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We present a dynamic decomposition analysis of the wake flow in fluid–structure
interaction (FSI) systems under both laminar and turbulent flow conditions. Of
particular interest is to provide the significance of low-dimensional wake flow
features and their interaction dynamics to sustain the free vibration of a square
cylinder at a relatively low mass ratio. To obtain the high-dimensional data, we
employ a body-conforming variational FSI solver based on the recently developed
partitioned iterative scheme and the dynamic subgrid-scale turbulence model for
a moderate Reynolds number (Re). The snapshot data from high-dimensional FSI
simulations are projected to a low-dimensional subspace using the proper orthogonal
decomposition (POD). We utilize each corresponding POD mode to detect features of
the organized motions, namely, the vortex street, the shear layer and the near-wake
bubble. We find that the vortex shedding modes contribute solely to the lift force,
while the near-wake and shear layer modes play a dominant role in the drag force. We
further examine the fundamental mechanism of this dynamical behaviour and propose
a force decomposition technique via low-dimensional approximation. To elucidate
the frequency lock-in, we systematically analyse the decomposed modes and their
dynamical contributions to the force fluctuations for a range of reduced velocity at
low Reynolds number laminar flow. These quantitative mode energy contributions
demonstrate that the shear layer feeds the vorticity flux to the wake vortices and the
near-wake bubble during the wake–body synchronization. Based on the decomposition
of wake dynamics, we suggest an interaction cycle for the frequency lock-in
during the wake–body interaction, which provides the interrelationship between the
high-amplitude motion and the dominating wake features. Through our investigation
of wake–body synchronization below critical Re range, we discover that the bluff
body can undergo a synchronized high-amplitude vibration due to flexibility-induced
unsteadiness. Owing to the wake turbulence at a moderate Reynolds number of
Re = 22 000, a distorted set of POD modes and the broadband energy distribution
are observed, while the interaction cycle for the wake synchronization is found to be
valid for the turbulent wake flow.
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1. Introduction
1.1. Resonant dynamics of coupled fluid–structure system

Unsteady flows involving fluid–structure interactions (FSIs) are widespread in
numerous engineering applications, and their fundamental understanding poses serious
challenges due to the richness and complexity of nonlinear coupled physics. Even
a simple configuration of a coupled fluid–structure system can exhibit complex
spatial-temporal dynamics and synchronization as functions of physical parameters
and geometric variations. Synchronization is a general nonlinear physical phenomenon
in fluid–structure systems whereby the coupled system has an intrinsic ability to lock
at a preferred frequency and amplitude. For example, when a bluff body immersed
in a cross-flow is flexible or mounted elastically, there exists a strong coupling
between the bluff body and the vortices forming in its wake. In particular, as the
natural frequency ( fn) of the bluff body approaches the frequency of the wake system,
typically the frequency of vortex shedding ( fvs), the wake–body frequency lock-in
behaviour is observed which plays a crucial role in establishing the synchronization.
During this frequency lock-in, the bluff body experiences a large self-limiting
vibration (Khalak & Williamson 1999) and a dynamical equilibrium between the
energy transfer and dissipation exists. This synchronization has been a major topic of
research to understand the mechanism of this energy transfer and the sustenance of
self-excited vibrations. In the present study we consider a prismatic square geometry
to understand the wake–body synchronization and to perform the decomposition of
wake dynamics during the FSI.

The phenomenon of frequency lock-in is a major concern in offshore, marine and
aeronautical engineering, whereby structures are designed to avoid the large-amplitude
vibrations by selecting optimal system parameters (e.g. geometric dimensions, stiffness,
damping) and/or installing active and passive devices to control the intensity of FSI.
In particular, several studies have been conducted with the purpose of controlling
the wake–body interaction via passive and active devices (Guan et al. 2017; Law &
Jaiman 2017; Narendran et al. 2018) with the physical insight based on the reliance
of frequency lock-in on the large-scale features of the wake. In fact, these studies
were found to be remarkably successful in suppressing large-amplitude motion of
the body by avoiding the interaction between the major organized features of the
wake. However, the mechanism of the interactions among the wake features and their
impact on the free motion of the bluff body is not properly explained. Moreover,
the available experimental and numerical data can be used to provide a deeper
understanding and a new insight into the kinematics and dynamics of synchronized
wake–body interaction. This paper aims to explain how different organized flow
features (i.e. near-wake structures) amplify the bluff body motion and sustain the
energy transfer from the fluid flow to the vibrating body. Specifically, we examine
the formation of the dominant coherent structures and their nonlinear interactions
during the wake–body synchronization.

The vortex shedding pattern is undoubtedly the most prominent wake feature behind
a bluff body. It is present in almost all of the separated wake flows and has been
studied extensively in the literature. This primary wake feature begins at a much lower
Re: for example, in a circular cylinder wake, at Re≈ 49, it exhibits a classical Kármán
vortex street and develops the three-dimensional vorticity patterns when Re & 190. In
addition to the vortex street, a free shear layer (not attached to a solid surface) is an
important dynamical feature that represents a separating high-gradient layer behind
a bluff body, and it arises between the higher free stream velocity and the smaller
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Decomposition of synchronized wake dynamics 725

velocity occurring in the wake region. The shear layer behaves likes a perturbed
vortex sheet and is highly sensitive and unstable to small disturbances, giving
rise to alternating thickening and thinning of the vortex sheet. The characteristic
vortex structures develop when shear layer thickening occurs. For the unsteady
two-dimensional regime (49 6 Re 6 190 for a circular cylinder) the roll-up of the
shear layers with the formation of the vortex street can be observed (Williamson 1996).
These shear layers are predominantly elongated in the streamwise direction and have
a high gradient in the cross-flow direction. Behind a moving or stationary bluff body,
the region of a recirculating region with the rotational flow is present due to the fluid
viscosity. Owing to nonlinear flow separation and turbulence, complex interactions
occur in the mean recirculation region, which is also referred to as the near-wake
bubble. Several previous studies have explored the dynamical features inside the wake
region (with the vortex shedding and the shear layer) using experimental (Cantwell &
Coles 1983), numerical (Braza, Chassaing & Minh 1986) and both (Bearman 1997;
Dong et al. 2006) techniques. In the present analysis we consider the near-wake
bubble as a distinct feature from the vortex street and the shear layer. The near-wake
region accounts for the complex interactions of the mean circulation region, which can
be considered as a general feature and can be identified separately from the other two
features. Hence, we divide the wake into three dominant organized coherent structures:
the vortex street, the shear layer, and the near-wake bubble. These organized features
have an intrinsic dynamics of their own and influence each other in a nonlinear
manner over a wide range of space and time scales. A primary goal of this paper
is to employ low-dimensional models to extract the organized wake features and to
examine their roles during the wake–body synchronization.

1.2. Low-dimensional models for wake features
To extract the large-scale organized/coherent wake features, it is required to
decompose the dynamic flow fields by scales into different constituent kinematical
regions. The concept of decomposition by scale has been prevalent in much fluid
dynamics research ranging from a low-dimensional projection of flow field to
turbulence modelling by ensemble averaging, temporal or spatial averaging. A
general decomposition technique can be considered to separate the space-time
data for representing different characteristics of the field. For example, the proper
orthogonal decomposition (POD) extracts the most energetic modes in an optimal
way and provides structural information from the wake data. The POD is a popular
method for constructing low-order modelling from the data (Holmes 2012), and it
is often referred to as the Karhunen–Loève expansion or the principal component
analysis. The key idea behind the Karhunen–Loève expansion is to determine a
low-dimensional affine subspace from the high-dimensional data while retaining
the important dynamics of the full-order model. After the determination of the
best approximating low-dimensional subspace, a Galerkin projection is employed to
project the dynamics onto it. In this work, we will employ this low-dimensional
subspace projection procedure for extracting the large-scale wake features from the
high-dimensional flow dynamics data.

In the context of the present study, the POD-Galerkin projection method is quite
attractive for capturing the synchronized dynamics such as the vortex shedding and
the near-wake interactions (Noack et al. 2003; Rempfer 2003). In addition, it has
been the dominant empirical model reduction technique incorporated for the standard
flow around a stationary circular cylinder for the past few decades. For example,
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726 T. P. Miyanawala and R. K. Jaiman

in a pioneering study, Deane et al. (1991) reproduced the flow dynamics of the
laminar wake by employing merely an eight-dimensional model, which was further
generalized to generate reduced spaces for a three-dimensional velocity field by
Ma & Karniadakis (2002) using direct numerical simulation data. In general, the
empirical POD-Galerkin models are capable of reconstructing the reference dynamics
with higher accuracy than the standalone mathematical or physical Galerkin methods,
while capturing the physically most significant modes (Noack et al. 2003). With
regard to the applications of the POD-Galerkin models to bluff body wake flows,
these modes correspond to the organized wake features such as the vortex street, the
shear layer and the near-wake bubble. Although there is a significant body of work
on the wake modes for a stationary cylinder, they have not been examined in the
context of wake–body interaction and the lock-in process. One of the contributions
of the present study is to build some connections between the wake features and the
lock-in process. During the lock-in/synchronization, the vibrating body undergoes a
highly nonlinear wake–body interaction with self-sustained oscillations.

In the early studies of POD application to fluid flows (Lumley 1967; Sirovich
1987), the dynamic flow field is reconstructed by a linear combination of the most
significant modes. Hence, it has a considerable local error in the highly nonlinear
regions of the organized wake motions and the evaluation of the projected nonlinear
term has a direct dependence on the large dimension of the original system. This
problem is mitigated to a certain extent by increasing the sampling frequency and/or
refining the spatial discretization of the reference data. However, these temporal and
spatial refinements increase the cost of model reduction without directly addressing the
nonlinear nature of the flow. To introduce the nonlinearity, Petrov–Galerkin projections
to the Navier–Stokes formulation or Koopman operators are incorporated in some
studies (Rowley & Dawson 2017). Instead of such explicit models, we employ the
recently developed discrete empirical interpolation method (DEIM; Chaturantabut &
Sorensen 2009) for dynamical systems, which reconstructs the fields as a nonlinear
combination of the POD modes. Apart from the POD basis subspace, the method
relies on the additional POD basis to enrich the low-rank approximation of the
nonlinear terms. In the POD-DEIM, a set of best points are selected using a greedy
selection and the reconstruction is based on the time history of the field data of
those points. This reduces the computational cost of the technique and further allows
nonlinearities to be captured during the reconstruction of highly nonlinear dynamic
wake fields (Rowley & Dawson 2017).

1.3. Contributions and organization
For the past few decades, studies on the low-dimensional decomposition of wake
features have primarily been focused on flow past stationary bodies, particularly on
a circular cylinder (Deane et al. 1991; Noack et al. 2003; Rowley & Dawson 2017;
Taira et al. 2017). This may be due to the fact that the flow exhibits a diverse set of
complex phenomena despite its simple geometry. However, very few studies (Liberge
& Hamdouni 2010; Yao & Jaiman 2017) are found on unsteady FSI systems. Here
we provide a modal reduction study on the flow past a freely vibrating sharp-cornered
square cylinder with two-degrees-of-freedom motions. We consider a configuration of
a square cylinder for our numerical study of wake–body synchronization because
this configuration has fixed and perfectly symmetric separation points at the
leading sharp corners, because entirely resonance-induced lock-in exists (Yao &
Jaiman 2017). The physical investigation is general for any fluid–structure system
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Decomposition of synchronized wake dynamics 727

involving the interaction dynamics of flexible structures with an unsteady wake–vortex
system. We hypothesize that the solution space of wake–body interaction attracts a
low-dimensional manifold, which allows construction of a set of basis vectors for a
low-dimensional representation of the high-dimensional space. The low-dimensional
subspace is constructed by means of the samples collected from the high-dimensional
solutions via projection-based model order reduction. We utilize the linear and
nonlinear POD-based reduced-order reconstructions to understand the most significant
features in the wake flow.

To extract the modes for the dynamics of wake–body synchronization, the POD in
conjunction with the nonlinear POD-DEIM is applied to a set of samples collected
from the full-order simulations. We exploit the POD modes obtained to answer the
following intriguing questions that are prevalent in the field of fluid mechanics: (i)
How do the large-scale features contribute to the unsteady forces acting on the bluff
body? (ii) How do the wake features interact when the structural frequency and vortex
shedding frequency are locked in, such that the vortices remain very energetic even
the fluid has transferred energy to the structure? (iii) Will the wake and bluff body
undergo synchronized motion below the critical Re due to the structural flexibility?
(iv) What role does the wake turbulence play when we attempt to decompose the
wake into its large-scale features? In relation to (i), we quantify the force contribution
from each wake feature mode to the streamwise (drag) and transverse (lift) forces
and explain the observed variation. We further investigate the modal contribution
of different wake features in the pre-lock-in, lock-in and post-lock-in regimes and
propose a cycle explaining the sustenance of lock-in phenomena of the wake–body
synchronization. We then explore the below-critical-Re flows to examine whether
the bluff body and the wake can undergo synchronization via flexibility-induced
unsteadiness. Finally, we apply POD decomposition to the three-dimensional flow at
moderate Re = 22 000, whereas the wake is fully turbulent after flow separation. A
well-established dynamic large-eddy simulation is employed for generating full-order
data for the turbulent wake. At this sub-critical Reynolds number, we explore the role
of turbulence during the reconstruction of flow-field data and extend the wake–body
synchronization cycle to the turbulent flow.

The paper is structured as follows. In § 2 we briefly review the full-order model
(FOM) for the coupled fluid–structure system, which follows by the formulation
of modal reduction via linear POD and nonlinear POD-DEIM. Section 3 discusses
the problem set-up and the mesh convergence study performed for the full-order
analysis. In § 4 the reduced-order reconstruction of fluid fields using the linear and
nonlinear POD methods is presented together with the analysis on the role of wake
features in generating the forces. In § 5, the mode energy contributions from different
flow features under lock-in conditions are investigated and a self-sustaining cycle is
proposed to explain the wake interaction with the bluff body. Section 6 investigates
the wake–body synchronization phenomenon at below critical Re. Section 7 explores
the application of modal decomposition for moderate-Re flows and extends the
proposed wake interaction cycle to the turbulent flow. Concluding remarks and the
main results of the present study are provided in § 8.

2. Numerical methodology

We first briefly summarize our high-dimensional FOM to simulate the coupled fluid–
body interaction using the incompressible Navier–Stokes equations and the rigid body
dynamics.
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2.1. Full-order model for fluid–body interaction
We employ a variational formulation based on the arbitrary Lagrangian–Eulerian
(ALE) to solve the following coupled fluid–body system:

ρ f ∂uf

∂t
+ ρ f (uf

−w) · ∇uf
=∇ · σ f

+ bf on Ω f (t), (2.1)

∇ · uf
= 0 on Ω f (t), (2.2)

M
∂us

∂t
+Cus

+K(ϕs(z0, t)− z0)=Fs on Ω s, (2.3)

where superscripts f and s denotes the fluid and structural domains, and Ω f (t) and Ω s

represent the fluid and solid domains, respectively. Here ρ f is the fluid density, uf and
w are the fluid and mesh velocities at a spatial point x ∈Ω f (t), and bf denotes the
body force in the fluid domain. For the structural system, M, C and K are the mass,
damping and stiffness matrices of the bluff body and Fs is the external force acting
on the body. The function ϕs(z0, t) maps the initial position vector of the centre of
mass (z0) to its position at time t, and σ f is the Cauchy stress tensor for a Newtonian
fluid given by

σ f
=−pI+µf (∇uf

+ (∇uf )T), (2.4)

where p is the fluid pressure. In addition to the initial conditions and the standard
Neumann/Dirichlet conditions, the coupled system incorporates the velocity and
traction continuity conditions at the fluid–body interface Γ as follows:

uf (t)= us(t), (2.5)∫
Γ (t)

σ f (x, t) · n dΓ +Fs
= 0, (2.6)

where n is the outer normal to the fluid–body interface. The above fluid–body
interface conditions are satisfied by the body-conforming Eulerian–Lagrangian
treatment, which provides accurate modelling of the boundary layer and the vorticity
generation over a moving body. While (2.1)–(2.3) of the coupled fluid–body system
are directly solved for low-Re flows, we consider the well-established dynamic
subgrid-scale model for high-Re turbulent flow. The spatially filtered Navier–Stokes
and continuity equations are solved in the variational form. Details of the dynamic
subgrid-scale model are provided in Jaiman, Guan & Miyanawala (2016a).

The weak variational form of (2.1) is discretized in space using equal-order
isoparametric finite elements for the fluid velocity and pressure. In the present study,
we utilize the nonlinear partitioned staggered procedure for the full-order simulations
of FSI (Jaiman, Pillalamarri & Guan 2016b). The motion of the structure is driven by
the traction forces exerted by the fluid flow, whereby the structural motion predicts the
new interface position and the geometry changes for the moving fluid domain at each
time step. The movements of the internal ALE fluid nodes are updated such that the
mesh quality does not deteriorate as the motion of the solid structure becomes large.
To extract the transient flow characteristics, we solve the Navier–Stokes equations
at discrete time steps, which leads to a sequence of linear systems of equations via
Newton–Raphson-type iterations. We employ the conjugate gradient, with a diagonal
preconditioner for the symmetric matrix arising from the pressure projection and the
standard generalized minimal residual solver based on the modified Gram–Schmidt
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Decomposition of synchronized wake dynamics 729

orthogonalization for the non-symmetric velocity–pressure matrix. The above coupled
variational formulation completes the presentation of the FOM for the FSI.

From a model reduction viewpoint, the coupled system of the nonlinear differential
equations for the fluid–body interaction can be written in the following form:

dy
dt
=F(y), (2.7)

where y is the column state vector describing the unknown degrees of freedom and
F is a vector-valued function describing the spatially discretized governing equations.
In the present fluid–body system, the state vector comprises the fluid velocity and
the pressure as y= {uf , p} and the structural velocity involves the three translational
degrees of freedom. For a discretized domain of m elements and n time steps,
the full-order simulation outputs a high-fidelity data set y ∈ Rm×n×q, where q is
the number of variables in y. This data set is extremely valuable for determining
the instantaneous physics of the fluid–body system and to construct a low-order
representation that preserves the behaviour of the original system.

2.2. Low-order models
We now turn to the data-driven model reduction technique whose goal is to decompose
the aforementioned high-dimensional data set into a set of low-dimensional modes. For
that purpose, we can consider the decomposition of the nonlinear mapping F of (2.7)
as

F(y)= f +Ay+F′(y), (2.8)
where f denotes a constant column vector with m rows, and A and F′ are the
linear and nonlinear terms. For ease of explanation, consider the solution vector
y(x, t) ∈Rm×1 comprising a single quantity of interest which has been determined at
discretized locations x of the spatial domain and for a particular time t. The matrix
operator A is an m×m matrix which captures the linear dynamics, while F′(y) is a
nonlinear function of y. Using the projection-based model reduction, we can represent
the state vector y by an element in a low-rank vector subspace spanned by the column
vectors of an m× k matrix V = [v1v2 · · · vk], where k�m. The state vector y can be
approximated by V ŷ, where ŷ is a reduced column vector with k entries. Since the
columns of V are orthonormal (i.e. VTV = I), via the Galerkin projection onto the
basis V , we get the following reduced dynamics:

dŷ
dt
=VTf +VTAV ŷ+VTF′(V ŷ). (2.9)

Next, we have to choose a suitable subspace for the mode decomposition. Using
the reduced singular value decomposition (SVD), the above state vector y can be
expressed as

Y =VΣWT
=

k∑
j=1

σjvjwT
j , (2.10)

where the vectors vj are the POD modes of the matrix Y with rank k, W is an
orthonormal matrix with n× k, and Σ is a k× k diagonal matrix with diagonal entries
σ1 > σ2 > · · ·> σk > 0. For any r 6 k, the subspace spanned by {v1, . . . , vr} provides
an optimal representation of y in the subspace of dimension r using the SVD process.
The total energy contained in each POD mode vj can be computed by the singular
value σ 2

j . Note that V and W are the orthonormal eigenvectors of YYT and YTY,
respectively.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

14
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.140


730 T. P. Miyanawala and R. K. Jaiman

2.2.1. Proper orthogonal decomposition
The POD method provides an algorithm to decompose a set of data into a minimal

number of modes. We give a brief outline of this projection-based model reduction
for the dynamical analysis of wake–body interaction. The general POD algorithm can
be expressed as follows. Here, the eigenvectors of YYT are determined instead of
performing the SVD. The algorithm adopted from Taira et al. (2017) is summarized
in Algorithm 1.

ALGORITHM 1: Snapshot POD

Input: Snapshots of spatial field expressed as Y(x, t) where Y ∈Rm×k (m, number
of spatial points; k, number of snapshots)
Output: Significant r POD modes V = [v1, v2, . . . , vr]

(i) Develop the fluctuation matrix by subtracting the mean: Ỹ(t)=Y(x, t)−Y(x)
(ii) Construct the covariance matrix R= ỸỸ

T
∈Rm×m

(iii) Find the eigenvalues and eigenvectors of R by RV =ΛV
(iv) Determine the number of required POD modes (r) using

∑r
j=1 λj/

∑m
j=1 λj ≈

1.0, where λj are the eigenvalues given by Λ.

The standard linear POD incurs almost the same order of cost as the full-order
analysis since it is using the ỸỸ

T
matrix which has size m×m. In a typical time-

dependent flow analysis, it is unnecessary to generate m POD modes for comparison
as the POD mode energy decays exponentially. Hence an alternative method, the so-
called snapshot POD (Sirovich 1987) is applied to extract the most significant modes.
In the snapshot method, the eigenvalue decomposition is performed on Ỹ

T
Ỹ ∈ Rk×k,

which is significantly smaller than ỸỸ
T

as k�m. Let the eigenvalues and eigenvectors
of Ỹ

T
Ỹ be given by

Ỹ
T
ỸW =ΛW, (2.11)

then, using the relationship between the eigenvectors of ỸỸ
T

and Ỹ
T
Ỹ, a maximum

of k significant POD modes can be extracted by

V = ỸWΛ−1/2. (2.12)

Throughout the study, every POD decomposition will be performed via the snapshot
POD method due to its low computational cost and memory usage. After extracting
the significant POD modes, the constant and linear components of the instantaneous
state vector can be recovered as a linear combination of the significant modes
identified,

Y(x, t)≈ Y(x)+
r∑

j=1

ŷj(t)vj, (2.13)

where r is the number of significant POD modes. The temporal coefficients of
the linear combination are determined by the L2 inner product 〈 . , . 〉 between the
fluctuation matrix and the modes as follows:

Ŷ(t)= 〈Y − Y,V〉. (2.14)

This summarizes the process of POD by performing the SVD on the snapshots of the
sampled solutions at certain time steps.
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Decomposition of synchronized wake dynamics 731

While the above POD-Galerkin process can reconstruct the linear term to the
expected error threshold, the nonlinear term will not be reconstructed properly in
the context of nonlinear incompressible flow which involves quadratic nonlinearity.
The linear POD reconstruction requires a higher number of modes and/or a smaller
sampling interval for snapshots to obtain the required local domain accuracy. In
other words, the spatial and/or temporal discretizations of the POD method have to
be so small that the nonlinearities behave almost linearly. Subsequently, the POD
reconstruction may result in a similar order of computational expense to full-order
simulation. This issue can be handled by employing the DEIM. The DEIM introduces
the nonlinearity by supplementing an additional basis for a low-order representation
of nonlinear terms. This gives rise to the reduction in the requirement of POD
modes, hence decreasing the computational cost while capturing the nonlinear regions
properly.

2.2.2. Discrete empirical interpolation method
To overcome the difficulty in the linear POD, Chaturantabut & Sorensen (2009)

proposed the DEIM to reconstruct the full-order variable as a nonlinear combination of
the POD modes. The aim of the DEIM is to design a low-order representation for the
nonlinear terms by introducing an additional basis. Consider U as a basis generated
from the leading l modes of the POD, which is attracted to a low-dimensional
subspace. We can approximate the nonlinear term in (2.8) by the sequence of
nonlinear snapshots as F′(V ŷ(t)) ≈ U ĉ. The coefficients ĉ can be selected based
on Algorithm 2, which relies on a greedy nonlinear function approximation. In
Algorithm 2, ρ̂ and ℘1 denote the assigned value and the assigned index of max{|v1|},
and e℘i =[0, . . . , 0, 1, 0, . . . , 0]T ∈Rm is the ℘ith column of the identity matrix of size
m × m. The accuracy of the DEIM approximation depends on the error induced by
the POD projection and the estimation of ‖(PTU)−1

‖. Further details of the DEIM
process can be found in Chaturantabut & Sorensen (2009).

ALGORITHM 2: POD-DEIM
Output: Indices of l best points ℘ = [℘1, ℘2, . . . , ℘l]

T

Input: Most significant l POD modes [v1, v2, . . . , vl]

(i) [ρ̂ ℘1] =max{|v1|}

(ii) U = [v1], P = e℘1 , ℘ = [℘1]

(iii) for i=2 to l do
(a) Solve (PTU)ĉ=PTvi for ĉ
(b) Compute residual r̂= vi −U ĉ
(c) Assign [ρ̂ ℘i] =max{|r̂|}
(d) Augment U←[U vi], P←[P e℘i], ℘←[℘ ℘i]

T

end for

Here, a set of entries ℘⊂{1, 2, . . . , l} often called optimal (best) points are selected
to determine ĉ by the following relation:

ĉ= (PTU)−1PTF′(V ŷ(t)). (2.15)

Assuming that F′ is a componentwise function PTF′(V ŷ(t))= F′(PTV ŷ(t)), we can
rewrite (2.7) as

d
dt

ŷ(t)= (VTAV)ŷ(t)+VTU(PTU)−1F′(PTV ŷ(t)). (2.16)
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In the present work, we perform the nonlinear POD on the same fluctuation
matrix ỹm×k without separating the linear and nonlinear components. Consider the
approximation of ỹ as a nonlinear combination of the POD modes:

ỹ(t)≈Vθ(t). (2.17)

The coefficients θ(t) are calculated by the conditions imposed by the POD-DEIM.
While the POD modes are linearly independent, we can obtain a unique number of
DEIM points if the PTU matrix is invertible. By using just the ℘ rows of V and U ,
we can establish the relationship

V℘θ(t)= ỹ℘(t), (2.18)

which further gives
ỹ(t)≈VV−1

℘ ỹ℘ . (2.19)

If the number of points used is greater than the number of significant modes, i.e. l> r,
which is often the case, V℘ becomes a rectangular matrix. This makes the coefficients
θ(t) given by the gappy POD reconstruction

θ(t)= arg min‖ỹ℘(t)−V℘ â‖2, â ∈Rr. (2.20)

The solution to the least squares problem (2.20) gives the result

ỹ(t)≈VV+℘ ỹ℘, (2.21)

where V+℘ is the Moore–Penrose pseudo-inverse of V℘ .
The POD-DEIM provides a way to introduce nonlinearity into the POD reconstruct-

ions; however, due to this nonlinear behaviour, it is not guaranteed to converge
to the full-order results. In other words, the use of more POD modes or DEIM
points does not ensure an improvement in the result. Therefore, determining
the optimal sizing of the low-dimensional representation is critical when using
POD-DEIM for reconstruction. In the next section we present the FOM for generating
high-dimensional data.

3. Full-order simulations
3.1. Problem set-up

In this section we give an overview of full-order simulations for a freely vibrating
structure immersed in a viscous incompressible fluid flow. Specifically, the focus of
this section is to present numerical results on the flow past an elastically mounted
square cylinder, whereby the cylinder is free to oscillate in the streamwise (X) and
the transverse (Y) directions. The mass and natural frequencies are identical in both
X- and Y-directions. The translational flow-induced vibration of a cylinder is strongly
influenced by the four key non-dimensional parameters, namely mass ratio (m∗),
Reynolds number (Re), reduced velocity (Ur), and critical damping ratio (ζ ), defined
as

m∗ =
M
mf
, Re=

ρ f U∞D
µf

, Ur =
U∞
fnD

, ζ =
C

2
√

KM
, (3.1a−d)

where M is the mass of the body, C and K are the damping and stiffness coefficients
respectively for an equivalent spring–mass–damper system of a vibrating structure,
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(a) (b)√ = 0, ßxy = 0

√ = 0, ßxy = 0
Lu = 20D Ld = 40D

H = 40D

u = U
ßxx = 0
ßyx = 0

√ = 0 X

uf = us

Y

FIGURE 1. Full-order problem set-up for fluid–structure interaction: (a) schematic diagram
of the computational domain and boundary conditions; (b) representative Z-plane slice of
the unstructured mesh. The top right inset displays the near-cylinder mesh.

and U∞ and D denote the free-stream speed and the diameter of cylinder, respectively.
The natural frequency of the body is given by fn= (1/2π)

√
K/M and the mass of fluid

displaced by the structure is mf = ρ
f D2Lc for a square cross-section, where Lc denotes

the span of the cylinder. In the above definitions, we make the isotropic assumption
for the translational motion of the rigid body, i.e. the mass vector M= (mx,my) with
mx = my = M, the damping vector C = (cx, cy) with cx = cy = C, and the stiffness
vector K= (kx, ky) with kx = ky=K. The fluid loading is computed by integrating the
surface traction considering the first layer of elements located on the cylinder surface.
The instantaneous lift and drag force coefficients are evaluated as

CL =
1

1
2ρ

f U2
∞

DLc

∫
Γ

(σ f
· n) · ny dΓ , (3.2)

CD =
1

1
2ρ

f U2
∞

DLc

∫
Γ

(σ f
· n) · nx dΓ . (3.3)

Here nx and ny are the Cartesian components of the unit outward normal n. In this
study, we focus on the lift and drag forces due to the pressure field. Hence, we
evaluate the pressure-induced drag (CDp) and lift (CLp) forces given by

CDp =
1

1
2ρ

f U2
∞

D

∫
Γ

(σp · n) · nx dΓ , CLp =
1

1
2ρ

f U2
∞

D

∫
Γ

(σp · n) · ny dΓ . (3.4a,b)

Figure 1(a) illustrates a schematic of the two-dimensional simulation domain used for
the fluid–body interaction problem. The centre of the square column is located at the
origin of the Cartesian coordinate system. The side length of the square column is
denoted by D. The distances to the upstream and downstream boundaries are 20D and
40D, respectively. The distance between the side walls is 40D, which corresponds to
a blockage of 2.5 %. The flow velocity U∞ is set to unity at the inlet and a no-slip
wall is implemented at the surface of the square column. While the top and bottom
boundaries are defined as slip walls, the computational domain is assumed to be
periodic in the spanwise direction for the three-dimensional simulations.
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M1 M2 M3 M4

Number of nodes 17 622 34 302 87 120 145 608
Number of elements 17 389 34 027 86 631 145 195
Time-step size 1t 0.025 0.025 0.025 0.025
Shedding frequency f /fn 0.9798 0.9798 0.9798 0.9798
r.m.s. amplitude Arms

y /D 0.097 (56.0 %) 0.200 (9.7 %) 0.220 (0.72 %) 0.2211
Mean drag CD 1.623 (24.1 %) 1.994 (6.7 %) 2.134 (0.18 %) 2.1377
r.m.s. lift Crms

L 0.485 (29.7 %) 0.604 (12.4 %) 0.687 (0.30 %) 0.6893

TABLE 1. Grid convergence study at Re= 100, m∗ = 3 and Ur = 5.0.

3.2. Mesh convergence study
For the high-dimensional approximation of the FOM, the computational domain
is discretized using an unstructured finite-element mesh, with a boundary layer
mesh surrounding the body and three-node triangle (2-D) and six-node wedge (3-D)
elements outside the boundary layer region. Three more grids are generated where the
mesh elements are successively increased by approximately a factor of 2, designated
as M2, M3 and M4. The discretized domain, along with a close-up view of the corners
of the square column, is illustrated in figure 1(b). Grid convergence study results are
recorded in table 1 for the lock-in region. All cases for the mesh convergence are
simulated at Re= 100, m∗= 3 and Ur= 5.0. The mesh convergence error is computed
by considering the finest mesh M4 as the reference case. The force coefficients, the
shedding frequency and the root mean square (r.m.s.) of the transverse amplitude
are analysed. It can be seen that values recorded for meshes M3 and M4 differ by
less than 1 %. Therefore, mesh M3 is adequate for the present study. Furthermore,
the adopted full-order solver and the numerical discretizations have been extensively
validated in several earlier studies for both low-Re (Miyanawala, Guan & Jaiman
2016; Jaiman et al. 2016a) and moderate-Re (Jaiman et al. 2016a; Miyanawala &
Jaiman 2018) flows.

In the next section the modal decomposition of the pressure field is presented for
a representative reduced velocity of Ur = 6.0 in the lock-in region at (Re, m∗, ζ ) =
(100, 3.0, 0). The snapshots of the FOM performed for the flow past a vibrating
square cylinder are utilized to recover the POD modes and the DEIM points. The
accuracy of the linear POD and POD-DEIM is systematically assessed with regard to
their effectiveness in extracting the flow features.

4. Assessment of low-order model for wake decomposition
As described earlier, we incorporate the snapshot POD method described to

obtain the low-dimensional decomposition of the wake dynamics. As found in
Miyanawala & Jaiman (2018), the laminar bluff body flow involves just a few
significant features. It will be ineffective to generate the entire set of POD modes,
e.g. 87 120 modes (=mesh count) for this particular problem. Hence, we use the
snapshot POD technique and obtain just the most significant POD modes, which are
a few orders of magnitude smaller. We reconstruct the pressure field using the linear
and nonlinear techniques and compare their effectiveness in capturing the organized
wake features. In the present analysis the unsteady pressure field values for all the
mesh points are collected into an m × k matrix P where m (mesh count) = 87 120
and k (number of snapshots) = 320. The snapshots are sampled every 50 time steps,
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FIGURE 2. (Colour online) Distribution of modal energy for a laminar flow past a freely
vibrating square cylinder: (a) energy decay of POD modes; (b) cumulative energy of POD
modes.

i.e. at 1.25D/U∞ intervals (sampling frequency = 0.8U∞/D). Further details about
the determination of the sampling frequency and the adequate number of samples are
presented in appendix A. The fluctuation matrix ỹm×k is then generated by subtracting
the mean value (P) of each point over the snapshots Ỹ = P − P. The POD modes
are extracted using the eigenvalues Λk×k = diag[λ1, λ2, . . . , λk] and eigenvectors
W = [w1w2 · · · wk] of the covariance matrix Ỹ

T
Ỹ ∈ Rk×k given by Ỹ

T
ỸW = ΛW .

As presented earlier, the POD modes V = [v1v2 · · · vk] are related to Λ and W by
V = ỸWΛ−1/2. Each eigenvalue represents the energy/strength of the POD mode.
Since the mean pressure distribution is initially removed from the pressure field, the
relative strength of the mode directly expresses the contribution from each mode for
the pressure fluctuations. Figure 2(a) displays the energy of these modes normalized
by the total energy of the 320 modes obtained. It is clear that this energy decays
exponentially and the most energetic mode has 56 % of the total energy. In fact, the
first nine most significant modes contain 99 % of the total energy of the modes, as
shown in figure 2(b). Initially, these nine significant modes are used to recover the
pressure field in the linear POD reconstruction. We refer to these modes as mode
1, mode 2, etc. and they are in the descending order of mode energy (λi). We first
incorporate the linear reconstruction method, whereby we assume the final flow field
is a linear combination of the flow features captured by the POD modes.

4.1. Linear POD reconstruction
In the linear POD reconstruction method, the instantaneous pressure field is recovered
by the mean and a linear combination of the identified significant modes. In this
analysis, r is set to 9, which represents the most energetic modes containing ∼99 %
of the total contribution to the pressure fluctuations. The temporal coefficients ŷj are
determined by the L2 inner product between the fluctuation matrix and the modes as
expressed in (2.14). The mean pressure distribution and the first nine POD modes
are displayed in figure 3. Note that, throughout this paper, the time-independent
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FIGURE 3. (Colour online) The mean field and the first nine significant POD modes. The
energy fraction of the POD mode is mentioned in brackets. The values are normalized by
1/2ρ f U2

∞
. The flow is from left to right.

fields such as the mean pressure field and POD modes correspond to the initial flow
field with zero bluff body motion. (We use a coordinate system fitted to the rigid
body: the origin, (X, Y, Z)= (0, 0, 0), is always at the centre of the square cylinder.)
The mean field is symmetric around the X-axis along the wake centreline. This is
expected as the time-averaged distribution of the flow past a symmetrical bluff body
should be symmetrical. Furthermore, the modes 2, 4, 5, 6, 7 and 8 are symmetric
around the wake centreline, while modes 1, 3 and 9 are anti-symmetric with equal
values and opposite signs about the wake centreline. As shown in figure 5, the POD
time coefficients of these modes have the same frequency as the lift coefficient.
It is evident that the first, third and ninth modes correspond predominantly to the
Kármán vortex street with alternating positive and negative pressure regions about
the X-axis and the pressure contours resulting from a staggered vortex street. By
examining figure 5, the time coefficients of the symmetric modes have the same
frequency as the drag force. Of these modes, modes 2 and 8 have a high transverse
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FIGURE 4. (Colour online) Absolute value of the time-invariant contribution from each
mode to the in-line (|Fi

x|) and cross-flow (|Fi
y|) forces. Modes 1, 3 and 9 capture the vortex

shedding, modes 2 and 8 correspond to the effect of the shear layer and modes 4, 5, 6
and 7 capture the near-wake bubble effects.

gradient (∂/∂y� ∂/∂x) behaviour in the near-wake (0.5D–5D) region almost parallel
to the top and bottom edges of the square cylinder, suggesting that these modes
represent the influence from the shear layer. Modes 4, 5, 6 and 7 originate from the
near-wake region and diffuse symmetrically towards the far wake. These modes have
a dominant streamwise gradient (∂/∂x� ∂/∂y) compared to the transverse gradient.
We can attribute these contributions to the near-wake bubble and its local dynamical
property. For ease of explanation, we refer to these modes as the vortex shedding,
the shear layer and the near-wake.

Figure 4 quantifies the time-invariant contributions (Fi
j) from each mode to the drag

and lift forces. For the definition of Fi
j , j= (x, y) is the direction of the force and i

is the mode number. These values are calculated based on the fluid–solid boundary
values of the mode fields displayed in figure 3. It is clear that the vortex shedding
modes (modes 1, 3 and 9) contribute entirely to the lift force, while the shear layer
and the near-wake modes contribute entirely to the drag force. Further details of
the force decomposition procedure using the modal contributions are presented in
appendix B. Due to this directionally independent contribution of the bluff body
features for the forces, the time coefficients (ŷj(t)) of these modes should display the
same frequencies of the lift and drag forces.

The time histories and the fast Fourier transform (FFT) spectra of the first five
POD modes are shown in figure 5(a). The first and third mode coefficients have
a low-frequency sinusoidal variation with the natural frequency ( fn). The second,
fourth and fifth mode coefficients have a non-zero mean with a frequency ≈2fn.
Interestingly, as presented in figure 5(b), fn and 2fn coincide with the frequencies of
lift and drag, respectively. Hence, we can further confirm that modes 1 and 3 make
their sole contribution to the fluctuating lift while modes 2, 4 and 5 contribute to the
drag force. From these observations, we can further confirm that the vortex shedding
process contributes exclusively to the lift force and the near-wake and the shear layer
phenomena influence the drag force.

Using the POD procedure, we successfully decompose the flow field into physically
significant features. We reconstruct the same field combining these modes in
the linear POD technique such that utilizing (2.13) for the pressure field gives
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FIGURE 5. (Colour online) Time history and FFT comparisons: (a) temporal coefficients
of first five POD modes; (b) force coefficients. Note that modes 2, 4 and 5 have the same
frequency (2fn) as the drag and modes 1 and 3 have the same frequency ( fn) as the lift.

P(t)≈ P+
∑r

j=1 ŷj(t)vj. Figure 6 illustrates the pressure distribution at tU∞/D= 100
using the linear POD reconstruction. The recovered POD mode is compared with the
result obtained from the FOM. A good match with a maximum relative local error
of less than 2 % can be seen in figure 6. To quantify the accuracy of the entire flow
field recovery, the normalized r.m.s. error of the entire distribution is considered. The
r.m.s. error εrms is given by

εrms
=

√∑
(PFOM − PPOD)2/nc

|P100|
× 100, (4.1)

where PFOM and PPOD are the pressure values of the mesh nodes extracted from the
FOM and the POD reconstruction, respectively, nc is the node count of the mesh
and |P100| is the mean pressure of the field. When nine modes are used, this error
is εrms

= 3.78 %. In this linear reconstruction, the highest error is observed at the
regions known to exhibit nonlinear variation, such as the near-wake region, the shear
layer and the vortex cores. Next, we analyse the POD-DEIM technique to improve
the accuracy in these nonlinear flow features using the snapshot sequence and their
respective DEIM points.
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FIGURE 6. (Colour online) Comparison between POD reconstruction and FOM result:
pressure distribution obtained by (a) full-order model, (b) linear POD reconstruction,
and (c) the relative error (%). Maximum error percentage is less than 2 %. The highly
nonlinear near-wake region and the vortex cores have the highest error. The pressure
values are normalized by (ρ f U2

∞
)/2. The flow is from left to right.

4.2. Nonlinear POD-DEIM reconstruction
The linear POD reconstruction has the highest error in the nonlinear regions. To
reduce this error, more POD modes should be added to the reconstruction, which
makes the POD-based reconstruction very expensive. Instead, when the DEIM
technique is used, it reduces the calculation load while properly capturing the
nonlinearity of the field variable. The DEIM utilizes two POD bases using the
snapshot method, namely a first POD basis V from the snapshot sequence, and a
second basis U from the nonlinear snapshots via the DEIM points. However, unlike
the linear POD reconstruction, the accuracy does not necessarily improve with the
number of DEIM points and the number of POD modes employed. Using many DEIM
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Number of DEIM points Number of points in %
near cylinder wake

30 21 70.0
50 31 62.0
70 41 58.6

100 54 54.0

TABLE 2. Distribution of DEIM points in the near cylinder wake.

points results in adding contributions from some non-significant indices. In figure 7(a)
it is clearly seen that for 100 DEIM points there are few mesh points lying away
from the significant nonlinear region which are taken into the calculation. Further, in
table 2 we quantify the number of points in the nonlinear wake region as we increase
the number of DEIM points. It is clear that the percentage of points in the critical
region decreases as we include more points for the DEIM calculation. Owing to the
nonlinear combination of the POD modes, including additional insignificant modes
can increase the total error. As shown in figure 7(b), the lowest εrms

= 4.05 % can be
obtained when 70 DEIM points are used with seven POD modes. It further establishes
that the linear POD reconstruction is generally accurate in a global sense, i.e. the
entire flow field reconstruction, in contrast to the nonlinear POD-DEIM. However,
figure 8 demonstrates the reconstructed pressure distribution at tU/D= 100 using the
optimum number of points and POD modes. There is a significant reduction in the
local error as it allows the nonlinear regions to be captured more accurately.

Apart from the global and local accuracy, we further assess the computation time
taken by the linear POD and nonlinear POD-DEIM reconstructions. The detailed
analysis is presented in appendix C. Theoretically, the DEIM reconstruction process
should be ≈64 times faster than linear POD reconstruction and the total DEIM
process should be ≈3.14 times faster. In the actual computations, when just the
reconstructions are considered, the DEIM is 9.28 times faster than the linear POD.
When the total processes are compared, the DEIM has a speed-up of 3.98. In
terms of accuracy, the DEIM is more accurate in a local sense since it captures the
nonlinearities better than the linear POD reconstruction. However, when the entire
fluid domain is considered, the linear POD method is more accurate than the DEIM.
It is likely that the DEIM introduces unnecessary nonlinearities to the potential
regions, slightly changing the reconstructed field values. When decomposing and
reconstructing the laminar flow fields, both linear and nonlinear methods perform to
a satisfactory level. Both methods are capable of reaching the required threshold in
a reasonable computation time while accurately capturing the flow features of the
wake. Henceforth, we employ the POD-DEIM since it has improved accuracy when
capturing the nonlinearities in the flow field at a lower computational cost.

4.3. Drag and lift modes
In this section we analyse the behaviour of different modes in the near-cylinder
region and explain the exclusive nature of their contributions to the pressure-induced
drag and lift forces exerted on the oscillating cylinder in a uniform flow. Here, the
vortex shedding modes are referred to as the lift modes, while the shear layer and the
near wake represent the drag modes. Figure 9 displays the combined variation of the
lift modes during a single cycle of lift. Note that the motion of the cylinder is not
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FIGURE 7. (Colour online) (a) DEIM best points; the top right inset illustrates the near-
wake DEIM points. (b) Performance of POD-DEIM compared with linear POD; solid lines
denote the linear POD error. The least error is observed when 70 DEIM points are used
with seven POD modes.

shown for this reconstruction as the POD modes are time invariant. The lift modes
vary in an alternating manner in the four quadrants. The variation is anti-symmetric
about the streamwise centreline. In the maximum lift case (point B in figure 9a),
the positive pressure force difference (i.e. +Y-direction) in the downstream quadrants
dominates the small negative difference in the upstream quadrants, and vice versa
for the minimum lift (point D). In the zero-lift cases (points A and C), the upstream
and downstream pressure force differences tend to become equally strong and cancel
each other out. The lift modes vary in such a way that the force on the top two
quadrants is equal in magnitude and opposite in direction to the force on the bottom
two quadrants. Due to this force cancellation, the vortex shedding (lift) modes make
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FIGURE 8. (Colour online) Comparison of POD-DEIM and FOM results: pressure
distribution obtained by (a) FOM, (b) POD-DEIM reconstruction, and (c) the relative error
of the reconstruction (%). Maximum error percentage is less than 1.5 %. The error in
the highly nonlinear regions has reduced compared to the linear POD reconstruction. The
pressure values are normalized by 1/2ρ f U2

∞
. The flow is from left to right.

no contribution to the drag force. Hence, the FFT of the drag force does not contain
the corresponding harmonic of the natural frequency ( fn).

Figure 10 describes the variation of drag modes with the fluctuation of the pressure-
induced drag force. The drag fluctuation is defined as C′Dp = CDp(t)− CDp. The drag
modes vary symmetrically around the wake centreline, hence make no contribution to
the lift. Similar to the lift modes, this explains the absence of a 2fn harmonic in the lift.
The maximum drag fluctuation (point C) is higher than the minimum drag fluctuation
(point A). Further, at the zero drag fluctuation points (B and D), the magnitude of
the drag fluctuation remains positive. This further confirms that the drag modes exert
a non-zero mean drag on the bluff body, apart from the drag force due to the base
flow.
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FIGURE 9. (Colour online) Reconstruction of the lift modes in the near-cylinder region
for Ur = 6.0: (a) lift variation; (b) zero lift (increasing) at tU∞/D= 203.75; (c) maximum
lift at tU∞/D= 205.25; (d) zero lift (decreasing) at tU∞/D= 206.85; (e) minimum lift at
tU∞/D = 208.50. The pressure values are normalized by 1/2ρ f U2

∞
. The contours levels

are from −0.4 to 0.4 in increments of 0.1. The flow is from left to right.

With the aforementioned observations, the decomposition of force due to the
pressure field on a moving bluff body based on the contributions from different POD
modes can be expressed as

Fj(t)= F0
j +

nrj∑
i=1

bi
j(t)F

i
j, (4.2)
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FIGURE 10. (Colour online) Reconstruction of the drag modes in the near-cylinder region
for Ur = 6.0: (a) fluctuation of drag; (b) minimum drag fluctuation at tU∞/D = 205.05;
(c) zero drag fluctuation (increasing) at tU∞/D= 205.85; (d) maximum drag fluctuation at
tU∞/D= 206.70; (e) zero drag fluctuation (decreasing) at tU∞/D= 207.40. The pressure
values are normalized by 1/2ρ f U2

∞
. The contours levels are from −0.34 to 0.16 in

increments of 0.025. The flow is from left to right.

where Fj is the force in a particular direction ( j = x for in-line and j = y for
transverse). F0

j is the time-independent contribution from the mean field and Fi
j is the

time-independent pressure fluctuation contribution calculated for the ith mode. While
bi

j(t) is the time-dependent coefficient of the ith mode for the force in direction j, nrj

is the number of POD modes with a significant contribution to the particular force.
Using the snapshot data, we can determine bi

j(t) for the streamwise and transverse
forces as

bi
j(t)=

Fj(t)− F0
j

Fi
jnrj

. (4.3)
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TABLE 3. Force contributions from the mean field and POD modes. bi
j denotes the

time-averaged force coefficient.

The complete description of this force decomposition and its usage is provided in
appendix B.

Table 3 summarizes the qualitative analysis of the contributions from the mean field
and the modes to the pressure drag and lift forces. The mean field has a symmetric
pressure distribution about the wake centreline, hence contributes solely to the time-
independent component of the drag force. The vortex shedding modes have an anti-
symmetric pressure distribution throughout the time history, hence they make no drag
force contribution. We observe that these lift force contributions have a near-zero mean
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(similar to the lift variation) as well. The shear layer and near-wake modes have
the same qualitative properties of the mean field, but their contributions to the drag
force are time-dependent. The POD modes provide a deep insight into important flow
features and their contribution to the wake dynamics. It is important to investigate
their variation with different flow conditions, i.e. the parameters mentioned in (3.1).
The variation of POD modes and their contribution to wake dynamics with reduced
velocity is examined in the next section, with the aim of explaining the role of the
wake features in sustaining the synchronized wake–body motion.

5. Wake feature interaction and sustenance of lock-in
In this section we investigate the relative contributions from different features to

the pressure fluctuations and eventually the forces due to the pressure field on the
freely oscillating bluff body. When a bluff body is free to oscillate in a current
flow it undergoes the lock-in phenomenon: the oscillation amplitude significantly
increases when the natural frequency of the bluff body approaches the vortex shedding
frequency. In Miyanawala et al. (2016), the lock-in phenomenon for a square cylinder
immersed in a laminar flow at Re= 100 is systematically studied.

Figures 11(a) and 11(b) summarize the bluff body dynamics of a freely vibrating
square cylinder. The cylinder undergoes wake–body synchronized lock-in in the range
Ur ∈ [4.5, 7] and the peak oscillation occurs at Ur = 5.0. Figures 11(c–f ) elucidate the
variation of relative contributions from different modes as a function of the reduced
velocity (Ur). It is interesting to note that the three most energetic modes correspond
to the same flow features throughout the Ur range, namely, the first and third modes
(vortex shedding) and the second mode (shear layer). However, modes 4–10 vary in
this regard, where most of these modes correspond to the near-wake phenomena. We
quantify the relative energy contribution from each wake feature by summing the
mode energy of the corresponding modes, i.e.

Ej =

nj∑
i=1

λi

k∑
i=1

λi

, (5.1)

where Ej is the relative energy contribution from the wake feature ( j = vs for the
vortex shedding, j = sl for the shear layer and j = nw for the near-wake), nj is the
number of significant modes corresponding to a particular flow feature and k is
the total number of modes. As shown in figure 11(c), the total contribution from the
vortex shedding increases in the lock-in region. However, the first mode becomes more
energetic, while the third mode is relatively less energetic in this region. Figure 11(d)
shows that the contribution from the shear layer modes reduces significantly in the
lock-in region. All the individual shear layer modes also follow a similar trend. The
near-wake modes depicted in figure 11(e) become more energetic in the lock-in
region relative to the pre- and post-lock-in regions. Unlike the vortex shedding and
shear layer, the primary and secondary near-wake modes have remarkably similar
contributions. A summary of the contributions from the 10 most energetic POD
modes corresponding to different physical phenomena is shown in figure 11( f ). Note
that these 10 modes capture ≈99 % of the total mode energy. It is clear that the shear
layer contributions decrease while the vortex shedding and the near-wake contributions
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FIGURE 11. (Colour online) Response characteristics and decomposition of wake
dynamics for a freely vibrating square cylinder at m∗ = 3.0, Re = 100 and ζ = 0: (a)
transverse displacement; (b) drag and lift force variations, mode energy contributions from
different flow features; (c) vortex shedding; (d) shear layer; (e) near-wake; ( f ) total mode
energy contributions. Evs,Esl,Enw denote the relative mode energy of the wake features as
a percentage of the total mode energy. The first nine modes, which contain 99 % of the
total mode energy, are considered. For all Ur values, modes 1 and 3 correspond to the
vortex shedding, while mode 2 corresponds to the shear layer. The flow features of modes
4–9 depend on the Ur value (e.g. mode 4 is a shear layer mode for Ur = 4, 8, 10, 12 and
a near wake mode for Ur = 5, 6, 7).
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increase in the lock-in region. In the post-lock-in region, the relative contributions
from the flow features remain almost constant. These observations pose an important
question: why are the vortex shedding and near-wake bubble energized and why is
the shear layer weakened during the lock-in? In that relation, we propose a cycle to
explain this counter-intuitive behaviour of the decomposed wake features.

Figure 12(a) elaborates the interaction between the wake features and the bluff
body motion. When the vortex shedding synchronizes with the bluff body motion, it
causes the bluff body to undergo a relatively high-amplitude motion. This widens the
wake and eventually the shear layer, decreasing the velocity gradients. This causes
the shear layer to give away vorticity flux to the vortex shedding process, intensifying
the vortices and the near-wake bubble. The strengthening of vortices increases the
in-phase forces with the motion, i.e. the surrounding fluid flow tends to supply higher
energy to the structure. As illustrated in Jauvtis & Williamson (2004), the force Fv
and the energy transfer rate ėv due to the principal vortices can be analysed using
the following simple analytical relations:

Fv = ρ fΓUv, (5.2)
ėv = ρ fΓUv ẏ, (5.3)

where Γ is the vortex strength, Uv is the streamwise velocity of the predominant
vortex relative to the bluff body and ẏ is the transverse velocity of the bluff body. It
is clear that the increase in the vortex strength will increase the forces and energy
transfer to the bluff body. The widening of the high-gradient shear layer region in
the lock-in regime can be seen in figures 12(b–e), which demonstrate the primary
shear layer mode for the different Ur cases. In the pre-lock-in regime, the near-wake
region is positive compared to the shear layer region. When Ur = 5.0, the maximum
amplitude case, it is clear that the high-gradient region has shrunk in the streamwise
direction and expanded in the transverse direction. Consequently, the near-wake region
and the shear layer region interchange distribution when Ur = 6.0, i.e. the near-wake
region is negative compared to the shear region. This sign change continues to
the post-lock-in regime, where the high-gradient region extends to the streamwise
direction and becomes narrower in the transverse direction.

We further generalize this variation of the wake feature contribution for Re> Recr
(=44.7 (Yao & Jaiman 2017)). Figure 13 demonstrates the bluff body motion response
and the modal energy contribution from the large-scale features of the wake. The
cylinder motion follows a similar trend for Re= 100, 125 and 150 where the lock-in
region is detected as Ur ∈ [4.5, 7]. This region is slightly shifted to Ur ∈ [5.5, 8]
for Re= 70. In all cases, we observe a maximum of Arms

y ≈ 0.2D. Regardless of Re,
the wake features exhibit a similar trend in terms of modal energy. As displayed in
figures 13(b,d), the vortex shedding and the near-wake modes become more energetic
during the lock-in and the shear layer modes become less energetic. This further
confirms the proposed interaction cycle for the coupling of the wake features and the
bluff body motion.

Using the modal decomposition, we have quantitatively explained the interaction
dynamics of the flow features which have been conjectured by many previous studies.
For example, many successful VIV suppression techniques are proposed by passive
(Law & Jaiman 2017) and active (Guan et al. 2017; Narendran et al. 2018) methods
with the experience-based presumption that preventing the interaction between the
shear layer, the vortex street and the near-wake will suppress the synchronized
wake–body lock-in phenomena. The cycle proposed above provides a proper physical
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FIGURE 12. (Colour online) (a) Schematic of the interaction between bluff body motion,
vortex shedding and shear layer instability in the lock-in region. (b–e) Primary shear layer
mode variation for different Ur regimes. The flow is from left to right. In the lock-in
regime, the high-gradient region shrinks in the in-line (X) and expands in the transverse
(Y) direction. ( f ) Cylinder vibration frequency variation with Ur. (g) Phase difference (φ)
between the fluid force and bluff body motion. The onset of phase jump from 0◦ to 180◦

coincides with the sign change of the primary shear layer mode (c–d).

mechanism for the success of those methods: they prevent the vorticity transfer
between the shear layer and the vortex shedding and/or near-wake bubble, which
breaks the self-sustenance of the wake interaction cycle. This understanding of the
wake features and their interactions will be vital for the development of effective
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FIGURE 13. (Colour online) (a) Transverse amplitude Arms
y of square cylinder as a function

of Ur for Re ∈ [70, 150] at m∗ = 3 and ζ = 0.0 and the mode energy contributions from
wake features; (b) vortex shedding, (c) shear layer and (d) near-wake bubble at different
Reynolds numbers. The vortex shedding and near-wake are energized at the lock-in region
while the shear layer mode energy is reduced.

suppression methods and devices for flow-induced vibrations. In this analysis we
observe that the synchronization of the wake and bluff body weakens the shear layer
and intensifies the vortices and the near-wake bubble. In this Re regime there exists
a periodic vortex shedding for the stationary and pre-/post-lock-in cases. Hence, it
is difficult to state whether the flexibility of the bluff body or the unsteadiness
of the fluid flow led to the wake–body synchronization. In what follows, we
investigate whether the perturbation of the near-wake bubble via flexibility can
sustain the synchronized wake–body interaction at below critical Re flow, wherein the
well-defined periodic vortex shedding does not exist for the stationary counterpart.

6. Synchronized wake–body interaction at below critical Re
At very low Reynolds number, the flow past a bluff body is two-dimensional, steady

and symmetric with respect to the wake centreline. The near-wake bubble attached
to its surface is the essential feature below the critical Reynolds number Recr, which
is formed by the steady separation from the sharp corners of a square cylinder. Two
symmetric and counter-rotating recirculation zones are present in the wake bubble. As
Re increases above the critical value, a Hopf bifurcation sets in and the flow becomes
periodic via the vortex shedding process. For circular and square cylinders, Park &
Yang (2016) demonstrated these values to be Recr = 46.8 and 44.7 respectively; this
was further confirmed by Yao & Jaiman (2017). Interestingly, when the bluff body is
free to vibrate, Meliga & Chomaz (2011) predicted for a circular cylinder that this
unstable boundary will hold when m∗ > 1000 and the Hopf bifurcation will occur at
much lower Re for low m∗ values. The authors further conjectured that for a circular
cylinder there will be a limiting Re u 32, below which the wake flow will be two-
dimensional and steady regardless of the mass ratio m∗.
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FIGURE 14. (Colour online) Response characteristics of wake–body interaction for Re<
Recr: dependence of transverse amplitude on Ur and Re. (a) Reduced velocity range Ur ∈

[4, 12] for Re ∈ [30, 40]. (b) Re ∈ [20, 40] for Ur = 7, 8. (c) Vibration frequency of the
bluff body. (d) The spanwise Z-vorticity for a non-synchronized case (Ur = 4.0, Re= 40).
(e) Unsteady wake in a synchronized case (Ur = 7.0, Re = 40) at tU∞/D = 120. ( f –i)
POD modes containing ∼99 % of the mode energy of the synchronized wake–body case:
Ur = 7.0, Re= 40. The flow is from left to right.

Herein, we observe that for some Re < Recr the spring-mounted square cylinder
undergoes significant synchronized wake–body motion for a specific range of Ur.
Figure 14(a) illustrates a variation of high-amplitude motion for Re = 30, 35, 40.
When Re becomes closer to Recr, the synchronization regime widens and the
highest-amplitude Ur shifts from Ur = 8 to Ur = 7. In contrast to Re > Recr cases,
we observe no motion of the cylinder in pre- and post-synchronization regimes. We
further examine the conjecture of Meliga & Chomaz (2011) and demonstrate that
for a square cylinder this synchronized motion is present when Re > 26 (figure 14b).
Additional analysis on these synchronized motion cases revealed that the wake–body
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FIGURE 15. Demarcation of wake unsteadiness for a freely vibrating square cylinder at
m∗ = 3. For the stationary square cylinder, the wake is steady for Re< 26 and becomes
unsteady for Re> 44.7, as shown by dashed lines.

system synchronizes to a frequency slightly less than the natural frequency fn of the
bluff body similar to the Re > Recr lock-in regime (figure 14c). We observe that,
for all synchronized motion cases, the wake is unsteady with some vortex shedding
patterns. For example, we can compare the representative Z-vorticity contours for the
zero motion and the synchronized motion cases displayed in figures 14(d) and 14(e),
respectively. The zero-motion case is almost identical to the stationary cylinder
counterpart, while the synchronized motion case is similar to the lock-in scenario
for Re> Recr. However, the vortex formation length is very high for this below-Recr

configuration. We further decompose the unsteady wake of the synchronized motion
case and examine similar features as Re > Recr cases, i.e. the vortex shedding
(figure 14f,h), the shear layer (figure 14g) and the near-wake bubble (figure 14i).

These observations constitute the basic requirement for the wake-bluff body
synchronized motion: the bluff body should have an optimal amount of flexibility
(i.e. neither too rigid nor too flexible) and the flow needs to have sufficiently large
inertia (i.e. higher Re) to trigger the unsteadiness in the near-wake bubble. This
particular Re is lower than the Recr for a fixed bluff body. This means that the
flexibility of the solid body provides an avenue for the wake and the spring-mounted
body to synchronize, eventually causing the wake to be unsteady. From this numerical
experiment, we can deduce that the flexibility of the bluff body is the primary factor
driving the synchronized wake–body motion, neither the vortex shedding nor the
shear layer roll-up. Hence the most critical wake feature for the onset of wake–body
synchronization is the near-wake bubble. When the Re is very low (<26) this bubble
remains steady and the counter-rotating recirculation zones behind the bluff body are
stable. For 26 6 Re 6 44.7, it remains same if the bluff body is either too rigid or
flexible. However, in this Re regime, when the bluff body is appropriately flexible,
slight perturbations cause distortions in the steady wake. These distortions become
periodic and begin to synchronize with the bluff body. This synchronization leads to
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FIGURE 16. (Colour online) The energy distribution of the POD modes for Re =
22 000, m∗ = 3.0, Ur = 6.0: (a) energy decay of POD modes; (b) cumulative energy of
POD modes. The dashed line represents 95 % of the total mode energy.

relatively higher-amplitude oscillations at a frequency slightly less than the natural
frequency of the solid body in a vacuum. At the same time, due to the vorticity
generation by the unsteadiness developed in the wake, the vortices are shed from the
downstream end of the wake bubble.

With the aforementioned findings, we summarize the bluff body wake behaviour for
the 20 6 Re 6 50 regime in figure 15. We deduce that the root cause of wake–body
synchronization is the frequency lock-in between the natural frequency of the bluff
body and the near-wake bubble. This further demonstrates that the unsteadiness of
the wake can be induced by the flexibility of the bluff body. Moreover, the unsteady
wake alone cannot induce high-amplitude bluff body oscillations (e.g. pre- and post-
lock-in in Re>Recr). Hence, we can further infer that the wake–body synchronization
is induced by the synchronization of the bluff body motion with the near-wake bubble,
not with the vortex street. In the next section, we generalize our findings to three-
dimensional turbulent flows at moderately high Reynolds number.

7. Effect of turbulence
In this section we investigate the dynamic decomposition of the wake behind a

three-dimensional oscillating square cylinder at Re= 22 000, where the wake is fully
turbulent. Our aim is to understand the role of turbulence when we extend the wake
feature interaction cycle to turbulent flow. To retrieve the high-fidelity data at this Re,
we employ a well-established dynamic subgrid-scale turbulence model in our finite-
element formulation. The filtered Navier–Stokes formulation and the determination of
the subgrid stress term via the dynamic subgrid-scale model are provided in Jaiman
et al. (2016a). We incorporate this FOM to generate three-dimensional snapshots of
the flow fields, and the POD-Galerkin projection is applied on this high-fidelity data
set. At high-Re turbulent wake flow, the aforementioned large-scale organized flow
features are fragmented into smaller scales until the scales are fine enough to dissipate
by the fluid viscosity. Therefore, small-scale modes can have a significant impact on
the overall dynamics for the high-Re turbulent condition, in contrast to the low-Re
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FIGURE 17. (Colour online) The mean field and the first 10 significant POD modes for
an oscillating square cylinder at Re = 22 000. The energy fraction of the POD mode is
given in brackets. The plots are of the mid Z-plane.

study. Figure 16 demonstrates the mode energy distribution for Re=22 000. Compared
to the low-Re cases, the modal energy is much more distributed among the modes.
For instance, the most energetic mode of the Re= 100 case contains 56 % of the total
energy, while it is 32.88 % for the high-Re case at Re=22 000. Due to this broadening
of the mode energy, the energy decay is less steep. For low-Re cases, the first five
modes contain 95 % of the total mode energy and the first nine modes contain 99 %.
On the other hand, for the high-Re case, a total of 123 modes are required to capture
95 % of the energy and 211 modes are required for 99 %. We further investigate this
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FIGURE 18. Time-dependent contributions of the 10 most energetic modes and their
normalized FFT spectra for the Re= 22 000 case.

distribution of the mode energy with the presumption that the presence of broadband
turbulence is the key factor.

Figure 17 displays the mean pressure field and 10 most energetic POD modes
obtained using the same snapshot technique for the moderate-Re case. All the modes
exhibit distorted and scattered patterns compared to the low-Re cases. However, the
POD modes further illustrate general large-scale features. For example, modes 1, 3,
4, 5, 6, 7 and 9 exhibit the flow patterns related to vortex shedding, while mode
2 is related to the shear layer and modes 8 and 10 are related to the near-wake
phenomena. The distortions occur in each mode throughout the spatial domain due
to the broadband and multi-scale effects of turbulence, which are not decomposed
by the SVD. Turbulence distributes the modal energy across the modes, so that
significantly more modes are required to reconstruct the flow field and the underlying
wake dynamics. Hence, the POD-based reconstruction becomes computationally more
expensive in turbulent flows due to the broadband and multi-scale character.

Similarly, figure 18 demonstrates the broadband nature of turbulence in the
temporal domain. Even with the multi-scale spatial distortions, the first mode of
the moderate-Re case has a similar temporal contribution to the first mode of the
low-Re case, with a single dominant frequency close to the natural frequency of
the system. However, the temporal coefficients of the other modes have multiple
harmonics. Some of the modes exhibit predominant frequencies among the broadband
FFTs. For example, mode 2 has a dominant 2fn frequency behaviour, mode 3 has
fn, 2fn and 3fn harmonics, and mode 4 has fn and 2fn harmonics. These multiple
harmonics occur due to the bombardment of turbulence on the corresponding flow
features of the POD modes.

Figure 19 displays the pressure field reconstruction using the POD-DEIM technique.
The actual instantaneous field contains some distortions and fine near-wake variations,
which are not completely captured by the reconstruction process. However, the general
large-scale variations are properly reconstructed with a maximum local error of ≈2 %.
The broadband energy distributing nature of turbulence has reduced the contribution
of significant POD modes to the wake dynamics. Due to this behaviour, many flow
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FIGURE 19. (Colour online) FOM and POD-DEIM reconstructed pressure field
comparison for the Re = 22 000 case at tU∞/D = 100: pressure distribution obtained by
(a) FOM and (b) 123 POD modes and 200 DEIM points, and (c) the relative error (%).
The plots are of the mid Z-plane. The pressure values are normalized by 1/2ρ f U2

∞
. The

flow is from left to right.

features are not captured when few of the most energetic modes are considered for the
reconstruction. Hence, the inclusion of many POD modes is required for an accurate
reconstruction which makes the POD reconstruction computationally expensive and
time-consuming. However, this can be mitigated by selective reconstruction of a few
required time steps instead of the entire time history. Using this to our advantage, we
investigate the validity of the wake–body interaction cycle at this moderate Re value.

Figure 20 illustrates the response characteristics and the wake feature contributions
for the mode energy at Re= 22 000. In contrast to the low-Re cases, the bluff body
undergoes galloping at this Reynolds number. We observe the same wake–body
synchronization reported in Miyanawala & Jaiman (2018), i.e. 1 : 1 frequency
synchronization of the bluff body motion and force at Ur ∈ [5, 6] and 1 : 3
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FIGURE 20. (Colour online) Response and energy distribution for a freely vibrating
square cylinder at Re= 22 000: (a) transverse amplitude as a function of reduced velocity;
(b) POD mode energy contribution of wake features. Note that Ur = 3.0 represents the
pre-synchronization regime, Ur = 5.0 and 6.0 the wake–body synchronization regime and
Ur = 8.0 and 10.0 the galloping regime. For the mode energy analysis, the most energetic
modes containing 95 % of the total mode energy are considered.

synchronization at Ur = 10.0. Our analysis here is focused on the 1 : 1 frequency
lock-in where the transverse fluid forcing and the bluff body motion are in
synchronization. According to figure 20(b), it is evident that the vortex shedding
and near-wake modes become more energetic in the synchronized regime, while the
shear layer modes become less energetic. This is the same behaviour observed in the
low-Re analysis, which proves that the proposed wake–body interaction cycle is valid
even in the presence of turbulence.

In summary, the presence of turbulence distorts the spatially symmetric/anti-
symmetric nature of POD modes and distributes the mode energy throughout many
POD modes. The reconstruction requires many modes and the classification of features
is more complex at moderately high Re. Despite this complexity, the fundamental
wake–body interaction process proposed using low-Re analysis is observed to be
valid for three-dimensional turbulent flows. Hence, we can conclude that the proposed
wake–body interaction cycle in this study is a general cycle for coupled fluid–structure
systems.

8. Concluding remarks

Despite the prevalence of SVD-based modal reduction techniques, there are very
few studies on their application to fluid–structure interaction systems. In this paper,
we considered the two-degrees-of-freedom free vibration of a square cylinder under
laminar and turbulent flows. We explored the capability of POD decomposition to
interpret the most significant wake features and their contributions to the forces on the
vibrating body interacting with fluid flow. When the linear and nonlinear POD-DEIM
reconstructions are contrasted, we found that the DEIM method is faster and has a
higher local accuracy since it captures the nonlinearity of the principle vortices and
the near-wake region. For the low-Re cases, every POD mode clearly represents one
of the large-scale flow features: vortex shedding, shear layer or near-wake bubble. In
these cases, we further observed that the nine most energetic modes contain ≈99 %
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of the energy. Further, we identified that the vortex shedding modes solely contribute
to the transverse (lift) force while the shear layer and the near-wake modes solely
contribute to the drag force. Based on these observations, we proposed a novel force
decomposition for the drag and lift forces which is different from the conventional
force decomposition based on the added mass and the viscous force contributions.

We examined the POD decomposition for a range of Ur values and we proposed
the mechanism of the sustenance of synchronized wake–body lock-in. This further
provided the explanation to the observation that in the lock-in region, even though the
kinetic energy is transferred from the fluid to the bluff body, the principle vortices
are much more energetic than the pre- and post-lock-in regimes. It is seen that the
bluff body motion widens the wake and causes a vorticity transfer from the shear
layer to the near-wake and vortices. We proposed the wake feature interaction cycle
based on these observations. We further confirmed that this mechanism is valid for the
laminar Re>Recr range. For below-critical-Re flows, we observed that the bluff body
and the wake still synchronize and undergo large-amplitude motion at some Ur values
when Re > 26. Decomposition of these wakes further exhibited behaviour similar to
the synchronized large-amplitude motion cases at Re > Recr. This revealed that the
flexibility of the bluff body induced the unsteadiness in the near-wake bubble, causing
it to break and generate the vortices. With this observation, we can conclude that the
fundamental requirements for the wake–body synchronized motion are large enough
flow inertia and appropriate flexibility of the structure.

When the moderate-Re turbulent bluff body flow is decomposed, we observe that
all the dominant wake modes are bombarded with different scales of turbulence. The
broadband nature of turbulence resulted in a wide mode energy distribution, which
required up to 123 modes to reach the 95 % mode energy threshold. Further analysis
of the time coefficients of the modes confirmed that the large-scale features are
battered by the multiple frequency turbulence. However, they generally correspond to
a large-scale wake feature similar to the laminar cases. The wake decomposition of
turbulent flows for Ur ∈ [3, 10] confirmed that the wake interaction cycle proposed
for laminar cases is valid for turbulent flows as well.
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Appendix A. Selection of POD modes and sampling frequency
In this appendix we briefly present the process followed to determine the number of

POD samples and their sampling frequency. The full-order simulation is run at 1t=
0.025D/U∞ time steps, i.e. at a frequency fFOM=40U∞/D for 28 000 time-steps which
contains ∼112 vortex shedding cycles. For reference purposes, we utilize the POD
decomposition statistics obtained from 2800 samples at frequency fref = 4U∞/D. For
example, the natural frequency is fn= 0.167U∞/D for the case with Ur = 6.0 and the
POD decomposition can capture up to the ∼12th harmonic according to the Nyquist
criterion. To establish an adequate number of POD modes and the sampling frequency,
we carry out a convergence study to minimize computational resources.
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FIGURE 21. (Colour online) Error trends of mode energy contribution (λi/
∑k

j=1 λj) from
mode i = (a) 1, (b) 2 and (c) 3. Here fsam is the sampling frequency, and the errors
are calculated relative to the reference case with fsamD/U∞ = 4 and k = 2800. The solid
horizontal lines represent the error threshold of 0.5 %.

Figure 21 illustrates the error of mode energy of the three most energetic modes
in comparison with the reference sampling. We select combinations of sampling
frequency and number of samples with an error threshold at most 0.5 % for all three
modes. Table 4 describes these selected combinations. Out of these 10 selections,
we rank all selections which can capture harmonics greater than 2fn, i.e. sampling
frequency at least 4U∞/D, based on the average error of the three mode energies. We
ascertain that the combination of 320 flow field samples with the sampling frequency
of 4.8U∞/D (selection no. 5 of table 4) has the lowest average error of the thre
modes.

Appendix B. Force decomposition based on modal contribution
The aim of this appendix is to present a general decomposition of the force due

to the pressure field exerted on a moving body in an incompressible viscous flow. To
begin, we provide some background on existing force decomposition techniques that
characterize the fluid inertial and the viscous forces on a moving body. In a pioneering
work, Morison, Johnson & Schaaf (1950) proposed a force decomposition for the in-
line force acting on a cylindrical object which is widely used in many engineering
applications. This semi-empirical decomposition can be written as a linear sum of a
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Selection no. 1 2 3 4 5 6 7 8 9 10

fsam/fn 2.4 4.8 3.4 6.0 4.8 3.4 3.0 6.0 4.8 3.4
Number of samples 160 240 240 320 320 320 320 400 400 400
Shedding cycles 64 48 48 51 64 89 102 64 80 112
Max. harmonic 1.2 2.4 1.7 3.0 2.4 1.7 1.5 3.0 2.4 1.7
Average error 0.287 0.282 0.334 0.150 0.074 0.114 0.250 0.149 0.150 0.127
Selection/rank × 5 × 4 1 × × 2 3 ×

TABLE 4. Selected cases based on the convergence study in figure 21. All these cases
have relative error at most 0.5 % for the three most significant modes. Cases which are
unable to capture at least 2fn harmonic are discarded. The remaining combinations are
ranked according to the average error from the three modes.

velocity-squared-dependent drag force and an acceleration-dependent inertial force:

F(t)=
1
2

CdD|U|U + ρCm
πD2

4
dU
dt
, (B 1)

where Cd and Cm represent the averaged drag and inertia coefficients, which can
be determined by experiments or numerical computations. Owing to the nonlinear
dependency of these coefficients on the evolution of vorticity field, Sarpkaya (2001)
argued that it ‘does not perform uniformly well in all ranges of K, β and k/D’,
where K denotes the Keulegan–Carpenter number, β = Re/K and k/D is the relative
roughness. In Lighthill (1986), a different approach is taken by the assertion that the
viscous drag and the inviscid inertia force operate independently, by rewriting (B 1):

F(t)=
1
2

CdρApU2
+C∗mρ

dU
dt

Vb. (B 2)

For a flow defined by U(t)=−Um cosωt we obtain

CF =−Cd|cosωt| cosωt+C∗m
π2

K
sinωt, (B 3)

where Ap and Vb denote the projected area and the volume of the body, respectively,
and C∗m is the ideal value of the inertia coefficient. However, many studies demonstrate
that it is difficult to represent the actual force with this relation as long as a constant
value C∗m is considered. In particular, Sarpkaya (2001) clearly demonstrated that the
viscous drag force and the inviscid inertia force are not completely independent
and it is impossible to decompose the unsteady drag force into an inviscid and a
vorticity-drag component. The decomposition of the total force into inviscid and
viscous components by Lighthill’s relation (B 2) can be considered as an effort to
lump the effects of the complex generation and evolution of the vorticity field into
mutually independent forces related to the inviscid inertia and the viscous effects. In
such force decomposition techniques, the characteristic vorticity patterns and their
dynamics generated during the motion of a body are not included.

In what follows, we propose an alternative force decomposition for the in-line
(drag) and transverse (lift) pressure forces applied to a bluff body which extends the
above decompositions to incorporate significant features of unsteady separated flow.
In particular, the unsteady force is decomposed to include the nonlinear generation
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FIGURE 22. Time-dependent coefficients of pressure force contributions from (a) drag and
(b) lift modes.

and evolution of the vorticity field around a moving body in a fluid flow. This
decomposition is based on the contributions from different POD modes to the forces
and can be written as

Fj(t)= F0
j +

nrj∑
i=1

bi
j(t)F

i
j, (B 4)

where Fj is the force on a particular direction ( j = x for the in-line and j = y for
transverse). While F0

j is the time-independent contribution from the mean field, Fi
j is

the unsteady pressure fluctuation contribution associated with ith mode. Here, bi
j(t) is

the time-dependent coefficient of the ith mode for the force in direction j and nrj is the
number of POD modes with a significant contribution for the particular force. Using
the snapshot data, we can exactly determine bi

j(t) for the in-line and transverse forces
by the relation

bi
j(t)=

Fj(t)− F0
j

Fi
jnrj

. (B 5)
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Operation FLOPs Order

Mode generation
YTY Matrix multiplication 2k2m− k2 2k2m
YTYW =ΛW Eigenvalue solution k3 k3

V = YWΛ−1/2 Matrix multiplication 2k2m 2k2m
Total 4k2m

Linear POD
Ŷ(t)= 〈P− P,V〉 Inner products rk(2m− 1) 2rkm
VŶ Matrix multiplication 2rkm−mk 2rkm∑r

j=1 ŷj(t)vj Summation rk2m rk2m
Total rk2m

DEIM
(PTU)ĉ=PT

vi Matrix solution (np − 1)np(np + 6m− 1)/6 n2
pm

r̂= vi −U ĉ Matrix subtraction (np − 1)npm n2
pm

V+℘ Matrix multiplication 4n2
dnp − n2

d − ndnp 4n2
dnp

Y − Y =VV+℘Y℘ Matrix multiplication k(2ndnp + 2mnd − nd −m) 2mknd

Total 2n2
pm+ 2mknd

TABLE 5. Number of FLOPs required for linear and nonlinear POD reconstruction. Mesh
count (m) = 87 120, number of snapshots (k) = 320, number of significant modes for
linear POD (r) = 9, number of significant modes for DEIM (nd) = 7 and number of
DEIM points (np) = 70.

The magnitude of the modes, the time coefficients and the force contributions
introduced in this decomposition fluctuate slightly when flow parameters and the
bluff body geometry are changed. Similar to the above methods, we can create
databases of Fi

j for different bluff bodies. These databases can then be used to
determine the total forces as well as the contribution from each flow feature to the
bluff body dynamics. To further generalize the force decomposition, deep learning
techniques (Miyanawala & Jaiman 2017) for parametric predictions can be employed.

Figure 22 presents the reconstructed values of the time dependent coefficients
for drag and lift modes. Note that the relevant six out of the first nine modes are
considered for the drag and the rest for the lift (i.e. nrx= 6 and nry= 3). In a nutshell,
the force component represented by the modal decomposition implicitly characterizes
the three constituent components involving an inviscid inertial force, the dynamics of
the vorticity field, and a skin friction force.

Appendix C. Performance comparison of POD reconstruction methods
We briefly compare the number of floating point operations (FLOPs) required for

the linear and nonlinear DEIM-based POD reconstructions in table 5. The generation
of the POD modes which is essential for both reconstructions requires ∼O(4k2m)
FLOPs. In this study, we estimate this value to be 3.571 × 1010. The linear POD
reconstruction needs ∼O(rk2m) computational steps where the equal contributions
are from the multiplication between the time coefficient and the POD modes, and
the summation of the multiplied POD contributions. With the use of nine POD
modes, the estimated FLOP count is 8.029× 1010. The DEIM technique takes fewer
computational steps than POD as it requires ∼O(2n2

pm+ 2mknd) FLOPs. Performing
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Linear POD (10 modes) DEIM (7 modes + 70 points)

POD mode generation 35.1 s 35.1 s
Reconstruction 113.2 s 12.2 s
Total time elapsed 148.3 s 37.3 s
Speedup (reconstruction) — 9.28
Speedup (total) — 3.98
Maximum local error 1.43 % 1.24 %
Cumulative domain error 3.85 % 4.05 %

TABLE 6. Performance comparison between linear POD and POD-DEIM for the most
accurate reconstruction.

the matrix solution in the DEIM first step is the most expensive operation as it needs
more FLOPs for the last DEIM points. With the use of seven POD modes and 70
DEIM points, the POD-DEIM reconstruction needs 1.244× 109 FLOPs. According to
this estimation, the linear POD reconstruction demands ≈64.54 times more FLOPs
than the DEIM reconstruction. However, the total linear POD process needs ≈3.14
times more FLOPs than the total DEIM process.

The actual performance of the linear POD and the POD-DEIM reconstruction
techniques is compared in table 6. All the calculations are performed using the
same quad-core Intel Xeon 3.50 GHz × 1 CPU with 16 GB memory. When just
the reconstructions are considered, the nonlinear DEIM is 9.28 times faster than the
linear POD. When the total processes are compared, the DEIM has a speed gain of
3.98 and the DEIM is more accurate in the nonlinear flow regions. However, the
linear POD method is more accurate when the cumulative error of the fluid domain
is considered.
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