, whereas the analysis in Section 3 establishes consis-
tency of two bootstrap procedures+ The bootstrap procedures are necessary for
any practical application because the asymptotic distribution in Theorem 2 con-

Table 2. Coverage of confidence intervals estimated by
double-smooth bootstrap

p � q � 1 ~1 � a! p � q � 2 ~1 � a!

n b 0+90 0+95 0+99 0+90 0+95 0+99

25 0+4 0+793 0+869 0+953 — — —
50 0+4 0+831 0+911 0+976 — — —

100 0+4 0+870 0+931 0+973 0+672 0+781 0+937
200 0+4 0+907 0+964 0+994 0+678 0+814 0+955
400 0+4 0+910 0+957 0+991 0+762 0+849 0+952
800 0+4 0+937 0+971 0+997 0+763 0+859 0+962

25 0+6 0+810 0+883 0+961 0+456 0+589 0+831
50 0+6 0+861 0+927 0+978 0+643 0+750 0+899

100 0+6 0+888 0+934 0+978 0+722 0+815 0+939
200 0+6 0+916 0+968 0+995 0+746 0+856 0+962
400 0+6 0+913 0+959 0+989 0+808 0+887 0+965
800 0+6 0+916 0+966 0+995 0+821 0+884 0+970

25 0+8 0+833 0+900 0+962 0+641 0+753 0+900
50 0+8 0+868 0+936 0+981 0+665 0+770 0+908

100 0+8 0+881 0+933 0+980 0+744 0+848 0+950
200 0+8 0+907 0+962 0+996 0+794 0+877 0+965
400 0+8 0+892 0+950 0+986 0+808 0+887 0+967
800 0+8 0+882 0+938 0+993 0+813 0+887 0+968

25 1+0 0+844 0+913 0+977 0+667 0+770 0+904
50 1+0 0+871 0+933 0+981 0+684 0+786 0+910

100 1+0 0+878 0+927 0+981 0+760 0+855 0+950
200 1+0 0+891 0+949 0+994 0+793 0+866 0+959
400 1+0 0+866 0+923 0+982 0+792 0+864 0+955
800 1+0 0+855 0+914 0+986 0+773 0+848 0+950
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tains unknown terms and would be difficult either to estimate or to simulate+
As noted in Sections 1 and 4, there is at present no reliable way to choose the
size of subsamples in Algorithm 1, and hence we do not recommend the sub-
sampling bootstrap+ Although Tables 1 and 2 indicate that in the best cases,
the subsampling bootstrap performs better than the double-smooth bootstrap
in terms of realized coverages, the practitioner—operating outside a Monte
Carlo framework—is unlikely to achieve such performance and is rather likely
to do worse than he or she would using the double-smooth bootstrap+ The
second bootstrap procedure—based on smoothing—is, by contrast, readily
implementable and provides better coverage properties than the subsampling
bootstrap is likely to provide without more guidance on choice of the tuning
parameter k+ For finite samples in applications, one might optimize the choice
of the bandwidth b in Algorithm 2+ This could be accomplished by iterating
the bootstrap procedures along the lines of Hall ~1992!+
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APPENDIX

Proof of Lemma 1. For all ~z1, y1!, ~z2, y2! � C*~x! and every a � @0,1# , the def-
inition of gx implies that @agx~z1, y1! � ~1 � a!gx~z2, y2!# ~x07x7! � Iza � gx~ Iza, Iya!
~x07x7! � Iza with ~ Iza, Iya! � ~az1 � ~1 � a!z2,ay1 � ~1 � a!y2! � C*~x!+ Conse-
quently, gx is a convex function+ The same arguments apply to [gx + In view of Assump-
tion 6 twice-differentiability of gx and continuity of gx

''~0, y! in x are immediate
consequences of ~12!+ Assumption 1 implies that

1 � au�gx ~z1, y1!
x

7x7
� z1, y1�� ~1 � a!u�gx ~z2 , y2 !

x

7x7
� z2 , y2�

� u�~agx ~z1, y1!� ~1 � a!gx ~z2 , y2 !!
x

7x7
, y� (A.1)

holds for all ~z1, y1!, ~z2, y2! � C*~x!, ~z1, y1! � ~z2, y2!, and every a � @0,1# with
az1 � ~1 � a!z2 � 0 and ay1 � ~1 � a!y2 � y+ Because u~gx~0, y!~x07x7!, y! � 1, we
can conclude that agx~z1, y1!� ~1 � a!gx~z2, y2! � gx~0, y!, which leads to the asserted
structure of gx

''+
By our assumptions and assertion ~ii! T ~u,z, y! � ~~gx ~u �j�1

p�1 zj z ~ j !, y!0u!~x0
7x7! � �j�1

p�1 zj z ~ j !, y! is a twice continuously differentiable, bijective mapping from
~0,1# � R

p�1 � R�
q , into C+ Note that T ~u,z, y! � T1~T2~u,z, y!!, where T1~g,z, y! �

~g~x07x7! � �j�1
p�1 zj z ~ j !, y! and T2~u,z, y! � ~~gx ~u �j�1

p�1 zj z ~ j !, y!0uy !,z, y!+ Here T1

corresponds to a simple change of the coordinate system, and 6det~J1~g,z, y!!6 � 0 for
all ~g,z, y!, where J1 denotes the Jacobian matrix of partial derivatives of T1; T2 is a
twice continuously differentiable, injective mapping+ All rows of the Jacobian matrix J2

of partial derivatives of T2 are linearly independent, and therefore 6det~J2~u,z, y!!6 � 0
for all ~u,z, y!+ Therefore, by well-known results on variable transformation we have

Nfx ~u,z, y! � �det�J1 � gx�u �
j�1

p�1

zj z ~ j !, y�
u

,z, y� ��
� 6det~J2~u,z, y!!6 � f ~T1~T2~u,z, y!!!, (A.2)

and continuity of Nfx on OD � T �1~D! follows from the continuity of f on D+ Furthermore,
f ~u~x, y!x, y! � 0 implies fx~1,0, y! � 6det~J1~gx~0, y!, z, y!!6 � 6det~J2~1,0, y!!6 �
f ~u~x, y!x, y! � 0+ The continuity of Nfx~1,0, y! in x follows from the preceding structure
of Nfx together with u~x, y! � gx~0, y!07x7 and our assumption on u~x, y!+ �
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Proof of Lemma 2. By definition of a DEA frontier we have Zu~x, y!0u~x, y! � 1 �
dn�20~ p�q�1! if and only if there exists a b � 0 with b0u~x, y! � 1 �
dn�20~ p�q�1! such that

�
i�1

k

ai Yi � y and �
i�1

k

ai Xi � bx (A.3)

hold for some a1 � 0, + + + , an � 0 with �j�1
n aj � 1+ The relations in ~8! and ~12! imply

Xi � ~gx~ui Zi ,Yi !0ui7x7!x � Zi + Because all Zi are orthogonal to x, ~A+3! holds if and
only if ~16! is satisfied and �i�1

n ai ~gx ~ui Zi ,Yi !0ui7x7! � b+ The lemma now follows
from gx~0, y! � 7x7u~x, y!+ �

LEMMA A1+ Suppose that Assumptions 1–6 hold for a given ~x, y! � D and let b, h
be real numbers with 0 � b � h02. Consider k � N arbitrary points ~u1, z1, y1!,
+ + + , ~uk, zk, yk! � OD satisfying

�
r�1

k

ar zr � 0, (
r�1

k

ar yr � y (A.4)

for some a1, + + + ,ak � 0 with �r�1
k ar � 1. If ~uk, zk, yk! � C~x, y;hn�10~ p�q�1! ! , then

for all sufficiently large n there exists some ~ Iz, Iy! � C*~x! with ~1, Iz, Iy! � C~x, y;
bn�10~ p�q�1! ! such that

�
r�1

k�1

Jar zr � Jak Iz � 0, �
r�1

k�1

Jar yr � Jak Iy � y (A.5)

for some Ja1, + + + , Jak � 0 with �r�1
k Jar � 1 and such that

�
r�1

k

ar

gx ~ur zr , yr !

ur gx ~0, y!
� �

r�1

k�1

Jar

gx ~ur zr , yr !

ur gx ~0, y!
� Jak

gx ~ Iz, Iy!

gx ~0, y!
� c1{ Jak hbn�20~ p�q�1!, (A.6)

where c1 � min$ 12
_ , ~c008gx~0, y!!% and c0 is defined as in Lemma 1(ii).

Proof. Assume that ~A+4! holds with ~uk, zk, yk! � C~x, y;hn�10~ p�q�1! !+ Then either
uk � 1 � h 2n�20~ p�q�1! and ~1, zk , yk! � C ~x, y; hn�10~ p�q�1! ! or ~1, zk , yk! �
C~x, y;hn�10~ p�q�1! !+

First consider the case where uk � 1 � h 2n�20~ p�q�1! but ~1, zk , yk! � C ~x, y;
hn�10~ p�q�1! !+ Because ~10uk! � 1 � 1 � uk we obtain gx~uk zk , yk!0uk gx~0, y! �
gx~uk zk , yk!0gx~0, y! � ~1 � uk!~gx~uk zk , yk!0gx~0, y!!+ Straightforward Taylor ex-
pansions of gx can be used to show that for all sufficiently large n,

gx ~uk zk , yk !

uk gx ~0, y!
�

gx ~zk , yk !

gx ~0, y!
�

1

2
~1 � uk !�

gx ~zk , yk !

gx ~0, y!
�

1

2
h 2n�20~ p�q�1!+ (A.7)

Note that ~1, zk, yk! � C~x, y;hn�10~ p�q�1! ! implies that ~1, ~b0h!zk, y � ~b0h!~ yk � y!! �
C ~x, y;bn�10~ p�q�1! !+ Relation ~A+5! thus holds for ~ Iz, Iy! :� ~~b0h!zk , y � ~b0h!
~ yk � y!! and Jar � ar~~b0h!0~~b0h! � ak~1 � ~b0h!!!! and Jak � ak~10~~b0h! � ak~1 �
~b0h!!!!+ Then ~A+7! and convexity of gx lead to
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�
r�1

k

ar

gx ~ur zr , yr !

ur gx ~0, y!
�

b

h

b

h
� ak�1 �

b

h
� ��

r�1

k

ar

gx ~ur zr , yr !

ur gx ~0, y!
�

�

ak�1 �
b

h
�

b

h
� ak�1 �

b

h
� (A.8)

� �
r�1

k�1

Jar

gx ~ur zr , yr !

ur gx ~0, y!
� Jak �

b

h
gx ~zk , yk !

gx ~0, y!
� �1 �

b

h
� gx ~0, y!

gx ~0, y!
�

� Jak

b

h

1

2
h 2n�20~ p�q�1! (A.9)

� �
r�1

k�1

Jar

gx ~ur zr , yr !

ur gx ~0, y!
� Jak

gx ~ Iz, Iy!

gx ~0, y!
� Jak

1

2
bhn�20~ p�q�1!+ (A.10)

It now only remains to prove ~A+6! for the case where ~1, zk , yk! � C ~x, y;
hn�10~ p�q�1! !+ Let g � max$d6~1, dzk, y � d~ yk � y!! � C~x, y; hn�10~ p�q�1! !% and
ar
* � ar~g0~g � ak~1 � g!!! and ak

* � ak~10~g � ak~1 � g!!!+ This yields

�
r�1

k�1

ar
* zr � ak

*gzk � 0, �
r�1

k�1

ar
* yr � ak

*~ y � g~ yk � y!!� y+ (A.11)

By definition of gx we have gx~uk zk, yk!0uk � gx~zk, yk!+ Convexity of gx and arguments
similar to ~A+10! then imply

�
r�1

k

ar

gx ~ur zr ,Yr !

ur gx ~0, y!
� �

r�1

k�1

ar
*

gx ~ur zr , yr !

ur gx ~0, y!
� ak

*�ggx ~zk , yk !

gx ~0, y!
� ~1 � g!

gx ~0, y!

gx ~0, y!
�

� �
r�1

k�1

ar
*

gx ~ur zr , yr !

ur gx ~0, y!
� ak

*
gx ~gzk , y � g~ yk � y!!

gx ~0, y!
+ (A.12)

Finally, define ~ Iz, Iy! :� ~~b0h!gzk, y � ~b0h!g~ yk � y!!, Jar � ar
*~~b0h!0~~b0h! �

ak
*~1 � ~b0h!!!!, and Jak � ak

*~10~~b0h! � ak
*~1 � ~b0h!!!!+ Clearly, then, ~1, Iz, Iy! �

C~x, y;bn�10~ p�q�1! !, and relation ~A+5! is a direct consequence of ~A+11!+ Moreover,
for sufficiently large n,
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�
r�1

k�1

ar
*

gx ~ur zr ,Yr !

ur gx ~0, y!
� ak

*
gx ~gzk , y � g~ yk � y!!

gx ~0, y!

� �
r�1

k�1

Jar

gx ~ur zr , yr !

ur gx ~0, y!
� Jak


b

h
gx ~gzk , y � g~ yk � y!!

gx ~0, y!
� �1 �

b

h
� gx ~0, y!

gx ~0, y!
�

� �
r�1

k�1

Jar

gx ~ur zr , yr !

ur gx ~0, y!
� Jak

gx ~ Izk , Iyk !

gx ~0, y!
� Jak

b

h

c0 h 2n�20~ p�q�1!

8gx ~0, y!
+ (A.13)

By using Lemma 1~ii! the second inequality follows from Taylor expansions of
gx~gzk , y � g~ yk � y!! and gx~0, y! at the point ~ Iz, Iy! :� ~~b0h!gzk , y � ~b0h!
g~ yk � y!!+ Note that the first derivatives cancel out because of ~b0h!0~gzk � ~b0h!gzk!�
~1 � ~b0h!!{~�~b0h!gzk! � 0 and ~b0h!~g~ yk � y! � ~b0h!g~ yk � y!! � ~1 � ~b0h!!{
~�~b0h!g~ yk � y!! � 0+ The bound given in ~A+13! is then obtained by an analysis of

the second derivatives while taking into account that 1 � ~b0h! � 1
2
_ , ��� gzk

g~ yk�y!
���

2

�

h 2 , and that inf~1, z,w!�C~x, y;bn�10~ p�q�1! ! inf7v7�1 vTgx
''~z,w!v � ~c002! for all sufficiently

large n, where c0 is defined in Lemma 1~ii!+ Combining ~A+12! and ~A+13! yields ~A+6!+
�

Proof of Theorem 1. Let z ~1!, + + + , z ~ p�1! denote the orthonormal basis of V~x! used
in the definition of Nfx + Note that the sample Sn of observations can be equivalently rep-
resented by the corresponding samples DSn � $~ui , Zi ,Yi !%i�1

n and NSn � $~ui ,zi ,Yi !%i�1
n ,

where zi is determined by Zi � �j�1
p�1 zij z ~ j ! +

Choose an arbitrary b � 0 and set bn � b{n�10~ p�q�1! , bn
*� bn0~2~ p � 1!� 2q!+ For

i � 1, + + + , p � 1 and j � 1, + + + ,q, define

OB2i�1 � �~v,w! � R
p�1 � R

q 6max
r�i
6vr 6� bn

*, 6vi � bn 6� bn
*,

max
s�1, + + + ,q

6ys � ws 6� bn
*� , (A.14)

OB2i � �~v,w! � R
p�1 � R

q 6max
r�i
6vr 6� bn

*, 6vi � bn 6� bn
*,

max
s�1, + + + ,q

6ys � ws 6� bn
*� , (A.15)

OB2j�1�2~ p�1! � �~v,w! � R
p�1 � R

q 6 max
r�1, + + + , p�1

6vr 6� bn
*,

max
s�j
6ys � ws 6� bn

*, 6yj � bn � wj 6� bn
*� , (A.16)

OB2j�2~ p�1! � �~v,w! � R
p�1 � R

q 6 max
r�1, + + + , p�1

6vr 6� bn
*,

max
s�j
6ys � ws 6� bn

*, 6yj � bn � wj 6� bn
*� + (A.17)
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Finally, for j � 1, + + + ,2~ p � 1!� 2q let Bj denote the set of all ~z,w! � V~x!� R�
q with

~z,w! � ~�j vj z ~ j !,w! for some ~v,w! � OBj +
It follows from Assumptions 4 and 5 that if n is sufficiently large,

PDj, n :� @1 � bn
2 ,1#� OBj � OD (A.18)

for all j � 1, + + + ,2~ p � 1! � 2q+ Recall that OD denotes the support of Nfx +
For each j �1, + + + ,2~ p �1!� 2q the set PDj, n has Lebesgue measure equal to ~20~2~ p �

1! � 2q!! p�q�1b p�q�1{~10n!, and our assumptions on the distribution of the random
variables ~ui ,zi ,Yi ! thus imply Prob@~ui ,zi , yi ! � PDj, n# � a0 b p�q�1{~10n! � o~10n!
for a0 � Nfx~1,0, y!~20~2~ p � 1! � 2q!! p�q�1 + Because ~ui , zi ,Yi !, i � 1, + + + , n, are
independent we have limnr`Prob~ NSn � PDj, n � �! � limnr`~1 � ~a0 b p�q�1!0n!n �
exp~�a0 b p�q�1!+ When additionally using the Bonferroni inequality, we can thus infer
that there exist some 0 � d0, d1 � ` such that for all n sufficiently large,

1 � ~2~ p � 1!� 2q!{exp~�d0 b p�q�1 !

� Prob~ NSn � PDj, n � � ∀ j � 1, + + + ,2~ p � 1!� 2q!

� 1 � exp~�d1 b p�q�1 !+ (A.19)

Hence for every e � 0, there exists a be � ` such that for all b � be and all n suffi-
ciently large,

Prob~ NSn � PDj, n � � ∀ j � 1, + + + ,2~ p � 1!� 2q!� 1 � e+ (A.20)

By ~A+20!, assertion ~i! of the theorem holds if there is an he � 0 such that for all
h � he the following conditional probabilities are equivalent for sufficiently large n:

Prob~A@d, n#6 NSn � PDj, n � � ∀ j !

� Prob~A@d, n;h{n�10~ p�q�1! #6 NSn � PDj, n � � ∀ j !+ (A.21)

Now we will demonstrate that ~A+21! is satisfied for all h � c3{b, where c3 � ` denotes
a suitable constant that will be specified in what follows+

By construction of OBj and Bj , for any ~ Iz, Iy! � C*~x! with ~1, Iz, Iy! � C~x, y;bn
*! and

arbitrary vectors ~ Du1, Iz1, Kw1! � @1 � bn
2 ,1# � B1, + + + , ~ Du2~ p�1!�2q, Iz2~ p�1!�2q,

Kw2~ p�1!�2q! � @1 � bn
2 ,1# � B2~ p�1!�2q, there exist some g1, + + + ,g2~ p�1!�2q � 0 with

�j�1
2~ p�1!�2q gj � 1 such that

Iz � �
j�1

2~ p�1!�2q

gj Izj , Iy � �
j�1

2~ p�1!�2q

gj Kwj + (A.22)

By definition of ~ Duj , Izj , Kwj !, for sufficiently large n ~gx~ Duj Izj , Kwj !0gx~0, y!! � 1+5,

��� Duj Izj � Iz

Kwj � Iy!���
2

� ~2~ p � 1! � 2q!bn
2 , and

sup
~1, z,w!�C~x , y;bn

*!
� sup
7v7�1

vTgx
''~z,w!v	 � c0

* (A.23)
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for some c0
* � `+ Therefore, for all n sufficiently large,

gx ~ Iz, Iy!

gx ~0, y!
� �

j�1

2~ p�1!�2q

gj

gx ~ Duj Izj , Kwj !

Duj gx ~0, y!

� �
j�1

2~ p�1!�2q

gj� gx ~ Duj Izj , Kwj !

gx ~0, y!
� 1+5� 1

Duj
� 1�� �

gx ~ Iz, Iy!

gx ~0, y!
� c2 b2n�20~ p�q�1!,

(A.24)

where c2 � ~~2~ p � 1! � 2q!c0
*!02gx ~0, y! � 2+

Using the continuity of gx
'' , the second inequality can be derived from second-order

Taylor expansions of gx~ Duj Izj , Kwj ! at ~ Iz, Iy!+ Note that because of ~A+22! all first-order
terms cancel out+

Set c3 � c2~2~ p � 1!� 2q!0c1, where c1 is defined by Lemma A1, and let b � be and
h � c3 b+ Consider an arbitrary ~u, z,w! � NSn with ~u, z,w! � C~x, y;hn�10~ p�q�1! !, and
assume that for k � n there exist some ~u1, z1, y1!, + + + , ~uk�1, zk�1, yk�1! � NSn such that
~A+4! holds with ~uk, zk, yk! � ~u, z,w!+ Lemma A1 then implies that there is a ~ Iz, Iy!
with ~1, Iz, Iy! � C~x, y;~b0~2~ p � 1! � 2q!!n�10~ p�q�1! ! such that relations ~A+5! and
~A+6! are satisfied when b is replaced by ~b0~2~ p � 1! � 2q!!+

On the other hand, NSn � Dj, n � � ∀ j � 1, + + + ,2~ p � 1! � 2q imposes the exis-
tence of 2~ p � 1! � 2q points ~ Du1, Iz1, Kw1! � NSn � @1 � bn

2 ,1# � B1, + + + ,
~ Du2~ p�1!�q, Iz2~ p�1!�q, Kw2~ p�1!�q! � NSn � @1 � bn

2 ,1# � B2~ p�1!�q+ For some suitable
g1, + + + ,g2~ p�1!�q � 0 with �j�1

2~ p�1!�q gj � 1, we then obtain ~A+22!–~A+24!, and one
can conclude from ~A+6! that

�
r�1

k�1

ar

gx ~ur zr , yr !

ur gx ~0, y!
� ak

gx ~uz,w!

ugx ~0, y!

� �
r�1

k�1

Jar

gx ~ur zr , yr !

ur gx ~0, y!
� Jak

gx ~ Iz, Iy!

gx ~0, y!
� ak

c1 c3

2~ p � 1!� 2q
b2n�20~ p�q�1!

� �
r�1

k�1

Jar

gx ~ur zr , yr !

ur gx ~0, y!
� �

j�1

2~ p�1!�2q

Jakgj

gx ~ Duj Izj , Kwj !

Duj gx ~0, y!
, (A.25)

where ar , Jar are defined as in Lemma A1+ Clearly, �r�1
k�1 Jar � �j�1

2~ p�1!�2q Jakgj � 1 and
�r�1

k�1 Jar zr � �j�1
2~ p�1!�2q Jakgj Izj � 0 and �r�1

k�1 Jar yr � �j�1
2~ p�1!�2q Jakgj Kwj � y+

Note that ~ Duj , Izj , Kwj ! � NSn � C~x, y;hn�10~ p�q�1! ! for all j+ From ~A+25!, if NSn �
Dj, n � � ∀ j, then the minimal value of �i ai ~gx~ui Zi ,Yi !0ui gx~0, y!! over all
a1, + + + ,an � 0 with �ai � 1 is achieved by those linear combinations that assign zero
weight ai � 0 to all observations with ~u, z,w! :� ~ui , Zi ,Yi ! � C~x, y;hn�10~ p�q�1! !+
This leads to ~A+21! and thus completes the proof of part ~i!+

Consider part ~ii!+ First note that our assumption on N implies that sup~v,w!, ~ Iv, Kw!�N
~7v � Iv7 � 7w � Kw7! � `+ Therefore, cf :� inf~ Ix, Iy!�N fxr

~1,0, Iy! � 0, and g Ix~0, Iy! and
sup7v7�1 vTg Ix

''~0, Iy!v are uniformly bounded for ~ Ix, Iy! � N+ Let b � b0~~ log n!0
~ log log n!!10~ p�q�1! , bn � b{n�10~ p�q�1! and bn

* � ~bn0~2~ p � 1! � 2q!! for some
b0 � 0+ For sufficiently large n it is then possible to construct a grid ~xr , yr ! � N, r � 1,
+ + + , n ~ p�q�1!0~ p�q! , of n ~ p�q�1!0~ p�q! points with the property that N � $~g~xr07xr7!�
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z, Iy! � C6~1, z, Iy! � C~xr , yr ,bn
*!, r � $1, + + + , n ~ p�q�1!0~ p�q! %,g � 0% + Replace ~x, y! by

~xr , yr ! to define sets OBj
~r! and PDj, n

~r! analogous to those used in the proof of assertion ~i!+
Because the values infxr , yr

fxr
~1,0, yr ! � cf � 0 are uniformly bounded for all r, proba-

bility bounds analogous to ~A+19! can be established for constants 0 � d0, d1 � ` that
can be chosen independent of r+ The Bonferroni inequality then yields

Prob~ NSn � PDj, n
~r!� � for all j � 1, + + + ,2~ p � 1!� 2q

and all r � 1, + + + , n ~2p�2q�1!0~2p�2q�1! !

� 1 � n ~ p�q�1!0~ p�q! ~2~ p � 1!� 2q!{exp��d0 b0
p�q�1 log n

log log n
�r 1 (A.26)

as n r `+ Now assume that NSn � PDj, n
~r! � � for all j, r+ There then exist some

~ Duj
~r! , Izj

~r! , Kwj
~r! ! � NSn � Dj, n

~r! such that for all r and all ~1, Iz, Iy! � C~xr , yr ;bn
*!

we obtain Iz � �j�1
2~ p�1!�2q gj Izj

~r! and Iy � �j�1
2~ p�1!�2q gj Kwj

~r! for some suitable gj � 0
with �j gj � 1+ Because ~~gxr

~ Duj
~r! Izj

~r! , Kwj
~r! !0 Duj

~r! !~xr 07xr7! � Izj , Kwj ! � Sn, definition
of [gxr

and gxr
and arguments similar to ~A+24! lead to

gxr
~ Iz, Iy! � [gxr

~ Iz, Iy!� �
j�1

2~ p�1!�2q

gj

gxr
~ Duj
~r! Izj

~r! , Kwj
~r! !

Duj

� gxr
~ Iz, Iy!� Ic2 b0

2 n�20~ p�q�1!� log n

log log n
�20~ p�q�1!

, (A.27)

where Ic2 may be chosen independent of r because gxr
~0, yr ! and gxr

'' ~0, yr ! are uniformly
bounded+ Note that also the partial derivatives of u~ Ix, Iy! are uniformly bounded for
~ Ix, Iy! � N+ By suitable Taylor expansions of u it therefore follows from ~A+27! that
there exists a constant Ic3 � `, independent of r, ~ Iz, Iy!, so that

1 � u� [gxr
~ Iz, Iy!

xr

7xr7
� Iz, Iy�

� u�gxr
~ Iz, Iy!

xr

7xr7
� Iz, Iy�� u� [gxr

~ Iz, Iy!
xr

7xr7
� Iz, Iy�

� Ic3 b0
2 n�20~ p�q�1!� log n

log log n
�20~ p�q�1!

+ (A.28)

We can then conclude that for some Ic3 � Ic4 � `, all r and all ~1, Iz, Iy! � C~xr , yr ;bn
*!

Zu� [gxr
~ Iz, Iy!

xr

7xr7
� Iz, Iy�

u� [gxr
~ Iz, Iy!

xr

7xr7
� Iz, Iy� � 1 � Ic4 b0

2 n�20~ p�q�1!� log n

log log n
�20~ p�q�1!

+ (A.29)

1692 ALOIS KNEIP ET AL.

https://doi.org/10.1017/S0266466608080651 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466608080651


Consider an arbitrary ~ Ix, Iy! � N+ By construction, ~ Ix, Iy! � ~~ [gxr
~lz, Iy!0l!~xr 07xr7! �

z, Iy! for some r, ~1, z, Iy! � C~xr , yr ,bn
*!, and some l � 1, which implies ~ Zu~ Ix, Iy!0

u~ Ix, Iy!! � ~ Zu~ [gxr
~ Iz, Iy!~xr 07xr7! � Iz, Iy!!0~u~ [gxr

~ Iz, Iy!~xr 07xr7! � Iz, Iy!! for Iz � lz+
Assertion ~20! then is a consequence of ~A+26! and ~A+29!+ Furthermore, note that con-
vexity of [gx implies that [gx~l1 z, Iy! � [gx~l2 z, Iy! for l1 � l2 � 0+ Therefore, with z �
Ix � ~x T Ix07x72 !x ~21! follows from ~20! and ~ Zu~ Ix, Iy!0u~ Ix, Iy!! � ~ [gx~ Zu~ Ix, Iy!z, Iy!!0
~gx~u~ Ix, Iy!z, Iy!! � ~ [gx~u~ Ix, Iy!z, Iy!!0~gx~u~ Ix, Iy!z, Iy!! � 1+ �

Proof of Proposition 1. Recall the definition of A@d, n;h# + Because Zij �
Op~n�10~ p�q�1! !, 6y � Yij 6 � Op~n�10~ p�q�1! ! and 1 � uij � Op~n�20~ p�q�1! !, Taylor
expansions of gx yield

�
j�1

k

aj

gx ~uij Zij ,Yij !

uij gx ~0, y!
� 1 � �

j�1

k

aj

gx ~uij Zij ,Yij !� gx ~0, y!

gx ~0, y!

� �
j�1

k

aj ~1 � uij !� op~n
�20~ p�q�1! !

� �
j�1

k

aj

1

2gx ~0, y!
@Zij

T gx; zz
'' ~0, y!Zij � 2Zij

T gx; zy
'' ~0, y!~Yij � y!

� ~Yij � y!Tgx; yy
'' ~0, y!~Yij � y!#

� �
j�1

k

aj ~1 � uij !� op~n
�20~ p�q�1! !, (A.30)

where the convergence is uniform for all possible ~Xij ,Yij ! � C~x, y;hn�10~ p�q�1! !+
Note that necessarily �j�1

k aj @gx; z~0, y!'{Zij � gx; y
' ~0, y!{~Yij � y!#� 0, where gx

'~0, y!�
~gx; z~0, y!', gx; y~0, y!'!T denotes the vector of first derivatives of gx at ~0, y!+

The density Nfx is continuous at ~1,0, y!+ Hence, the probability that there is an obser-
vation in C~x, y;h{n�10~ p�q�1! ! is asymptotically equivalent to t~h! Nfx~1,0, y!{n�1+ Thus
for large n, the distribution of the number k of points in C~x, y;h{n�10~ p�q�1! ! follows
approximately a Poisson distribution with parameter t~h! Nfx~1,0, y!+ Continuity of the
densities implies that the conditional distribution of ~ui , zi ,Yi !, given ~ui , Zi ,Yi ! �
C~x, y; h{n�10~ p�q�1! !, is uniform on OC~h{n�10~ p�q�1! ! :� @1 � h 2n�20~ p�q�1!,1# �
@�hn�10~ p�q�1!, hn�10~ p�q�1! # p�1 � @ y1 � hn�10~ p�q�1!, y1 � hn�10~ p�q�1! # � {{{ �
@ yq � hn�10~ p�q�1!, yq � hn�10~ p�q�1! # + Combining these arguments with ~A+30! reveals
that

�Prob~A@d, n;h# !� �
k�1

`

Prob~ NA@d, n;h; k# !
t~h!k Nfx ~1,0, y!k

k!
e�t~h! Nfx ~1,0, y!�r 0 (A.31)

as n r `, where for a sequence ~ Du1, n, Dz1, n, EY1, n!, + + + , ~ Duk, n, Dzk, n, EYk, n! of k i+i+d+ random
variables uniformly distributed on OC~h{n�10~ p�q�1! !, we use NA@d, n;h; k# to describe
the following event: there exist some a1 � 0, + + + ,ak � 0 with �j�1

k aj � 1 such that
�j�1

k aj EYj, n � y and
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�
j�1

k

aj EZj, n � 0 for EZj, n � �
r�1

p�1

zj, n, r z ~r! (A.32)

and

�
j�1

k

aj

1

2gx ~0, y!
@ EZj, n

T gx; zz
'' ~0, y! EZj, n � 2 EZj, n

T gx; zy
'' ~0, y!~ EYj, n � y!

� ~ EYj, n � y!Tgx; yy
'' ~0, y!~ EYj, n � y!#

� �
j�1

k

aj ~1 � Duj, n ! � d{n�20~ p�q�1!+ (A.33)

The assertion of the proposition now follows from the fact that NA@d, n;h; k# is realized
iff the event U @~d0h 2!, k# is realized for Eqj � ~10h 2n�20~ p�q�1! !~1 � Duj, n!, Dzj � ~10
hn�10~ p�q�1! ! Dzj, n and Iyj � ~10hn�10~ p�q�1! !~ EYj, n � y!+ It then follows that uniformity of
~ Duj, n, Dzj, n, EYj, n! on OC~h{n�10~ p�q�1! ! is equivalent to uniformity of ~ Eqj , Dzj , Iyj ! on @0,1#�
@�1,1# p�1 � @�1,1# q and that ~A+32! corresponds to ~22!+ Finally, ~A+33! implies ~23!
when g is replaced by d0h 2 + �

Proof of Theorem 2. Let

Fx, h~d! � �
k�1

`

Prob�U� d
h 2
, k	� t~h!k Nfx ~1,0, y!k

k!
e�t~h! Nfx ~1,0, y!+ (A.34)

Clearly, Fx, h~{! is a distribution function with Fx, h~0! � 0 and Fx, h~`! � 1+ By defini-
tion of the respective events we obtain

Prob~A@d, n;h# ! � Prob~A@d, n;h * # !� Prob~A@d, n# !� 1 (A.35)

for all d, n and all h * � h+ From Proposition 1 Fx, h~d! � Fx, h * ~d! � 1 for any d � 0,
implying that $Fx, h~d!%h�0 is a bounded sequence of monotonically increasing real num-
bers and thus necessarily converges to a limit value+ Together with Theorem 1~i! we can
therefore conclude that there exists a monotone function Fx~d! such that

Fx ~d! �: lim
hr`

Fx, h~d!� lim
nr`

Prob~A@d, n# !+ (A.36)

Clearly, Fx is a distribution function with Fx~0! � 0 and Fx~`! � 1+
It only remains to verify relation ~26! and to show that Fx is continuous and that

Fx~d!� 1 � exp~�d Nfx~1,0, y!20~ p�q�1! !� 1+ This requires a closer analysis of Prob~U @~d0
h 2!, k# !+ There exists a 0 � d0 � ` such that for all g � 0 and all sufficiently large k,
6Prob~U @g, k# !� Prob~U @g, k � 1# !6 � d00k+ Consequently, if @t # is the largest integer
that is smaller than or equal to t,

6Prob~U @g, k# !� Prob~U @g, @lk## !6 � d0{max�l� 1,
1

l
� 1� (A.37)
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holds for any g � 0, l � 0 and all sufficiently large k+ Otherwise, for large h a
Poisson distribution with parameter t~h! Nfx~1,0, y! can be well approximated
by an N~t~h! Nfx~1,0, y!, t~h! Nfx~1,0, y!!-distribution+ In particular, with sh,� :� t~h!
Nfx~1,0, y! � log h{Mt~h! Nfx ~1,0, y!, sh,� :� t~h! Nfx~1,0, y! � log h{Mt~h! Nfx ~1,0, y! we

obtain �k�1
@sh,� # ~t~h!k Nfx ~1,0, y!k 0k!!e�t~h! Nfx ~1,0, y! r 0 and �k�@sh,� #

` ~t~h!k Nfx ~1,0, y!k 0k!!
e�t~h! Nfx ~1,0, y! r 0 as h r `+ Combining these arguments reveals

Fx ~d! � lim
hr`

Fx, h~d!

� lim
hr`

�Prob�U� d
h 2
, @t~h! Nfx ~1,0, y!#	�

� �
k�@sh,� #

@sh,� # �Prob�U� d
h 2
, k	�

� Prob�U� d
h 2
, @t~h! Nfx ~1,0, y!#	�	

�
t~h!k Nfx ~1,0, y!k

k!
e�t~h! Nfx ~1,0, y!�

� lim
hr`

Prob�U� d
h 2
, @t~h! Nfx ~1,0, y!#	�, (A.38)

when noting that for k � @@sh,�# , @sh,�## relation ~A+17! implies that 6Prob~U @~d0h 2!,
k# ! � Prob~U @~d0h 2 !, @t~h! Nfx~1,0, y!## !6 � d0 max $~ @sh,�#0 @t~h! Nfx~1,0, y!# ! � 1,
~ @t~h! Nfx~1,0, y!#0 @sh,�# ! � 1% r 0 as h r `+ Relation ~26! then follows from

lim
hr`

Prob�U� d
h 2
, @t~h! Nfx ~1,0, y!#	� � lim

kr`
Prob�U�d Nfx ~1,0, y!20~ p�q�1!

k 20~ p�q�1!
, k	�,

(A.39)

and by using ~27! the continuity of Fx~d! for d � 0 is a consequence of

6Fx ~ld!� Fx ~d!6 � lim
kr`�Prob�U�d Nfx ~1,0, y!20~ p�q�1!

~k0l~ p�q�1!02 !20~ p�q�1!
,

kl~ p�q�1!02

l~ p�q�1!02 	�
� Prob�U�d Nfx ~1,0, y!20~ p�q�1!

~k0l~ p�q�1!02 !20~ p�q�1!
,

k

l~ p�q�1!02	��
� d0{max�l~ p�q�1!02 � 1,

1

l~ p�q�1!02 � 1� + (A.40)

Clearly, the event U @d~ Nfx~1,0, y!20~ p�q�1!0k 20~ p�q�1! !, k# implies that ~ Eqj , Dzj ,
Iyj ! � Ik, d :� @0, d~ Nfx~1,0, y!20~ p�q�1!0k 20~ p�q�1! !# � @~�10k 10~ p�q�1! !, ~10
k 10~ p�q�1! !# p�1 � @~�10k 10~ p�q�1! !, ~10k 10~ p�q�1! !# q for at least one observation
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j � $1, + + + , k% + Because Prob~Ik,d!� d~ Nfx~1,0, y!20~ p�q�1!0k! for all sufficiently large k,
standard arguments now lead to

Prob�U�d Nfx ~1,0, y!20~ p�q�1!

k 20~ p�q�1!
, k	�

� Prob~~ Eqj , Dzj , EYj ! � Ik,d for some j � $1, + + + , k%!

� 1 � exp~�d Nfx ~1,0, y!20~ p�q�1! ! as kr `+ (A.41)

Consequently Fx is continuous at d � 0, and Fx~d! � 1 for all d � 0+ �

Proof of Corollary 1. By definition of u, Zu we have u~x, y!0l� u~lx, y! and Zu~x, y!0
l� Zu~lx, y!+ Consequently, ~ Zu~lx, y!0u~lx, y!!� ~ Zu~x, y!0u~x, y!! for all l � 0+ Fur-
thermore, Flx � Fx because x07x7 � lx07lx7 implies that gx � glx and also fx � flx +

�

Proof of Theorem 3. The bootstrap samples Sm
* can be represented equivalently by

the samples DSm
* � $~ui

*, Zi
*,Yi

*!%i�1
m or NSm

* � $~ui
*,zi
*,Yi

*!%i�1
m + Recall the definitions of

the events A@d, n;h# and A@d, n# ; replace n by m and ~ui , Zi ,Yi ! by ~ui
*, Zi

*,Yi
*! to define

events A@d,m;h# * and A@d,m# * and note that by a straightforward generalization of
Lemma 2 Prob@m20~ p�q�1!~~ Zu*~x, y!0u~x, y!! � 1! � d6Sn# � Prob~A@d,m# * 6Sn! holds
for all m, d+ Theorem 2 implies 6m20~ p�q�1!~~ Zu~x, y!0u~x, y!!� 1!6

p
&& 0 as nr `, and

hence

sup
d
�Prob�m20~ p�q�1!� Zu*~x, y!Zu~x, y!

� 1� � d6Sn	� Prob~A@d,m# * 6Sn !�� op~1!+

(A.42)

Now consider the sets C~x, y;hm�10~ p�q�1! !, and note that Prob~~ui
*, Zi

*,Yi
*! �

C~x, y;hm�10~ p�q�1! !6Sn! is equivalent to the relative frequency of points in DSn falling
into C~x, y;hm�10~ p�q�1! !+ Consequently,

� Prob~~ui
*, Zi

*,Yi
*! � C~x, y;hm�10~ p�q�1! !6Sn !

Prob~~ui , Zi ,Yi ! � C~x, y;hm�10~ p�q�1! !!
� 1� � Op~n

~k�1!02 !+ (A.43)

Standard results on the convergence of the empirical distribution now can be used
to show that also the conditional distributions of the points falling into C ~x, y;
hn�10~ p�q�1! ! asymptotically coincide:

sup
C � Prob@~ui

*, Zi
*,Yi

*! � C 6Sn #

Prob@~ui
*, Zi

*,Yi
*! � C~x, y;hm�10~ p�q�1! !6Sn #

�
Prob@~ui , Zi ,Yi ! � C #

Prob@~ui , Zi ,Yi ! � C~x, y;hm�10~ p�q�1! !#� � op~1!, (A.44)

where the supremum refers to all ~ p � q!-dimensional subintervals C of C ~x, y;
hm�10~ p�q�1! !+
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This leads to supd �Prob~A@d,m; h# * 6Sn! � Prob~A@d,m; h# ! �
p
&& 0 as n r `+

By arguments similar to those used to prove Theorem 1, it follows that for all
e � 0 there exists an he such that for every h � he, Prob~supd �Prob~A@d,m;h# * 6Sn! �
Prob~A@d,m# ! � � e!

p
&& 0 and Prob~supd �P~A@d,m; h# * 6Sn! � P~A@d,m# * 6Sn! � �

e!
p
&& 0 as n r `+ The assertion of the theorem now follows from ~A+42! and Theo-

rems 1 and 2+ �

Proof of Theorem 4. Recall the definitions of the events A@d, n; h# and A@d, n# +
Replace ~ui , Zi ,Yi ! by ~ui

*, Zi
*,Yi

*! and gx by [gx
* to define events A@d, n;h# * and

A@d, n# *+ First, note that for all n,

Prob�n20~ p�q�1!� Zu*~x, y!Zu~x, y!
� 1� � d6Sn�� Prob~A@d, n# * 6Sn !+ (A.45)

Conditional on Sn, the essential parts of the arguments used in the proofs of Lemma
A1 and Theorem 1 remain valid when applied to [gx

* and Zfx instead of gx and fx + This is
easily seen when noting that [gx

* is necessarily convex and that with probability converg-
ing to 1 as n r ` the bounds given in ~A+13! and ~A+25! also apply to [gx

*+ Because
n�10~ p�q�1!0b r 0, the latter follows from ~38! and Taylor expansions of gx

* similar
to ~39!+ Furthermore, because of ~40! relations ~A+19!–~A+21! generalize to Sn

* and Zfx +
Therefore for any e � 0 there exists an he � 0 such that for all h � he,

Prob�sup
d
@Prob~A@d, n# * 6Sn !� Prob~A@d, n, h# * 6Sn !# � e�r 1 as nr `+ (A.46)

On the other hand, in view of ~38!–~40!, one can invoke arguments similar to those
used in the proof of Proposition 1 to obtain

sup
d
�Prob~A@d, n, h# * 6Sn !� �

k�1

`

Prob�U� d
h 2
, k	� t~h!k Nfx ~1,0, y!k

k!
e�t~h! Nfx ~1,0, y!�

� op~1!+

The theorem now follows from Theorem 2+ �
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