
Math. Struct. in Comp. Science (1999), vol. 9, pp. 21–62. Printed in the United Kingdom

c© 1999 Cambridge University Press

Abstract and behaviour module specifications

F E L I X C O R N E L I U S†, M I C H A E L B A L D A M U S†,

H A R T M U T E H R I G† and F E R N A N D O O R E J A S‡

† Berlin University of Technology
‡ Universitat Politècnica de Catalunya, Barcelona

Received 2 August 1993; revised 6 January 1998

The theory of algebraic module specifications and modular systems was developed initially

mainly on the basis of equational algebraic specifications. We show that it is in fact almost

independent of what kind of underlying specification framework is chosen. More specifically,

we present a formulation where this framework appears as an indexed category or,

equivalently, specification frame. The ensuing theory is called the theory of abstract module

specifications. We are able to prove main results concerning the correctness and

compositionality of abstract module specifications in a purely categorical way, assuming the

existence of pushouts of morphisms between abstract specifications that allow model

amalgamation, functor extension and/or suitable free constructions. Then, by instantiating

the theory of abstract module specifications to the behaviour specification frame in the sense

of Nivela and Orejas, we obtain a theory of behaviour module specifications.

1. Introduction

The importance of decomposing large software systems into smaller units, called modules,

to improve their clarity, facilitate proofs of correctness, and support re-usability has

been widely recognized within the programming and software engineering community.

For all stages of the software development process, modules (module specifications) are

seen as completely self-contained units that can be developed independently and then

interconnected with each other. An algebraic module specification MOD as developed in

Ehrig and Mahr (1985), Blum et al. (1987) and Ehrig and Mahr (1990) consists of four

components MOD = (PAR,EXP, IMP,BOD) as depicted in Figure 1.

MOD:

PAR EXP

IMP BOD

Fig. 1. Structure of an algebraic module specification

These components are equational algebraic specifications in the sense of Zilles (1974),

Thatcher et al. (1978) and Ehrig and Mahr (1985). The export EXP and the import

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

F. Cornelius, M. Baldamus, H. Ehrig and F. Orejas 22

IMP represent the interfaces of the module, and the parameter PAR is a part common

to both import and export. It represents a part of the parameters of the whole system.

Also, the three interface specifications PAR,EXP and IMP are allowed to be algebraic

specifications with constraints. This enables us to express requirements for operations and

domains in the interfaces using suitable formalisms. Finally, the body BOD represents the

constructive part of the module. It makes use of the resources provided by the import

and offers the resources provided by the export.

The semantics of a module specification MOD is given by the loose semantics, i.e., the

class of all algebras satisfying the interface specifications PAR,EXP and IMP, respectively,

a free construction from import to body algebras, and a behaviour construction from import

to export algebras given by restriction of the free construction to the export part.

A module specification is called internally correct if the free construction protects

import algebras and if the behaviour construction transforms import algebras satisfying

the import constraints into export algebras satisfying the export constraints.

Basic interconnection mechanisms applied to module specifications are: composition,

union and actualization. The composition operation is the most important. This is sketched

in Figure 2.

MOD1:

MOD2:

MOD3 = MOD1 ; MOD2:

h1

h2

PAR1 EXP1

IMP1 BOD1

PAR2 EXP2

IMP2 BOD2

PAR1

IMP2 BOD3

EXP1

Fig. 2. Composition of modules

In this figure, the morphisms h1, h2 are the composition morphisms and BOD3 denotes

a pushout object of the inclusion morphism between IMP1 and BOD1 on the one hand,

and the composition between h1 and the inclusion morphism between EXP2 and BOD2

on the other hand.

As a main result for module specifications, we have shown in Ehrig and Mahr (1990)

that the basic interconnection mechanisms preserve correctness and are compositional

with respect to the semantics. The correctness of a modular system specification can

thus be deduced from the correctness of its constituent parts, and the semantics can be

composed from the semantics of its components, provided that the construction uses only

the basic operations mentioned above.

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

Abstract and behaviour module specifications 23

Furthermore, there are nice compatibility results between these operations. This includes

results for associativity, commutativity and distributivity (Ehrig and Mahr 1990). The

relationship between algebraic module specifications and program modules is discussed

in Löwe et al. (1991).

This theory of algebraic module specifications has been developed for the basic case

of equational algebraic specifications based on total functions. In Ehrig and Mahr (1990)

we have already indicated how to generalize it to abstract module specifications based on

institutions in the sense of Goguen and Burstall (1984) and Goguen and Burstall (1992),

which allows us to replace equational by other kinds of specifications. This extension of

the theory is important in view of practical applications to the modular design of software

systems.

In particular, it has turned out to be of practical significance to consider behaviour

specifications in the sense of Reichel (1981), Sannella and Tarlecki (1987a) and Nivela

and Orejas (1987), which are equational specifications with distinguished observational

parts. In Orejas et al. (1989) we started to investigate semantic constructions for different

categories of behaviour specifications in the sense of Nivela and Orejas (1987). We

discovered that important semantic constructions like amalgamation and extension are

not generally valid in the behavioural case. If, however, the underlying syntactic pushouts

satisfy specific properties such as the observation preserving property (cf. Section 3),

we can prove results regarding amalgamation and extension that are similar to the non-

behavioural case. The remaining differences stem from the variety of possible specification

morphisms. In the case of a specification morphism not necessarily preserving observable

sorts (which nevertheless is necessary in some cases), we have no amalgamation but still

a restricted form of extension. In fact, the main results for the composition of abstract

module specifications only need extension.

In the remainder of this introduction, we give a historical and slightly more technical

account of our results and an overview of the paper.

In 1991, when we prepared our invited paper Ehrig et al. (1991a) for AMAST’91,

we recognized that behaviour specifications considered in the usual way do not satisfy

the satisfaction condition required for institutions. Indeed, the theory of abstract module

specifications does not require an explicit satisfaction condition at all. It is sufficient to start

with a category ASPEC of abstract specifications and a functor Catmod assigning to each

abstract specification AΣ a model category Catmod(AΣ). The objects A of Catmod(AΣ)

are considered to be models satisfying AΣ. From the categorical point of view, such a

pair (ASPEC,Catmod) with a contravariant functor Catmod : ASPECop → CAT into

the super-category CAT of all categories is called an indexed category (Johnstone and

Paré 1978; Tarlecki et al. 1991). In the context of a theory of abstract specifications, we

prefer to call the pair SF = (ASPEC,Catmod) a specification frame. Note that we used the

alternative name specification logic in some of our previous papers (Ehrig 1989; Ehrig et

al. 1989; Ehrig et al. 1991a; Ehrig et al. 1991b).

One main aim of the present paper is to present the theory of abstract module

specifications. The corresponding material can be found in Section 4 and is based on

specification frames introduced in Section 2. This theory requires only weak assumptions

about existing free constructions, amalgamations and extensions. It generalizes the main

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

F. Cornelius, M. Baldamus, H. Ehrig and F. Orejas 24

results of Ehrig and Mahr (1990) concerning correctness and compositionality of the basic

interconnection mechanisms for module specifications from the equational specification

frame to arbitrary specification frames satisfying these assumptions.

Another central aim of this paper is to present the theory of behaviour module

specifications based on behaviour specifications in the sense of Nivela and Orejas (1987).

For this purpose we introduce the corresponding behaviour specification frame BEQSF

and study its properties concerning pushouts, free constructions, amalgamations and

extensions in Section 3.

Because the behaviour specification frame satisfies the assumptions on the abstract

level, we instantiate our theory of abstract module specifications to the behaviour case

in Section 5. In particular, we ‘prove’ the correctness and compositionality of behaviour

module specifications by mere instantiation of the corresponding theorems on the abstract

level. These are important new results that have been only indicated in our AMAST’91

paper (Ehrig et al. 1991a). They show that our formulation of the theory of abstract

module specifications is sensible.

In the conclusion we summarize our main ideas and discuss possible extensions.

2. A general specification framework

In this section we introduce a specification framework that generalizes the instances of, for

example, the equational and the behavioural specification frameworks to be introduced

in the following section. It is the basis for the definition of abstract, that is, institution

independent, module specifications in Section 4 as a generalization of equational module

specifications of Ehrig and Mahr (1990).

A well-known general specification framework is that of institutions. It was introduced

in Goguen and Burstall (1984) and was further developed in Sannella and Tarlecki (1984),

Meseguer (1989), and Goguen and Burstall (1992). The notion of institution captures

abstract notions of signatures, sentences (formulae, axioms), model functors, models and

satisfaction. It allows one to define a category of abstract specifications and a model

functor that assigns to each abstract specification a category of models. In this way we

obtain an indexed category in the sense of Tarlecki et al. (1991). Indexed categories are

well known in category theory (Johnstone and Paré 1978) and are equivalent to fibered

categories (Grothendieck 1963; Gray 1965; Benabou 1985).

Our theory of abstract module specifications does not require us to consider the

satisfaction of sentences: it suffices to capture the assignment of model categories to

specifications. Indexed categories are, therefore, the adequate framework for our purposes,

and we choose to call them specification frames. We use this term because we employ

indexed categories only to speak of abstract specifications AΣ, the corresponding model

categories Catmod(AΣ), and their morphisms and functors. In this scheme, the intuition

is that every object A of Catmod(AΣ) satisfies (the implicit axioms of) AΣ. But the notion

of specification frames does indeed not make any satisfaction relation explicit.

In previous papers (Mahr 1989; Ehrig et al. 1989; Ehrig et al. 1991a; Ehrig et al. 1991b)

we used the name specification logic rather than specification frame or indexed category.

But we have been convinced by several colleagues that the name specification logic is

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

Abstract and behaviour module specifications 25

misleading. The reason is that notions like formulae, satisfaction and deduction are at most

implicitly captured although they are available in all of the examples we have in mind.

We hope that the name specification frame, which is also used in the context of abstract

parameterized specifications (Ehrig and Große-Rhode 1994), avoids this confusion but

captures the idea of having a general specification framework.

Of course we have to consider additional properties like pushouts, free constructions,

amalgamations and extensions in order to formulate and prove structural properties of

abstract specifications and their models in a specification frame.

In the following definition we restate the notion of an indexed category in the context

of abstract specifications, and introduce some terminology. The relation of specification

frames to institutions in the sense of Goguen and Burstall (1984) and Sannella and

Tarlecki (1984) is made explicit in Fact 2.2.

Definition 2.1. (Indexed category/specification frame) An indexed category/specification

frame is a pair (ASPEC,Catmod), where ASPEC is a category of abstract specifications

and Catmod is a contravariant model functor from ASPEC into the super-category CAT of

all categories. Given an abstract specification AΣ, that is, an object of ASPEC, a AΣ-model

is an object of Catmod(AΣ); given a specification morphism f, that is, a morphism in

ASPEC, the Catmod-image of f is called the forgetful functor (with respect to f) and is

denoted by Vf .

The loss of explicit reference to sentences and satisfaction makes it necessary to require

specification frames to have additional syntactic and semantic properties. We also applied

this idea in Ehrig et al. (1991a) and Ehrig et al. (1991b), where we considered generalized

morphisms and new concepts for generalized amalgamation and extension. However, before

we introduce the properties that are needed for our present purposes, we will give some

examples of concrete specification frames.

1 The equational specification frame EQSF = (SPEC, EQCatmod) consists of the cat-

egory SPEC of equational algebraic specifications and the functor EQCatmod that

assigns to each specification SP the category Alg(SP) of Algebras of SP, that is,

EQCatmod(SP) =def Alg(SP). If we replace equations by conditional equations, we

obtain the conditional equational specification frame CEQSF.

2 The behaviour equational specification frame BEQSF = (BSPEC,Beh) consists of the

category BSPEC of equational behaviour specifications and the functor Beh that

assigns to each behaviour specification BΣ the category Beh(BΣ) of algebras satisfying

BΣ behaviourally (Nivela and Orejas 1987; Orejas et al. 1989). There is no institution

that generates BEQSF in the way described in Fact 2.2. The behaviour equational

specification frame thus constitutes an important example of a specification formalism

that can be studied as a specification frame but not as an institution. The details of

this observation can be found in Section 5.

3 A related example of another specification frame that cannot be seen as an institution

in the obvious way is VIEWSF = (View-BSPEC,Beh) (Cornelius 1990a; Orejas et

al. 1989). The main difference between BSPEC and View-BSPEC is the choice of the

notion of specification morphisms, namely the degree of preservation of the observable

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

F. Cornelius, M. Baldamus, H. Ehrig and F. Orejas 26

and non-observable sorts, respectively. We do not give VIEWSF in detail in this paper

but discuss its relevant properties in Section 5, Remark 5.1.

4 The projection specification frame PROSF = (PROSPEC,PCatmod) consists of the

category PROSPEC of projection specifications and of the functor PCatmod. It assigns

to each projection specification PΣ the category Catcompl,sep(PΣ) of all complete and

separate projection algebras satisfying PΣ (Ehrig et al. 1990; Große-Rhode 1989).

5 In addition to these examples there are several others based on different kinds of

axioms, such as universal Horn or full first-order formulae, order-sorted signatures

and constraints on the syntactic level. On the semantic level, different kinds of algebras

and structures are possible, such as partial or continuous algebras, or models of first-

order logic.

The first-order specification frame FOSF, for example, has first-order signatures and

axioms on the syntactic level, and the corresponding models on the semantic level.

In the following fact we state the standard specification frame that corresponds to a given

institution.

Fact 2.2. (Specification frames induced by institutions) Let I = (SIGN, Sen,Mod, |=)

be an institution. Then the induced specification frame SF(I) is given by SF(I) =

(ASPEC,Catmod).

The objects of ASPEC are the I-presentations (Σ, S), Σ ∈ SIGN and S ⊆ Sen(Σ). The

morphisms of ASPEC are the usual presentation morphisms of, for example, Goguen

and Burstall (1992). Catmod(Σ, S) is the full subcategory of Cat(Σ) comprising the models

satisfying (via |=) the set of sentences S .

As already indicated, specification frames need to have several syntactic and semantic

properties for further investigation. The first kind of property is related to left adjoints of

the forgetful functors of specification morphisms.

Definition 2.3. (Free constructions, strong persistency, liberality) Let SF = (ASPEC,

Catmod) be a specification frame:

1 For a specification morphism f : AΣ1 → AΣ2 ∈ ASPEC, we say a functor F :

Catmod(AΣ1)→ Catmod(AΣ2) is strongly persistent if Vf ◦ F is the identity.

2 A specification morphism f ∈ ASPEC is said to be (strongly) liberal if the forgetful

functor Vf has a (strongly persistent) left adjoint Ff .

3 SF is said to have free constructions if each morphism f ∈ ASPEC is liberal.

From a categorical point of view, it might appear more natural to define strong persistency

of a left adjoint as the property of the unit η of the adjunction Ff a Vf to be the identity

transformation. In fact, this alternative is equivalent to the definition above (see the

Appendix). Moreover, there is just one place where we could use it (in the proof of

Theorem 2.12), but then we invoke the equivalence result.

Remark 2.4. (Composition of strongly persistent functors) It is a well-known fact that

the classes of strongly persistent and left adjoint functors are respectively closed under

composition.

The second kind of property of specification frames is based on a designated class of

pushout diagrams in the category ASPEC of a specification frame. This technique enables

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

Abstract and behaviour module specifications 27

us to extend the properties of amalgamation, that is, the continuity of the model functor

with respect to pushouts, and extension from standard specification frames such as EQSF

to less standard ones such as BEQSF and VIEWSF. In these cases, the problem with a

conventional theory of abstract module specifications without a designated pushout class

is that not all pushouts of behaviour or view specification morphisms have amalgamations

and/or extensions. Certain practically interesting sub-classes of these classes of pushouts,

however, do possess amalgamations and/or extensions. The idea is to reflect this situation

at the abstract level and, thereby, achieve the desired generality. As an artifact, it becomes

possible to instantiate the theory to specification frames with empty classes of designated

pushouts. Such applications are of course trivial and do not yield anything useful. On the

other hand, this aspect does not affect in any way the possibility of carrying out instanti-

ations to specification frames with non-trivial and practically interesting classes of desig-

nated pushouts. So the possibility of trivial instantiations does not present any problem.

Definition 2.5. (Specification frames with pushouts) A specification frame with pushouts

(SF,PO) consists of a specification frame SF = (ASPEC,Catmod) and a class of pushout

diagrams PO in ASPEC.

Definition 2.6. (The maximum pushout class PO ALL) PO ALL(ASPEC) denotes the

class of all pushout diagrams in any given category ASPEC of abstract specifications.

Note that we do not require the syntactic category of a specification frame to be

cocomplete or to contain any restricted class of colimits. The syntactic categories of the

specification frames that we are interested in, however, are all cocomplete.

Definition 2.7. (Amalgamation) A specification frame with pushouts (SF,PO) is said to

have amalgamations if Catmod preserves every pushout in PO.

Because of the contravariance of Catmod, an ASPEC-pushout diagram as in Figure 3 is

translated to a pullback diagram in CAT (Figure 4). This property is expanded in Fact 2.8

below.

AΣ0

f1 //

f2

��

AΣ1

g1

��
AΣ2 g2

// AΣ3

Fig. 3. ASPEC-pushout diagram

Catmod(AΣ0) Catmod(AΣ1)
Vf1oo

Catmod(AΣ2)

Vf2

OO

Catmod(AΣ3)
Vg2

oo

Vg1

OO

Fig. 4. CAT-pullback diagram

The name amalgamation has its origin in the situation that prevails in standard algebraic

specification frames such as EQSF. In these settings it makes sense to regard an algebra

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

F. Cornelius, M. Baldamus, H. Ehrig and F. Orejas 28

A3 in Catmod(AΣ3) as the amalgamated sum of its forgetful functor images Vg1
(A3) and

Vg2
(A3). See Ehrig and Mahr (1985) for the converse construction on the basis of algebras

A1 and A2 belonging to Catmod(AΣ1) or Catmod(AΣ2), respectively.

The importance of amalgamation for the definition of the semantics of combined

specifications is due to the following well-known characterization of pullback diagrams in

CAT. For a proof of its forward direction see, for example, Ehrig and Mahr (1985).

Fact 2.8. (Characterization of pullbacks in CAT) A commutative diagram of the form

C0 C1

F1oo

C2

F2

OO

C3
G2

oo

G1

OO

in CAT is a pullback if and only if the following properties hold:

1 For all objects A1 and A2 in C1 or C2, respectively: whenever F1(A1) = F2(A2), there

exists a unique object A3 in C3 such that Gi(A3) = Ai, i = 1, 2.

2 For all morphisms h1 and h2 in C1 or C2, respectively: whenever F1(h1) = F2(h2), there

exists a unique morphism h3 in C3 such that Gi(h3) = hi, i = 1, 2.

We will apply Fact 2.8 only to situations such as in Figures 3 and 4, where a specification

frame with pushouts (SF,PO) is given and the pullback in CAT is the Catmod -image of a

pushout in PO. The objects of (1) and the morphisms of (2) are, therefore, always thought

of as models or morphisms between models. Furthermore, because of the uniqueness of

A3 and h3, it is possible to introduce the following functional notation:

A1 +(f1 ,f2) A2 =def A3 and h1 +(f1 ,f2) h2 =def h3.

For models, the notation is defined if Ai, i = 1, 2, is a Catmod(AΣi)-model and Vf1
(A1) =

Vf2
(A2). Then it designates the unique AΣ3-model A3 with Vgi(A3) = Ai, which exists due

to Fact 2.8(1). Everything is analogous for homomorphisms.

The following properties of the amalgamation operator are immediate:

Fact 2.9.

1 For every AΣ3-model A3 and every morphism h3 between such models,

A3 = Vg1
(A3) +(f1 ,f2) Vg2

(A3) and h3 = Vg1
(h3) +(f1 ,f2) Vg2

(h3).

2 Given that hi is a morphism from Ai to A′i, i = 1, 2, then h1 +(f1 ,f2) h2 is a morphism

from A1 +(f1 ,f2) A2 to A′1 +(f1 ,f2) A′2.

In the following lemma, we extend the concept of amalgamation from models and

morphisms to functors.

Lemma 2.10. (Amalgamation of functors) Let (SF,PO) be a specification frame with push-

outs and amalgamations, and let two particular pushouts in PO and ASPEC-morphisms

ϕi : AΣ1
i → AΣ2

i , i ∈ {0, 1, 2, 3} be given as shown in Figure 5 such that the whole diagram

commutes. Moreover, let Fi : Catmod(AΣ1
i) → Catmod(AΣ2

i), i = 1, 2, be functors such

that (see Figure 6)

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

Abstract and behaviour module specifications 29

AΣ1
0

f1
1 //

��1
1

1
1

1
1

1
1

1
1

1

ϕ0

f1
2

��

AΣ1
1

��1
1

1
1

1
1

1
1

1
1

1

ϕ1

g1
1

��
AΣ1

2

g1
2 //

��1
1

1
1

1
1

1
1

1
1

1

ϕ2

AΣ1
3

��1
1

1
1

1
1

1
1

1
1

1

ϕ3

AΣ2
0
f2

1

//

f2
2

��

AΣ2
1

g2
1

��
AΣ2

2
g2

2

// AΣ2
3

Fig. 5. The underlying syntax diagram for amalgamated functors

Catmod(AΣ1
0) Catmod(AΣ1

1)
Vf1

1oo

��<
<

<
<

<
<

<
<

<
<

<
<

F1

Catmod(AΣ1
2)

Vf1
2

OO

��<
<

<
<

<
<

<
<

<
<

<
<

F2

Catmod(AΣ1
3)

Vg1
1

OO

Vg1
2oo

��<
<

<
<

<
<

<
<

<
<

<
<

F3

Catmod(AΣ2
0)

]]<
<

<
<

<
<

<
<

<
<

<
<

Vϕ0

Catmod(AΣ2
1)

Vf2
1

oo

]]<
<

<
<

<
<

<
<

<
<

<
<

Vϕ1

Catmod(AΣ2
2)

Vf2
2

OO

]]<
<

<
<

<
<

<
<

<
<

<
<

Vϕ2

Catmod(AΣ2
3)

Vg2
1

OO

Vg2
2

oo

]]<
<

<
<

<
<

<
<

<
<

<
<

Vϕ3

Fig. 6. The underlying semantics diagram for amalgamated functors

Vf2
2
◦ F2 ◦ Vg1

2
= Vf2

1
◦ F1 ◦ Vg1

1
.

Then we can define the amalgamated sum of F1 and F2, written F3 or F1 +(f2
1 ,f

2
2) F2, for

every A3 ∈ Catmod(AΣ1
3) by

F3(A3) =def (F1 ◦ Vg1
1
(A3)) +(f2

1 ,f
2
2) (F2 ◦ Vg1

2
(A3)),

and similarly for morphisms. Then we have:

1 F3 is the unique functor satisfying Vg2
i
◦ F3 = Fi ◦ Vg1

i
, i = 1, 2.

2 If Fi a Vϕi , i = 1, 2, then F3 a Vϕ3
.

3 If Fi, i = 1, 2, are strongly persistent, then so is F3.

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

F. Cornelius, M. Baldamus, H. Ehrig and F. Orejas 30

Proof.

1 This part is a direct consequence of the amalgamation properties, Fact 2.8.

2 We will restrict ourselves to constructing the unit η3 of the adjunction F3 a Vϕ3
, using

the units η1 and η2 of the adjunctions given in the premise. The rest of the proof is

straightforward:

η3(A3) =def η1(Vg1
1
(A3)) +(f1

1 ,f
1
2) η2(Vg1

2
(A3)),

where the domain and co-domain objects are as follows: ηi(Vgi1 (A3)) : Vgi1 (A3) →
Vφi ◦ Fi ◦ Vgi1 (A3), i = 1, 2, and η3(A3) : A3 → Vφ3

◦ F3(A3).

3 By the following rewriting sequence:

Vϕ3
◦ F3(A3) = (Vg1

1
◦ Vϕ3

◦ F3(A3)) +(f1
1 ,f

1
2) (Vg1

2
◦ Vϕ3

◦ F3(A3))

by Fact 2.9

= (Vϕ1
◦ Vg2

1
◦ F3(A3)) +(f1

1 ,f
1
2) (Vϕ2

◦ Vg2
2
◦ F3(A3))

since Vg1
i
◦ Vϕ3

= Vϕi ◦ Vg2
i
, i = 1, 2

= (Vϕ1
◦ F1 ◦ Vg1

1
(A3)) +(f1

1 ,f
1
2) (Vϕ2

◦ F2 ◦ Vg1
2
(A3))

by (1)

= Vg1
1
(A3) +(f1

1 ,f
1
2) Vg1

2
(A3)

by strong persistency

= A3 by Fact 2.9

The following definition of free extension again refers to the class PO. It explains the

property that is crucial for the compositionality and correctness results of the module

operations to be introduced in Section 4.

Definition 2.11. (Free extensions) A specification frame with pushouts (SF,PO) is said to

have free extensions if for every pushout diagram in PO, as illustrated in Figure 3, the

following property holds: if F with F a Vf1
is strongly persistent, then g2 is strongly

liberal, that is, there exists a strongly persistent functor Extf2
(F) with Extf2

(F) a Vg2
such

that the diagram in Figure 7 commutes.

Catmod(AΣ0)
F // Catmod(AΣ1)

Catmod(AΣ2)

Vf2

OO

Extf2
(F)

// Catmod(AΣ3)

Vg1

OO

Fig. 7. Free extension of F

It is well known that EQSF and CEQSF have amalgamations and free extensions for

the maximum classes PO ALL(SPEC) and PO ALL(SPEC) of all pushout diagrams in

the underlying syntactic categories SPEC and CSPEC (see Remark 2.6). The behaviour

specification frame BEQSF of the following section is an example of a specification

frame with a restricted class of syntactic pushout diagrams providing amalgamations and

extensions.

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

Abstract and behaviour module specifications 31

Theorem 2.12. (Extension by amalgamation) If a specification frame with pushouts

(SF,PO) has amalgamations, then it has free extensions.

Proof. Let (SF,PO) be a specification frame with pushouts and amalgamations. We

need to show that (SF,PO) has free extensions. So, given a pushout diagram in PO as

depicted in Figure 3, let F in Figure 8 be strongly persistent.

Catmod(AΣ0)
F //

Catmod(AΣ1)
Vf1

oo

Catmod(AΣ2)

Vf2

OO

Extf2
(F)

//
Catmod(AΣ3)

Vg1

OO

Vg2

oo

Fig. 8. Complete Catmod-diagram

First of all, we define Extf2
(F) building amalgamated sums according to Fact 2.8:

Extf2
(F)(A2) =def (F ◦ Vf2

(A2)) +(f1 ,f2) A2

Extf2
(F)(h2) =def (F ◦ Vf2

(h2)) +(f1 ,f2) h2

for all A2 and h2 in Catmod (AΣ2). This is well defined because F is strongly persistent,

that is, Vf1
◦ F ◦ Vf2

(A2) = Vf2
(A2), and similarly for h2.

Now we have to show that Extf2
(F) is strongly persistent and left adjoint to Vg2

. The

persistency property, Vg2
◦Extf2

(F) = IdCatmod(AΣ2), is a direct consequence of the definition

of Extf2
(F) in combination with Fact 2.8.

It remains to show the adjunction Extf2
(F) a Vg2

. We do so by using id A2
as the

unit for every A2 in Catmod (AΣ2), and then constructing a unique h∗ such that the

triangle in Figure 9 commutes for any given h. In other words, we construct a unique

Vg2
(A3) A3

A2

h

99sssssssssssssss

id A2

// Vg2
◦ Extf2

(F)(A2)

Vg2
(h∗)

OO

Extf2
(F)(A2)

h∗

OO

Fig. 9. The adjunction Extf2
(F) a Vg2

h∗ : Extf2
(F)(A2)→ A3 such that Vg2

(h∗) = h.

The first step consists in exploiting the adjunction F a Vf1
, as shown in Figure 10,

so as to obtain a unique h∗2 such that Vf1
(h∗2) = Vf2

(h). This use of F a Vf1
is possible

Vf1
◦ Vg1

(A3) Vg1
(A3)

Vf2
(A2)

Vf2
(h)

99ssssssssssssss

id Vf2
(A2)

// Vf2
(A2)

Vf1
(h∗2)

OO

F ◦ Vf2
(A2)

h∗2

OO

Fig. 10. Using the adjunction F a Vf1

because g1 ◦ f1 = g2 ◦ f2 implies Vf1
◦Vg1

(A3) = Vf2
◦Vg2

(A3), the persistency of F implies

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

F. Cornelius, M. Baldamus, H. Ehrig and F. Orejas 32

Vf2
(A2) = Vf2

◦ F ◦ Vf2
(A2) and the property proved in the appendix allows us to assume

η(Vf2
(A2)) = id Vf2 (A2).

The second step consists of stating h∗ =def h
∗
2 +(f1 ,f2) h, which is possible by the very

property Vf1
(h∗2) = Vf2

(h).

The third step consists of showing Vg2
(h∗) = h, but this property is actually an immediate

consequence of the definition of h∗.
The last step consists of showing that h∗ is unique with respect to Vg2

(h∗) = h, so

assume h′ : Extf2
(F)(A2) → A3 is a morphism with Vg2

(h′) = h. This property implies

Vf1
◦Vg1

(h′) = Vf2
(h) so, by the uniqueness of h∗2 with respect to Vf1

(h∗2) = Vf2
(h), we have

Vg1
(h′) = h∗2. At the same time, h∗ is defined as the amalgamated sum h∗2 +(f1 ,f2) h, so it is

unique with respect to Vg1
(h∗) = h∗2 and Vg2

(h∗) = h, so h′ = h∗.

3. The behaviour specification frame

Behaviour semantics of algebraic specifications was introduced with the aim of following

more closely the methodological principles underlying information hiding in software

engineering. The syntactical idea is to denote some of the sorts of a specification as

observable and the others as non-observable. The corresponding semantical idea is to

admit as algebraic models of the specification those that satisfy the (generally infinite)

class of observable consequences of the equations. Intentionally, this means that every

correct implementation of the non-observable part is a model of the specification. Another

semantical consequence of this approach is that two models are said to be equivalent if

and only if they provide the same observable behaviour.

A typical example will motivate the approach. Consider the following specification for

sets of elements:

SET(ELEM): sorts: Bool,Nat,Elem (observable)

Set (non-observable)

opns: [. . .] (the Booleans)

[. . .] (the natural numbers)

eq : Elem,Elem→ Bool;

6 :→ Set;

in : Elem, Set→ Set;

is in : Elem, Set→ Bool;

card : Set→ Nat;

vars: e, e1, e2 : Elem; s : Set

eqns: in(e1, in(e2, s)) = in(e2, in(e1, s));

in(e, in(e, s)) = in(e, s);

is in(e,6) = false;

is in(e, in(e, s)) = true;

eq(e1, e2) = false → is in(e1, in(e2, s)) = is in(e1, s);

card(6) = 0;

is in(e, s) = false → card(in(e, s)) = succ(card(s));

is in(e, s) = true → card(in(e, s)) = card(s);

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

Abstract and behaviour module specifications 33

Sets are containers that behave in a particular way: the insertion order of the elements

does not matter, and each element exists at most once in a set.

Now, even in mathematical notation we have no unique representation of sets. For

example, {1, a} and {a, 1} represent the same set. No one really cares about the represen-

tation as long as the intended (observational) behaviour is as expected. This behaviour

can be expressed by the class of computations over set-terms that yield values of obser-

vational sort. We designate the sorts Bool,Nat,Elem as observable because their elements

are supposed to be ‘representation sensitive’ in the sense that the syntax is sufficient to

decide equality of elements.

For the specification SET(ELEM) some behavioural consequences of the second

equation (built over additional variables of observable sorts) are given in the following

remark.

Remark 3.1. (Examples of behavioural consequences)

is in(x, in(e, in(e,6))) = is in(x, in(e,6))

is in(x, in(y, in(e, in(e,6)))) = is in(x, in(y, in(e,6)))

card(in(e, in(e,6))) = card(in(e,6))

card(in(x, in(e, in(e,6)))) = card(in(x, in(e,6)))

These examples illustrate the underlying principle of building observable computations

over a given non-observable term. Observability of a term has two facets:

— Output observability: this means that the term is of an observable sort, that is, the

evaluation of the term in an algebra outputs an observable value;

— Input observability: this means that the variables the term is constructed over are all

of observable sorts, that is, the evaluation of the term in an algebra only requires

observable input.

An observable computation is both input and output observable. That is: in order to

build an observable computation over a non-observable term, we first have to embed

it into a context (term) of observable sort. This context term describes how observable

information about a non-observable term is accessed. Secondly, input observability is

achieved by substituting each non-observable variable by an input-observable term (cf.

Definition 3.4).

Now consider the following two algebras A, B of the signature of SET(ELEM):

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

F. Cornelius, M. Baldamus, H. Ehrig and F. Orejas 34

SET(ELEM) A B

Bool {true, false} {true, false}
Nat N N
Elem {a, . . . , z} {a, . . . , z}
Set P({a, . . . , z}) {a, . . . , z}∗
(Bool-ops) (standard) (standard)

(Nat-ops) (standard) (standard)

eq Equality Equality

6 6 λ

in inA(α, s) =def {α} ∪ s inB(α, l) =def α.l

is in ∈ string membership

card set cardinality number of distinct elements

In the classical algebraic sense, these two algebras are not isomorphic. B does not

even satisfy the equations of SET(ELEM). But the given algebra of sequences B is a

typical correct implementation of the specification. It is therefore a behavioural model of

SET(ELEM), it satisfies, for example, each of the behavioural consequences in Remark 3.1

above. This means, the ‘implementation’ of the Set-carrier, that is, the list representation,

behaves exactly the way we expect for sets, if tested in terms of the obsevable sorts

Bool, Nat and Elem. Moreover, A and B are behaviourally equivalent in the sense to be

explained in this section.

Early work on algebraic specifications (Giarratana et al. 1976; Guttag and Horning

1978) already recognized the need for such a kind of semantics. At that time the proposed

solution was final semantics (Wand 1979). The first true approaches to behaviour semantics

are due to Reichel (Reichel 1981; Reichel 1984b) and Goguen and Meseguer (Goguen

and Meseguer 1982; Meseguer and Goguen 1985). Further work was done later by Bidoit,

Hennicker, and Wirsing (Hennicker and Wirsing 1985; Bidoit et al. 1994), Sannella and

Tarlecki (Sannella and Tarlecki 1987b) and Nivela and Orejas (Nivela 1987; Nivela and

Orejas 1987; Orejas et al. 1989).

In this section we develop the theory of behaviour specifications based upon the results

of Orejas et al. (1989). The notions presented lead to the definition of the behaviour

equational specification frame BEQSF in Definition 3.6. Then we show the general

existence of syntactical pushouts in BEQSF and prove that BEQSF has free constructions.

Finally, we show how the class of syntactical pushouts can be restricted to a class POBeh

in order to make (BEQSF,POBeh) have amalgamations and extensions.

We first need to define the ingredients of the specification frame.

Definition 3.2. (Behaviour specification)

1 A behavioural specification BΣ = (Obs,Σ) consists of an equational specification

Σ = (S,OP, E) together with a designated subset Obs ⊆ S . The elements of Obs are

called observable sorts of BΣ.

2 Given an equational specification morphism ϕ : Σ1 → Σ2, that is, satisfying E2 |= ϕ(E1)

in the standard institution of many–sorted equational logic. A behaviour (equa-

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

Abstract and behaviour module specifications 35

tional) specification morphism ϕ : (Obs1,Σ1) → (Obs2,Σ2) additionally preserves, in

its sort mapping component, both the observable and the non-observable sorts, that

is: ϕ(Obs1) ⊆ Obs2 and ϕ(S1 − Obs1) ⊆ S2 − Obs2.

3 BSPEC denotes the category of behaviour specifications. Its objects and morphisms

are defined above in this definition.

In the following we will abbreviate the set of non-observable sorts of a behaviour

specification by NonObs =def S − Obs.

Remark 3.3. (Different notions of behaviour morphisms) The restricted requirement for a

behaviour specification to preserve both parts Obs and NonObs of the domain specification

is not the only reasonable choice. In Orejas et al. (1989) the two sensible alternatives that

each only requires one of the two properties in Definition 3.2(2) to be satisfied, are

discussed in detail. The more important class of morphisms requires the preservation

of the non-observable sorts only. A member of this class is called a view-morphism. Its

importance is of a methodological nature regarding iterated parameter passing. In the

example SET(ELEM) the sort Elem is naturally chosen to be observable. But if we want

to actualize the set by itself in order to construct sets of sets of things we need to map the

observable sort Elem to the non-observable sort Set. This implies that such an actualization

morphism does not preserve the observational part and should thus be considered a view

morphism.

Every algebra A of a behaviour signature BΣ = (Obs,Σ) (a behaviour specification

without equations) corresponds naturally to an algebra of the standard algebraic signature

Σ. Behavioural satisfaction of equations by A is defined as follows in terms of the standard

equational satisfaction of equations by A seen as a Σ-algebra.

Definition 3.4. (Observable context, behaviour satisfaction) Given a behaviour specification

BΣ = (Obs,Σ) with Σ = (S,OP, E). Let XObs = (Xs)s∈Obs denote a family of sets of variables

of observable sort. In addition, let s ∈ S be a sort in BΣ.

1 An observable BΣ-context over s is a BΣ-term c[z] ∈ TΣ(XObs + {z}) of observable

sort that is built upon the observable variables in XObs and the additional variable

z /∈ XObs of sort s.

2 Given a term t ∈ TΣ(X) over an arbitrary set X of variables, we define the application

of an observable context c[z] to t by the following substitution:

c[t] =def c[z]{t/z}.
3 A Σ-algebra A is said to behaviourally satisfy a Σ-equation e ≡ (X; l = r) of sort s iff

for each observable BΣ-context c[z] over s and for every assignment σ : X → TΣ(XObs),

the algebra A satisfies (in the standard equational sense) the equation

(XObs; c[σ
∗(l)] = c[σ∗(r)]).

(Here, σ∗ : TΣ(X)→ TΣ(XObs) denotes the free extension of the variable assignment σ

to arbitrary terms.) We then write A |=Beh e.

This definition provides us with the tools to build formally the observable computations

over arbitrary terms mentioned in the discussion after Remark 3.1: the application of

an observable context yields output observability while the application of σ∗ yields input

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

F. Cornelius, M. Baldamus, H. Ehrig and F. Orejas 36

observability. Thus, the equations required to be satisfied according to the third point of

the definition are the results of equating the possible observable computations over the

constituting terms l and r.

Behavioural satisfaction relies on the standard equational satisfaction |=, which is the

satisfaction relation in the equational algebraic institution. Behavioural satisfaction can

be generalized to be dependent of an arbitrary algebraic institution (Bidoit et al. 1994).

Now, we can see what it means to say that the algebra B of the introducing example

satisfies behaviourally the first two equations of SET(ELEM). In the list of four behavioural

consequences in Remark 3.1 we first had to substitute the non-observable variable s in

order to eliminate every non-observable variable. We did this by substituting ‘6’ in every

case. The context terms used in the four examples were:

is in(x, z)

is in(x, in(y, z))

card(z)

card(in(x, z)).

Of course, this is only a small subset of the infinite set of equations that B has to satisfy,

but it is enough to illustrate the principle.

Reichel in Reichel (1981) defines a notion of behavioural satisfaction that differs with

respect to input observability. That is, he defines (here using the notations of Definition 3.4)

A |=Beh e iff for all observable BΣ-contexts c[z] of the sort of e we have A |= c[e].

The following example illustrates the difference between the two notions. Consider the

SET(ELEM)-algebra C that we get if we extend the algebra A in its Set-carrier:

CSet =def ASet ∪ {∗}.
Here, we call this new element ‘∗’ a junk element because we cannot name it syntactically:

there is no ground (that is, variable free) term evaluating to ∗. That is, we have not

explicitly specified it.

The operations inC, is inC and cardC are extended as follows:

inC(, ∗) =def ∗
is inC(, ∗) =def false

cardC(∗) =def 0.

Now, in the sense of Reichel, C does not (behaviourally) satisfy the following equation:

is in(x, in(x, s)) = true

Because of the operations that yield non-observable sorts, we can naturally generate non-

observable elements, but the junk-elements of non-observable sorts cannot be addressed

directly. This is the reason for calling it non-observable. Therefore C should indeed be

considered a behavioural model of the above equation. Our definition guarantees this.

For the definition of BEQSF we still have to define the behavioural notion of ho-

momorphisms. For this we have to take into account the fact that the non-observable

structure does not have to be preserved directly.

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

Abstract and behaviour module specifications 37

Definition 3.5. (Behaviour model, BΣ-behaviour morphism) Given a behaviour specification

BΣ = (Obs,Σ) and a Σ-algebra A. Let XObs be a family of sets of variables of observable

sorts in Σ.

1 A is called a BΣ-algebra iff it behaviourally satisfies each of the equations in Σ.

2 A term t ∈ TΣ(XObs) of observable sort is called an observable BΣ-computation if

it is not a variable. It is called minimal if none of its sub-terms is an observable

BΣ-computation.

3 Given an observable BΣ-computation t, the set of observable computations included in

t, denoted by Min(t), is defined recursively by:

(a) if t is minimal, then Min(t) =def {t};
(b) otherwise, at some position u, t has a sub-term t0 that is a minimal observable

BΣ-computation. Let x be a new variable of the sort of this sub-term. Then we

define:

Min(t) =def {t0} ∪Min(t[u← x])

(by t[u← x] we mean the replacement of x for t0, that is, the term we find in t at

its u-position).

The definition of Min(t) is well defined as long as the assignment of the term

positions in t to the new variables (here denoted by ‘x’) that are introduced during

the recursive procedure, is a pre-given functional relation (and an injective one,

otherwise, the requirement for the variable to be ‘new’, that is, unused in the

remaining context, cannot be satisfied).

4 Let Obs be the set of observable sorts and let AObs = (As | s ∈ Obs) denote the family

of observable carriers in A. Let TΣ(AObs) be the Σ-algebra freely generated by AObs.

(Note, technically, this is only defined for S-indexed families – thus one really wants

AObs to be the S-indexed family with As =6 when s is a non-observable sort.)

A term t ∈ TΣ(AObs) of observable sort is called an observable BΣ-computation over A.

5 Given two BΣ-algebras, A and B, define a BΣ-behaviour morphism f : A → B to

be an Obs-indexed family of mappings, f = (fs : As → Bs)s∈Obs such that, where

f# : TΣ(AObs) → TΣ(BObs) is the unique Σ-homomorphism extending f, and εA :

TΣ(AObs) → A is the unique morphism extending the inclusion of AObs into A (the

same for εB), for every observable BΣ-computation, t, over A, we have:

fs(εA(t)) = εB(f#
s (t)).

(Note, again, the theorem giving the unique extensions requires AObs to be S-indexed,

not just Obs-indexed!)

6 The category of models of BΣ, denoted by Beh(BΣ) comprises the class of BΣ-algebras

together with the sets of BΣ-behaviour morphisms.

The isomorphisms in Beh(BΣ) exactly express the notion of behaviour equivalence in

Meseguer and Goguen (1985), Hennicker and Wirsing (1985), Sannella and Wirsing (1983),

and Sannella and Tarlecki (1985). This allows us to extend behaviour equivalence uni-

formly from algebras to functors: behaviour equivalence of functors is the existence of

natural isomorphisms.

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

F. Cornelius, M. Baldamus, H. Ehrig and F. Orejas 38

As an example for a BΣ-behaviour morphism, we again refer to the algebras A,B from

the beginning of this section. We have already claimed their behavioural equivalence.

This means in particular the existence of a SET(ELEM)-behaviour morphism in both

directions. We will argue that the family of identities (ids : As → Bs)s∈{Bool,Elem,Nat} is a

SET(ELEM)-behaviour morphism. To see this, we first enumerate the family of observable

BΣ-computations over A:

TSET(ELEM)(AObs)Bool = {true, false} ∪ {trueA, falseA} ∪
{is in(x, s) | x ∈ TSET(ELEM)(AObs)Elem,

s ∈ TSET(ELEM)(AObs)Set}
TSET(ELEM)(AObs)Elem = {a, . . . , z}
TSET(ELEM)(AObs)Nat = {0} ∪ {0A, 1, 2, 3, . . . }

∪{succ(n) | n ∈ TSET(ELEM)(AObs)Nat}
∪{card(s) | s ∈ TSET(ELEM)(AObs)Set}

TSET(ELEM)(AObs)Set = {6}
∪{in(x, s) | x ∈ TSET(ELEM)(AObs)Elem,

s ∈ TSET(ELEM)(AObs)Set}.

The proof of f(εA(t)) = εB(f#(t)) for all t ∈ TSET(ELEM)(AObs) of observable sort can

now be done by structural induction over the structure of t. We want to show just the

example t = card(in(a, in(a,6))):

f(εA(t)) = εB(card(in(a, in(a,6))))

⇐⇒ f(cardA(inA(a, inA(a,6A)))) = εB(card(in(a, in(a,6))))

⇐⇒ f(cardA({a})) = cardB(inB(a, inB(a,6B)))

⇐⇒ f(1) = cardB(a.a)

⇐⇒ 1 = ‘number of distinct elements in’(a.a).

Finally, we are ready for the definition of the specification frame.

Definition 3.6. (The behaviour equational specification frame BEQSF) The behaviour equa-

tional specification frame BEQSF = (BSPEC,Beh) consists of the category BSPEC as

defined in Definition 3.2 and of the functor Beh : BSPECop → CAT. It maps specifica-

tions BΣ to model categories Beh(BΣ) according to Definition 3.5.

Behaviour specification morphisms h : BΣ1 → BΣ2 are mapped to behaviour forgetful

functors BUh : Beh(BΣ2) → Beh(BΣ1). They are defined as in the standard equational

algebra case.

One remark is necessary regarding the well-definedness of the forgetful functors BUh in

this definition. The mapping of algebras is straightforward. But consider a BΣ-behaviour

morphism f2 : A2 → B2 in Beh(BΣ2); the standard way to define BUh(fs) : BUh(A2) →
BUh(B2) is

BUh(f2)s =def f2,h(s)

for all s ∈ Obs1. Now it is the property of behaviour specification morphisms to preserve

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

Abstract and behaviour module specifications 39

the observable sorts (see Definition 3.2), which guarantees h(s) ∈ Obs2 and thus the

existence of f2,h(s).

In the list of examples of Section 2 we mentioned that BEQSF seen as the obvious

institution does not satisfy the satisfaction condition. This institution would be constructed

by separating the equations into the sentence functor:

Beh Inst ? = (BSIG,Beh, Sent, |=Beh)

with the following components:

1 BSIG is the full subcategory of BSPEC of specifications without equations.

2 Beh : BSIG→ CATop is the corresponding restriction of Beh : BSPECop → CAT seen

as a functor that is contravariant in its codomain.

3 Sent : BSIG→ Set maps every BΣ to the maximum set of Σ-equations. Every signature

morphism in BSIG is mapped to the standard equation translation function as given

in EQSF.

4 |=Beh,BΣ⊆ Beh(BΣ)× Sent(BΣ) is behaviour satisfaction as defined in Definition 3.4.

The satisfaction condition for institutions requires the following: given an arbitrary

signature morphism ϕ : BΣ1 → BΣ2 in BSIG, an equation e1 ∈ Sent(BΣ1) and an algebra

A2 ∈ Beh(BΣ2), we have

A2 |=Beh Sent(ϕ)(e1) ⇐⇒ Beh(ϕ)(A2) |=Beh e1.

Now consider the following (counter-) example:

BΣ1: sorts: s1 (non-observable)

opns: a, b :→ s1

BΣ2: sorts: s1 (non-observable)

s2 (observable)

opns: a, b :→ s1
f : s1 → s2.

Let ϕ : BΣ1 → BΣ2 be the inclusion morphism, the equation e1 be given by e1 ≡
(6; a = b) and the algebra A2 be given by:

A2,s1 =def {1, 2}
A2,s2 =def {x, y}
aA2

=def 1

bA2
=def 2

fA2
=def {1 7→ x, 2 7→ y}.

Now, we have Sent(ϕ)(e1) = e1, and A1 =def Beh(ϕ)(A2) given by

A1,s1 = {1, 2}
aA1

= 1

bA1
= 2.

Thus, A1 |=Beh e1 is true because there are no observable contexts to embed a = b in

BΣ1. But A2 |=Beh Sent(ϕ)(e1) = e1 is false because the observable BΣ2-context f(z) yields

the requirement A2 |= (6; f(a) = f(b)), which is false because of x 6= y.

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

F. Cornelius, M. Baldamus, H. Ehrig and F. Orejas 40

We have seen that the ‘only if’ part from right to left in the satisfaction condition

is corrupted. We can interpret this phenomenon as the consequence of introducing new

observations by the operation f in BΣ2. On the one hand, this is methodologically not

desired because of the principle of information hiding, which should be preserved. On the

other hand, there are many sensible examples in which additional observations are useful

and do not cause problems. For example, the extension of a specification by predicates

that operate on non-observable types includes operations p : s → Bool that essentially

add new observations. This should not be ruled out.

However, Goguen in Goguen (1989) deals with this kind of restriction, but he seems

to avoid the described problems by working in parallel with the standard equational

institution.

We can indeed define a proper institution of behaviour specifications when we attach

to every equation the set of substitutions and contexts that fix its satisfaction:

e ≡ [(Y ; l = r), Subste ⊆ [Y → TΣ(XObs)], Conte ⊆ TΣ(XObs)Obs].

Satisfaction then restricts Definition 3.4 to the substitutions and contexts in Subste or

Conte, respectively. If we extend sentence translation to the substitutions and contexts

in the obvious way, we can finally assure the satisfaction condition. But this is just to

sketch an idea of how to remedy the deficiency in observing behaviour specifications in

an institutional context.

The final goal for us in this section is to fix the class of pushouts POBeh for which

(BSPEC,POBeh) has amalgamations. In order to reach this, we first have to state two

technical auxiliary definitions.

Definition 3.7. (Observable consequence, derived equational specification) Given a be-

haviour specification BΣ = (Obs,Σ) with Σ = (S,OP, E).

1 The set of observable consequences of E, denoted by Obs(E), is defined by

Obs(E) =def {(XObs; l = r) | l, r ∈ TΣ(XObs)s, s ∈ Obs;E ` (XObs; l = r)}
Here, ` denotes the usual equational calculus relation.

2 The specification behaviourally derived from BΣ, denoted by Obs(BΣ), is defined by

Obs(BΣ) =def (S,OP,Obs(E)).

Obs(BΣ) is a standard equational specification in EQSF.

Before we come to the second technical definition, we will state a proposition that says

that the algebra classes of BΣ and Obs(BΣ) coincide in the sense that every EQSF-algebra

of Obs(BΣ) can be seen as a BEQSF-algebra of BΣ, and vice versa. The algebras in these

specification frames have the same representations.

Proposition 3.8. Given a behaviour specification BΣ = (Obs, (S,OP, E)), we have:

A ∈ Beh(BΣ) ⇐⇒ A ∈ Alg(Obs(BΣ)).

Remember that Alg denotes the model functor of EQSF (see the first example in the

list of Section 2).

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

Abstract and behaviour module specifications 41

Proof.

⇒ A |=Beh E implies A |=Beh Obs(E) because Obs(E) is a subset of the equational closure

of E. A |=Beh Obs(E) implies A |= Obs(E) because every equation e ∈ Obs(E) is an

observable BΣ-context of itself.

⇐ A |=Beh E requires the standard satisfaction of observable consequences of E built by

substitution and context embedding. This is already given if A |= Obs(E), the set of all

observable consequences.

This proposition has shown that the object classes Beh(BΣ) and Alg(Obs(BΣ)) are equal.

However, the definition of homomorphisms in Alg(Obs(BΣ)) differs from the definition

of BΣ-behaviour morphisms in that the latter ones only provide mappings between the

observable carriers.

This implies the existence of a particular forgetful functor

UBΣ : Alg(Obs(BΣ))→ Beh(BΣ),

which is the identity on algebras and defines for every h : A → B the BΣ-behaviour

morphism UBΣ(h) : A → B by (UBΣ(h))s =def hs for every s ∈ Obs. There are various

adjoint constructions to UBΣ. They are usually called realizations (after Goguen and

Meseguer (1982)). Some specific realizations within our framework have been studied in

Nivela (1987) and Nivela and Orejas (1987).

Definition 3.9. (Observable A-equations) Given a behaviour specification BΣ and a BΣ-

algebra A, the set of observable A-equations, denoted by obs eq(A), is defined by

obs eq(A) =def {(l = r) | l, r ∈ TΣ(AObs)s, s ∈ Obs; εA(l) = εA(r)},
where εA is the same as in Definition 3.5.

In terms of Definition 3.5, obs eq(A) contains all pairs of observable BΣ-computations

over A of the same sort whose A-evaluations coincide.

Now we can state the first property of BEQSF.

Theorem 3.10. BEQSF has free extensions (cf. 2.11).

The complete proof of this theorem is too long to be repeated here – it can be found

in Nivela and Orejas (1987) and Cornelius (1990b). However, we will give the necessary

construction and make a few remarks on it.

Proof. (Sketch) We have to show the existence of an adjunction BFreeh a Beh(h) for

any given behaviour specification morphism h : BΣ1 → BΣ2. That is, we have to define

BFreeh : Beh(BΣ1) → Beh(BΣ2). We will apply the well-known property that the free

constructions on the objects uniquely extend to the morphisms yielding a free functor.

Therefore, we only define for a given BΣ1-algebra A1:

BFreeh(A1) =def TΣ2
(A1,Obs1

)|≡h(obs eq(A1)) ∪ E2
.

The unit of the adjunction ηA1
: A1 → Beh(h) ◦ BFreeh(A1) is a BΣ1-behaviour morphism,

that is, to be defined only on the observable carriers. Thus, it is well defined to set for

every s ∈ Obs1

ηA1 ,s(a) =def [a].

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

F. Cornelius, M. Baldamus, H. Ehrig and F. Orejas 42

TΣ2
(A1,Obs1

) denotes the term algebra that is built over the elements of the observable

carriers of A1 of sort s ∈ Obs1 seen as additional syntactical constants a :→ h(s) to extend

Σ2. This term algebra is free by construction.

Additionally, it has to satisfy the equations that identify the semantical elements a ∈ A1,s

with the possible syntactical terms generating them. This is done by factorizing with

≡h(obs eq(A1)). Finally, the algebra has to be at least a BΣ2-algebra. That is, it has to satisfy

E2 behaviourally. This is achieved by factoring TΣ2
(A1,Obs1

) with ≡E2
.

Remarks will accompany this theorem:

— When Obs1 = S1, BFreeh is the standard free construction of EQSF.

— When Obs1 6= S1, the standard free construction of EQSF is, in general, not even a func-

tor. One implication of this is that the persistency lemma (see Ehrig and Mahr (1985))

does not generalize to the behavioural case. That is, given a persistent free functor

BFreeh, assuming h to be injective, there is not necessarily a strongly persistent free

functor. The reason is that we do not have direct access to the non-observable carriers.

A possible solution to this problem would be a factorization of Beh(BΣ) identifying all

isomorphic algebras with equal observable parts. We conjecture that in that context for

injective specification morphisms it is possible to prove a similar persistency lemma.

However, there remain some open questions.

— We already discussed the variations in BSPEC resulting from different preservation

properties of the observable and the non-observable sorts (Remark 3.3). Weak spec-

ification morphisms, preserving only the observable sorts, admit equally defined free

constructions. The construction of BFreeh relies only on this preservation.

Before we discuss the special class POBeh, we first show the general existence of pushouts.

Proposition 3.11. BSPEC is finitely cocomplete.

Proof. We show finite cocompleteness by proving the existence of initial objects in

BSPEC and of all pushouts:

1 The empty specification is trivially initial in BSPEC.

2 Given two behaviour specification morphisms fi : BΣ0 → BΣi, i = 1, 2. Let (Σ3, g1 :

Σ1 → Σ3, g2 : Σ2 → Σ3) be a pushout in EQSF. Then it is routine to check that

BΣ3 =def (g1(Obs1) + g2(Obs2),Σ3),

together with g1, g2, interpreted as behaviour specification morphisms, is a pushout in

BSPEC.

As a motivation for POBeh, we want to show by example a pushout in BSPEC that

does not admit amalgamations and extensions, respectively:

1 Look at the following BSPEC-pushout diagram. The involved behaviour specification

morphisms are the identities:

BΣ0: sorts: s0 (non-observable)

opns: a, b :→ s0

BΣ1: sorts: s0 (non-observable)

opns: a, b :→ s0
eqns: a = b

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

Abstract and behaviour module specifications 43

BΣ2: sorts: s0 (non-observable)

s2 (observable)

opns: a, b :→ s0
g : s0 → s2

BΣ3: sorts: s0 (non-observable)

s2 (observable)

opns: a, b :→ s0
g : s0 → s2

eqns: a = b

This pushout does not admit amalgamations. To see this, consider a BΣ1-algebra A1

with aA1
6= bA1

. This is possible because there is no observable BΣ1-context to embed

the equation a = b in. It therefore does not restrict the model class of the signature of

BΣ1.

On the other hand, let A2 be BΣ2-algebra with the same forgetful functor image as

A1 (this is a necessary prerequisite for amalgamation). That means, in particular, that

aA2
6= bA2

again. Let gA2
be injective. Then gA2

(aA2
) 6= gA2

(bA2
), implying that a = b

does not hold behaviourally in A2. This means that there is no BΣ3-algebra whose

forgetful functor image with respect to BΣ2 coincides with A2. But this would have

been the case for amalgamation.

2 The same pushout diagram does not have extensions. The following arguments already

induce the non-existence of amalgamations due to Theorem 2.12. But we hope to give

some more insight into the behavioural theory by explaining both reasons in detail.

The model classes of BΣ0 and BΣ1 coincide because there are no observable sorts.

Moreover, every two algebras in this model class are behaviourally equivalent, because

the only BΣ0-behaviour morphism between them is the empty family of mappings,

which is necessarily an isomorphism. As a consequence, the identity functor id :

Beh(BΣ0)→ Beh(BΣ1) is trivially strongly persistent. For the same reason it is also a

left adjoint.

On the other hand, there is no strongly persistent functor F : Beh(BΣ2) → Beh(BΣ3)

because no BΣ2-algebra A2 with aA2
6= bA2

and gA2
injective, can be preserved.

We will characterize POBeh by the following observation preserving property. A PO-

diagram has this property if in BΣ3 the ways to observe the terms of non-observable

sort remain the same as the ways given in BΣ1 and BΣ2. The mixture of operations of

BΣ1 and BΣ2 in BΣ3 potentially yields such new observations. This can either include

observable terms in BΣ3 that aren’t terms in either BΣ1 nor BΣ2, or it can include the

even more likely case that BΣ1 doesn’t know the observations possible in BΣ2, but that

their meeting in BΣ3 causes semantical problems. This last problem will be made clear in

the following paragraph.

In the example above, we have the non-observable sort s0 in every specification. The

equation a = b in BΣ1 states a requirement relative to all existing observable computations

that include the equation. But in BΣ2 a new possibility to observe the sort s0 is given by

the operation g. This leads to the conflict in BΣ3 where the equation and the operation

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

F. Cornelius, M. Baldamus, H. Ehrig and F. Orejas 44

g meet. Thus, there is no algebra in which a and b are differently interpreted if g is an

injective mapping.

Definition 3.12. (Observation preserving property) Assume a BSPEC-pushout diagram as

in Figure 11. Let XObs3
be the family of sets of variables of the observable sorts in BΣ3.

BΣ0

f1 //

f2

��

BΣ1

g1

��
BΣ2 g2

// BΣ3

Fig. 11. BSPEC-pushout diagram

1 An observable BΣ3-computation t3 ∈ TΣ3
(XObs3

) is said to be clean with respect to

a given pushout diagram iff no sort of any of its non-observable sub-terms has its

origin in BΣ0, that is, for every non-observable sort s of a sub-term of t3 we have:

s /∈ g1 ◦ f1(S0).

2 A pushout diagram satisfies the observation preserving property iff for every observable

BΣ3-computation t3 there is a clean BΣ3-computation t′3 that is equivalent with respect

to the equations in BΣ3, that is, BΣ3 ` (XObs3
; t3 = t′3).

There is the legitimate question as to whether the class of pushouts satisfying the

observation preserving property is not too restrictive in the sense of lacking practical

applicability. More specifically, the decision for a sub-class of pushouts leads to a trade-

off between practical relevance on the one hand, and the provision of the necessary

theoretical results on the other hand.

Fortunately there is a large number of standard cases where the observation preserving

property holds. First, it holds whenever the signature BΣ0 is completely observable. This

situation is very frequent because BΣ0 typically plays the role of a parameter or a part

common to BΣ1 and BΣ2. In both cases it plays a public role: a formal parameter should

express conceptual openness, and the designation of common parts is similar. This does

not match the general intuition that non-observable parts are mostly specialized and

locally defined.

Second, even in the case of a non-observable type in BΣ0 one generally expects this

type to be defined completely within BΣ0. In other words, extensions in BΣ1 and BΣ2 are

expected to rely only on the observations originally provided in BΣ0. And in that case,

where every new (say BΣ1) observation f1(c) of a non-observable term c is equivalent

to a BΣ0-observation f0(c), the observation preserving property depends only on the

completeness of the specification of the non-observable type in BΣ0. As this kind of

completeness, namely the existence of a completely observable c′ with BΣ0 ` f0(c) = c′,
is one suitable correctness property in the framework of constructive specifications with

initial semantics, the additional requirement of satisfaction of the observation preserving

property should generally be fulfilled.

In the example above, the observation preserving property does not hold. For example

the only observable BΣ3-computations are g(a) and g(b). Both contain a sub-term of sort

s0 originating from BΣ0.

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

Abstract and behaviour module specifications 45

The first of the facts in Lemma 3.14 will justify the name of the property. It states

the consequence of the observation preserving property that no new observations are

produced when constructing the pushout, that is, the old observations are preserved.

In the case of weak specification morphisms we can apply the same definition. It also

yields the class of pushouts that admit amalgamations and, thus, extensions.

Now, POBeh will denote the class of BSPEC-pushouts that satisfy the observation

preserving property.

Remark 3.13. (Extension of specification morphisms to (ground) terms) Before we come to

some important facts about the pushouts in POBeh, we need to state some relations between

specification morphisms and (ground-) terms of the signature: a (behaviour-) specification

morphism ϕ : BΣ1 → BΣ2 induces canonically a mapping gterm(ϕ) : TΣ1
→ TΣ2

between

the ground terms of the specifications.

We want to expand this mapping to the sets of terms built over variables XΣ1
and XΣ2

.

In order to do so, we assume, without loss of generality, for every s2 ∈ ϕ(S1) (that is, sort

of XΣ2
) that is in the image of ϕ satisfies the following property:⊎{XΣ1 ,s1 | ϕ(s1) = s2} ⊆ XΣ2 ,s2 .

This property enables us for every term t ∈ TΣ1
(XΣ1

) to take the identity on the variables

in t when translating t with the aid of ϕ.

We do not lose the generality because the ‘names’ of the variables, the symbols, do not

have any semantical significance in themselves. The fact that we have this property means

we can easily extend gterm(ϕ) to a mapping term(ϕ) : TΣ1
(XΣ1

) → TΣ2
(XΣ2

), which acts

like gterm(ϕ) but, additionally, is the identity on the variables.

The following lemma states some technical results concerning pushouts in POBeh.

The first fact essentially says that every observable BΣ3-computation is already a BΣ1-

or a BΣ2-computation. The second fact says that the set of valid equations between

observable consequences in BΣ3 can be deduced by using the sets of equations in BΣ1

and BΣ2, respectively. The third fact states a sufficient condition for the satisfaction of the

observation preserving property. It says that it is enough to check the minimal observable

BΣ3-computations for the property of Definition 3.12.

Lemma 3.14. Given a pushout diagram in POBeh as depicted in Figure 11, let XObsi ,

i = 0, . . . , 3 be families of sets of variables according to the convention of the above

Remark 3.13:

1 Given a clean observation t3 ∈ TΣ3
(XObs3

), for every t′3 ∈ Min(t3) (see Definition 3.5)

we have

t′3 ∈ term(g2)(TΣ2
(XObs2

)) ∪ term(g1)(TΣ1
(XObs1

)).

2 If we let Obs(Ei) denote the sets of equations (observable consequences) in the be-

haviourally derived specifications Obs(BΣi) (i = 0, . . . , 3) according to Definition 3.7,

then for every pair of observable BΣ3-computations l, r ∈ TΣ3
(XObs3

), we have

Obs(E3) ` (XObs3
; l = r)⇔ term(g1)(Obs(E1)) ∪ term(g2)(Obs(E2)) ` (XObs3

; l = r)

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

F. Cornelius, M. Baldamus, H. Ehrig and F. Orejas 46

In particular, we have that the Obs(BΣi)-diagram of behaviourally derived specifica-

tions is a pushout in EQSF.

3 If for every minimal observable BΣ3-computation t3 ∈ TΣ3
(XObs3

) there is a clean

observation t′3 ∈ TΣ3
(XObs3

) such that E3 ` (XObs3
; t3 = t′3), then the pushout diagram

satisfies the observation preserving property.

The proof of the facts of this lemma can be found in Orejas et al. (1989) and Cor-

nelius (1990a). We omit them because of their mere technical character.

The following theorem will complete this section.

Theorem 3.15. (BEQSF,POBeh) has amalgamations and extensions.

Proof. As amalgamations imply extensions (Theorem 2.12), we can restrict ourselves

to showing the amalgamation property.

Let Ai ∈ Beh(BΣi), i = 1, 2, be such that BUf1
(A1) = BUf2

(A2). From Proposition 3.8,

we can (in EQSF) define

A3 = A1 +(f1 ,f2) A2.

As EQSF has amalgamations for the class of all pushouts, we already know that A3 is

unique with respect to BUg1
(A3) = A1 ∧ BUg2

(A3) = A2, but we still need to show that

A3 ∈ Beh(BΣ3), that is:

A3 |=Beh E3

⇔ A3 |= Obs(E3)

⇔ A3 |= term(g1)(Obs(E1)) ∪ term(g2)(Obs(E2)).

It remains for us to show the existence of amalgamated sums of BΣ-behaviour mor-

phisms. Let hi : Ai → A′i ∈ Beh(BΣi), i = 1, 2, be such that BUf1
(h1) = BUf2

(h2). We define

h3 : A1 +(f1 ,f2) A2 → A′1 +(f1 ,f2) A′2 for all s ∈ Obs3 by

h3,s =def

{
h1,g−1

1 (s) ; s ∈ g1(S1)

h2,g−1
2 (s) ; s ∈ g2(S2).

h3 is a well-defined BΣ3-behaviour morphism. Now let t3 ∈ TΣ3
(A3) be an observable

BΣ3-computation over A3. We need to show

h3 ◦ ε3(t3) = ε′3 ◦ h#
3 (t3). (1)

Because of the observation preserving property, we find a clean observation m3 such that

BΣ3 ` (A3,Obs; t3 = m3)†. That is, we can equivalently replace t3 by m3 in Equation 1. We

proceed with sub-term induction:

— base If m3 is minimal, we have m3 ∈ term(g1)(TΣ1
(A1,Obs))∪ term(g2)(TΣ2

(A2,Obs)). That

is, we can apply the commutation property of h1 or h2, respectively.

— step If m3 is not minimal, we have that there is m′3 ∈ Min(m3) and a substitution σ

for the (fresh) variables‡ in m′3 with terms in TΣ3
(A3,Obs) such that σ∗(m′3) = m3.

† We can interpret A3,Obs as a particular family of variables
‡ That is, the variables inserted when building the set Min(m3)!

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

Abstract and behaviour module specifications 47

For every (fresh) x in m′3, σ(x) is a sub-term of m3 and an observable BΣ3-computa-

tion, too. That is, applying the induction hypothesis yields commutation for every

σ(x). Additionally, h3 commutes with respect to m′3 because it is minimal.

This completes the proof.

4. Abstract module specifications

Elements of the theory of algebraic module specifications were developed in Ehrig and

Weber (1985), Ehrig and Weber (1986), Weber and Ehrig (1986), and Blum et al. (1987

and, later, a comprehensive account was presented in Ehrig and Mahr (1990). The basis

for this theory are equational algebraic specifications, that is, the specification frame

EQSF. In this section we carry out the generalization to specification frames in the

sense of Section 2. We present the relevant definitions for abstract module specifications,

including the basic interconnection mechanisms. They serve to construct new and bigger

modules from smaller ones. The main theorems of this section state the correctness and

compositionality of these operations.

Definition 4.1. (Abstract module specification) Let SF = (ASPEC,Catmod) be a specifica-

tion frame:

1 An (abstract) SF-module specification AMOD = (e, s, i, v) is a commutative diagram in

ASPEC as depicted in Figure 12. We call AΣPAR the (abstract) parameter specifica-

AΣPAR

i

��

e // AΣEXP

v

��
AΣIMP s

// AΣBOD

Fig. 12. Abstract module specification AMOD

tion, AΣEXP the (abstract) export interface specification, AΣIMP the (abstract) import

interface specification and AΣBOD the (abstract) body specification.

2 The functorial semantics of AMOD is defined to be the following class of functors:

Sem(AMOD) =def {Vv ◦ Fs : Catmod(AΣIMP)→ Catmod(AΣEXP) | Fs a Vs}.
3 AMOD is called internally correct if there exists a strongly persistent Fs with Fs a Vs.

In this case we call Vv ◦ Fs ∈ Sem(AMOD) a standard semantic functor for AMOD.

Remark 4.2. (Abstract parameterized specification) An abstract module specification with

e = s, i = idAΣPAR
and v = idAΣEXP

, is an abstract parameterized specification with initial

semantics in the sense of Ehrig and Mahr (1985) and Ehrig and Große-Rhode (1994).

The semantics Sem(AMOD) of an abstract module specification is an isomorphism

class of functors, each transforming import to export data types. In the case of internal

correctness, the import data type is completely protected by the functors in Sem(AMOD).

Other notions of correctness can be found in Ehrig and Mahr (1990).

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

F. Cornelius, M. Baldamus, H. Ehrig and F. Orejas 48

The following definition allows us to construct the category of abstract module specifi-

cations.

Definition 4.3. (Abstract module specification morphism) Assume we are given two SF-

module specifications AMODi, i = 1, 2, where these indices are assumed to be propagated to

the components of the modules. Then an SF-module specification morphism ϕ : AMOD1 →
AMOD2 consists of a 4-tuple of ASPEC-morphisms ϕ = (ϕP , ϕE, ϕI , ϕB) such that every

square of the diagram in Figure 13 commutes. The composition of SF-module specification

AΣPAR1

e1 //

##H
H

H
H

H
H

H

ϕP

i1

��

AΣEXP1

##H
H

H
H

H
H

H

ϕE

v1

��

AΣPAR2

e2 //

i2

��

AΣEXP2

v2

��

AΣIMP1 s1
//

##H
H

H
H

H
H

H

ϕI

AΣBOD1

##H
H

H
H

H
H

H

ϕB

AΣIMP2 s2
// AΣBOD2

Fig. 13. (Abstract) module specification morphism ϕ : AMOD1 → AMOD2

morphisms is defined component-wise, and the category of SF-module specifications and

-morphisms is denoted by Modcat(SF).

The next step is to study operations on module specifications, especially composition,

union and actualization. Composition describes a vertical plugging of modules: the data

types required in the import interface of a higher module specification are provided by

a lower module specification in its export interface. This relationship is expressed by a

specification morphism h1 : AΣIMP1
→ AΣEXP2

.

The formal parameter specification of AMOD1 becomes the parameter of the ensuing

module specification and has, therefore, to be mapped to the parameter specification of

the lower module AMOD2. This is achieved by a specification morphism h2 : AΣPAR1
→

AΣPAR2
with h1 ◦ i1 = e2 ◦ h2 that is compatible with h1.

Each of the following operations involves the specification of a diagram, parts of

which are the argument and the result module specifications. Moreover, in each case

certain sub-diagrams have to be pushouts so as to allow us to make use of amalga-

mation and/or extension to prove correctness and compositionality. In each definition

we therefore assume a specification frame with pushouts (SF,PO). The correctness and

compositionality theorems will then be based on the additional assumption that (SF,PO)

has amalgamations.

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

Abstract and behaviour module specifications 49

Definition 4.4. (Composition of abstract module specifications) Let a specification frame

(SF,PO) with pushouts, SF-module specifications AMODi, i = 1, 2 (where these indices

apply to the components of AMODi, i = 1, 2 in the expected way), and specification

morphisms in SF

h1 : AΣIMP1
→ AΣEXP2

and

h2 : AΣPAR1
→ AΣPAR2

be given. Then the composition of AMOD1 and AMOD2 via h =def (h1, h2), written

AMOD1 ◦h AMOD2, is defined by

AMOD1 ◦h AMOD2 =def (e1, ŝ ◦ s2, i2 ◦ h2, v̂ ◦ v1)

if h1 ◦ i1 = e2 ◦ h2 and if (̂v, ŝ) is a pushout of (s1, v2 ◦ h1) in PO. The overall situation is

depicted in Figure 14.

AΣPAR1

e1 //

i1

��

���
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

h2

AΣEXP1

v1

��
AΣIMP1 s1

//

���
�
�
�
�
�
�

h1

AΣBOD1

��

v̂AΣPAR2

e2 //

i2

��

AΣEXP2

v2

��
AΣIMP2 s2

// AΣBOD2
//

ŝ
AΣBOD3

Fig. 14. Composition of AMOD1 and AMOD2

Note that, according to our intuition, the ensuing module AMOD1◦hAMOD2 inherits the

export interface of the higher module AMOD1 and the import of the lower one AMOD2.

Note also that there is always an isomorphism class of possible body specifications

AΣBOD3
. Therefore, to make the composition of abstract module specifications functional,

one could introduce a system of representatives for the isomorphism classes of abstract

specifications. Another method, which can be applied whenever the abstract theory has

been instantiated to some concrete specification frame, is of course to construct pushouts.

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

F. Cornelius, M. Baldamus, H. Ehrig and F. Orejas 50

Next, we prove the correctness and compositionality of composition under the assump-

tion of internally correct upper and lower modules.

Theorem 4.5. (Correctness and compositionality of composition) Whenever, in Defini-

tion 4.4, (SF,PO) has free extensions and AMODi is internally correct with strongly per-

sistent functor Fsi a Vsi for i = 1, 2, then we have (setting AMOD3 for AMOD1 ◦hAMOD2):

1 Correctness

AMOD3 is internally correct.

2 Compositionality

Let Semi =def Vvi ◦ Fsi be a standard semantic functor for AMODi, i = 1, 2. Then we

can construct a standard semantic functor Sem3 for AMOD3 by

Sem3 =def Sem1 ◦ Vh1
◦ Sem2.

Proof. For Part (1), we have to show the existence of a strongly persistent functor F

with F a Vŝ◦s2 . To this end, let us note that we can extend Fs1 to a strongly persistent F̂s
with F̂s a Vŝ and Fs1 ◦Vv2◦h1

= Vv̂ ◦ F̂s (Theorem 2.12). Let F =def F̂s ◦Fs2 . By Remark 2.4,

F is a strongly persistent and left adjoint to Vŝ◦s2 .

For Part (2), we show that Sem3 is the same as Vv̂◦v1
◦F , reasoning in the following way:

Sem1 ◦ Vh1
◦ Sem2 = Vv1

◦ Fs1 ◦ Vh1
◦ Vv2

◦ Fs2
= Vv1

◦ Fs1 ◦ Vv2◦h1
◦ Fs2

= Vv1
◦ Vv̂ ◦ F̂s ◦ Fs2 since Fs1 ◦ Vv2◦h1

= Vv̂ ◦ F̂s (see above)

= Vv̂◦v1
◦ F.

The next operation to be considered, union, again makes use of pushouts.

Definition 4.6. (Union of abstract module specifications) Let (SF,PO) be a specification

frame with pushouts. Given three SF-module specifications AMODi, i = 0, 1, 2, and two

SF-module specification morphisms fi : AMOD0 → AMODi, i = 1, 2, the union of AMOD1

and AMOD2 via f1, f2, written AMOD1 ⊕(f1 ,f2) AMOD2, is defined by

AMOD1 ⊕(f1 ,f2) AMOD2 =def (e3, s3, i3, v3),

where these four morphisms are uniquely induced by pushouts (gX1 , g
X
2) of (fX1 , f

X
2) for

X ∈ {PAR,EXP, IMP,BOD} provided that all these pushouts are elements of PO. (See

Figure 15 where, for reasons of clarity, we have omitted most of the arrow labels in the

module specification morphisms.)

Note that (g1, g2) is a pushout of (f1, f2) in Modcat(SF).

Theorem 4.7. (Correctness and compositionality of union) Whenever, in Definition 4.6,

(SF,PO) has amalgamations, AMODi is internally correct with strongly persistent functor

Fsi a Vsi for i = 1, 2 and the compatibility

VfBOD
1
◦ Fs1 ◦ VgIMP

1
= VfBOD

2
◦ Fs2 ◦ VgIMP

2
,

holds, we have (setting AMOD3 for AMOD1 ⊕(f1 ,f2) AMOD2):

1 Correctness

AMOD3 is internally correct.

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

Abstract and behaviour module specifications 51

AΣPAR0

��

fPAR
1

))SSSSSSSSSSSS
e0 //

i0

��

AΣEXP0

��

))SSSSSSSSSSSS

fEXP
2

v0

��
AΣIMP0

��

))SSSSSSSSSSSS s0
// AΣBOD0

��

))SSSSSSSSSSSS AΣPAR2

��

e2 //

i2

��

AΣEXP2

��

v2

��
AΣPAR1

))SSSSSSSSSSSS
e1 //

i1

��

AΣEXP1

))SSSSSSSSSSSS

v1

��

AΣIMP2

��

s2
// AΣBOD2

��

gBOD
2

AΣIMP1

))SSSSSSSSSSSS

gIMP
1

s1
// AΣBOD1

))SSSSSSSSSSSS AΣPAR3

e3 //

i3

��

AΣEXP3

v3

��
AΣIMP3 s3

// AΣBOD3

Fig. 15. Union of AMOD1 and AMOD2

2 Compositionality

Let Semi =def Vvi ◦ Fsi be standard semantic functors for AMODi, i = 1, 2. Then we

can construct a standard semantic functor Sem3 for AMOD3 by amalgamating Sem1

and Sem2:

Sem3 =def Sem1 +(fEXP
1 ,fEXP

2) Sem2

Proof.

1 This part is an easy matter of applying Lemma 2.10 to the import and body pushouts,

where (s0, s1, s2, s3) plays the role of the quadruple of morphisms between them.

2 First, the amalgamation of Sem1 and Sem2 via fEXP
1 , fEXP

2 is well defined because Sem1

and Sem2 are compatible as follows (cf. Lemma 2.10):

VfEXP
1
◦ Sem1 ◦ VgIMP

1
= VfEXP

1
◦ Vv1

◦ Fs1 ◦ VgIMP
1

= Vv0
◦ VfBOD

1
◦ Fs1 ◦ VgIMP

1

since v1 ◦ fEXP
1 = fBOD

1 ◦ v0

= Vv0
◦ VfBOD

2
◦ Fs2 ◦ VgIMP

2

since VfBOD
1
◦ Fs1 ◦ VgIMP

1
= VfBOD

2
◦ Fs2 ◦ VgIMP

2

= VfEXP
2
◦ Sem2 ◦ VgIMP

2

analogously to the first three steps.

Thus, it remains to show that Sem3 is a standard semantic functor, that is,

Sem3 = Vv3
◦ Fs3

for some strongly persistent Fs3 : Catmod(AΣIMP3
) → Catmod(AΣIMP3

) with Fs3 a Vs3 .

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

F. Cornelius, M. Baldamus, H. Ehrig and F. Orejas 52

To this end, we state Fs3 =def Fs1 +(fBOD
1 ,fBOD

2) Fs2 , which is actually the functor used to

show (1). All that is left, therefore, is to show Sem3 = Vv3
◦Fs3 . We do so by exploiting

the fact that Sem3, as the amalgamated sum of Sem1 and Sem2 via fEXP
1 , fEXP

2 , is

unique with respect to VgEXP
i
◦ Sem3 = Semi ◦ VgIMP

i
, i = 1, 2 (again Lemma 2.10). That

is, we show

VgEXP
i
◦ Vv3

◦ Fs3 = Semi ◦ VgIMP
i

, i = 1, 2.

First of all, Lemma 2.10 implies that Fs3 , as the amalgamated sum of Fs1 and Fs2 via

fBOD
1 , fBOD

2 , satisfies (and is of course also unique with respect to)

VgBOD
i
◦ Fs3 = Fsi ◦ VgIMP

i
, i = 1, 2.

Hence,

VgEXP
i
◦ Vv3

◦ Fs3 = Vvi ◦ VgBOD
i
◦ Fs3 since v3 ◦ gEXP

i = gBOD
i ◦ vi

= Vvi ◦ Fsi ◦ VgIMP
i

= Semi ◦ VgIMP
i
.

We conclude this section with the actualization operation, which allows one to instanti-

ate the parameter of an abstract module specification. The instantiation target has to be

the body of an abstract parameterized specification (cf. Remark 4.2). This specification’s

own parameter becomes the parameter of the new module.

Definition 4.8. (Actualization of abstract module specifications) Let (SF,PO) be a specifica-

tion frame with pushouts. Given an SF-module specification AMOD, an SF-parameterized

specification PΣ = (p : PΣPAR → PΣBOD) and a parameter passing morphism h : AΣPAR →
PΣBOD, the actualization of AMOD by PΣ via h, written AMODh(PΣ), is described on the

basis of Figure 16 by

AMODh(PΣ) =def (e0 ◦ p, s0, i0 ◦ p, v0).

As a side condition, all squares in Figure 16 that are bordered by at least one dashed

arrow must be in PO.

Remark 4.9. (Constructing AMODh(PΣ)) The side condition in Definition 4.8 is such

that it is not immediately clear how one could construct the actualization diagram in any

concrete syntactic category. It is, however, clear that one can add three pushouts to the

initial diagram straight away so long as they belong to PO. More specifically, one begins

with the top and left pushouts and continues with either the bottom or the right one.

These two possibilities are entirely symmetrical to each other, so consider choosing the

right pushout. What is left after it has been added is to close the diagram by inserting an

appropriate s0. To this end, one can use the universal property of the left pushout so as

to obtain an s0 that makes the diagram commute in the first place. This property already

entails that the composition of the left and bottom squares is a pushout. Showing the

pushout property of the bottom square in isolation is then a matter of straightforward

diagram chasing.

An important additional observation is that the three constructed pushouts have amal-

gamations, then the derived one has them also. This property is a simple consequence

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

Abstract and behaviour module specifications 53

AΣPAR
e //

i

��

��5
5

5
5

5
5

5
5

5
5

5

h

AΣEXP

v

��

��5
5

5
5

5
5

5
5

5
5

5

hEXP

AΣIMP s
//

��5
5

5
5

5
5

5
5

5
5

5

hIMP

AΣBOD

��5
5

5
5

5
5

5
5

5
5

5

hBOD

PΣPAR

p // PΣBOD

e0 //

i0

��

RΣEXP

v0

��
RΣIMP s0

// RΣBOD

Fig. 16. Actualization of AMOD by PΣ via h

of the fact that Catmod maps the actualization diagram to a commutative diagram in

CAT where, by assumption, the images of the three constructed pushouts are pullbacks.

In consequence, whenever PO is the class of all pushouts in the syntactic category whose

Catmod-image is a pullback, the derived pushout belongs to PO.

If PΣ is a flat specification with an empty parameter, the ensuing module specification

is completely actualized. In other words, it assumes the role of an abstract interface

specification with constructive body part. For further details, see Ehrig and Mahr (1990).

Theorem 4.10. (Correctness and compositionality of actualization) Whenever, in Defini-

tion 4.8, (SF,PO) has amalgamations and AMOD is internally correct with strongly

persistent functor Fs a Vs, we have:

1 Correctness

AMODh(PΣ) is internally correct.

2 Compositionality

Let Sem =def Vv ◦ Fs be a standard semantic functor for AMOD. Then we can

construct a standard semantic functor SemR for AMODR by amalgamating Sem and

IdCatmod(PSBOD):

SemR = Sem +(e,h) IdCatmod(PΣBOD).

Proof.

1 By Remark 4.9, the bottom pushout of the actualization diagram has amalgamations.

We can thus apply Theorem 2.12 so as to extend Fs to the functor ExthIMP
(Fs) :

Catmod(RΣIMP) → Catmod(RΣBOD), which is strongly persistent and left adjoint to

Vs0 . So AMODh(PΣ) is internally correct.

2 First, the amalgamation of Sem and IdCatmod(PΣBOD) via e and h is well-defined because

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

F. Cornelius, M. Baldamus, H. Ehrig and F. Orejas 54

Sem and IdCatmod(PΣBOD) are compatible as follows (cf. Lemma 2.10):

Ve ◦ Sem ◦ VhIMP
= Ve ◦ Vv ◦ Fs ◦ VhIMP

= Vi ◦ Vs ◦ Fs ◦ VhIMP

= Vi ◦ VhIMP
by strong persistency of Fs

= Vh ◦ Vi0
= Vh ◦ IdCatmod(PΣBOD) ◦ Vi0 .

Thus, it remains to show that SemR is a standard semantic functor. We do so by proving

SemR = Vv0
◦ ExthIMP

(Fs), exploiting the uniqueness of SemR , as the amalgamated sum

of Sem and IdCatmod(PΣBOD) via e, h, with respect to

(a) VhEXP
◦ SemR = Sem ◦ VhIMP

and

(b) Ve0
◦ SemR = IdCatmod(PΣBOD) ◦ Vi0

(once again using Lemma 2.10). That is, we show (a) and (b) with SemR replaced by

Vv0
◦ ExthIMP

(Fs). As for (a):

VhEXP
◦ Vv0

◦ ExthIMP
(Fs) = Vv ◦ VhBOD

◦ ExthIMP
(Fs)

= Vv ◦ Fs ◦ VhIMP
by Theorem 2.12

= Sem ◦ VhIMP
.

As for (b):

Ve0
◦ Vv0

◦ ExthIMP
(Fs) = Vi0 ◦ Vs0 ◦ ExthIMP

(Fs)

= Vi0 by strong persistency of ExthIMP
(Fs)

= IdCatmod(PΣBOD) ◦ Vi0 .
Note that our use of Lemma 2.10 is such that we cannot fully embed the diagram

associated with this result (bottom half of Figure 6) in the actualization diagram. This

aspect is, however, not a problem because what we need from the lemma can already be

proved on the basis of what is available here.

We conclude this section with some remarks on the generalization of the remaining

module concepts mentioned in Ehrig and Mahr (1990) in the context of abstract module

specifications.

Remark 4.11. (Further concepts and results for abstract module specifications)

1 The distributive laws in section 3D of Ehrig and Mahr (1990) concerning the compat-

ibility of composition, union and actualization remain valid in arbitrary specification

frames with pushouts. The reason is that these results are mainly based on the

commutativity of different kinds of pushouts on the syntactic level.

2 More general operations on abstract module specifications, including renaming, partial

composition, recursion, product and iteration, can be introduced if we have more

general colimit constructions on the syntactic level. The compatibility results between

different operations, as shown in Chapter 4 of Ehrig and Mahr (1990), are also a

consequence of different kinds of colimits. On the semantic level it seems reasonable

to not only require amalgamation and extension for specific pushouts but also for the

corresponding colimit constructions (see Claßen (1993)).

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

Abstract and behaviour module specifications 55

3 The constructions and results concerning refinement, interface specifications, realiza-

tions, development categories, simulation and transformation in Chapters 5 and 6 of

Ehrig and Mahr (1990) are mainly based on the existence of pushouts and other

colimits on the syntactic level and the existence of the semantics of the component

module specifications. This generalizes immediately to abstract module specifications.

4 The generalization of restriction semantics and module specifications with constraints

as given in Ehrig and Mahr (1990) needs a more careful analysis and goes beyond the

scope of this paper. For restriction constructions in specification frames we refer to

Ehrig and Große-Rhode (1994). Some ideas on how to handle constraints are already

given in Ehrig et al. (1991a).

5. Behaviour module specifications

This section is about the instantiation of the theory of abstract module specifications to

behaviour specification frames. First, we consider the instantiation to (BEQSF,POBeh),

the specification frame of equational behaviour specifications together with the class

of pushouts in the underlying syntactic category BSPEC that satisfy the observation-

preserving property: in the ensuing theory, a module is understood to be a commutative

diagram of the form

BΣPAR

i

��

e // BΣEXP

v

��
BΣIMP s

// BΣBOD

in BSPEC. Its semantics and internal correctness are defined on the basis of the behaviour

model functor Beh, that is,

Sem(BMOD) = {Vs ◦ F : Beh(BΣIMP)→ Beh(BΣEXP) | F a Vs}
where BMOD is internally correct if there exists a strongly persistent functor

F : Beh(BΣIMP)→ Beh(BΣBOD)

with F a Vs (cf. Definition 4.1). Moreover, (BEQSF,POBeh) – a framework whose general

practical relevance is discussed after Definition 3.12 – has amalgamations (Theorem 3.15).

We are thus assured of the correctness and compositionality of composition, union and

actualization of behaviour module specifications as long as we use these operations so

that every required pushout is in POBeh (Theorems 4.5, 4.7 and 4.10). It is even possible

to relax this side condition so that a pushout does not need to be in POBeh whenever its

amalgamation property is in fact not needed to prove the respective theorem. An example

where this optimization could be applied is the parameter pushout in the union diagram

(Figure 15).

Then, with regard to the actualization of module specifications, in Remark 4.9 we

pointed out that the last pushout in the construction of the actualized module specification

always has amalgamations if the first three do. In the context of (BEQSF,POBeh) we might

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

F. Cornelius, M. Baldamus, H. Ehrig and F. Orejas 56

analogously expect the fourth pushout to be in POBeh whenever the first three are. But

this is not the case, which is shown in the counter example depicted in Figure 17. In this

s //

��

��.
.

.
.

.
.

.
.

.
. s, t; a :→ t, f : t→ s

��

��.
.

.
.

.
.

.
.

.
.

s //

��.
.

.
.

.
.

.
.

.
. s, t; a :→ t, f : t→ s

��.
.

.
.

.
.

.
.

.
.

6 // s //

��

s, t; a :→ t, f : t→ s

��
s // s, t; a :→ t, f : t→ s

Fig. 17. Counter example behaviour actualization

example the strings represent the specifications, s is an observable and t a non-observable

sort, and a : → t, f : t → s are operation symbols. One can easily see that every square

representing the construction squares of the above definition is a pushout in BSPEC.

Moreover, the first three pushouts trivially satisfy the observation-preserving property

because their source specifications only contain observable sorts. But the fourth pushout

does not satisfy the condition: the minimal observable BRΣBOD-computation f(a) has a

non-observable sub-term of sort t the origin of which lies in BΣEXP, the source of the

pushout. And there is no equivalent clean observation in BRΣBOD.

Although the fourth pushout does not satisfy the observation-preserving property, we

have amalgamation and extension, as pointed out above and used in the proof of the

correctness and compositionality theorem for actualization. Hence, this example shows

in an application context that the observation-preserving property is just a sufficient

condition for amalgamations and extensions.

We will finish this section with a brief discussion of VIEWSF, the behaviour specification

frame with syntactic morphisms that only have to preserve the non-observable sorts of a

specification.

5.1. The view specification frame VIEWSF

VIEWSF = (View-BSPEC,Beh) (cf. Remark 3.3) is defined to consist of the category

View-BSPEC of behaviour specifications and view-specification morphisms, and the model

functor View-Beh : View-BSPEC→ CAT, which is defined on objects just like Beh.

The first difficulty is the full definition of View-Beh: that is, if f : BSPEC1 → BSPEC2 is

a view-specification morphism, what is the image of a View-Beh(BSPEC2)-homomorphism

under View-Beh(f)? The problem is that f is defined only on each observable sort.

Now, if, for example, we imagine that BSPEC1 and BSPEC2 are one-sorted with a

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

Abstract and behaviour module specifications 57

sort symbol of s that is observable in BSPEC1 and non-observable in BSPEC2, then

View-Beh(f) : View-Beh(BSPEC2)→ View-Beh(BSPEC1) has to map empty to non-empty

homomorphisms, bearing in mind that a homomorphism is a sort-indexed family of

mappings between carrier sets. Hence, it is necessary to construct new mappings between

carriers that, after forgetting, have become observable.

This problem can be solved by means of a restricted free construction yielding so-called

view functors.

However, view-functors generally do not have left adjoints. Hence, VIEWSF is not

liberal in the sense of Definition 2.3. Furthermore, as in BEQSF, there are all pushouts in

View-BSPEC, but they generally do not admit amalgamations or extensions.

To address this problem, one could work with an application-oriented variant of the

observation-preserving property that mainly requires the horizontal arrows in a diagram

like the one in Figure 3 to be behaviour specification morphisms (morphisms in BEQSF).

But even these strongly restricted pushouts do not admit amalgamations, and allow

extensions only up to isomorphism. (This means that, if there is a strongly persistent left

adjoint with respect to f1 (in the context of Figure 3), we can only guarantee the existence

of a persistent left adjoint with respect to g2.) On the other hand, amalgamations and

strongly persistent extensions are needed in the correctness and compositionality proofs

for composition, union and actualization presented in Section 3. For this reason, we do

not present VIEWSF and the resulting module theory in this paper. We refer instead to

our papers Orejas et al. (1989) and Ehrig et al. (1991a), where the latter also contains a

behavioural version of the modular specification of an airport schedule that was presented

in Ehrig and Mahr (1990), using standard equational algebraic specifications.

6. Conclusion

In this paper we have generalized the main parts of the theory of algebraic module

specifications, as given in Ehrig and Mahr (1990) for algebraic specifications, to abstract

module specifications based on arbitrary specification frames. This is a continuation

of the work done for parameterized specifications and parameter passing in Ehrig and

Große-Rhode (1994) and Jiménez et al. (1995). Moreover, we have presented behaviour

specifications in the sense of Nivela and Orejas (1987) and shown counter examples as

well as main results under additional assumptions for amalgamation and extension for

the corresponding behaviour specification frame.

Of course, the theory of abstract module specifications can also be applied to other

specific specification frames including, for example, conditional equational specifications,

partial specifications and projection specifications. The corresponding requirements on

pushouts, free constructions, amalgamations and extensions have already been verified

in Große-Rhode (1989) and Claßen et al. (1992). In fact, most of these applications are

even simpler because the model functor transforms general colimits on the syntactical

level into limits on the semantical level. This allows general amalgamations in the sense

of Claßen (1993).

In our paper Ehrig et al. (1991a) we have already sketched how to handle abstract

specifications with constraints. An elegant treatment of this case requires, however, build-

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

F. Cornelius, M. Baldamus, H. Ehrig and F. Orejas 58

ing a general theory of specification frames extending the theory of indexed categories.

Since this goes beyond the scope of this paper we have delayed it for future research. In

this paper we have introduced specification frames as indexed categories just as far as is

necessary for abstract module specifications.

An important prerequisite for the results of this paper is the internal correctness of

abstract module specifications. This property means that the free constructions between

the import and the body model categories exist, and that the subclass of strongly persis-

tent functors is non-empty. In some practical applications it seems worthwhile weakening

strong persistency not only to persistency, that is, strong persistency up to isomorphism,

but also to even weaker notions only requiring consistency and not necessarily complete-

ness. This would also require us to weaken the condition of having amalgamations or

extensions on the abstract level. In the case of amalgamation, a possible way to do so is to

require the existence of homomorphisms h1 : A0 → Vf1
(A1) and h2 : A0 → Vf2

(A2) instead

of Vf1
(A1) = A0 = Vf2

(A2). If we consider the pairs (f1, h1) and (f2, h2) as generalized

morphisms (f1, h1) : A0 → A1, (f2, h2) : A0 → A2 in the category GMSF of generalized

morphisms over SF, we can regard their pushout as a generalized amalgamation of A1 and

A2 over A0 via h1 and h2. Of course, SF has to meet certain conditions for the existence

of a natural transformation η : Id→ Vf1
◦ F .

This new concept is called generalized extension. It is possible to show that generalized

amalgamation implies generalized extension similar to Theorem 2.12 in this paper. These

issues are studied in Ehrig et al. (1991b). Finally, let us point out that the abstract notion

of generalized morphisms originates from a similar notion introduced by Higgins (Higgins

1964). Essentially, this corresponds to the Grothendieck construction leading from indexed

categories to fibered categories (Grothendieck 1963).

Appendix

As promised after the definition of free constructions (Definition 2.3), we will prove the

following lemma, which is needed in the proof of Theorem 2.12.

Lemma A.1. Let a specification frame (ASPEC,Catmod), an ASPEC–morphism f : AΣ1 →
AΣ2 and a functor F : Catmod(AS1) → Catmod(AS2) be given such that F is left-adjoint

to Vf , the forgetful functor with respect to f. Then Vf ◦ F = IdCatmod(AS1) if and only

if the natural transformation id() : IdCatmod(AS1) → Vf ◦ F with id()(A1) = idA1
for every

A1 ∈ Catmod(AΣ1) is a unit of the adjunction.

Proof. The ‘if ’-direction is trivial, so assume F a Vf in combination with Vf ◦ F =

IdCatmod(AS1). We have to show that for all Ai ∈ Catmod(AΣi), i = 1, 2, and every h : A1 →
Vf(A2), there exists a unique h# such that h = Vf(h

#) ◦ idA1
, that is, h = Vf(h

#). Since we

already know that there is a unit η : IdCatmod(AΣ1) → Vf ◦ F with a unique h∗ such that

h = Vf(h
∗) ◦ η(A1), we may stipulate h# =def h

∗ ◦ F(η(A1)). Then

h = Vf(h
∗) ◦ η(A1)

= Vf(h
∗) ◦ (Vf ◦ F)(η(A1))

= Vf(h
∗ ◦ F(η(A1)))

= Vf(h
#),

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

Abstract and behaviour module specifications 59

so it only remains to show that h# is unique with respect to this property. To this end,

assume h = Vf(h
′) for some h′ : F(A1) → A2, and let id∗A1

be unique with respect to

idA1
= Vf(id

∗
A1

) ◦ η(A1). We have

h = Vf(h
′) ◦ Vf(id∗A1

) ◦ η(A1)

= Vf(h
′) ◦ (Vf ◦ F)(Vf(id

∗
A1

)) ◦ η(A1)

= Vf(h
′ ◦ (F ◦ Vf)(id∗A1

)) ◦ η(A1),

so h′ ◦ (F ◦ Vf)(id∗A1
) = h∗ because of the uniqueness property of h∗. Hence,

h′ = h′ ◦ F(idA1
)

= h′ ◦ F(Vf(id
∗
A1

) ◦ η(A1))

= h′ ◦ (F ◦ Vf)(id∗A1
) ◦ F(η(A1))

= h∗ ◦ F(η(A1))

= h#.

The proof is thus completed.

Acknowledgments

We are most grateful to the anonymous referee who has given us a plethora of most

worthwhile comments. In addition, we wish to thank Eric Wagner for his support and

patience.

This work has been supported partially by the ESPRIT long term research working

group 6112 Compass and the Spanish CICYT project COSMOS (ref. TIC95-1016-C02-01).

References

Baldamus, M. (1990) Constraints and their Normal Forms in the Framework of Specification Logics

(in German). Studienarbeit (TU Berlin).

Benabou, J. (1985) Fibred categories and the foundations of naive category theory. Journal of

Symbolic Logic 50 10–37.

Blum, E. K., Ehrig, H. and Parisi-Presicce, F (1987) JCSS 34 (2/3) 293–339.

Blum, E. K. and Parisi-Presicce, F (1985) In: Proc. TAPSOFT, Vol. 1. Springer-Verlag Lecture Notes

in Computer Science 185 359–373.

Bidoit, M., Hennicker, R. and Wirsing, M. (1994) Characterizing behavioural semantics and ab-

stractor semantics. In: Proc. ESOP’94 (Edinburgh). Springer-Verlag Lecture Notes in Computer

Science 788 105–119.

Claßen, I. (1993) Compositionality of Application Oriented Structuring Mechanisms for Algebraic

Specification Languages with Initial Semantics, Ph. D. thesis, Technische Universität Berlin.

Claßen, I., Große-Rhode, M. and Wolter, U. (1992) Categorical concepts for parameterized partial

specifications. Technical Report 92-42, Technische Universität Berlin.

Cornelius, F. (1990a) Behaviour-Ansätze für algebraische Modul-Spezifikationen (in German),

Master’s thesis, TU Berlin.

Cornelius, F. (1990b) Fallstudie für den Behaviour-Ansatz algebraischer Spezifikationen (in Ger-

man). Studienarbeit (TU Berlin).

Diaconescu, R., Goguen, J.A. and Stefaneas, P. (1991) Logical support for modularization. Technical

report, Oxford University.

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

F. Cornelius, M. Baldamus, H. Ehrig and F. Orejas 60

Ehrig, H. (1989) Algebraic specification of modules and modular software systems within the

framework of specification logics. Technical Report 89-17, TU Berlin.

Ehrig, H., Baldamus, M., Cornelius, F. and Orejas, F. (1991a) Theory of algebraic module specifi-

cations including behavioural semantics and constraints. In: Nivat, M., Rattray, C., Rus, T. and

Scollo, G. (eds.) Springer Workshops in Computing 23 145–172.

Ehrig, H., Baldamus, M. and Orejas, F. (1991b) New concepts for amalgamation and extension in

the framework of specification logics. Technical Report 91-05, TU Berlin.

Ehrig, H. and Große-Rhode, M. (1994) Functorial theory of parameterized specifications in a

general specification framework. Theoretical Computer Science 135 221–266.

Ehrig, H., Kreowski, H. J., Thatcher, J. W., Wagner, E. G. and Wright, J. B. (1981) Parameter passing

in algebraic specification languages. In: Workshop on Program Specification, Aarhus. Springer-

Verlag Lecture Notes in Computer Science 134 322–369. (Also appeared in Theoretical Computer

Science (1984) 28 45–81.)

Ehrig, H. and Mahr, B. (1985) Fundamentals of Algebraic Specification 1: Equations and Initial

Semantics, EATCS Monographs on Theoretical Computer Science 6, Springer, Berlin.

Ehrig, H. and Mahr, B. (1990) Fundamentals of Algebraic Specification 2: Module Specifications and

Constraints, EATCS Monographs on Theoretical Computer Science 21, Springer, Berlin.

Ehrig, H. et al. (1990) Combining data type and recursive process specifications using projection

algebras. Theoretical Computer Science 71 347–380.

Ehrig, H., Pepper, P. and Orejas, F. (1989) On recent trends in algebraic specification. In: Proc.

ICALP ’89. Springer-Verlag Lecture Notes in Computer Science 372 263–289.

Ehrig, H. and Weber, H. (1985) Algebraic specification of modules. In: Proc. IFIP Work Conf.

85: The Role of Abstract Models in Programming, Wien. (Also as Techn. Report No. 190, FB

Informatik, Univ. Dortmund, 1985.)

Ehrig, H. and Weber, H. (1986) Programming in the large with algebraic module specifications.

Information Processing 86 675–684. (Invited paper, IFIP’86 World Congress.)

Giarratana, V., Gimona, F. and Montanari, U. (1976) Observability concepts in abstract data type

specifications. In: Proc. 5th Symp. Math. Found. of Comp. Sci. 576–587.

Goguen, J. A. (1989) A categorical manifesto. Technical Monograph PRG–72, Oxford University

Computing Laboratory.

Goguen, J. A. and Burstall, R. M. (1984) Introducing institutions. Proc. Logics of Programming

Workshop Carnegie-Mellon. Springer-Verlag Lecture Notes in Computer Science 164 221–256.

Goguen, J. A. and Burstall, R. M. (1992) Institutions: Abstract Model Theory for Specification and

Programming. Journals of the ACM 39 (1) 95–146.

Goguen, J. A. and Meseguer, J. (1982) Universal realization, persistent interconnection and imple-

mentation of abstract modules. In: Proc. IXth ICALP. Springer-Verlag Lecture Notes in Computer

Science 140 265–281.

Goguen, J. A., Thatcher, J. W. and Wagner, E. G. (1978) An initial algebra approach to the

specification, correctness and implementation of abstract data types. In: Yeh, R. (ed.) Current

Trends in Programming Methodology IV: Data Structuring, Prentice Hall 80–144.

Gray, J. W. (1965) Fibred and cofibred categories. In: Proc. Conf. on Categorical Algebra, Springer

21–83.

Grothendieck, A. (1963) Catégories fibrées et descente. Revetements étales et groupe fondamentale,

Séminaire de Géométrie Algébraique du Bois-Marie 1960/61, Exposé VI, Institut des Hautes

Études Scientifiques, Paris. (Reprinted in Springer-Verlag Lecture Notes in Mathematics (1971)

224 145-194.

Große-Rhode, M. (1989) Parameterized data type and process specifications using projection alge-

bras. In: Categorical Methods in Computer Science. Springer-Verlag Lecture Notes in Computer

Science 393 185–197.

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

Abstract and behaviour module specifications 61

Guttag, J. V. and Horning, J. J. (1978) The algebraic specification of abstract data types. Acta

Informatica 10 27–52.

Hennicker, R. and Wirsing, M. (1985) Observational specification: a Birkhoff-theorem. In: Kreowski,

H.J. (ed.) Recent Trends in Data Type Specification; 3rd Workshop on Theory and Appl. of Abstract

Data Types, Selected Papers, Springer Informatik Fachberichte 116 119–135.

Higgins, P.J. (1963/64) Algebras with a scheme of operators. Mathematische Nachrichten 27 115–132.

Jiménez, R., Orejas, F. and Ehrig, H. (1995) Compositionality and compatibility of parameterization

and parameter passing in specification languages. Math. Struct. in Comp. Science 5 283–314.

Johnstone, P. T. and Paré, R. (1978) Indexed categories and their applications. Springer-Verlag

Lecture Notes in Mathematics 661.

Löwe, M., Ehrig, H., Fey, W. and Jacobs, D. (1991) On the relationship between algebraic mod-

ule specifications and program modules. In: Proc. TAPSOFT. Springer-Verlag Lecture Notes in

Computer Science 494 83–98.

Mahr, B. (1989) Empty carriers: the categorical burden on logic. In: Ehrig, H., Herrlich, H.,

Kreowski, H. J. and Preuß, G. (eds.) Categorical Methods in Computer Science – with Aspects

from Topology. Springer-Verlag Lecture Notes in Computer Science 393 50–65.

Meseguer, J. (1989) General logics. In: Ebbinghaus, H.-D. et al. (ed.) Logic colloquium ’87, Elsevier

Science Publishers B. V., North Holland, 275–329.

Meseguer, J. and Goguen, J. A. (1985) Initiality, induction, and computability. In: Nivat, M. and

Reynolds, J. (eds.) Algebraic Methods in Semantics, Chapter 14, Cambridge University Press

459–541.

Nivela, P. (1987) Semántica de Comportamiento en Lenguajes de Especificatión, Ph. D. thesis, Univer-

sitat Politècnica de Catalunya.

Nivela, P. and Orejas, F. (1987) Behavioural semantics for algebraic specification languages. In:

Proc. ADT-Workshop, Gullane. Springer-Verlag Lecture Notes in Computer Science 332 184–207.

Orejas, F., Nivela, P. and Ehrig, H. (1989) Semantical constructions for categories of behavioural

specifications. In: Categorical Methods in Computer Science. Springer-Verlag Lecture Notes in

Computer Science 393 185–197.

Reichel, H. (1981) Behavioural equivalence – a unifying concept for initial and final specification

methods. In: Proc. 3rd Hungarian Comp. Sci. Conf. 27–39.

Reichel, H. (1984a) Behavioural validity of equations in abstract data types. In: Contributions to

General Algebra 3, Proc. of the Vienna Conf., Teubner 301–324.

Reichel, H. (1984b) Structural Induction on Partial Algebras, Mathematical Research – Mathema-

tische Forschung 18, Akademie-Verlag, Berlin.

Rus, T. (1979) Data Structures and Operating Systems, John Wiley & Sons.

Rus, T. (1990) Steps towards algebraic construction of compilers. Technical report, Univ. of Iowa.

Sannella, D. T. and Tarlecki, A. (1984) Building specifications in an arbitrary institution. In:

Proc. Int. Symposium on Semantics of Data Types. Springer-Verlag Lecture Notes in Computer

Science 173 337–356.

Sannella, D. T. and Tarlecki, A. (1985) Some thoughts on algebraic specification. In: Proc. 3rd

Workshop on Theory and Application of Abstract Data Types, Bremen, Springer, Informatik Fach-

berichte 116 31–38.

Sannella, D. T. and Tarlecki, A. (1987a) On observational equivalence and algebraic specification.

JCSS 34 150–187.

Sannella, D. T. and Tarlecki, A. (1987b) Towards formal development of programs from algebraic

specifications: implementations revisited. In: Proc. Joint Conf. on Theory and Practice of Software

Development, Pisa (Extended Abstract). Springer-Verlag Lecture Notes in Computer Science 249

96–110. (Full Version in Acta Informatica (1988) 25 233–281.)

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

F. Cornelius, M. Baldamus, H. Ehrig and F. Orejas 62

Sannella, D. T. and Wirsing, M. (1983) A kernel language for algebraic specification and implemen-

tation. In: Proc. 1983 Int. Conf. on Foundations of Computation Theory. Springer-Verlag Lecture

Notes in Computer Science 158 413–427.

Tarlecki, A., Burstall, R. M. and Goguen, J. A. (1991) Some fundamental algebraic tools for the

semantics of computation. Part III: Indexed categories. Theoretical Computer Science 91 239–264.

(Also appeared as technical report ECS-LFCS-89-90, Univ. of Edinburgh, 1989.)

Thatcher, J. W., Wagner, E. G. and Wright, J. B. (1978) Data type specification: Parameterization

and the power of specification techniques. In: 10th Symp. Theory of Computing 119–132. (ACM

Trans. Prog. Languages and Systems 4 (1982) 711–732.)

Wand, M. (1979) Final algebra semantics and data type extensions. JCSS 19.

Weber, H. and Ehrig, H. (1986) Specification of modular systems. IEEE Transactions on Software

Engineering SE-12(7) 784–798.

Zilles, S. N. (1974) Algebraic specification of data types. Technical Report 11, MIT Project MAP

Progress Report 28–52.

https://doi.org/10.1017/S0960129598002606 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002606

