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SUMMARY
In this paper, the use of algebraic and trigonometric splines
for the trajectory planning of robot manipulators is dis-
cussed. First, the two methods are analyzed and compared
in detail; then, a strategy, which involves a combined use of
the two schemes to perform sudden changes in a predefined
trajectory (e.g. in case of obstacle avoidance) is proposed.
Results show that the main interest in using trigonometric
splines lies especially in the task of connecting two separate
pieces of cubic splines, as overshoots are significantly
reduced, although the continuity of velocity, acceleration
and (in case) jerk is guaranteed.

KEYWORDS: Trajectory planning; Trigonometric splines; Alge-
braic splines; Real-time obstacle avoidance.

1. INTRODUCTION
The motion of an industrial robot manipulator is generally
specified in terms of the motion of the end-effector in the
Cartesian space. However, from a technological point of
view, the implementation of a motion control system in the
Cartesian space is very difficult, mainly because obtaining
an accurate direct measurement of the end-effector’s
position is a very complex task. Thus, in practical cases the
end-effector’s motion is converted into the joints’ motion by
applying inverse kinematics, and then the control task is
performed in the joint space.1

In many situations, the end-effector’s motion is actually
specified as a sequence of via points, whose number is
determined by taking into account the trade-off between
exactness and computational expense. Then, these via
points are mapped into a set of joint angles/offset (knots)
that have to be subsequently interpolated in the joint space
by means of a selected function. Between the interpolating
functions, (algebraic) cubic splines are widely adopted
because they can assure the continuity of the position,
velocity and acceleration commands for each joint. More-
over, some optimization procedures can be accomplished in
this framework.2–4

Recently, the use of the trigonometric splines, first
introduced by Schoenberg5 in 1964, have also been
proposed in trajectory planning of robot manipulators by
Simon and Isik.6–10 In their very interesting works, Simon

and Isik have stressed the fact that joint trajectories with
continuous velocity, acceleration and jerk and low overshoot
can be generated. Besides, the computational effort is very
low, and an optimization procedure can be adopted for the
selection of the spline parameters in order to minimize an
objective function, (minimum jerk or minimum energy).
Hence, the use of trigonometric splines in the trajectory
planning in the joint space seems to be very promising,
especially to implement a real-time obstacle avoidance
functionality. In any case, there remain some unclear points
that deserve further investigation. For example, the influ-
ence of the order of the trigonometric splines on the overall
result has to be analyzed. In fact, in the Simon and Isik’s
results, only the fourth order splines are considered, i.e. a
continuity of the jerk function is imposed. But in practical
cases the jerk might be discontinuous, although its limita-
tion generally guarantees lower tracking errors and the
excitation of resonances is somewhat prevented. Besides, in
the proposed schemes, the spline intervals are assumed to be
the same, which is a strong assumption in real industrial
automated cells.

In this paper a more detailed analysis of trigonometric
splines from the design point of view is provided, together
with a comparison with algebraic splines. Furthermore, the
main contribution of the paper is the exposition of a new
method which involves both cubic splines and trigonometric
splines and which seems particularly appropriate for real-
time obstacle avoidance. Specifically, trigonometric splines
are employed to connect pieces of cubic splines when the
original cubic splines trajectory is interrupted by a obsta-
cle.

The paper is organized as follows: In Section 2 the use of
both algebraic and trigonometric splines for the trajectory
planning problem is described. In Section 3 some examples
are presented in order to discuss and compare the two
approaches. The combined use of cubic and trigonometric
splines is proposed in Section 4 and illustrated by an
example in Section 5. Conclusions are drawn in the final
section.

2. TRAJECTORY PLANNING WITH SPLINES

2.1. Generalities
The trajectory planning task of a robot manipulator is
generally specified in terms of the motion of the end-
effector in the Cartesian space. In order to implement a
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typical motion controller in the joint space, the trajectory in
the Cartesian space has to be mapped in the joint space by
applying the inverse kinematics. A way to specify a
trajectory is to give a sequence of intermediate points in the
Cartesian space to be passed through by the end-effector
and therefore a corresponding sequence of angles/offsets to
be assumed by each joint at given time instants.

In this context, if it is not strictly necessary that the
manipulator assumes exactly the desired poses, a simple
technique is to connect the via points with linear functions
and then add parabolic blend regions around each via point.
Conversely, if it is required that the robot passes exactly
through the intermediate points, a suitable solution is to use
splines. By choosing an appropriate order of the spline, the
user can guarantee the continuity of velocity, acceleration
and jerk signals along the whole trajectory.

2.2. Algebraic splines
Algebraic splines are widely known and adopted in the
robotics field. In particular, cubic splines are often
employed, as they assure the continuity of velocity and
acceleration signals along the planned motion. Besides, the
parameters are easy to calculate and large oscillations of the
position function and its time derivatives are prevented.
Suppose to have a sequence q=[q0, q1, . . . , qn] of
intermediate positions that the joint has to pass through at
time t=[t0, t1, . . . , tn], respectively. Denote the spline times
as hi:= ti � ti�1, i=1, . . . , n. Consider also that velocity at
time t0 is �0 and at time tn is �n. Then, we can write a set of
polynomial functions:

Qi(t)=ait
3 +bit

2 +cit+di i=1, . . . , n, (1)

that represents the position function linking knot qi�1 and qi.
The values of the 4n coefficients can be determined
considering the following initial and final conditions:

Q1 (t0 )=q0

Q̇1(t0 )=� 0

Qn(tn )=qn

Q̇n(tn )=�n

(2)

and for any intermediate point (i=1, . . . , n�1):

Qi (ti )=qi

Qi +1(ti )=qi

Q̇i(ti )=Q̇i +1(ti )
Q̈i(ti )=Q̈i +1(ti )

(3)

It appears that in this framework, the initial and final
accelerations a0 and an cannot be fixed a priori. In order to
do that, a quintic polynomial for the first and last splines is
required, with the obvious drawback to allow larger
overshoots in these parts of the trajectory and to slightly
increase the number of computations in the control system.
An alternative method is to add two “free” extra-knots in
second and penultimate positions.2

2.3. Trigonometric splines
One of the main advantages claimed for trigonometric
splines is the prevention of large overshoots despite the fact

that the continuity of the function can be imposed until a
high order (for example, by using a fourth-order trigono-
metric spline the continuity of the jerk function is
guaranteed and the overshoots are significantly reduced
with respect to the quartic algebraic splines that satisfy the
same requirement). In general, for a m-order spline, the
position function between two knots can be determined
fixing the values of the derivatives until the m-1 order at the
knots. A clear theoretical advantage of the trigonometric
splines with respect to the algebraic ones is the opportunity
to fix these values (depending on the motion task) without
increasing the overshoots of the trajectory too much.6,7,9

Thus, this seems to be a significant feature, worth to be
exploited for real-time obstacle avoidance algorithms.

The formal definition of a trigonometric spline is the
following:

Definition 1 An m-th order trigonometric spline function
y(t) with a total of 2m constraints in each of the n closed
arcs [ti�1, ti] (i=1, . . . , n) is defined as

y(t)=yi(t) t � [ti�1, ti ] (4)

where yi(t) is given by

yi (t)=ai,0 + �m�1

k=1

(ai,k cos kt +bi,k sin kt )

+ai,m sin m(t��i ) (5)

� i = �2m�1

j=0

�i, j

2m
(6)

and �i, j are the values of t where yi(t) has a constraint
applied.

The existence and uniqueness of these functions are
guaranteed provided that, for each i and j, y(r)

i (�i, j) is not
constrained unless y(r�1)

i (�i, j) is also constrained (r=1, 2,
. . . ), where y(r) denotes the r-th order time derivative of y.
From (5) it appears that there are 2m coefficients for each
segment of the trigonometric spline, so that 2m costraints on
each segment have to be satisfied. They can be chosen to be
y(r)(ti)=y(r)

i , r=0, . . . , m�1, i=0, . . . , n. Of course, it has
also to be y(r)

i (t�
i )=y(r)

i (t+
i ) if the trigonometric spline and its

first (m�1) derivatives have to be continuous. However, by
constraining the values of y(r)

i (ti) rather than simply
requiring continuity, it results that the determination of the
coefficients is decoupled for each spline segment.

In general, each trigonometric polynomial is normalized,
that is, the spline times �i := ti � ti�1 are expressed in radians
according to the following expression

�i =
n �

m hi

Ttot

i=1, . . . , n (7)

where hi is the time interval of the i-th polynomial (in

seconds) and Ttot := �n

i=1

hi is the motion time (in seconds)
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of the whole trajectory. Note also that for each polynomial
we can easily impose ti�1 =0, and hence we have �i = ti. It
appears that if the spline time intervals are assumed to be
equal to each other and we fix m=4, then �i = ti =�/4 and
�i =�/8, i=1, . . . , n. Again, it is worth stressing that once
the spine intervals have been fixed, the determination of the
spline coefficients is easily performed by multiplying a
constant matrix with the vector of the knot angles and
derivatives.9

The setting of the constraints y(r)(ti)=y(r)
i , r=0, . . . ,

m�1, i=0, . . . , n might not be intuitive to the user, but a
useful optimization procedure can be exploited in order to
determine the values that minimize an objective function,
such as the integral of the squared jerk function over the
whole trajectory.6 In this case the optimization problem has
a closed-form solution.

3. COMPARATIVE EXAMPLES
It has been shown in the previous section that the main
advantage of the trigonometric splines over the algebraic
ones is that they allow to fix constraints on the position
function and its derivatives at the knots, rather than
requiring their continuity. In this way, a single segment can
be modified during the motion without recalculating the
whole trajectory, which is a highly desirable feature in real-
time applications (for example in avoiding unexpected
obstacles). If a similar approach is adopted for algebraic
splines then a high-order polynomial is to be employed; this
would clearly result in large overshoots between the knots,
which is unacceptable for robot trajectory planning, espe-

cially if an obstacle needs to be avoided. In this context, the
superiority of the fourth-order trigonometric splines over
the quartic algebraic splines has already been shown in the
works of Simon and Isik.6,9 Therefore, the purpose of this
section is to analyze the use of different order trigonometric
splines determined with different methods for the choice of
the constraints values and to compare the results with the
ones obtained by using the typical cubic splines. As a first
illustrative example, a single link trajectory is considered; it
has to connect the following angles (in degrees): q=[120,
60, 80, 120, 0]. The employed time intervals are 2s for each
polynomial (this case will hereinafter be denoted as
example I) and therefore we are in the situation assumed in
the previous works, where the spline times are assumed to
be the equal to each others. The values of velocity,
acceleration and jerk for the fourth-order trigonometric
splines have been determined according to the optimization
procedure described in [6], which aims at minimizing the
integral of the squared jerk function over the whole
trajectory. The same results, except for the jerk value, have
been also applied to the third-order trigonometric splines
constraints. Results are plotted in Figures 1-4, for the
position (in [deg]), velocity (in [deg/s]), acceleration (in
[deg/s2]) and jerk (in [deg/s3]) profiles, respectively. Note
that for the cubic splines a jerk impulse is actually present
at the beginning and at the end of the trajectory. It can be
noted that the only draw-back of the cubic splines is just the
presence of the discontinuity in the acceleration function at
these points. This can be avoided, as already mentioned, by
adding two free extra-knots in the second and penultimate

Fig. 1. Position functions for the cubic and trigonometric splines. Example I.
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Fig. 2. Velocity functions for the cubic and trigonometric splines. Example I.

Fig. 3. Acceleration functions for the cubic and trigonometric splines. Example I.
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position or,  otherwise, by considering a fifth-order
polynomial for the first and last interval. Especially in the
case of many intermediate knots, this method does not yield
particular problems. From other points of view, cubic
splices still assure better performances, as the overshoots
are less significant with respect to the trigonometric ones
(both of third and fourth order) and the position derivatives
functions are not significantly different.

Another interesting method that has to be considered in
the analysis is to employ different time intervals between
two subsequent knots. With the same knots as before, we
considered the following time intervals: h=[1, 3, 5, 1]. Two
cases emerges for the trigonometric splines: in the first
(example II), the constraints at the knots are evaluated by
considering the spline times equal to each other (i.e. by
considering each time interval equal to Ttot/(n�1). In the
second (example III), the optimization procedure for the
minimization of the jerk has been adapted to consider
different time intervals and the resulting constraint value
have been employed. Results related to the first and second
case are reported in Figures 5–8 and 9–12, respectively. It is
clear that it is not useful to consider the different time
intervals as they are, since in this case the overshoot are
huge and surely not tolerable by the system. If the spline
times are treated as being of the same value, much better
results are obtained, even better than the ones obtained by
using cubic splines. It can be noted in Figure 5 that the best
position function is the one obtained by using the fourth-
order trigonometric spline. However, the superiority of the
trigonometric splines in the position function is paid by

having significantly higher values in the acceleration and
jerk functions (again disregarding the impulses at the
beginning and at the end of the trajectory that are present in
the jerk profile for the cubic spline).

Another significant example is to use time intervals
proportional to the angular displacement between the knots.
In this case the spline times have been selected as h=[3, 1,
2, 6] (example IV). Results are plotted in Figures 13–16 and
show that in this case cubic splines outperform the
trigonometric ones.

In view of the above illustrative examples and of many
others not reported for brevity, the following conclusions
can be drawn:

• for the trigonometric splines, the optimization procedure
(minimum jerk) to determine the constraint values of the
position derivatives at the knots has to be applied,
considering the spline times as equal to each others and
therefore disregarding their actual values;

• if there is some sort of ‘regularity’ in the spline times (i.e.
they are equal to each other or they are proportional to the
angular displacements, then it seems that from a practical
point of view, in general, it is not worth leaving the cubic
splines framework just to impose the continuity of the jerk
function;

• when the splines times are not related to the intermediate
points of the trajectory, then it might be worth employing
the trigonometric splines, taking into account that they
give smaller values of the overshoots but also bigger
values of the acceleration and jerk functions;

Fig. 4. Jerk functions for the cubic and trigonometric splines. Example I.
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Fig. 5. Position functions for the cubic and trigonometric splines. Example II.

Fig. 6. Velocity functions for the cubic and trigonometric splines. Example II.
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Fig. 7. Acceleration functions for the cubic and trigonometric splines. Example II.

Fig. 8. Jerk functions for the cubic and trigonometric splines. Example II.

Trajectory planning 617

https://doi.org/10.1017/S0263574700002721 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574700002721


Fig. 9. Position functions for the cubic and trigonometric splines. Example III.

Fig. 10. Velocity functions for the cubic and trigonometric splines. Example III.
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Fig. 11. Acceleration functions for the cubic and trigonometric splines. Example III.

Fig. 12. Jerk functions for the cubic and trigonometric splines. Example III.
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Fig. 13. Position functions for the cubic and trigonometric splines. Example IV.

Fig. 14. Velocity functions for the cubic and trigonometric splines. Example IV.

Trajectory planning620

https://doi.org/10.1017/S0263574700002721 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574700002721


Fig. 15. Acceleration functions for the cubic and trigonometric splines. Example IV.

Fig. 16. Jerk functions for the cubic and trigonometric splines. Example IV.
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Fig. 17. Position functions when the original trajectory is modified. Example V.

Fig. 18. Velocity functions in case the original trajectory is modified. Example V.
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Fig. 19. Acceleration functions when the original trajectory is modified. Example V.

Fig. 20. Jerk functions in case the original trajectory is modified. Example V.
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Fig. 21. Position functions in case the original trajectory is modified. Example VI.

Fig. 22. Velocity functions in case the original trajectory is modified. Example VI.

Trajectory planning624

https://doi.org/10.1017/S0263574700002721 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574700002721


Fig. 23. Acceleration functions when the original trajectory is modified. Example VI.

Fig. 24. Jerk functions in case the original trajectory is modified. Example VI.
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Fig. 25. Position functions in case the original trajectory is modified. Example VII.

Fig. 26. Velocity functions in case the original trajectory is modified. Example VII.
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Fig. 27. Acceleration functions when the original trajectory is modified. Example VII.

Fig. 28. Jerk functions in case the original trajectory is modified. Example VII.
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Fig. 29. Position functions in case the original trajectory is modified. Example VIII.

Fig. 30. Velocity functions in case the original trajectory is modified. Example VIII.
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Fig. 31. Acceleration functions when the original trajectory is modified. Example VIII.

Fig. 32. Jerk functions in case the original trajectory is modified. Example VIII.
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• in general, for a given trajectory it cannot be said a priori
if third-order trigonometric splines are better than the
fouth-order ones. Thus, for each case it is convenient to
evaluate both methods before choosing the one to be
applied.

4. COMBINED USE OF CUBIC AND
TRIGONOMETRIC SPLINES
It has been said that one of the most important features of
the trigonometric splines is the practical feasability to fix the
constraint values at the knots and that therefore they seem
particularly suitable to implement real-time obstacle avoid-
ance algorithms. In this paper, more than the use of a full
trigonometric splines framework for this purpose, it is
suggested to employ a mixed algebraic/trigonometric
approach.

We assume to have a number of via points to pass through
and that a trajectory has been already planned using cubic
splines. Then, while the robot is moving, the value of a
particular knot is changed, before the robot passes through
it. In other words, the trajectory planner substitutes one knot
with another one, e.g. if an unexpected obstacle is present in
the original trajectory and the robot might collide with it.
The new knot can be determined by an obstacle-avoidance
algorithm. The discussion of these kind of algorithms is
beyond the aims of this paper and therefore it will be
assumed that the value of the new knot has already been
somehow determined.

Specifically, we suppose that the original ith knot value
qi :=qold

i is replaced with knot qnew
i . In this context, it seems

reasonable to adopt trigonometric splines to connect knots
qi�1, q

new
i and qi+1, in order to preserve the continuity of the

acceleration reference function, without providing large
overshoots (which would occur if we employ algebraic
splines since two polynomials of the 5th order are needed),
which, clearly, would very likely cause a collision. The use
of a third order trigonometric spline means that the
continuity of the jerk function is not obtained. Conversely,
this can be imposed by employing fourth order trigono-
metric splines.

5. ILLUSTRATIVE EXAMPLES
In this section, a few examples are given to illustrate the
methodology previously described. The original inter-
mediate points are the same as the ones considered in
Section 3. Here we impose different spline times, that is
h=[2, 1, 2, 3]. First, we consider a relatively small change
that occurs in the third knot, for which the value of 80
degrees is replaced by 100 degrees. Results (example V) are
reported in Figures 17–20, where both third and fourth order
trigonometric splines have been considered. It has to be
stressed that in this case the spline times are left unchanged.
It is interesting to compare this case with the one in which,
taking into account the results exposed in Section 4, the
time intervals related to the trigonometric splines are made
equal to each other, i.e. we set t2 =1.5 and t3 =1.5 (note that
in the original trajectory it is t2 + t3 =3). In other words, in
avoiding the obstacle, the trajectory is locally modified
without modifying anything of the other parts of the motion

that are not involved by the presence of the obstacle. Results
related to this case (example VI) are plotted in Figures
21–24.

In order to complete the analysis, a case in which a big
change in the trajectory occurs is considered. Specifically,
the third knot is replaced with qnew

2 =180 degrees. Results
concerning the case in which the spline times are left
unaltered (example VII) are shown in Figures 25–28, while
the ones in which the time intervals are equalized are
exposed in Figures 29–32.

It is worth noting that, in the above figures, the new
(trigonometric) functions have not to be compared with the
old (algebraic) ones since, of course the position reference
signal is different by force of circumstance. In any case, the
original trajectory has been left in the figures for the sake of
clarity.

From the above results, it comes out that the proposed
scheme is effective in each situation, but it is highly
preferable to equalize the spline times, as in these cases the
required actuators’ effort is much lower. No significant
differences emerge between third and fourth order trigono-
metric splines, the latter generally leading to a slightly
higher value of the maximum of the acceleration profile.

Finally, it has to be stressed that the limits of the actuators
and of the mechanical structure of the manipulator have not
been taken into account in the performed analysis. Obvi-
ously, if the limits are exceeded in any part of the calculated
motion, it is necessary to increase some of the spline times
or to select different via points. This task has to be
accomplished in general by a higher level of the trajectory
planner, which can exploit the combined use of cubic and
trigonometric splines in a specific function.

6. CONCLUSIONS
In this paper, the use of algebraic and trigonometric splines
for the trajectory planning or robot manipulators have been
analyzed. Specifically, the works of Simon and Isik have
been significantly improved by making a fair comparison
between the two kinds of splines and by discussing the use
of trigonometric splines of different order and with different
time intervals. As a result, a detailed framework about the
use of such methods has emerged. Moreover, a very useful
technique, which combines the use of both cubic and
trigonometric splines, has been proposed and investigated.
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