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The non-Newtonian shear rheology of colloidal dispersions is the result of the
competition and balance between hydrodynamic (dissipative) and thermodynamic
(conservative) forces that lead to a non-equilibrium microstructure under flow. We
present the first experimental measurements of the shear-induced microstructure of
a concentrated near-hard-sphere colloidal dispersion through the shear thickening
transition using small-angle neutron scattering (SANS) measurements made in three
orthogonal planes during steady shear. New instrumentation coupled with theoretical
derivations of the stress-SANS rule enable rigorous testing of the relationship between
this non-equilibrium microstructure and the observed macroscopic shear rheology.
The thermodynamic and hydrodynamic components of the stress that drive shear
thinning, shear thickening and first normal stress differences are separately defined
via stress-SANS rules and compared to the rheological behaviour of the dispersion
during steady shear. Observations of shear-induced hydrocluster formation is in good
agreement with Stokesian dynamics simulation results by Foss & Brady (J. Fluid
Mech., vol. 407, 2000, pp. 167–200). This unique set of measurements of shear
rheology and non-equilibrium microstructure of a model system provides new insights
into suspension mechanics as well as a method to rigorously test constitutive equations
for colloidal suspension rheology.
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1. Introduction

Concentrated hard-sphere colloidal dispersions subjected to increasing shear stress
display a reversible rise in viscosity with increasing shear rate known as shear
thickening (Hoffman 1974; Barnes 1989; Bender & Wagner 1996). Shear thickening
colloidal suspensions have the potential to be implemented in a wide variety of
applications. In recent research these shear thickening fluids (STFs) have been
investigated for applications such as personal protective armour (Lee, Wetzel &
Wagner 2003; David, Gao & Zheng 2009; Kalman et al. 2009), medical devices and
sports equipment (Helber, Doncker & Bung 1990; Fischer et al. 2007). STFs also
find application in vibrating systems to reduce resonance amplitudes (Helber et al.
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Microstructure and rheology for shear thickening colloidal dispersions 243

1990), as interlayers of sandwich beam structures (Fischer et al. 2007) and as a
‘speed-activated’ damper under dynamic loadings (Helber et al. 1990; Zhang, Li &
Gong 2008). Mitigating shear thickening has proven equally critical for a broad range
of industries from coatings to cement production (Toussaint, Roy & Jezequel 2009)
and chemical mechanical planarization of semiconductors (Crawford et al. 2013). All
of these applications require a fundamental understanding of the colloidal dispersion’s
reversible thinning and thickening behaviour and underlying microstructure during
shear flow.

Suspension stresses are calculated as ensemble averages of the forces acting
between particles, where the spatial arrangement of the particles, or microstructure,
is represented by the pair distribution function (Batchelor & Green 1972; Batchelor
1977). Thus, the non-Newtonian shear behaviour of concentrated colloidal suspensions
is intimately linked to the microstructure changes that occur when the suspension
is forced out of equilibrium during shear. The total measured stress comprises
components derived from conservative or thermodynamic forces, such as Brownian
motion and interparticle forces, and those arising from dissipative sources, such
as hydrodynamic interactions. These two classes of force couple to the structure
differently to yield the stress tensor, such that measurements of the structure
provide a unique method to determine structure–property relationships in colloidal
dispersions (Wagner, Fuller & Russel 1988; Mewis & Wagner 2011). Consequently,
it is essential to understand quantitatively this microstructure under flow in order
to predict the behaviour of STFs and facilitate rational design and formulation of
concentrated colloidal suspensions for commercial and industrial applications. Two
directions of scientific discovery drive the research dedicated to understanding the
microstructure–rheology property relationship of concentrated colloidal suspensions.
The first is theoretical and simulation-driven research using the Smoluchowski
equation and Stokesian dynamics simulations of Brownian hard-sphere suspensions
(Bossis & Brady 1989; Wagner & Ackerson 1992; Foss & Brady 2000; Bergenholtz,
Brady & Vicic 2002; Melrose & Ball 2004; Nazockdast & Morris 2013). The second
is experimental measures of a colloidal dispersion’s microstructure during shear
deformation (Wagner et al. 1988; D’Haene, Mewis & Fuller 1993; Bender & Wagner
1996; Maranzano & Wagner 2002; Kalman 2010; Cheng et al. 2011a; Xu & Gilchrist
2014). The two methods are by no means mutually exclusive and often, as is the
case here, they complement each other.

Of significant interest to many investigating shear thickening colloidal dispersions
is identifying the microstructure responsible for the shear thinning and thickening
behaviour. Initially, simultaneous flow and small-angle light scattering (SALS)
experiments were performed by Hoffman (1974) in the 1–2 plane of shear, where
an order-to-disorder transition was observed at the onset of shear thickening. The
formation of ordered layers of particles parallel to the velocity direction and normal
to the velocity gradient direction formed under low shear rates, and as the shear
rate increased the layers were observed to break up into a randomized structure.
Although Hoffman (1974) was the first to offer a significant microstructure–rheology
relationship for shear thickening, the order–disorder transition has since been shown
not to be a prerequisite for shear thickening, as confirmed by Stokesian dynamics
simulations (Bossis & Brady 1989) and experimental results (Laun et al. 1992;
D’Haene et al. 1993; Bender & Wagner 1995, 1996).

The reversible shear thickening observed in colloidal suspensions is driven by
short-range lubrication interactions that lead to density fluctuations of particles during
shear and, ultimately, to particle clustering (termed ‘hydroclusters’ by Brady & Bossis
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(1985, 1988) and Maranzano & Wagner (2002)). The development of the technique
of Stokesian dynamics simulations for Brownian suspensions properly accounted for
both the short-range lubrication interactions and long-range hydrodynamics, including
many-body interactions (Brady & Bossis 1985; Brady & Vicic 1995). The results
of these simulations showed particle cluster formation due to lubrication interactions
between particles through the suspending fluid (Bossis & Brady 1989; Phung, Brady
& Bossis 1996; Foss & Brady 2000; Banchio & Brady 2003; Melrose & Ball 2004).
The most accurate set of calculations for the viscosity as a function of increasing
shear rate was performed by Banchio & Brady (2003) using accelerated Stokesian
dynamics simulations. Equally important, shear thickening due to shear-induced
density fluctuations of particles is also predicted from theory that properly includes
the short-range lubrication hydrodynamic interactions (Bergenholtz et al. 2002;
Nazockdast & Morris 2013).

Recently, shear thickening in non-colloidal suspensions has been studied by
combining classical methods of macroscopic contact friction adapted from granular
mechanics with suspension hydrodynamics (Seto et al. 2013; Mari et al. 2014).
Simulations can capture many features of continuous and discontinuous shear
thickening, and it has been suggested that such surface friction may be relevant for
shear thickening in colloidal dispersions (Mari et al. 2014). Modelling the transition
from a hydrodynamically dominated regime to a frictional regime can yield multiple,
coexisting stress states that provide a possible mechanism for discontinuous shear
thickening observed in dilatant suspensions (Cates & Wyart 2014). However, one can
rule out any significant role of contact friction in the continuous shear thickening of
colloidal dispersions, as contact friction leads to the incorrect sign of the first normal
stress difference, which is measured to be negative in the shear thickened state
(Lee et al. 2006; Mewis & Wagner 2011; Cwalina & Wagner 2014) but predicted
to be positive for systems with frictional contacts (Mari et al. 2014). Indeed, this
negative first normal stress difference is a hallmark of suspensions dominated by
hydrodynamics (see Mewis & Wagner (2011, chap. 2) for a review and Morris &
Boulay (1999) for theory), and is predicted for shear thickening colloidal suspensions
using Stokesian dynamics simulations by Foss & Brady (2000) and via theory by
Bergenholtz et al. (2002), in agreement with experiments. This positive normal stress
difference is a direct consequence of fore–aft symmetry breaking in the plane of shear
and is well understood for systems with interparticle forces and frictional contacts
alike. Finally, it is important to note that most colloidal dispersions are typically
stabilized by adsorbed or grafted surfactant or polymer (such as for the dispersions
under consideration here (Kalman & Wagner 2009)), and direct measurements of
the friction for such surfaces show extremely low coefficients of friction (in the
range from 0.0006 to 0.001 as reported by Klein and co-workers (Raviv et al. 2003)),
whereas values close to unity are assumed in the simulations showing shear thickening
(Mari et al. 2014). Indeed, direct measurements of colloidal friction coefficients by
Henderson, Mitchell & Bartlett (2001) using optical tweezers quantitatively agreed
with predictions of colloidal hydrodynamics. Only under the most extreme pressures,
such that stabilizing brushes are highly compressed, are order-one coefficients
of friction achieved (Raviv et al. 2003). Importantly, very high impact stress
measurements of shear thickening colloidal suspensions in confinement (Lim et al.
2010a,b, 2011) show a response that is consistent with elastohydrodynamics, i.e. due
to lubrication hydrodynamics coupled to the elastic deformation of the core hard
colloidal particles (Kalman et al. 2009; Mewis & Wagner 2011). Indeed, increasing
the adsorbed or grafted polymer layer thickness, which would increase contact friction

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

12
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.128


Microstructure and rheology for shear thickening colloidal dispersions 245

according to surface force measurements but mitigate lubrication hydrodynamics, all
but eliminates shear thickening in colloidal dispersions (Krishnamurthy, Wagner &
Mewis 2005). This brief review of the evidence concerning friction in colloidal
dispersions provides context for the differences in shear-induced microstructures
measured by experiment and simulated for frictional non-colloidal suspensions, which
will be shown here as well through experimental determination of the structure in the
relevant plane of shear along with the rheological functions.

Wagner & Ackerson (1992) derived the relationship between the microstructure
measurable in a scattering experiment and the suspension stress for colloidal
dispersions through a spherical harmonic expansion of the microstructure during
shear flow, which provides a rigorous micromechanical basis for stress-optical (Wagner
et al. 1988; Bender & Wagner 1995) and stress-SANS rules (Maranzano & Wagner
2002). Specifically, they derived a quantitative relationship between the flow-distorted
microstructure and the stresses arising from the Brownian and hydrodynamic
interactions. Importantly, it was found that the contribution of Brownian forces to the
stress can be distinguished from the contributions from hydrodynamic interactions as
arising from distinct terms in the spherical harmonic expansion of the microstructure.
A similar approach was employed by Bergenholtz et al. (2002) to calculate the
microstructure and stresses for a dilute colloidal dispersion. This theoretical work
provides the basis for an important avenue of experimental investigations into
the fundamentals of colloidal dispersion rheology because deconvolution of the
shearing microstructure enables calculations of the contributions of conservative
forces (e.g. Brownian and interparticle) and dissipative forces (e.g. hydrodynamic and
frictional) to the total macroscopic suspension stress.

Small-angle neutron scattering (SANS) experiments have also been used to examine
colloidal suspensions (Ackerson et al. 1986; Johnson, deKruif & May 1988; deKruif,
Van der Werff & Johnson 1990; Laun et al. 1992; Bender & Wagner 1996; Watanabe
et al. 1998; Newstein et al. 1999; Maranzano & Wagner 2002; Lee & Wagner
2006). In particular, Maranzano & Wagner (2002) and Lee & Wagner (2006) use
rheo-SANS to investigate the microstructure in the tangential and radial planes of
shear, resulting in quantitative resolution of the hydrodynamic contribution from the
microstructure to the total stress. Ultra-SANS (USANS) experiments conducted by
Kalman & Wagner (2009) probe the microstructure of a hard-sphere suspension in
the velocity–velocity gradient plane of shear for which increased structure formation
is observed during shear flow. Although these flow-USANS measurements provided
important information about the scale and spatial organization of hydroclusters in
a shear thickening suspension, the data obtained are one-dimensional (1D), so that
inversion to determine the real-space structural anisotropy is not possible. Finally,
Kalman and co-workers were the first to investigate the formation of hydroclusters in
the velocity–velocity gradient plane of shear using SANS experiments (Kalman 2010).
The results for the microstructure agree qualitatively with predictions from Stokesian
dynamics simulation for the real-space pair distribution function during shear flow
(Foss & Brady 2000). In addition, these experiments provide key results towards
establishing a stress-SANS rule for colloidal suspensions measured using flow-SANS
experiments. Thus, an understanding of the relationship between the rheology and
microstructure of colloidal suspensions is established based on the independent
contributions to the total stress arising from hydrodynamic and thermodynamic forces.
For completeness, we note that flow-SALS (Wagner et al. 1988) and flow-SAXS
(small-angle X-ray scattering) have also been used to probe colloidal dispersions,
specifically the work by Hoekstra et al. (2005) as well as Versmold et al. (2001)
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and Versmold, Musa & Bierbaum (2002). However, for colloidal suspensions, SAXS
proves to be difficult, as multiple scattering and background scattering are problematic
for concentrated suspensions.

Most recently, efforts using fast confocal microscopy have provided direct
visualization of colloidal suspensions during shear. Besseling et al. (2009) successfully
demonstrate three-dimensional (3D) imaging of a colloidal glass under steady shear,
while Cohen, Mason & Weitz (2004) and Cheng et al. (2011a,b) use confocal
microscopy to look at the effects of confinement on suspensions of colloidal particles
and the microstructure responsible for the shear thinning and shear thickening
rheology. Gao et al. (2010) study the microstructure of colloidal suspensions in
pressure-driven flows. Cheng et al. (2011a) use confocal microscopy to elucidate the
microscopic single-particle dynamics, concluding, in agreement with previous work,
that shear thinning is a result of a decreasing relative contribution of entropic forces
and that shear thickening arises from particle clustering induced by hydrodynamic
interactions. Cheng et al. (2011a,b) observe ‘log-rolling’ strings of particles normal to
the plane of shear for experiments that have a maximum gap between the shear plates
of 10.6 times the diameter of a particle. Based on previous work by Cohen et al.
(2004), significant confinement effects are present at this particular gap height that
influence the microstructure. Cheng et al. (2011b) perform a systematic study using
Stokesian dynamics simulations to address the mechanism for the ‘log-rolling’-like
structure that is observed for high Pe. Three key observations are made: the first is
that, if there are no hydrodynamic interactions, there is no vorticity-aligned structure,
and strings form along the velocity direction of shear; the second is that, if slip
is introduced at the particle–fluid interface, a qualitatively similar, vorticity-aligned
microstructure is observed; finally, the vorticity-aligned strings do not form when
there is only one particle layer. These observations suggest that, in order to form
strings in the vorticity direction, both thermodynamic and hydrodynamic interactions
are important, and it is critical for particles to be able to migrate across different
layers in the velocity gradient direction during shear. In addition, the small gap
widths used in the experiments (of the order of 10 particle diameters) prove to have
significant effects on the measured microstructure of the flowing suspension (see also
Bian et al. 2014). Although useful for defining single-particle dynamics, the confocal
microscopy is limited in resolution to particle sizes of the order of a micrometre.
Because of limits on positional resolution, such methods are critically unable to
resolve the lubrication layer essential for shear thickening.

In the present paper, the microstructure of a concentrated colloidal suspension
is measured using rheo-SANS and flow-SANS methods to interrogate all three
orthogonal planes of a 3D microstructure formed during steady shear for length
scales spanning the interesting region of particle nearest neighbours. The resultant
two-dimensional (2D) scattering patterns are presented for shear rates at moderate
and high Pe, corresponding to shear thinning and shear thickening behaviour. The
scattering patterns are also analysed and discussed to provide insight into the 3D
microstructure of a flowing suspension under shear. The first quantitative analysis
of all three planes of scattering for a concentrated colloidal suspension undergoing
steady shear deformation is presented, and the microstructure contributions to the
hydrodynamic and thermodynamic stresses are resolved. We employ the spherical
harmonic expansion of the structure factor by Wagner & Ackerson (1992) to
systematically deconvolute the 2D patterns by weighted interpretations and averaging
over the most relevant length scales to identify the microstructural components
that most significantly contribute to the stresses. Stress-SANS coefficients for the
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Symbol Value Units

Volume fraction φ 0.40 —
d-EG density ρd-EG 1.234 g ml−1

PEG-600 density ρPEG-600 1.125 g ml−1

Particle density ρp 1.89 g ml−1

Particle core radius a 61.1 nm
Shell thickness t 1.65 nm
Suspending fluid viscosity ηf 0.04 Pa s
Polydispersity 8 %
Scattering length density difference 1ρsld 0.482× 10−6 Å−2

Relative zero-shear viscosity ηr,0 25.4 —
Relative high-shear viscosity ηr,∞ 7.97 —
Relative high-frequency viscosity η′r,∞ 5.90 —
Effective hard-sphere volume fraction φeff 0.465 —
Average relaxation time λave 0.045 s

TABLE 1. Summary of suspension properties.

hydrodynamic and thermodynamic components are defined by comparing stresses
determined by the microstructure to the measured stresses. These results agree well
with the suspension’s rheology during steady shear and to accelerated Stokesian
dynamics simulation results by Foss & Brady (2000).

2. Experimental methods and materials

2.1. Materials
A concentrated near-hard-sphere colloidal suspension comprising silica particles (r =
61.1 nm) with polydispersity of 8 % (ρ = 1.89 g ml−1), which were purchased in
powder form (Seahoster Co., LLC, Japan). The particles are suspended at a particle
loading volume fraction of 0.40 (for which the effective volume fraction is φeff =
0.465; figure 1) in a mixture of deuterated ethylene glycol (d-EG) (68 vol.%) and
polyethylene glycol, Mw = 600 (PEG-600) (32 vol.%). The suspension is placed on a
roll mixer for 72 h prior to experiments (table 1).

2.2. Rheometry

The suspension shear rheology is measured using an ARES-G2 strain-controlled
rheometer measured with a 1◦ cone-and-plate geometry equipped with Peltier plate
temperature control. The suspension is placed on the Peltier plate, the upper tool
is lowered to the gap height and the sample is trimmed. The measurement protocol
starts with a pre-shear consisting of 60 s of 10 s−1 steady shear rate and then steady
shear-rate sweeps increasing and decreasing from 0.1 to 500 s−1; this protocol is
repeated eight times. The purpose of such an extensive pre-shear method is twofold:
the first is to erase any shear history induced by loading the sample; and the second
is to break up any remaining aggregates of particles in suspension that were not fully
dispersed during the 72 h of roll mixing. After this pre-shear protocol, the steady
shear rheology is measured from 0.1 to 500 s−1 (again increasing and decreasing in
shear rate), where at each shear rate the suspension equilibrates to a constant shear

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

12
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.128


248 A. K. Gurnon and N. J. Wagner

10010–110–210–3 102101

10010–110–210–3 102101

10010–1 103102101

10010–1 103102101

10010–1 103102101

102

101

100

102

101

100

10–1

10–2

10–3

102

101

100

103

10–1

–60
–80

–100

–20
–40

0
20
40
60
80

100

(a) (c)

(b) (d )

FIGURE 1. (Colour online) (a) Steady shear viscosity and (b) first normal stress as
functions of shear rate and Pe: small black points/line, 5 ◦C; small grey points/line (blue
online), 25 ◦C; large squares (red online) taken as peak holds at rheo-SANS conditions.
(c) Linear viscoelastic moduli as a function of frequency for constant γ0 = 0.05: filled
symbols, G′; open symbols, G′′ − ωη′∞; greyscale (colours) correspond to 5 ◦C (black),
15 ◦C (mid-grey, red online) and 25 ◦C (dark grey, blue online). (d) The 1D SANS I(q)
as a function of q (nm−1) for 5 mm pathlength flow-SANS shear cell (grey squares, red
online) and 2 mm pathlength rheo-SANS Couette geometry (black squares) at equilibrium.
The black line is a core–shell hard-sphere model for φ = 0.40, a = 611 nm and shell
thickness t= 1.65 nm (table 1).

response for 30 s. The steady shear and linear viscoelastic rheology is measured
at three temperatures (T = 5, 15 and 25 ◦C). Time–temperature superposition (TTS)
according to the analysis methods by Shikata & Pearson (1994) defines the steady
shear and linear viscoelastic rheology reported in figure 1(a–c) for which Tref = 25 ◦C.

The dimensionless Péclet number (Pe) is the dimensionless shear rate defined as the
ratio of the shear rate to the rate of diffusion by Brownian motion in the dilute limit,
and is used to compare with simulations and theory:

Pe= 6πηf a3γ̇

kBT
. (2.1)
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2.3. Small-angle neutron scattering (SANS)
Rheo- and flow-SANS experiments were performed at the Institute Laue-Langevin,
Grenoble, France, on the D-22 SANS beamline. For the three different shear
sample environments (radial-, tangential- and flow-SANS), the sample-to-detector
distance is 17.6 m, the wavelength is 10 Å and the slit dimension is 0.5 mm.
Rheo-SANS experiments were performed to measure the SANS scattering in the
radial direction interrogating the velocity–vorticity (1–3) plane and the tangential
direction to interrogate the velocity gradient–vorticity (2–3) plane during shear flow.
These experiments were conducted using an Anton Paar 501 rheometer with quartz
Couette geometry to apply a steady shear flow (Porcar et al. 2011). Measurements in
the velocity–velocity gradient (1–2) plane of shear were performed using a flow-SANS
sample environment (Gurnon et al. 2014). Scattering data are presented in terms of
the scattering vector q or its amplitude |q| = q = 4π sin(θ/2)/λ, where θ is the
scattering angle. Data were reduced to an absolute scale using GRASP (Dewhurst
2011) and the subsequent application of the weighting functions to each reduced 2D
dataset is performed using SASET (Muthig et al. 2013).

3. Results and discussion
The steady shear measurements in figure 1(a) show the typical shear thinning and

shear thickening response of a concentrated colloidal suspension undergoing increasing
steady shear flow. From the steady shear rheology, we define the zero-shear viscosity
(ηr,0= 25.4) and the high-shear viscosity (ηr,∞= 7.97), which is taken as the viscosity
minimum. Comparison to hard-sphere theory (Russel, Wagner & Mewis 2013) defines
the effective hard-sphere volume fraction to be φeff = 0.465 (table 1). Figure 1(b)
presents the first normal stress difference of the suspension during steady shear flow.
In agreement with other measures of N1(γ̇ ) by Cwalina & Wagner (2014) during
shear thinning, the first normal stress is slightly positive and then becomes increasingly
negative as the shear rate increases during shear thickening.

Figure 1(c) shows the linear viscoelastic moduli of the suspension for three different
temperatures shifted using TTS and subtracting the purely viscous contribution to the
loss modulus to define the linear viscoelastic moduli G′ and G′′ −ωη′∞ as a function
of frequency. The suspension’s relaxation time is identified as the inverse of the cross-
over frequency (λ= 1/ω), reported in table 1 as λ= 0.045 s.

Figure 1(d) shows a core–shell hard-sphere model fit to 1D quiescent scattering data
in the rheo- and flow-SANS sample environments using the parameters in table 1. The
corresponding structure factor is reported in figure 2(a). The effective volume fraction
calculated from the core–shell model is 0.468, which agrees well with the effective
volume fraction from the rheology reported in table 1. The maximum in the structure
factor occurs at slightly larger q than the peak in the intensity I(q). The maximum in
the structure factor corresponds to the length scale for nearest-neighbour interactions
shaded in figure 2, where qpeak= 0.042–0.064 nm−1, corresponding to length scales of
100–150 nm.

3.1. SANS scattering results in three planes during steady shear flow
Rheo- and flow-SANS microstructure measurements of a concentrated colloidal
dispersion are reported for experiments made in all three planes during steady
shear flow. Figure 3(a,b) shows those results from measurements made in the
velocity–velocity gradient (1–2) plane of shear. The 2D scattering results are reported
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0

10–1

1

2

3

FIGURE 2. Hard-sphere structure factor, S(q), where qpeak = 0.0546 nm−1 for φ = 0.40
and a= 61.1 nm. The shaded portion corresponds to the nearest-neighbour peak (qpeak =
0.042–0.064 nm−1).

for increasing shear rates from left to right. The second row reports subtracted
2D scattering patterns, where the equilibrium scattering (figure 3, left) has been
subtracted from the scattering measured during shear, thus highlighting changes upon
applying shear flow. We begin by observing that the anisotropic features of the
scattering grow in intensity with increasing shear rate, indicating that shear distorts
the dispersion’s microstructure. The experimental coordinate system is given in the
figure, and it is important to recognize the inherent inverse relationship between
reciprocal-space scattering patterns and the real-space microstructure, such that the
scattering patterns correspond to a 90◦ rotation of the real-space structure. The
increased intensity observed with increasing shear rate in the 2D scattering patterns
is oriented along the extension axis, such that particle neighbours are enhanced along
the compression axis of the shear flow. This experimental result is consistent with
that previously reported in work by Kalman (2010) and predicted using Stokesian
dynamics simulations by Foss & Brady (2000) and via theory by Bergenholtz et al.
(2002). In the velocity–velocity gradient plane of shear, our scattering experiments
show a real-space microstructure under shear for which an increased number of
nearest neighbours exist along the compression axis of shear and a depletion of
neighbouring particles along the extension axis.

Scattering results from experiments in the velocity–vorticity (1–3) plane during
shear flow are shown in figure 3(b). Just as in the 1–2 plane, the increasing
SANS scattered intensity is an indication of microstructure changes increasing with
increasing shear rate. The experiment is such that the neutron beam passes through
the sample twice. Therefore, in the velocity–vorticity plane, under laminar flow
the microstructure should have mirror symmetry across the vorticity and velocity
axes. Shear-induced structure is evident as in increasing intensity for low q along
the direction of shear. An interpretation of this increased intensity under shear
relative to equilibrium is of a preferential organization of particles along the vorticity
axis. Previous experiments by Cheng et al. (2011a) using confocal microscopy have
observed similar structures that they define as ‘chaining’ along the vorticity direction.
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FIGURE 3. Flow-SANS 2D scattering patterns (upper row) and subtracted patterns (lower
row) for which the equilibrium scattering (at γ̇ = 0) is subtracted from the scattering
measured during shear: (a) the velocity–velocity gradient plane, (b) the velocity–vorticity
plane, and (c) the vorticity–velocity gradient plane. From left to right γ̇ = 0, 12, 63, 125,
627, and 1258 s−1, with the highest shear rate only measured for the velocity–velocity
gradient plane.

The measurements in the velocity gradient–vorticity (2–3) plane are reported
as figure 3(c). These rheo-SANS experiments are also performed in the Couette
sample environment by alignment of the beam tangential to the Couette cell.
As a consequence, there is a loss of resolution due to both the increase in
pathlength, leading to multiple scattering, as well as sampling over curved streamlines.
Nevertheless, a qualitative comparison of these results also shows increasing scattering
with increasing shear rate. As observed for the 1–3 plane, here again we observe
structure and apparent alignment along the vorticity direction of shear flow.

The three planes interrogated with the rheo- and flow-SANS experiments reported
here are orthogonal to one another and provide the first scattering measurements in
all three planes of flow spanning the shear thinning and shear thickening transition.
From these, we can build an understanding of the 3D real-space microstructure that
exists for a concentrated colloidal suspension during steady shear.
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Figure 4 presents a direct comparison between predictions for the pair distribution
function g(r) from accelerated Stokesian dynamics simulations by Foss & Brady
(2000) for a concentrated suspension of hard-sphere particles at a comparable
concentration (φ = 0.45) and those experimental results for I(q) from the SANS
experiments presented in the previous section for the velocity–velocity gradient (1–2),
velocity–vorticity (1–3) and velocity gradient–vorticity (2–3) planes during shear.
The upper row in each panel of figure 4 shows the Stokesian dynamic simulations,
where the lighter regions indicate a higher probability for finding a particle at that
location in the shear flow. The best resolution using Stokesian dynamics simulations
reported in the figures is around the nearest-neighbour (i.e. innermost) ring. Longer
length-scale structures are resolved by SANS experiments presented in the 2D
scattering patterns in the lower row of each panel in figure 4. For reference,
black circles are superimposed on the scattering patterns to delineate the q range
corresponding to the nearest-neighbour position, as identified in figure 2.

Good qualitative agreement is observed for the microstructures simulated and
measured, especially for the velocity–velocity gradient plane shown in the upper
rows in each panel of figure 4. In particular, there are clear increases in the intensity
with increasing shear rate along the compression axis of shear on length scales
associated with nearest neighbours. Furthermore, at the highest shear rates, we observe
particularly good agreement at the ∼0◦ and ∼180◦ positions, where brighter spots
of intensity are evident in both simulation and experiment. The scattering observed
from the 1–2 plane of shear identifies the signature hydrocluster microstructure of
colloidal dispersions (Kalman 2010). These hydroclusters have been shown to be
the result of density fluctuations caused by applying a shear of significant rate to a
colloidal suspension such that the particles become strongly coupled by lubrication
hydrodynamic interactions acting in the thin fluid layer between particles driven
close together. This results in an increase in energy dissipated, reflected in the bulk
stress response of the shear thickening suspension. The hydroclusters have been
shown to form with structure along the compression axis of shear in previous
flow-SANS experiments by Kalman (2010) as well as predicted by Stokesian
dynamics simulations by Foss & Brady (2000). In these experiments, we observe
that hydroclusters are evident on longer length scales, which are associated with q
values inside the smallest circle superimposed over the 2D scattering pattern. The
experiments here further corroborate these findings, where in the 1–2 plane particles
associate with one another primarily along the compression axis, which contributes
to the increase in the stress observed during bulk rheometry experiments as a shear
thickening response.

A comparison between Stokesian dynamics simulation results and flow-SANS
experiments in the velocity–vorticity plane is presented in figure 4. Interestingly,
for length scales associated with the nearest-neighbour ring (as those predicted by
Stokesian dynamics (Foss & Brady 2000)), the SANS and simulation results both
show only slight changes in scattering intensity associated with nearest-neighbour
interactions (highlighted in the SANS patterns by the black circles). The largest
changes in scattering upon shear observed in the 1–3 plane occur at longer length
scales (at low q values). Note that these structures are not readily detected in the
real-space pair distribution functions calculated by Stokesian dynamics, because these
second- and third-nearest-neighbour correlations are washed out and of low amplitude
relative to the nearest-neighbour correlations. Such larger length-scale structures are
readily apparent in scattering measurements, however, corresponding to smaller q
values (inside of the smallest circle in figure 4). This observation suggests that the
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FIGURE 4. Comparison of Stokesian dynamics simulations with SANS results for:
(a) velocity–velocity gradient, (b) velocity–vorticity, and (c) velocity gradient–vorticity
planes of shear. In each panel the upper row shows the corresponding projection of g(r)
from Stokesian dynamics simulations from Foss & Brady (2000) for Pe=0.43, 10 and 100,
where lighter colours are indicative of higher concentration of particles, darker colours are
lower concentration. The lower row of each panel shows SANS pattern from flow-SANS
experiments for Pe = 0.52, 5.23 and 52.6, where warmer colours are indicative of more
scattering events and cooler colours are fewer scattering events according to the scale bar
to the right. The black circles indicate the nearest-neighbour peak in the structure factor
from figure 2 for qpeak = 0.042–0.064 nm−1.
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FIGURE 5. (Colour online) (a) Plot of g(r, θ) from accelerated Stokesian dynamics
simulations from Foss & Brady (2000) for Pe= 1 (black square), 25 (mid-grey square; red
online) and 1000 (dark grey square; blue online). (b) Plot of I(q, φ21+ 90◦) for Pe= 2.62
(black square), 26.2 (mid-grey square; red online) and 52.6 (dark grey square; blue online)
for γ̇ = 12, 627 and 1258 s−1). The abscissa in both cases is the angle φ as defined in
the inset.

anisotropy detected in the SANS scattering patterns is from larger microstructures
associated with correlations spanning multiple particles. The increased intensity
indicates that there is a preference for particles to align along the vorticity direction.
The scattering patterns reveal structures for length scales corresponding to three to
four particle diameters, as reported previously for hydrocluster formation by Kalman &
Wagner (2009). Associations across multiple particles in the vorticity direction, which
grow with increasing shear, give rise to the SANS scattering patterns in the 1–3
plane. This vorticity alignment is also evident in the velocity gradient–vorticity (2–3)
plane scattering, although the patterns suffer from a longer scattering pathlength and
lower resolution. These scattering patterns indicate that particles are preferentially
aligned along the vorticity plane during shear with increasing shear rate. The
particle alignment along the vorticity direction of shear has been observed using
confocal microscopy experiments and Stokesian dynamics simulations by Cheng
et al. (2011a,b), which suggest that the particle chaining observed along the vorticity
direction is caused by hydrodynamic interactions, where particles migrate across the
velocity gradient direction of shear flow.

The qualitative comparison shows that many key features of the colloidal
microstructure elucidated by our measurements in all three planes of symmetry
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by scattering are captured in the Stokesian dynamics simulations. These measured
structures can be quantitatively used to understand the rheological response through
micromechanical relationships that account for hydrodynamic interactions. Differences
in our measured microstructures and those recently reported for non-colloidal
suspensions with friction further serve to highlight the importance of colloidal
hydrodynamics in shear thickening colloidal dispersions. Mari et al. (2014) show that
the structure in the discontinuous shear thickened state in the plane of shear becomes
more isotropic, whereas the measured microstructure of the colloidal suspension
develops a very distinct and prominent anisotropy under shear flow that is most
evident in the plane of flow (velocity–gradient plane). As discussed in the introduction,
this difference may be due in part to the very low coefficient of friction under high
loads for organically coated particles such as those used here (reported to be 0.08)
in comparison to the high friction reported for bare SiO2 particles (0.39; Kappl
et al. 2006). The quantitative link between the measured microstructures for shear
thickening colloidal dispersions and the measured mechanical stresses are presented
and discussed in the next section in the context of colloidal hydrodynamics.

3.2. Microstructure–stress relationship

The stress-SANS rule establishes a quantitative connection between the flowing
microstructure measured using SANS and the stress response of a complex fluid
during shear (Maranzano & Wagner 2002). This is accomplished via a spherical
harmonic expansion of the 3D microstructure given in (3.1) (Wagner & Ackerson
1992). Importantly, for colloidal dispersions, the stress and microstructure both
have contributions from two fundamentally separate, but equally important, forces:
thermodynamic (superscript T) and hydrodynamic (superscript H). This section will
discuss the systematic methods used to describe the total shear stress (superscript
σ ) and normal stress (superscript N1) response of the suspension and define the
stress-SANS rule for this colloidal dispersion,

S(q; Pe)= 1+
∑
l,m

B+l,m(q; Pe)(Yl,m(Ωk)+ (−1)mYl,−m(Ωk)), (3.1)

where the scalar coefficients B+l,m(q;Pe) are determined from the scattering measurements
as described below.

For reference, we present here the expressions derived in Wagner & Ackerson
(1992) for the thermodynamic (equations (3.2)–(3.4)) and hydrodynamic (equations
(3.5)–(3.7)) contributions to the total shear and normal stress responses. Both types
of stress contributions are functions of the B+l,m microstructure terms defined for a
spherical harmonic expansion of the microstructure in reciprocal space and Pe (2.1),
the dimensionless shear rate of deformation and ρ the particle number density:

σ T(Pe) = − ρ

π
√

30π

∫
θ∗(q)B+2,1(q; Pe)q2 dq, (3.2)

Ψ T
1 (Pe) = ρ

π
√

30π

∫
θ∗(q)(B+2,2(q; Pe)−√6B+2,0(q; Pe))q2 dq, (3.3)

Ψ T
2 (Pe) = ρ

π
√

30π

∫
θ∗(q)(B+2,2(q; Pe)+√6B+2,0(q; Pe))q2 dq, (3.4)
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σH(Pe)
2γ̇ ηf

= 1+ 5
2
φ(1+ φ)+ 2.7φ2

+ 5
2
φ
√

π

∫ [
B+0,0(q; Pe)

(
2α(q)+ 4

15
ζ0(q)

)
+ B+2,0(q; Pe)

(
2

3
√

5
β(q)+ 4

√
2

15
√

7
ζ2(q)

)
+ B+2,2(q; Pe)

(
2
√

2
105

ζ2(q)+
√

2
15
β(q)

)
+ B+4,0(q; Pe)

(−16
105

ζ4(q)
)

+ B+4,2(q; Pe)
(

4
√

2

21
√

5
ζ4(q)

)]
q2 dq (3.5)

NH
1 (Pe)
2γ̇ ηf

= −5φ
√

π

×
∫ [

B+4,1(q; Pe)

(
5
√

2+ 24
√

5

105
√

30
ζ4(q)

)

+B+4,3(q; Pe)
(

1

3
√

35
ζ4(q)

)]
q2 dq, (3.6)

NH
2 (Pe)
2γ̇ ηf

= −5φ
√

π

×
∫ [

B+2,1(q; Pe)

(
2
√

2√
15
β(q)+ 2

√
2

7
√

15
ζ2(q)

)

+B+4,1(q; Pe)

(
5
√

6+ 24
√

5

105
√

30
ζ4(q)

)

+B+4,3(q; Pe)
(

1

3
√

35
ζ4(q)

)]
q2 dq. (3.7)

The stresses can also be expressed in terms of an expansion in real space; and
the derivation for the hydrodynamic stresses is presented in appendix A. Comparison
of the expressions in reciprocal space shown above with the results for real space
in appendix A shows the same symmetries contributing to each stress component.
This facilitates the direct comparison of structural anisotropy evident in scattering
experiments with those evident in direct observation or simulations of the pair
distribution function. (Note that (3.6) and (3.7) correct a typographical error in
equation (62) of Wagner & Ackerson (1992).)

The spherical harmonic expansion of the 3D microstructure in reciprocal space,
(3.1), is projected onto the three planes of flow measured during the flow- and
rheo-SANS experiments to define the weighted functions Wn(q, γ̇ ) (the full
derivation of this expansion is presented in the supplementary data available at
http://dx.doi.org/10.1017/jfm.2015.128 (Gurnon 2014)). These measurable functions
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are defined for the velocity–velocity gradient (1–2) plane, where the neutron beam
travels parallel to the ‘vorticity’ direction (hence the ‘vorticity’ superscript in (3.10)),
the velocity–vorticity (1–3) plane, where the ‘gradient’ superscript is used in (3.11),
and the velocity gradient–vorticity (2–3) plane, for which the neutron beam travels
parallel to the velocity direction (here the ‘velocity’ superscript is used in (3.12)).
Note that these are also functions of Pe through B+l,m(q; Pe).

We define the weighted average functions Wn(q, γ̇ )s for each plane. Operationally,
to determine the Wn(q, γ̇ ) values experimentally for each plane, the measured
scattering during shear is divided by the equilibrium scattering (measured under
quiescent conditions). In this way, we focus on the changes in the microstructure
caused by shear. The analysis of the flow- or rheo-SANS experimental 2D scattering
data proceeds by integrating over the azimuthal angle weighted by the functions
cos(nθ), where n is an integer (0, 2 or 4), or cos(θ) sin(θ):

Wn(q, γ̇ )= 1
2π

∫ 2π

0
cos(nφ)

I(q, φ, γ̇ )
I(q, γ̇ = 0)

d(φ), n= 0, 2, 4, . . . , (3.8)

W21(q, γ̇ )= 1
2π

∫ 2π

0
cos(φ) sin(φ)

I(q, φ, γ̇ )
I(q, γ̇ = 0)

d(φ). (3.9)

Inserting the spherical harmonic expansion for the structure factor identifies the
contributions of specific symmetries of the structure to each weighted integral over
the scattering patterns as

Wvorticity
0 (q)Seq(q) = 1+ B+0,0(q)

(
1√
π

)
+ B+2,0(q)

(
1
4

√
5
π

)
+ B+2,2(q)

(
1
4

√
15
2π

)

+B+4,0(q)
(

27
64
√

π

)
+ B+4,2(q)

(
9
√

5

32
√

2π

)

e+ B+4,4(q)

(
9
√

35

64
√

2π

)
+ · · · (l> 4), (3.10a)

Wvorticity
2 (q)Seq(q) = B+2,0(q)

(
1
4

√
5
π

)
− B+2,2(q)

(
1
8

√
15
2π

)
+ B+4,0(q)

(
60

128
√

π

)

+B+4,2(q)

(
3
√

5

16
√

2π

)
− B+4,4(q)

(
3
√

35

32
√

2π

)
+ · · · (l> 4),

(3.10b)
Wvorticity

4 (q)Seq(q) = 2

(
B+4,0(q)

(
105

64
√

π

)
− B+4,2(q)

(
21
√

5

16
√

2π

)

+B+4,4(q)

(
3
√

35

64
√

2π

))
, (3.10c)

Wvorticity
6 (q)Seq(q)= 0, (3.10d)

Wvorticity
21 (q)Seq(q)= 1

8

(
B+2,1(q)

(√
15
2π

)
+ B+4,1(q)

(
3
√

5
8
√

π

))
+ · · · (l> 4),

(3.10e)
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Wgradient
0 (q)Seq(q) = 1+ B+0,0(q)

(
1√
π

)
− B+2,0(q)

(√
5

4π

)

+B+4,0(q)
(

9
8
√

π

)
+ · · · (l> 4), (3.11a)

Wgradient
2 (q)Seq(q)= B+2,2(q)

(√
15
8π

)
+ B+4,2(q)

(
−3
√

5

4
√

2π

)
+ · · · (l> 4),

(3.11b)

Wgradient
4 (q)Seq(q)= 4B+4,4(q)

(
3
√

35

32
√

2π

)
+ · · · (l> 4), (3.11c)

Wgradient
6 (q)Seq(q) = Wgradient

12 (q)Seq(q)= 0, (3.11d)

Wvelocity
0 (q)Seq(q) = 1+ B+0,0(q)

(
1√
π

)
+ B+2,0(q)

(
1
4

√
5
π

)

+B+2,2(q)

(
1
4

√
15
2π

)
+ B+4,0(q)

(
27

64
√

π

)

−B+4,2(q)

(
15
√

5

32
√

2π

)
− B+4,4(q)

(
9
√

35

64
√

2π

)
+ · · · (l> 4),

(3.12a)

Wvelocity
2 (q)Seq(q) = 1

2

(
B+2,0(q)

(
3
4

√
5
π

)
− B+2,2(q)

(
1
4

√
15
2π

)

− B+4,0(q)
(

60
64
√

π

)
− B+4,2(q)

(
6
√

5

32
√

2π

)

+ B+4,4(q)

(
12
√

35

64
√

2π

))
+ · · · (l> 4), (3.12b)

Wvelocity
4 (q)Seq(q) = 2

(
−B+4,0(q)

(
105

64
√

π

)
+ B+4,2(q)

(
21
√

5

64
√

2π

)

−B+4,4(q)

(
3
√

35

64
√

2π

))
+ · · · (l> 4), (3.12c)

Wvelocity
6 (q)Seq(q)=Wvelocity

12 (q)Seq(q)= 0. (3.12d)

These three sets of equations relate quantifiable functions obtainable from the rheo-
and flow-SANS measurements to the B+l,m microstructure terms. In this work we use
the experimental results from rheo- and flow-SANS experiments to define the Wn(q, γ̇ )
functions in order to gain a quantitative measure for the microstructure that is, within
a constant, equal to the stress. As is discussed here, the proportionality constants
Cσ ,T , Cσ ,H

0 , Cσ ,H
4 , CN1,H and CN1,T are scalars defined once for a particular colloidal

dispersion under steady shear and then employed to predict those corresponding
stresses under other steady and dynamic shear conditions.
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FIGURE 6. (Colour online) Plots of Wn as a function of q (nm−1) as defined in (3.8)
and (3.9), where γ̇ = 0 s−1 (@), 12 s−1 (♦), 62 s−1 (E), 127 s−1 (q), 627 s−1 (s) and
1255 s−1 (r). Panels correspond to scattering experiments performed in the (a) 1–2, (b)
1–3 and (c) 2–3 planes.

Figure 6 shows the Wn(q, γ̇ ) as defined from (3.8) and (3.9) for each shear rate
and plane measured during flow- and rheo-SANS experiments. It is best to discuss
and understand the rich shear-induced microstructure presented in this way because
significant differences in the microstructure are detectable at different scattering
lengths and shear rates. To begin with, the W0 in all three planes is the intensity
normalized by the zero-shear intensity with no weighting applied to the annular
integrated scattering. This function provides a quantitative measure of the number
of nearest neighbours regardless of angular position (see figure 7a,e). In figure 6
W0 shows clear increases in the scattered intensity. As the functions are normalized
by the equilibrium values, this increase for low q values and decrease for q values
above the primary peak position correspond to a shift to lower q of the primary peak.
The increase in magnitude is indicative of a greater number of neighbouring particles
probed, whereas a shift in the peak to lower q suggests that larger length-scale
structures are observed, such as those reported by Kalman & Wagner (2009). In the
1–2 plane of shear, the intensity saturates for γ̇ > 62 s−1, suggesting that increasing
shear rates do not lead to more nearest neighbours in this regime. This is important
for understanding why the first-order microstructure contribution to the stress is not
adequate for predicting the shear thickening response, as noted previously (Maranzano
& Wagner 2002; Kalman 2010). In the other two planes, a decrease in the total
intensity is observed for γ̇ > 627 s−1. At these higher shear rates, the sample
integrity is compromised, and air bubbles are introduced in the cup-and-bob Couette
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FIGURE 7. Scattering results overlaid with the weighting functions in two planes:
(a) 1–2 flow-SANS and (b) 1–3 rheo-SANS. Weighting functions are used in
(3.8), cos(nφ21), where n = 0, 2 and 4 (for a,e, c,g and d,h respectively) and in
(3.9), cos(φ21) sin(φ21), for b, f. The function is either red or blue, indicating a positive or
negative value of the function, respectively. Similarly, the SANS scattering patterns are
subtracted patterns from a quiescent scattering pattern, and therefore the warmer colours
indicate more scattering events while the cooler colours indicate fewer scattering events
during shear than those that occur at equilibrium.

geometry during radial and tangential rheo-SANS experiments such that the intensity
in the scattering decreases. Transmission measurements confirm this instability, and
no further analysis will be performed in these conditions. Note that no such problems
are observed for the 1–2 shear cell at these shear rates, as it is sealed and air bubbles
are not observed, again confirmed by transmission measurements.

The W2 weighting functions reported in figure 6 give a quantitative measure for
any changes in the twofold symmetry structure that might exist during flow in each
of the three planes, where the specific microstructural symmetries involved depend
on the plane of measurement (see (3.10)–(3.12)). Figure 7(c) shows that the cos(2φ)
weighting function is positive in the lobes along the 0◦ and 180◦ detector angles,
whereas it is negative at detector angles of 90◦ and 270◦. Since more structure is
observed along the φ21 = 90◦ and 270◦ detector angles in the 1–2 plane of shear,
the function becomes more negative with increasing shear rate. Precisely the opposite
is the case for the 1–3 plane (figure 7g), where the W2 function increases to more
positive values with increasing shear rate, indicative of more structure along the φ13=
0◦ and 180◦ detector angles for the velocity–vorticity plane. In the 1–3 plane, the q
range accessible is not small enough to capture the peak in the intensity, indicating
that larger structures (consisting of more than a particle and its nearest neighbour)
form in the velocity–vorticity plane. This observation is consistent with observations
made based on the 2D scattering patterns discussed in the previous sections, which
indicate that particles have a propensity to associate along the vorticity direction. The
trend in the velocity gradient–vorticity (2–3) plane is similar to that in the 1–3 plane;
however, the magnitude of the changes is less.

The fourfold symmetry microstructure changes are defined using the W4 weighting
function (figure 7d). In the velocity–velocity gradient plane of shear, the fourfold
symmetry increases with increasing shear rate at a q larger than observed for the
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changes in the twofold symmetry (figure 6). The shift to larger q is indicative
of the fourfold symmetric microstructure occurring at length scales of the order
of the nearest-neighbour peak in the structure factor (qpeak = 0.042–0.064 nm−1) in
figure 2(a). Interestingly, this shift in q is not observed in either of the other planes of
shear. The fourfold symmetry in the 1–2 plane is caused by increased intensity along
the velocity and velocity gradient directions (figure 7d). At such a high concentration
of suspended particles (φeff = 0.465), it is possible that this fourfold symmetry is
the result of packing effects made more apparent by the high shear rates, which
induce hydrocluster formation in the shear thickening regime. The onset of fourfold
symmetry in the microstructure of concentrated suspensions has been observed in
simulations by Nazockdast & Morris (2013). Their calculations show a propensity to
find fourfold coordination of nearest neighbours at higher (>30 %) packing fractions.
However, for this symmetry to become apparent in our scattering measurements,
it will need to be oriented by the flow. Clearly, this fourfold symmetry becomes
apparent at high shear rates where shear thickening is evident. There are only small
changes in W4 in the 1–3 plane of shear. If anything, the function trends to more
negative values with increasing rates. Figure 7(h) shows that this is the result of the
cos(4φ13) function’s constructive weighting of the increasing intensity in the vorticity
direction of shear, thereby resulting in increases in fourfold symmetry opposite in
sign to those twofold microstructure changes defined by W2. There are no fourfold
symmetry microstructures measured in the 2–3 plane.

The higher-order two- and fourfold symmetric scattering functions show measurable
changes during shear flow. However, care needs to be taken in defining priority to
the contributions bearing in mind the initial weighting functions used to assess the
microstructure’s symmetry. In fact, based on the definitions for the two- and fourfold
symmetry, these functions could be different measures of the same structural features.
The increases in two- and fourfold weighted scattering functions are not independent
given the weighting functions used to assess the microstructure in the 1–2 plane
(figure 7c,d). As changes in fourth-order harmonics can also appear in the definition
of W2(γ̇ ), we focus our attention on the readily apparent increases in W4(γ̇ ).

Specifically, the fourfold symmetric functions increase in intensity in the velocity
and velocity gradient directions observed in the 2D scattering patterns, which is a
symmetry that also contributes to twofold symmetry increases, given the definitions of
W2(γ̇ ) and W4(γ̇ ). Therefore, it is most important to include the fourfold symmetry
microstructure in the velocity–velocity gradient plane of shear. An analogous argument
can be made for the velocity–vorticity (1–3) plane; figure 7(g,h) shows these
microstructures in the velocity–vorticity plane and velocity–velocity gradient planes.
It is clear that the microstructure with true twofold symmetry could also contribute to
W4, given the definition for the weighting function applied. However, by inspecting
the 2D scattering pattern, we find it is most important to include the shear-induced
twofold symmetry in the 1–3 plane.

A rigorous evaluation of the stresses from the SANS data requires evaluating
Wn(q, γ̇ ) for all q, but it is not experimentally possible to measure to infinite q. Thus,
following previous work, we choose to define a q range for which the maximum
microstructure changes due to shear are observed during the experiment (Maranzano
& Wagner 2002). Figure 6 indicates the location of the largest changes in weighted
intensity as a function of scattering vector, q. Table 2 gives the qmin and qmax for
which the integral defined in (3.13) is taken for each of the different weighting
functions in each of the planes according to

Wn(γ̇ )= 1
1(aq)

∫ aqmax

aqmin

Wn(q, γ̇ )(aq)2 d(aq). (3.13)
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FIGURE 8. (Colour online) For the 1–2 (q), 1–3 (p) and 2–3 (u) planes, the Wn(γ̇ )

values as defined in (3.13), where qmin and qmax are defined in table 2. The Wn(γ̇ ) values
have been shifted such that Wn(γ̇ = 0)= 0 and a trend line has been added for W4(γ̇ ) for
clarity.

Plane Weighting qmin–qmax Real space (∼2π/q)
interrogated function (nm−1) (nm)

1–2 cos(0θ) 0.0194–0.0539 ∼116–323
cos(2θ) 0.0194–0.049 ∼116–323
cos(4θ) 0.0342–0.0638 ∼99–183

cos(θ) sin(θ) 0.0194–0.0539 ∼116–323
1–3 cos(0θ) 0.0194–0.0342 ∼183–324

cos(2θ) 0.0194–0.049 ∼128–324
cos(4θ) 0.0194–0.049 ∼128–324

cos(θ) sin(θ) 0.0194–0.049 ∼128–324
2–3 cos(0θ) 0.0194–0.0391 ∼160–324

cos(2θ) 0.0194–0.049 ∼128–324
cos(4θ) 0.0194–0.049 ∼128–324

cos(θ) sin(θ) 0.0194–0.049 ∼128–324

TABLE 2. The qmin and qmax values used to define Wn(γ̇ ).

The Wn(γ̇ ) are now only a function of shear rate and define the weighting functions
integrated over the scattering vector (q nm−1) in table 2, which is always normalized
by the particle radius (a= 61.1 nm). Figure 8 reports those Wn(γ̇ ) for the 1–2, 1–3
and 2–3 planes.

Inspection of figure 8 shows that both Wvorticity
2 (γ̇ ) and Wvorticity

4 (γ̇ ) vary substantially
with shear rate and are of the same order (but opposite in sign) and, therefore, could
both potentially be the next-order contribution to the hydrodynamic stress. The
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relationship between these two contributions is entrenched in the expressions given
in (3.4), such that it is not immediately obvious which contribution should be used
to define the additional hydrodynamic stress responses in the shear thickening regime.
Furthermore, the Wvorticity

2 (γ̇ ) decreases with increasing shear rate while the Wvorticity
4 (γ̇ )

shows a significant increase in values between γ̇ = 125 and 627 s−1 (a trend line is
provided to illustrate this) corresponding to a transition from the shear thinning to the
shear thickening regime. Since there is a significant change in the stress contribution
for the shear thickening regime (γ̇ > 295 s−1, Pe > 12.3), we choose to associate
the Wvorticity

4 (γ̇ ) with the additional hydrodynamic microstructure contributions to the
stress.

The W21 weighting function is clearly only measured in the velocity–velocity
gradient plane as is expected given (3.10)–(3.12). These measurements show increases
in intensity at a constant q range clearly indicative of more structure forming with
increasing shear rate (figure 8). This type of symmetry is caused by particles being
forced together along the compression axis of flow as the sample is sheared. Neither
the radial or tangential planes measure the microstructure in the shear plane where
one can interrogate the compression axis, and therefore this weighted scattering
function is expected to be, and is, exactly zero in the other two planes for all shear
conditions.

In the following section, the Wvorticity
n (γ̇ ) given in figure 8 is used to define the

stress-SANS rule such that the microstructure stress contribution is comparable to the
shear stress response measured during a rheometry experiment. Figure 8 clearly shows
that there are contributions from higher-order microstructures (W2(γ̇ ) and W4(γ̇ )) in
all of the planes of equal magnitude to those microstructures that contribute to the
thermodynamic stress during steady shear. Most notable are those measurements in
the 1–2 plane of shear for the Wvorticity

2 (γ̇ ) and Wvorticity
4 (γ̇ ) terms. As was discussed

previously, there is difficulty in deconvoluting these two types of symmetries into
separate contributions to the hydrodynamic stress. As will be shown in the next
section, it is sufficient to include those fourth-order harmonic microstructure terms to
reconcile the hydrodynamic stresses in the shear thickening regime.

All three planes of shear flow are necessary for fully determining the 3D
microstructure and all contributions to the stress tensor. However, with some
simplifying assumptions, a reduced set of measurements can be used to obtain
the stresses from the harmonic expansion of the microstructure. Importantly, in this
work, the new scattering measurements in the velocity–velocity gradient (1–2) plane
of shear (first column of figure 6) will be used to define the majority of the structure
harmonics necessary for defining the stress-SANS rule. Previous research (Foss &
Brady 2000; Maranzano 2001; Kalman 2010) has shown that the only plane of
observation capable of defining the thermodynamic contribution to the shear stress is
the 1–2 plane. Note that the dominant hydrodynamic contribution can be defined in
the plane of shear as well. However, defining the thermodynamic contribution to the
normal stress differences requires measurements in the 1–3 plane, as will be shown.
The corresponding stress-SANS rules are defined in the following subsections.

3.2.1. Stress-SANS rule: thermodynamic shear stress
The thermodynamic stress contribution is formally exact and the shear stress is

shown to be proportional to only those contributions arising from the B+2,1 symmetry
term of the microstructure (3.2). Equation (3.10) is the only equation that includes the
B+2,1 microstructure term in the expansion for the microstructure in any plane measured
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Coefficient Value Units

Cσ ,T 22 Pa
Cσ ,H

0 0.063 —
Cσ ,H

4 4.6 —
CN1,H −5.2 —
CN1,T 18 Pa

TABLE 3. Summary of coefficients for stress-SANS rule.

during a rheo- or flow-SANS experiment. Therefore Wvorticity
21 measured by flow-SANS

experiments made in the 1–2 plane of shear defines the thermodynamic stress
contribution to the total stress response measured during a rheometry experiment.

The Wvorticity
21 microstructure contribution is proportional to the thermodynamic stress

contribution. At the lowest shear rates, the thermodynamic contribution to the total
stress is largest; therefore, the lowest shear rate for which the microstructure has been
measured is chosen to determine the thermodynamic constant. The proportionality
constant will be defined for the γ̇ = 12 s−1 condition and hereafter will be applied
to each microstructure measured to determine the thermodynamic stress contribution
from the microstructure at any other shear rate. The thermodynamic stress constant
(Cσ ,T) is equal to

Cσ ,T = σr(γ̇ )− σfit(γ̇ )

Wvorticity
21 (γ̇ )

, (3.14)

where σr is the stress measured during a rheometry measurement and σfit is the
hydrodynamic stress extrapolated from a linear fit of the stress at shear rates close
to the critical shear rate for shear thickening (γ̇c = 295 s−1, Pe = 12.3) given in
figure 9(a). This is justified because the stress response at shear rates greater than or
equal to the critical shear rate for an STF are largely hydrodynamic in nature (Bender
& Wagner 1996; Banchio & Brady 2003). Figure 9(b) confirms this, where the high
shear viscosity (ηr,∞) prior to shear thickening is quantitatively consistent with that
for hard spheres. In addition, the hydrodynamic microstructure’s contribution to the
stress is proportional to the shear rate (see (3.5)). Therefore, a good approximation
for the hydrodynamic stress at the lowest shear rates is the extrapolation of the fit to
high shear rates. A similar procedure was used in previous work analysing the other
planes of flow (Maranzano & Wagner 2002). The coefficient is defined using the
microstructure measured at the γ̇ = 12 s−1 condition and the fit shown in figure 9.
For this suspension, Cσ ,T = 22 Pa and is also reported in table 3.

Now that the thermodynamic coefficient is defined, the thermodynamic stress
contribution at any shear rate σ T(γ̇ ) is defined given Wvorticity

21 from a flow-SANS
microstructure measurement made in the velocity–velocity gradient plane of shear
and the following expression:

σ T(γ̇ )=Cσ ,T
(
Wvorticity

21 (γ̇ )
)
. (3.15)

Figure 9 shows the thermodynamic stress contribution calculated from the stress-
SANS rule as a function of shear rate and Pe. Clearly, the thermodynamic stress
is always increasing with Pe. However, as expected, this stress contribution grows
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FIGURE 9. (Colour online) (a) Stress and (b) relative viscosity ηr = η(T)/ηf (T) as
functions of γ̇ and Pe. Symbols: rheometry results, black filled square; stress-SANS rule
thermodynamic stress, filled circle (blue online); first-order hydrodynamic stress, open
square (red online); and total stress, open triangle (green online). Also included are:
stress-SANS rule higher-order hydrodynamic contributions for hydrodynamic stress, filled
square (red online); and total stress, filled triangle (green online). The line (black) is fitted
to the stress responses for γ̇ = 199.6–500.1 s−1 around the critical shear rate γ̇ = 295 s−1.

more slowly at higher γ̇ as a result of saturation of the microstructure deformation
(Wagner et al. 1988; Bender & Wagner 1995). As the thermodynamic stress is directly
proportional to the microstructure deformation, and this deformation cannot continue
to increase linearly with the shear rate for even modest Pe, it ultimately increases
as a function of shear rate with power-law exponent of ∼1/2. The thermodynamic
stress contribution is strongly shear thinning, and this change is largely responsible
for the shear thinning rheology observed in figure 9(b).

3.2.2. Stress-SANS rule: hydrodynamic shear stress
In contrast to the thermodynamic stress, the hydrodynamic stress in (3.5) includes

many terms from the structure factor expansion including up to fourth-order terms
(B+0,0, B+2,0, B+2,2, B+4,0 and B+4,2). The definition of the Wvorticity

0 weighting function
defined in (3.10) includes all of these microstructure contributions. As expected from
previous experimental measures by Maranzano & Wagner (2002), the Wvorticity

0 (γ̇ )

term measured from the microstructure is an order of magnitude larger than any of
the other microstructure contributions shown in figure 8. The first-order contribution
to the hydrodynamic stress is proportional to those microstructure changes captured
in Wvorticity

0 (γ̇ ). Therefore, the coefficient for the first-order hydrodynamic stress
contribution (Cσ ,H

0 ) is defined by

Cσ ,H
0 =

(2ηf γ̇ )
−1[σr(γ̇ )− σ T(γ̇ )] − [1+ 5

2φ(1+ φ)+ 2.7φ2]
Wvorticity

0 (γ̇ )
. (3.16)

We anticipate that the shear thickening regime will have additional higher-order
microstructure contributions to the total stress. However, this first-order contribution
is expected to accurately predict the hydrodynamic stress contributions in the shear

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

12
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.128


266 A. K. Gurnon and N. J. Wagner

thinning regime. The hydrodynamic stress contribution is defined for the SANS
condition measured at the largest shear rate in the shear thinning regime (and closest
to the critical shear rate for shear thickening). For the measurements made here, the
shear condition γ̇ = 125 s−1 gives a constant coefficient for the hydrodynamic stress
contribution reported in table 3 and is Cσ ,H

0 = 0.063.
Now that the first-order hydrodynamic stress-SANS coefficient (Cσ ,H

0 ) is defined, it
is possible to predict the first-order hydrodynamic stress contribution σH

0 (γ̇ ) given
a measure of Wvorticity

0 (γ̇ ) from the microstructure at any shear condition with the
expression:

σH
0 (γ̇ )

2ηf γ̇
=Cσ ,H

0

(
Wvorticity

0 (γ̇ )
)
. (3.17)

Figure 9 shows the first-order hydrodynamic stress contribution as a function of
shear rate and Pe. For all Pe probed, the hydrodynamic stress is always larger than
the thermodynamic stress response, which is anticipated for Pe ∼ O(1) or larger. In
addition, the sum of the hydrodynamic and thermodynamic stress responses in the
shear thinning regime Pe < 12.3 agree well with those stresses measured in a bulk
rheology experiment. However, for those measurements made in the shear thickening
regime, the microstructure’s total stress defined using only the first-order contribution
from the hydrodynamic stress and the thermodynamic stress is significantly lower
than those measured responses from a rheometry experiment.

It is with this discrepancy in mind that we look at higher-order microstructure
contributions to the hydrodynamic stress such that the shear thickening response will
also be well predicted from the microstructural changes experimentally measured
during shear thickening. Therefore, the constant for the higher-order hydrodynamic
stress contribution is defined here as

Cσ ,H
4 =

(2ηf γ̇ )
−1[σr(γ̇ )− σ T(γ̇ )− σH

0 (γ̇ )] − [1+ 5
2φ(1+ φ)+ 2.7φ2]

Wvorticity
4 (γ̇ )

, (3.18)

where the higher-order coefficient for fourfold symmetry is defined by the micro-
structure measured for the shear thickening condition at γ̇ = 1258 s−1. The coefficient
is therefore Cσ ,H

4 = 4.6 (also reported in table 3). Analogous to the expression given
in (3.17), for all conditions the higher-order hydrodynamic stress contribution is
calculated from

σH
4 (γ̇ )

2ηf γ̇
=Cσ ,H

4

(
Wvorticity

4 (γ̇ )
)
. (3.19)

The total stress is then defined as the sum of the stress contributions from the
thermodynamic, first-order hydrodynamic and higher-order hydrodynamic stresses
from fourfold microstructure symmetry defined in (3.15), (3.17) and (3.19) and given
here as

σ total(γ̇ )= σ T(γ̇ )+ 2ηf γ̇ [1+ 5
2φ(1+ φ)+ 2.7φ2] + σH

0 (γ̇ )+ σH
4 (γ̇ ). (3.20)

Figure 9 shows the final results, which include the fourfold symmetry hydrodynamic
microstructure contribution to the stress in comparison to the rheometry measured
stress. By including the higher-order hydrodynamic stress contribution contained in
this structure component, we can largely reconcile the stress response in the shear
thickening regime. However, the stresses in the shear thinning regime are slightly
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overpredicted, having included an additional hydrodynamic microstructure contribution.
Including the fourfold symmetric structure contributions in the stress-optic law for the
hydrodynamics semiquantitatively accounts for the increased dissipation in the shear
thickening state.

Finally, figure 9(b) presents the relative viscosity ηr = η(T)/ηf (T) as a function
of Pe as defined from rheometry measurements and the stress-SANS rule, for which
the zero-shear viscosity η0,r = 25.4 and the high-frequency viscosity η′∞,r = 5.90 are
defined according to theory for a hard-sphere suspension having an effective volume
fraction of φeff = 0.465. The significant decrease in thermodynamic contribution to
the viscosity is expected given the relatively small thermodynamic stress response
measured at high Pe, shown in figure 9. The hydrodynamic stress response including
the first- and fourth-order contributions tends towards the known limit of η′∞,r = 5.90
at low shear rates, as expected, given that for Pe > 0 the hydrodynamic viscosity
should be greater than the high-frequency viscosity (Russel et al. 2013). In addition,
the thermodynamic viscosity contribution decreases with increasing Pe, while the
hydrodynamic contributions increase. These experimental results are qualitatively
consistent with those Stokesian dynamics simulation results reported by Banchio &
Brady (2003). Importantly, including contributions from fourth-order terms in the
hydrodynamic contribution to the shear stress reconciles in part the quantitative
discrepancies observed in the shear thickening regime.

3.2.3. Stress-SANS rule: hydrodynamic normal stresses
In addition to the shear stresses, the expressions in (3.3), (3.4), (3.6) and (3.7)

also predict the first and second normal stress differences (N1 and N2). According
to (3.6) only fourth-order microstructure symmetries B+4,1 and B+4,3 contribute to the
hydrodynamic first normal stress. The thermodynamic normal stress is positive for
suspensions, and so the measurement of a large negative first normal stress difference
in the shear thickened state as shown in figure 1 necessitates that there are significant
fourth-order symmetries in the microstructure. The microstructural symmetry is not
independently isolated but appears in the term Wvorticity

21 (γ̇ ), which also includes the
second-order term B+4,1. Although we cannot isolate these fourth-order symmetries
independently, we know they exist as the first normal stress difference becomes large
and negative, indicating a significant hydrodynamic contribution. Therefore, the first
normal stress due to hydrodynamic interactions is given in (3.6) and is proportional to
those changes measured by Wvorticity

21 (γ̇ ). Therefore the coefficient for the first normal
stress difference is

CN1,H = N1,r(γ̇ )

2ηf γ̇Wvorticity
21 (γ̇ )

, (3.21)

and defined for the microstructure condition measured at the γ̇ = 627 s−1 shear rate
condition. The coefficient for the first normal stress is given in table 3 (CN1,H =
−5.2). The coefficient is used to predict the first normal stress for all other conditions
using the Wvorticity

21 (γ̇ ) microstructure measured during a flow-SANS experiment and the
expression given here:

NH
1 (γ̇ )

2ηf γ̇
=CN1,H

(
Wvorticity

21 (γ̇ )
)
. (3.22)

Figure 10 shows a comparison between the normal stress measured during a rheometry
experiment and the stress predicted using the stress-SANS rule defined in (3.22). As
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FIGURE 10. (Colour online) (a) Plot of the N1 stress as a function of γ̇ and Pe for
steady shear rheometry measurements (black filled square) and defined by the stress-SANS
rule for the hydrodynamic contribution (grey filled square; red online), thermodynamic
contribution (filled circle; blue online) and the total (filled triangle; green online). Also
reported in table 4. (b) The absolute value of the first normal stress and corresponding
hydrodynamic, thermodynamic and total stress contributions defined by stress-SANS rules.

the normal stress difference is normalized upon loading a sample, the first normal
stress should be exactly 0 Pa for quiescent conditions. Stokesian dynamics simulations
predict the hydrodynamic contribution to the first normal stress to be increasingly
negative and, in the limit of large Pe, to increase as Pe−1 as the suspension shear
thickens (Foss & Brady 2000). Indeed, the largest normal stress effect measured
for these particular rheometry measurements is the large negative values for the
normal stress at high shear rates in the shear thickening regime. The hydrodynamic
contribution to the normal stress should always be negative, as observed for these
shear rates using the stress-SANS rule.

According to Stokesian dynamic simulations by Foss & Brady (2000) and Banchio
& Brady (2003), the thermodynamic contribution to N1 decreases with increasing Pe
for Pe> 1. Therefore, it is not surprising that excellent agreement is observed between
the hydrodynamic contribution to the first normal stress difference and the normal
stress measured during a rheometry experiment at high shear rates. In a rheometry
measurement, the shear and normal stresses are measurements made simultaneously
during steady shear but are independent from one another. As has been discussed in
previous work by Kalman (2010), the remarkable agreement observed in figure 10
also provides confidence in the SANS 1–2 shear flow measurements that the B+2,1
microstructure term is properly measured, isolated and analysed using Wvorticity

21 (γ̇ ).
This term accurately predicts the thermodynamic contribution to the shear stress and
the hydrodynamic contribution to the first normal stress difference (defined in (3.2)
and (3.6)).

3.2.4. Stress-SANS rule: thermodynamic normal stresses
The thermodynamic contribution to the first normal stress is defined by (3.3),

where only the B+2,0 and B+2,2 microstructure terms are required to define N1. Given
the spherical harmonic expansion in reciprocal space, the B+2,2 and B+4,2 microstructure

terms define the Wgradient
2 (γ̇ ) (3.11) measured in the 1–3 plane during a rheo-SANS
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Pe NH
1 (Pa) NT

1 (Pa) N1 (Pa)

0.50 −0.60 1.1 0.50
2.63 −5.70 3.12 −2.58
5.23 −13.4 4.13 −9.27

26.22 −88.4 6.33 −82.0
52.6 −204

TABLE 4. Summary of first normal stress contributions using the stress-SANS rule.

experiment. The coefficient for the first normal stress difference is defined for the
lowest shear rate for which we expect the largest contribution to the first normal
stress difference from thermodynamic stresses where

CN1,T = N1,r(γ̇ )−NH
1 (γ̇ )

Wgradient
2 (γ̇ )

. (3.23)

The thermodynamic coefficient for the first normal stress is defined for the
microstructure condition measured at the γ̇ = 12 s−1 condition, from which we
take the difference between the measured N1 from a rheometry experiment and the
hydrodynamic stress contribution predicted by (3.22). The coefficient for the first
normal stress is given in table 3 (CN1,T = 18 Pa). Not surprisingly, this coefficient
is close in value to Cσ ,T = 22 used to predict the thermodynamic contribution to
the shear stresses. The coefficient is used to predict the first normal stress for all
other conditions using the Wgradient

2 (γ̇ ) microstructure measured during a flow-SANS
experiment and the expression given here:

NT
1 (γ̇ )=CN1,T

(
Wgradient

2 (γ̇ )
)
. (3.24)

Figure 10 and table 4 report those predictions for the thermodynamic contribution
to the first normal stress according to (3.24) and the sum of the thermodynamic
and hydrodynamic normal stresses. Note that the thermodynamic and hydrodynamic
normal stress contributions are opposite in sign. This is in good qualitative agreement
with theory using the Smoluchowski equation for a pair of Brownian hard-sphere
particles having hydrodynamic interactions as reported by Bergenholtz et al. (2002).
Figure 10 demonstrates that including the thermodynamic contribution to the first
normal stress difference improves the quantitative agreement with measurements of
N1 from rheometry experiments. In addition, table 4 shows that the total first normal
stress difference switches in sign from a slightly positive value at Pe = 0.50 to an
increasingly negative response for Pe > 1, also in agreement with Bergenholtz et al.
(2002).

The coefficients used for the stress-SANS rules for the shear and normal stresses
are of the same order of magnitude as those reported by previous works using similar
stress-SANS rules for colloidal suspensions (Maranzano & Wagner 2002; Kalman
2010). The coefficients for the thermodynamic shear (CN1,T = 22 Pa) and normal
stress (CN1,H = 18 Pa) contributions are of similar magnitude; see also table 3. The
coefficient used to define the first-order hydrodynamic contribution to the stress
(Cσ ,H

0 = 0.063) is significantly smaller owing to the definition of W0(γ̇ ), since these
values are an order of magnitude larger than those values for W2(γ̇ ), W4(γ̇ ) and
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W21(γ̇ ). However, the coefficients for the hydrodynamic contribution to the first
normal stress (CN1,H =−5.2) and the higher-order shear stress (Cσ ,H

4 = 4.6) are both
of the same order of magnitude as each other and opposite in sign, as they should be
given the definitions for the shear and first normal stresses in (3.3)–(3.7). At present,
there are no theoretical or simulation predictions of these coefficients.

The microscopic viewpoint presented in this paper provides both new insights into
suspension rheology as well as a means to test theory and simulation at a more
fundamental level than simply the macroscopic properties. Terms of fourth-order
symmetry in the microstructure couple to the hydrodynamic interactions to contribute
to the stresses and lead to negative first normal stresses and an increasing shear
stress in the shear thickened state. This further illustrates that only a few of the
components of the structure need to be resolved when considering their effect on
the macroscopic stress. Thus, only a small set of microstructure measurements are
necessary to critically test simulations and theory. Significantly, the three projections
of the microstructure measured by scattering in this work are shown to be able to
predict the steady shear thinning and shear thickening states, which has not been
demonstrated by any other experimental methods to date.

4. Conclusions

The microstructure of a concentrated near-hard-sphere colloidal dispersion (φeff =
0.465) is measured for the first time in all three planes of shear using flow- and
rheo-SANS experiments. In all three planes the SANS scattering patterns change with
increasing shear, indicative of an evolving shear-induced microstructure. Most notable
are those measurements made in the velocity–velocity gradient plane of shear in
which the signature hydrocluster microstructure of colloidal suspensions is captured
in agreement with previous experiments by Kalman (2010) and Stokesian dynamics
simulations by Foss & Brady (2000). In addition, SANS scattering results in the
velocity–vorticity plane and less so in the velocity gradient–vorticity plane indicate
that particles preferentially align along the vorticity direction during strong shearing.

The implementation of the stress-SANS rule successfully predicts the shear and first
normal stresses of a concentrated colloidal suspension during steady shear flow from
SANS measurements. In addition, using the stress-SANS rule, the thermodynamic
and hydrodynamic contributions to the stress are individually defined during steady
shear, where the thermodynamic contribution dictates the shear thinning response of
the suspension and the hydrodynamic contribution becomes important as the shear
rate increases and is ultimately responsible for shear thickening. These results are
in agreement with predictions from Stokesian dynamics simulations (Foss & Brady
2000; Banchio & Brady 2003). Here, we find that the leading-order contribution to
the shear-induced microstructure is sufficient to define the hydrodynamic contribution
to the shear stress for shear rates in the shear thinning regime. However, higher-order
microstructure contributions (particularly those with fourfold symmetry in the 1–2
plane of shear) are necessary to define the shear thickening response of the colloidal
suspension. Earlier derivations showed the possibility that shear-induced structure
with these fourth-order symmetries could couple to the hydrodynamic interactions
and thereby contribute to the shear stress. Future advances in rheo-SANS and
flow-SANS sample environments as well as SANS diffractometers should enable
better resolution of the 3D microstructure across a broader range of shear rates and
scattering vectors to better quantify this relationship in the colloidal shear thickened
state. Such advances may enable studies of discontinuous shear thickening colloidal
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dispersions where and dilatancy becomes evident and the role of other effects, such
as interparticle friction, may become important (Brown & Jaeger 2009; Seto et al.
2013; Cates & Wyart 2014; Mari et al. 2014).

The first normal stress difference is also shown to have contributions from the
hydrodynamic and thermodynamic interactions. The contribution to the first normal
stress difference from hydrodynamic interactions is predominantly negative and arises
only from microstructure with fourfold symmetry, whereas the thermodynamic first
normal stress contribution is positive, such that with increasing Pe the total stress
contribution switches from a slightly positive value to an increasingly negative
response in agreement with theory (Bergenholtz et al. 2002) and experiment (Lee
et al. 2006; Cwalina & Wagner 2014). This observation further confirms that the
shear thickened state is dominated by hydrodynamic interactions.

The results presented here show that scattering measurements of the steady
shear microstructure can be used to predict the stress of a shearing concentrated
colloidal suspension using stress-SANS rules and including terms of fourth-order
symmetry. Importantly, the spherical harmonic expansion of the flowing microstructure
and subsequent projection into planes of observation provide a robust framework
for comparing this and related experimental data directly to future simulation
results. Insights gained from examination of the contribution of these structure
harmonics to the stresses enables one to focus on the relatively few symmetries that
contribute to the shear rheology. Future work will show how colloidal suspensions
respond and shear thicken under dynamic oscillatory shear flow by applying the
stress-SANS relationships developed herein to microstructure measurements from
SANS experiments performed under large-amplitude oscillatory shear.
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Appendix A. Hydrodynamic stresses in real space

The complementary expressions for the hydrodynamic stresses expressed as a
spherical harmonic expansion in real space are presented here to facilitate the analysis
of simulation and direct microscopy measurements of the microstructure. The starting
point is the exact expression for the hydrodynamic stresses in the limit of pairwise
interactions as given by Batchelor & Green (1972):

σH
ij =µ[2+ 5φ(1+ φ)+ 5.4φ2]Eij + 5φρµ

∫ ∞
r>2

[
σ

Hydro
ij

20
3 πa3µ

− Eij

]
h(r) dr, (A 1)
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where the hydrodynamic interactions are given as

σ
Hydro
ij

20
3 πa3µ

− Eij = K(r)Eij + L(r)Ekl

[
rirjIjl + rjrkIil

r2
− 2

3
rkrl

r2
Iij

]
+M(r)Ekl

[
rkrl

r2

(
rirj

r2
− 1

3
rkrl

r2
Iij

)]
. (A 2)

The structure can be expanded in an expansion in spherical harmonics in a manner
complementary to (3.1):

h(r) = 2B+0,0(r)Y0,0 + 2B+2,0(r)Y2,0 + B+2,1(r)(Y2,−1 − Y2,1)+ B+2,2(r)(Y2,2 + Y2,−2)

+ 2B+4,0(r)Y4,0 + B+4,1(r)(Y4,−1 − Y4,1)+ B+4,2(r)(Y4,2 + Y4,−2)

+B+4,3(r)(Y4,−3 − Y4,3)+ B+4,4(r)(Y4,4 + Y4,−4)+ · · · (l > 6). (A 3)

Note that terms odd in the l index do not appear by symmetry and that terms of
l > 6 are not important for the calculation of the stress, as the hydrodynamic stress
has terms only up to fourth-order symmetry.

Inserting this expansion into the stress expression and integrating over the angles
yields the following terms for the stress components:

σH

µγ̇
= [2+ 5φ(1+ φ)+ 5.4φ2] + φ2 15

4π

∫ ∞
r>2

[
K(r)4

√
πB+0,0(r)

+L(r)
(

8
√

π

3
B+0,0(r)−

4
3

√
π

5
B+2,0(r)

)
+M(r)

(
4
√

π

15
B+0,0(r)

+ 4
21

√
π

5
B+2,0(r)−

16
√

π

105
B+4,0(r)+

4
21

√
2π

5
B+4,2(r)

)]
r2 dr, (A 4)

NH
1

µγ̇
= φ2 15

4π

∫ ∞
r>2

[
M(r)

(
−4

3

√
π

5
B+4,1(r)+

4
3

√
π

35
B+4,3(r)

)]
r2 dr, (A 5)

NH
2

µγ̇
= φ2 15

4π

∫ ∞
r>2

[
L(r)4

√
2π

15
B+2,1(r)

+M(r)

(
8
7

√
2π

15
B+2,1(r)+

4
√

5π

21
B+4,1(r)+

4
3

√
π

35
B+4,3(r)

)]
r2 dr. (A 6)

These equations can be directly compared to those given in reciprocal space
(equations (3.5)–(3.7)), and inspection shows that the same structural symmetries
appear in each rheological function. This must be true by the orthogonality properties
of spherical harmonics and the symmetry between real and reciprocal space, which
is evident from the definitions

h(k)= S(k)− 1= ρ
∫

h(r)eik·r dr, (A 7)

h(r)= g(r)− 1= 1
ρ(2π)3

∫
h(k)e−ik·r dk (A 8)
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and the Rayleigh expansion

exp(−ik · r)=
∑
l,m

(−i)l jl(kr)Yl,m(Ωk) ∗ Yl,m(Ωr), (A 9)

where jl is the spherical Bessel function of lth order. Therefore, the coefficients are
related as

B+l,m(r)=
(−i)l2
3πφ

∫
jl(kr)B+l,m(k)k

2 dk (A 10)

and

B+l,m(k)=
(i)lφ

3

∫
jl(kr)B+l,m(r)r

2 dr. (A 11)

This result provides a method to compare the structural coefficients of the spherical
harmonic expansion in reciprocal space to those in real space.
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