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Abstract

Nonlinear propagation of ion acoustic waves has been studied in unmagnetized quantum
(degenerate) plasma in the presence of an ion beam using the one-dimensional quantum
hydrodynamic model. The Korteweg–de Vries (K–dV) equation has been derived by using
the reductive perturbation technique. The solution of ion acoustic solitary waves is obtained
from the K–dV equation. The theoretical results have been analyzed numerically for different
values of plasma parameters and the results are presented graphically. It is seen that the for-
mation and structure of solitary waves are significantly affected by the ion beam in quantum
plasma. The solitary waves will be compressive or rarefactive depending upon the values of
velocity, concentration, and temperature of the ion beam. The critical value of ion beam den-
sity for the nonexistence of solitary wave has been numerically estimated, and its variation
with velocity and temperature of ion beam has been discussed graphically. The results are
new and would be very useful for understanding the beam–plasma interactions and the for-
mation of nonlinear wave structures in dense quantum plasma.

Introduction

The most general class of nonlinear wave structures is solitary waves or soliton having approx-
imately self-consistent wave amplitudes and phases. Solitons are important and extensively
studied because a whole class of nonlinear differential equations encountered in plasma phys-
ics, solid-state physics, particle physics, hydrodynamics, nonlinear optics, and biology are seen
to support the solutions of solitary waves. In the last few years, solitary waves in plasma have
been studied theoretically and experimentally by various authors. Washimi and Taniuti (1966)
first theoretically studied ion acoustic solitary waves (IASWs) in cold collisionless unmagne-
tized plasma deriving the K–dV equation using the reductive perturbation technique. The sol-
itary wave in plasma was observed experimentally by Ikezi (1973), Lonngren (1983) and
others. A lot of theoretical works on the nonlinear propagation of ion acoustic (IA) waves
have been done by various authors incorporating different parameters in the plasma example,
ion temperature (Tagare, 1973), two-temperature electrons (Ghosh et al., 2008), resonant elec-
trons (Schamel, 1973), gravitation (Paul et al., 2017), negative ion (Chattopadhyaya and Paul,
2012), positrons (Paul et al., 2012), nonthermal electrons (Gill et al., 2004), kappa-distributed
electron (Baluku and Hellberg, 2012), Tsallis-distributed electrons (Bala et al., 2017), etc. and
have shown that these plasma parameters have considerable impact on the excitation of soli-
tary waves. However, in recent years, there is considerable interest in the nonlinear propaga-
tion of waves in a plasma consisting of electron/ion beams. The studies of the propagation of
waves in beam plasma are important in magnetospheric and solar physics (Goldman, 1983;
Hoffmann and Evans, 1968). The nonlinear structure of a plasma may change considerably
in the presence of electron/ion beams. An important property of an electron beam plasma
is that it can change the propagation characteristic of the Trivelpiece–Gould (TG) solitons
(Krivoruchko et al., 1975). The effects of an ion beam on the motion of solitons in an ion
beam-plasma system has been studied by Gell and Roth (1977). The effects of ion beams
are more important on the excitation of ion acoustic solitary waves in plasma. Abrol and
Tagare (1979) obtained a modified K–dV equation for an IASW in an ion–beam–plasma sys-
tem with cold ions, beam ions, and nonisothermal electrons. They investigated the effect of the
resonant electrons, both trapped and free electrons, of the plasma–ion to beam–ion mass ratio
and of the beam–ion concentration on the amplitude and width of the solitary wave. Later,
many authors (Karmakar et al., 1988; Das and Singh, 1991; El-Labany, 1995; Huibin and
Kelin, 2009; Zank and McKenzie, 1998; Das et al. 2011; Misra and Adhikary, 2011; Das,
2012; Das and Deka, 2015) have studied solitary waves in ion beam plasma and have obtained
some fascinating results which are important in different situations in laboratory and space
plasma. Recently, Kaur et al. (2017) have investigated the nonlinear propagation of ion
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acoustic solitary waves (IASWs) in an unmagnetized plasma com-
posed of a positive warm ion fluid, two-temperature electrons
obeying kappa-type distribution, and penetrated by a positive
ion beam. They have used the reductive perturbation method to
derive the nonlinear equations, namely K–dV, modified K–dV
(mK–dV), and Gardner equations. The characteristic features of
both compressive and rarefactive nonlinear excitations from the
solution of these equations are studied and compared in the con-
text with the observation of the He+ beam in the polar cap region
near solar maximum by the Dynamics Explorer 1 satellite. It is
observed that the superthermality and density of cold electrons,
number density, and temperature of the positive ion beam cru-
cially modify the basic properties of compressive and rarefactive
IASWs in the K–dV and mK–dV regimes. It is further analyzed
that the amplitude and width of Gardner solitons are appreciably
affected by different plasma parameters. The characteristics of
double layers (DLs) are also studied in detail below the critical
density of cold electrons. The theoretical results may be useful
for the observation of nonlinear excitations in laboratory and
ion beam-driven plasmas in the polar cap region near solar max-
imum and polar ionosphere as well in Saturn’s magnetosphere,
solar wind, pulsar magnetosphere, etc., where the population of
two-temperature superthermal electrons is present. More recently,
Kaur et al. (2018) have investigated the propagation characteristics
of dust acoustic solitary and rogue waves in an unmagnetized ion
beam plasma with electrons and ions following the kappa-type
distribution in nonplanar geometry. The reductive perturbation
method is employed to derive the cylindrical/spherical K–dV
equation, which is further transformed into a standard K–dV
equation by neglecting the geometrical effects. Using new stretch-
ing coordinates, the nonlinear Schrödinger equation has also been
derived from the standard K–dV equation to study the different
order rational solutions of dust acoustic rogue waves. The impact
of various physical parameters on the characteristics of dust
acoustic solitary waves is elaborated specifically in nonplanar
geometry. Further, the effects of ion beam and superthermality
of electrons/ions on the characteristics of rogue waves are studied.
It is predicted that the results obtained may be useful in compre-
hending a variety of phenomena in Earth’s magnetosphere polar
cap region where the presence of positive ion beam has been
detected and also in other regions of space/astrophysical environ-
ments where dust along with superthermal electrons and ions
exists.

However, in recent years, researchers are very much interested
to study the propagation of waves in a quantum plasma because
quantum effects become important in a variety of environments,
such as in intense laser–solid density plasma interaction experi-
ments, dense astrophysical and cosmological environments, ultra-
small electronic devices, and metal nanostructures. The recent
developments in nanoscience (Manfredi et al., 2009), biophoton-
ics (Barnes et al., 2003), fiber optics (Agrawal, 1989), quantum
confinement (Ang et al., 2003), ultracold plasmas (Killian,
2007), etc., the study has gained momentum in a totally new
direction. The quantum effects are also important in laboratory-
produced ultra-dense plasmas (Kremp et al., 1999) and laser-
based inertial fusion experiments (Azechi, 2006) as well as the
interior of Jovian planets, neutron stars (Shapiro and Teukolsky,
1983), and white dwarfs (Madelung, 1927), etc., where the density
is very high. Quantum plasmas show numerous nonlinearities
which are absent in classical plasmas. This has led to the investi-
gation of waves in quantum plasma more important than ever.
There have been many modes of waves in plasmas like ion

acoustic waves (IAWs), electron acoustic waves, dust acoustic
waves, dust ion acoustic waves, electron plasma waves, and
shock waves. Using the Quantum Hydrodynamic (QHD)
model, Haas et al. (2003) has studied the importance of the
role of quantum diffraction in a linear and nonlinear regime.
They adopted an equation of state pertaining to a zero-
temperature Fermi gas for the electrons by disregarding pressure
effects for the ions. By an appropriate rescaling of the variables,
they identified a nondimensional parameter H, proportional to
quantum diffraction effects. The system is shown to support linear
waves, which, in the limit of small H, resemble the classical IAWs.
In the weakly nonlinear limit, the quantum plasma is shown to
support waves described by a deformed K–dV equation which
depends in a nontrivial way on the quantum diffraction parameter
H. In the fully nonlinear regime, the system also admits traveling
waves which can exhibit periodic patterns. The works of Haas
et al. (2003) have encouraged a large number of authors to
study the nonlinear propagation of acoustic waves (e.g., solitary
waves and modulation instability) in quantum plasma. We have
here mentioned some of the important works on solitary waves
in quantum plasma. Ali and Shukla (2006) have considered a one-
dimensional QHD model for a three-species quantum plasma to
derive the K–dV equation incorporating quantum corrections and
studied the nonlinear properties of dust acoustic solitary waves.
They examined the quantum mechanical effects numerically
both on the profiles of the amplitude and the width of dust acous-
tic solitary waves. It is found that the amplitude remains constant
but the width shrinks for different values of a dimensionless elec-
tron quantum diffraction parameter H. Subsequently, Ali et al.
(2007) have investigated the linear and nonlinear properties of
the IAWs by using the QHD equations together with the
Poisson equation in a three-component quantum electron–posi-
tron–ion plasma. They have derived the linear dispersion relation,
the K–dV equation, and an energy equation containing quantum
corrections. They have also performed the computational investi-
gations to examine the quantum mechanical effects on the linear
and nonlinear waves. It is found that both the linear and nonlin-
ear properties of the IAWs are significantly affected by the inclu-
sion of the quantum corrections. Later, Misra and Bhowmik
(2007) have considered a nonplanar spherical geometry to study
the nonlinear properties of ion acoustic (IA) waves in an elec-
tron–ion quantum plasma with the effects of quantum correc-
tions. Using the QHD model and standard reductive
perturbation method, they derived the K–P equation having a var-
iable coefficient and examined numerically the importance of
quantum mechanical effects on the compressive and rarefactive
solitons. It is found that H plays a significant role in the formation
of compressive and rarefactive solitons. A critical value of H is
also found which depends on the phase velocity of the wave
and the ion to electron Fermi temperature ratio, for which the sol-
iton formation ceases to exist. Subsequently, Mushtaq and Khan
(2007) have studied ion acoustic solitary wave with weakly trans-
verse perturbations in quantum electron–positron–ion plasma
using the QHD model. They have derived the linear dispersion
relation in the linear regime and the K–P equation in the nonlin-
ear regime. It is found that compressive solitary wave can propa-
gate in this system. The quantum effects are also studied
graphically for both the linear and nonlinear profiles of ion acous-
tic wave. Using the energy consideration method, conditions for
the existence of stable solitary waves are obtained. It is found
that stable solitary waves depend on quantum corrections, posi-
tron concentration, and direction cosine of the wave vector.
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Later, Sah and Manta (2009) have investigated the nonlinear wave
structure of electro-acoustic waves (EAWs) in a three-component
unmagnetized dense quantum plasma consisting of two distinct
groups of electrons (one inertial cold electron and other inertia-
less hot electrons) and immobile ions. Using one-dimensional
QHD and the standard reductive perturbation technique, they
derived the K–dV equation governing the dynamics of EAWs.
Both compressive and rarefactive solitons along with periodical
potential structures are found to exist for various ranges of
dimensionless quantum parameter H. The quantum mechanical
effects are also examined numerically on the profiles of the ampli-
tude and the width of electro-acoustic solitary waves. It is
observed that both the amplitude and the width of electro-
acoustic solitary waves are significantly affected by the parameter
H. Akbari-Moghanjoughi (2010) has investigated large-amplitude
IASW in a degenerate dense electron–positron–ion plasma con-
sidering the ion temperature as well as electron/positron degener-
acy effects. It is shown that the ion temperature effects play an
important role in the existence criteria and allowed a
Mach-number range in such plasmas. He has also pointed out
the fundamental difference in the existence of supersonic IASW
propagations between degenerate plasmas with nonrelativistic
and ultra-relativistic electrons and positrons. Chandra et al.
(2012) have theoretically studied the linear and nonlinear propa-
gation of electron plasma wave in a two-component unmagne-
tized dense quantum plasma with streaming of ions both
analytically and numerically using one-dimensional QHD. It
has been shown that the quantum effect modifies the linear dis-
persion character of the electron plasma waves in the presence
of streaming motion and makes the possibility of two distinct
modes. They have also derived the K–dV equation and have
shown that both compressive and rarefactive solitary waves
would be excited in the model plasma on some critical values
of the quantum diffraction parameter. Dip et al. (2017) have
investigated higher-order nonlinearity of the EAWs, specifically
IA waves in an unmagnetized, collisionless, quantum electron–
positron–ion plasma. They derived the mK–dV equation. The
plasma system is supposed to be formed of positively charged
inertial heavy ions, inertialess electrons and positrons to analyze
the solitary waves (SWs), and the standard Gardner (SG) equation
to analyze the higher-order SWs as well as DLs. The basic features
(namely, amplitude, width, phase speed, etc.) of the IA SWs and
DLs are examined. The comparison between the mK–dV SWs
and SG SWs is also made. It is found that the amplitude,
width, and phase speed of the IA SWs and DLs are significantly
modified by the effects of both Fermi temperatures as well as pres-
sures and Bohm potentials of electrons and positrons.

However, the propagation of ion acoustic and EAWs in quan-
tum (degenerate) plasma having electron beam or ion beam
would give fascinating results which are not studied yet critically,
though many authors studied the wave propagation in nondegen-
erate/classical plasma (Yajima and Wadati, 1990; Mondal et al.,
1998; El-Labany, 1995; Zank and McKenzie, 1998; Bailung
et al., 2010; Saberian et al., 2013; Danehkar, 2018). So, in the pre-
sent paper, we are interested to study the nonlinear propagation of
ion acoustic waves in a quantum plasma consisting of warm ion
beams. Using the reductive perturbation method, we have derived
the K–dV equation and have obtained the solution of ion acoustic
solitary in the quantum plasma having nonrelativistic ion beam.
The effects of ion beam parameters, that is ion beam density,
ion beam temperature, and ion beam velocity, on the solitary
waves are critically discussed with graphical representation. The

quantum diffraction parameter H has a significant role in the
width of solitary waves in the quantum plasma. For H < 2 and
H > 2, the width may be increased or decreased depending upon
the values of ion beam parameters.

Basic equations

We consider that the quantum plasma is unmagnetized and col-
lissionless and it consists of positive ions, beam ions, and inertia-
less electrons. All species of the plasma are assumed to follow the
Fermi–Dirac statistics. The positive ions and positive beam ions
are considered to be singly ionized. Ion acoustic wave is a low-
frequency wave, in which the restoring force comes from the pres-
sure of inertialess electrons and the ion masses provide the driv-
ing force to maintain the wave. The electrons are considered
inertialess by assuming that the phase velocity of ion acoustic
wave is much less than the Fermi velocity of electron and much
greater than the Fermi velocities of positive and beam ions. We
assume that the plasma particles behave as a one-dimensional
Fermi gas at zero temperature and therefore the pressure law is:

pj =
mjV2

Fj

3n2j0
n3j (1)

where j = e for electrons, j = i for ions, and j = b for beam ions; mj

is the mass; VFj =
�����������
2kBTFj/mj

√
is the Fermi speed, TFj is the Fermi

temperature, and kB is the Boltzmann constant; nj is the number
density with the equilibrium value nj0. vpe =

������������
4pn0e2/me

√
is the

electron plasma oscillation frequency and VFe is the Fermi ther-
mal speed of electrons.

The normalized equations governing the plasma dynamics are:

0 = ∂f

∂x
− ne

∂ne
∂x

+H2

2
∂

∂x
1���
ne

√ ∂2
���
ne

√
∂x2

[ ]
(2)

∂ni
∂t

+ ∂(niui)
∂x

= 0 (3)

∂

∂t
+ ui

∂

∂x

( )
ui = − ∂f

∂x
− sini

∂ni
∂x

(4)

∂nb
∂t

+ ∂(nbub)
∂x

= 0 (5)

∂

∂t
+ ub

∂

∂x

( )
ub = −m

∂f

∂x
− msbnb

∂nb
∂x

(6)

∂2f

∂x2
=xne − ni − (1− x)nb (7)

It is to be mentioned that the following normalization has been
used in the above equations:

x � xvpi

VFi
, t � tvpi, w � ew

2kBTFj
, nj �

nj
n0

and uj �
uj
VFe
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and H = h− vpe/2kBTFe is a nondimensional quantum parameter
proportional to the quantum diffraction and is equal to the
ratio between the plasma energy h− vpe (energy of an elementary
excitation associated with an electron plasma wave) and
the Fermi energy kBTFe; χ = ne0/ni0 is the ratio of unperturbed
electron density and ion density; μ =mi/mb is the ratio of
positive ion and beam ion masses and σi,b = TFi,b/TFe is the
ratio of ion (beam) Fermi temperature to electron Fermi
temperature.

K–dV equation

In order to investigate the behavior of IA, we make the following
perturbation expansions for the field quantities ne, ni, nb, ue, ui,
ub, and w about their equilibrium values:

ne
ue
ni
ui
nb
ub
f

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

ne0
0

ni0
0

nb0
ub0
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 1

ne1
ue1
ni1
ui1
nb1
ub1
f1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 12

ne2
ue2
ni2
ui2
nb2
ub2
f2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ . . . (8)

where ne0 = χ, nb0 = 1− χ, and ni0 = 1 which are obtained from
the equilibrium condition of densities after normalization.

To get the desired K–dV equation describing the nonlinear
behavior of ion acoustic waves, we use the standard reductive per-
turbation technique (Washimi and Taniuti, 1966). We introduce
the usual stretching of the space and time variables:

j = 11/2(x − Vpt) and t = 13/2t (9)

where Vp is the phase speed normalized by electron Fermi speed
VFi and ε is a smallness parameter measuring the dispersion and
nonlinear effects.

Using Eq. (9), Eqs (2)–(7) are written in terms of the
stretched coordinates ξ and τ and then the perturbation expan-
sions (8) are substituted. Solving the lowest-order equations in
ε (i.e., ε3/2), we obtain the linear long-wave phase speed Vp in
terms of plasma parameters after using the boundary
conditions:

x− 1
V2
p − si

− (1− x)m
[(Vp − ub0)2 − sb(1− x)2] = 0 (10)

Simplifying Eq. (10), we obtain the following equation:

c4V
4
p − 2c3V

3
p + c2V

2
p + 2c1Vp + c0 = 0 (11)

where

c4 = 1

c3 = b2/2

c2 = −[b1 − b2 − b3 + m(1− x)]/x
c1 = [b2(b1 − 1)]/2x
c0 = −[b3(b1 + 1)]/x
b3 = [u2b0 − sb(1− x)2]
b2 = 2ub0
b1 = si

Equation (11) is a bi-quadratic equation in Vp and it gives four
values of phase speed of the ion acoustic wave in quantum plasma
(real or imaginary). The four values of Vp from the above
bi-quadratic equation are obtained as follows:

Vp = 1
2
[(c3 + d1) +

������������������������
(d1 + c3) − 4(d2 + d3)

√

Vp = 1
2
[(c3 + d1) −

������������������������
(d1 + c3) − 4(d2 + d3)

√

Vp = 1
2
[(c3 − d1) +

������������������������
(d1 − c3) − 4(d2 − d3)

√

Vp = 1
2
[(c3 − d1) −

������������������������
(d1 − c3) − 4(d2 − d3)

√

(12)

where

d21 = c23 − c2 + 2d2
d1d3 = c1 + c3d2

d23 = d22 − c0

d2 = 1
2
(d4 +

����
(d24

√
− d5)

[ ]1/3
+ 1

2
(d4 −

����
(d24

√
− d5)

[ ]1/3
+ 1
6
c2

d4 = 1
6
c2(c0 + c1c3) + 1

108
c32 −

1
2
(c0c2 − c0c

2
3 − c21)

d5 = 4
729

3(c0 + c1c3) + 1
4
c22

[ ]2

From Eq. (12), the phase speed of IAW in quantum plasma in
the presence of ion beam can be studied analytically and numer-
ically, and the effects of plasma parameters on the phase speed
would be understood.

Now, to derive the K–dV equation, we use the stretching coor-
dinates given by Eq. (9). Taking the terms of ϵ5/2, we obtain from
Eqs (2)–(7),

0 = ∂w2

∂j
− ne0

∂ne2
∂j

− ne1
∂ne1
∂j

+H2

4
∂3n(1)e

∂j3
(13)

∂ni1
∂t

− Vp
∂ni2
∂j

+ ni0
∂ui2
∂j

+ ∂

∂j
(ni1ui1) = 0 (14)
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∂ui1
∂t

− Vp
∂ui2
∂j

+ ui1
∂ui1
∂j

= − ∂w2

∂j
− sini0

∂ni2
∂j

− sini1
∂ni1
∂j

(15)

∂nb1
∂t

− (Vp − ub0) ∂ni2
∂j

+ nb0
∂ui2
∂j

+ ∂

∂j
(nb1ub1) = 0 (16)

∂ub1
∂t

− (Vp − ub0) ∂ub2
∂j

+ ub1
∂ub1
∂j

= −m
∂w2

∂j
− sbmnb0

∂nb2
∂j

− sbmnb1
∂nb1
∂j

(17)

∂2w1

∂j2
= xne2 − ni2 − (1− x)nb2 (18)

Differentiating Eq. (18) with respect to ξ once more, we get

∂3w1

∂j3
=x

∂ne2
∂j

− ∂ni2
∂j

− (1− x) ∂nb2
∂j

(19)

Putting the first-order values of ne1, ni1, nb1, ui1, ub1 in terms of
ϕ1 in Eqs (13)–(18) and then eliminating ne2, ni2, nb2, ue2, ui2, ub2,
ϕ2, the following K–dV equation in quantum plasma having ion
beams has been obtained from (19):

∂f1

∂t
+ Af1

∂f1

∂j
+ B

∂3f1

∂j3
= 0 (20)

where

B = (H2 − 4)(V2
p − si)2(V2

b − msb)
4[2xVp(si − V2

p − (1/x))(V2
p − si) − 2Vp(V2

b − msb)
(20b)

where Vb = Vp− ub0 and the parameters μ, σi, σb, χ, ub0, H, and
Vp are defined earlier.

It is known that the solitary wave structure is formed due to
the balance between the dispersive effect and the nonlinear effect.
The relative strength of these two effects determines the

characteristic of such solitary wave structure. The coefficients A
of the nonlinear term and coefficient B of the dispersion term
thus play a crucial role in determining the solitary wave structure.

To find the steady-state solution of the K–dV equation [Eq.
(20)], the independent variables ξ and τ are transformed into
one variable η = ξ−U τ where U is the normalized constant
speed of the wave frame. Applying the boundary conditions: as
η→ ±∞; (i) w1→ 0, (ii) (dw1/dη)→ 0, (iii) (d2w1/dη

2)→ 0, the
solution is obtained as

w1 = w0 sec h
2 h

D

( )
(21)

where the amplitude w0 and width Δ of the solitary structure are
given by:

w0 =
3U
A

, D =
���
4B
U

√
(22)

For the positive value of A, the solitary wave will be compres-
sive and the negative value of A will generate the rarefactive soli-
tary wave. Since A is independent of H, the amplitude of the
solitary wave will remain the same for any value of H. On the
other hand, the width of the solitary wave depends on H and
other plasma parameters σi, σb, nb0, ub0, μ.

Results and discussions

We have numerically analyzed the behavior of ion acoustic soli-
tary waves in quantum plasma in the presence of an ion beam
from the K–dV equation [Eq. (20)] and its solution is given by
Eq. (21). It is seen that the structure of solitary waves depends
on the nonlinear coefficient (A) and the width depends on dis-
persion coefficient (B). The characteristics of solitary waves
depend on the various plasma parameters, namely, velocity
(ub0), concentration (nb0), and temperature (σb) of the ion
beam. For the numerical estimation we have considered a model
quantum plasma and have used the value of quantum diffraction

diffraction (H ) from Hass et al. (2003) and Chandra et al.
(2013); and for ion beam velocity from Kaur et al. (2017). The
results obtained from numerical estimation for the variations of
A and B, the structure and width of solitary waves are given below.

Variation of the coefficients of the nonlinear term and the
dispersive term

It is seen from the K–dV equation [Eq. (20)] that the coeffi-
cient A of the nonlinear term depends on the plasma

A = xm(si − V2
p )(V2

p − si)2(V2
b − msb)2

(V2
p − si)(V2

b − sb)[2xmVp(si − V2
p − (1/x))(V2

p − si) − 2mVp(V2
b − msb)]

− m(si + 3V2
p )(V2

b − m2sb) + xm2(msb + 3V2
b )(si − V2

p − (1/x))(V2
p − si)2

(V2
p − si)(V2

b − msb)[2xmVp(si − V2
p − (1/x))(V2

p − si) − 2mVp(V2
b − msb)]

(20a)
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parameters, that is μ, σi, σb, χ, ub0 but diffraction parameter H
has no effect on A; whereas the coefficient B of dispersive term
depends on the plasma parameters including quantum diffrac-
tion parameter H. Thus, the nonlinear and dispersion coeffi-
cients get modified by the ion beam, quantum diffraction
effect, and the quantum statistical effect through electron–
ion Fermi temperatures. The nonlinear coefficient A has
been numerically estimated for a model quantum plasma for
plasma parameters related to ion beam and is graphically
shown in Figure 1a–1c.

Figure 1a shows the variation in the nonlinear coefficient (A)
with ion beam temperature (σb) for different values of ion beam
density (nb0) in a quantum plasma having fixed values of other
parameters as σi = 0.01, ub0 = 0.5, H = 0.1, Vp = 1.6, μ = 1 (H+

ion beam).
It is seen that the nonlinear coefficient (A) becomes negative

or positive depending on the values of ion beam temperature.
The negative values of A indicate that the solitary waves are rar-
efactive and, for positive values of A, the solitary waves will be
compressive. The nonlinear coefficient A decreases up to the cer-
tain value of ion beam temperature (σb≈ 1.2) and then it is sud-
denly increased to a maximum positive value and finally it
decreases slowly with the increase of ion beam temperature keep-
ing a positive value.

Similarly, the variation of A with ion beam velocity (ub0) for
different values of velocity ion beam density (nb0) is shown in
Figure 1b in a quantum plasma with fixed values of other param-
eters as H = 0.1. Vp = 1.6, σi = 0.1, σb = 0.1, μ = 1.

It is seen from Figure 1b that the nonlinear coefficient (A)
becomes negative or positive depending on the values of ion
beam velocity. Therefore, the solitary waves will be rarefactive
(compressive) when A < 0 (A > 0). It is interesting to see that
the nonlinear coefficient A decreases up to the certain value of
ion beam velocity (ub0≈ 1.3) and then it is suddenly increased
to a maximum positive value and finally it starts to decrease
with the increase of the ion beam velocity keeping a positive
value. Moreover, the nonlinear term is seen to increase with the
increase of the ion beam density (nb0).

The variation in the nonlinear coefficient (A) with ion beam
velocity (ub0) for different ion beam temperatures (σb) can be
understood from Figure 1c for a quantum plasma having fixed
values of σi = 0.01, nb0 = 0.5, H = 0.1, Vp = 1.6, μ = 1.

It is observed that the nonlinear coefficient A becomes
positive or negative depending upon the values of ion
beam velocity and ion beam temperature. The positive values
of A indicate that the solitary wave will be compressive and
the negative value of A means the rarefactive solitary will be
excited.

Similarly, the dispersion coefficient (B) is numerically esti-
mated for a quantum plasma and its variation with the quantum
diffraction parameter H and the parameters related to the ion
beam are graphically shown in Figure 2a–2c.

Figure 2(a) shows the variation of B with ion beam velocity
(ub0) and H in a quantum plasma having fixed values of σi =
0.1, σb = 0.1, ub0 = 0.5, Vp = 1.6, μ = 1.

It is seen that B is significantly affected by H. The coefficient B
is negative and it increases with ion beam velocity for H < 2 and B
= 0 for H = 2. But, B is positive and it decreases with ion beam
velocity for H > 2.

In Figure 2b, the variation of B with ion beam temperature for
different values of H is shown for a quantum plasma having fixed
values of σi = 0.01, ub0 = 0.5, nb0 = 0.5, Vp = 1.2, μ = 1.

In this case also, B is negative and it increases with ion beam
temperature for H < 2 and B = 0 for H = 2. But, B becomes posi-
tive and it decreases with ion beam temperature for H > 2.

Fig. 1. (a) Variation of Nonlinear coefficient with ion beam temperature (σb) for dif-
ferent value of ion beam density (nb0) in quantum plasma with fixed values of plasma
parameters σi = 0.01, ub0 = 0.5, Vp =1.6, μ = 1 (H+ ion beam). (b) Variation of nonlinear
coefficient with ion beam velocity (ub0) for different value of ion beam density (nb0) in
quantum plasma with fixed values of plasma parameters Vp =1.6, σi = 0.1, σb = 0.1, μ =
1 (H+ ion beam). (c) Variation of nonlinear coefficient with ion beam velocity (ub0) for
different value of ion beam temperature (σb) in quantum plasma with fixed values of
plasma parameters σi = 0.01, nb0 = 0.5, Vp = 1.6, μ = 1 (H+ ion beam).
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The variation of B with nb0 and H is shown in Figure 2c in a
quantum plasma having fixed values of σi = 0.01, σb = 0.1, nb0 =
0.5, Vp = 1.2, μ = 1.

It is seen that B is negative for H < 2 and it increases with the
increase of nb0. The coefficient B = 0 when H = 2. For H > 2, the
diffraction coefficient B is positive and it decreases with the
increase of nb0.

Ion acoustic solitary waves

To understand the nature of ion acoustic solitary waves, the pro-
files of solitary waves are drawn in the quantum plasma in the
presence of an ion beam for different values of velocity, density,
and temperature of the beam. In Figure 3a, the structure of soli-
tary waves is shown with a variation of ub0 in the quantum plasma
having parameters (dimensionless) σi = σb = 0.1, nb0 = 0.5, Vp =
1.6, μ = 1.

It is observed that both compressive and rarefactive solitary
waves may be excited in the quantum plasma depending upon
the values of ub0. For ub0 = 0.1− 1.2, the solitary wave will be rar-
efactive and the amplitude will decrease with the increase of ub0,
but for ub0 = 1.3 and 1.4, the compressive solitary wave will be
excited and the amplitude will increase with the increase of ub0.

The effect of ion beam density on solitary waves is shown in
Figure 3b in the quantum plasma with fixed values of σi = 0.01,
σb = 0.1, ub0 = 0.5, Vp = 1.2, μ = 1.

It is seen that the values of nb0 decide to excite the compressive
or rarefactive solitary waves. For low values of nb0 (=0.1, 0.2, and
0.3), the solitary waves are compressive and the amplitudes are
increased with the increase of nb0, but for large values of nb0
(0.7, 0.8), the solitary wave will be rarefactive in nature and the
amplitudes are decreased with the increase of nb0.

In Figure 3c, the structure of solitary waves for different values
of ion beam temperature (σb) is shown for a quantum plasma
having fixed values of σi = 0.01, nb0 = 0.5, ub0 = 0.5, Vp = 1.6, μ
= 1.

It is seen that both compressive and rarefactive solitary waves
may be excited in the quantum plasma and these are dependent
on the values of σb. For σb = 0.0, 0.2, 0.25, the solitary waves
are compressive and the amplitude increases with the increase
of σb. But when σb = 0.3 and 0.35, the rarefactive solitary waves
are excited and the amplitudes are decreased with the increase
of σb.

Since the width is very important for the study of solitary
waves in quantum plasma, we have drawn the profiles of width
for different values of ion beam parameters. From Eq. (22), we
see the width of solitary depends on H and other plasma param-
eters σi, σb, nb0, ub0.

In Figure 4a, the variation in width with σb for different values
of H is plotted for a quantum plasma having fixed values of σi =
0.1, σb = 0.1, nb0 = 0.5, Vp = 1.2, μ = 1.

It is seen from Figure 4a that the width of solitary waves
decreases with the increase of ion beam temperature and it
becomes zero at σb≈ 0.58. Moreover, the widths are decreased
with the increase of H when H < 2. But the widths are increased
with the increase of H when H > 2.

In Figure 4b, the variation of widths with ion beam velocity
(ub0) for different values of H are depicted for a quantum plasma
with fixed values of σi = 0.1, σb = 0.1, ub0 = 0.5, Vp = 1.2, μ = 1.

It is observed from Figure 4b that the width decreases
with the increase of ion beam velocity and it becomes zero at
ub0 ≈ 1.3. When ub0 <1.3, the width decreases with the increase

of H when H < 2 and it increases with the increase of H when
H > 2. But, when ub0 >1.3, the width increases with the increase
of H.

Fig. 2. (a) Variation of dispersion coefficient with ion beam velocity (ub0) for different
value of quantum diffraction parameter (H ) in quantum plasma with fixed values of
plasma parameters σi = 0.1, σb = 0.1, nb0 = 0.5, Vp = 1.6, μ = 1 (H+ ion beam). (b)
Variation of the dispersion coefficient with ion beam temperature (σb) and quantum
diffraction parameter (H ) in quantum plasma with fixed values of plasma parameters
σi = 0.01, ub0 = 0.5, nb0 = 0.5, Vp = 1.2, μ = 1 (H+ ion beam). (c) Variation of the disper-
sion coefficient with ion beam density (nb0) and quantum diffraction parameter
(H ) in quantum plasma with fixed values of plasma parameters having σi = 0.01,
σb = 0.1, ub0 = 0.5, Vp = 1.2, μ = 1.4 (H+ ion beam).
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The variation in the width of solitary waves with ion beam
density (nb0) for different values of quantum diffraction parame-
ter (H ) is shown in Figure 4c with fixed values of plasma param-
eters σi = 0.01, σb = 0.1, ub0 = 0.5, Vp = 1.2, μ = 1.

Figure 4c shows that the width of solitary waves decreases with
the increase of ion beam density. Moreover, the width decreases
with increase of H when H < 2 and it increases with the increase
of H when H > 2.

Fig. 3. (a) The profiles of compressive and rarefactive solitary waves in quantum
plasma with variation of ion-beam velocity (ub0) with fixed values of plasma param-
eters σi = σb = 0.1, nb0 = 0.5, Vp = 1.6, μ = 1 (H+ ion beam), U = 0.1. (b) The profiles of
compressive and rarefactive solitary waves in quantum plasma with variation of
ion-beam density (nb0) with fixed values of plasma parameters σi = 0.01, σb = 0.1,
ub0 = 0.5, nb0 = 0.5, Vp = 1.2, μ = 1 (H+ ion beam), U = 0.1. (c) The profiles of compres-
sive and rarefactive solitary waves in quantum plasma with variation of ion-beam
temperature (σb) with fixed values of plasma parameters σi = 0.01, ub0 = 0.5, nb0 =
0.5, Vp = 1.2, μ = 1 (H+ ion beam), U = 0.1.

Fig. 4. (a) Variation of width of solitary wave with ion beam temperature (σb) and
quantum diffraction (H ) in quantum plasma with fixed values of plasma parameters
σi = 0.01, nb0 = 0.5, ub0 = 0.5, Vp = 1.2, μ = 1 (H+ ion beam). (b) Variation of width of sol-
itary waves with ion beam velocity (ub0) for different value of quantum diffraction
parameter (H ) in quantum plasma with fixed values of plasma parameters σi = 0.1,
σb = 0.1, nb0 = 0.5, Vp = 1.2, μ = 1 (H+ ion beam). (c) Variation of width of solitary
waves with ion beam density (nb0) for different value of quantum diffraction param-
eter (H ) in quantum plasma with fixed values of plasma parameters σi = 0.01, σb = 0.1,
ub0 = 0.5, Vp = 1.2, μ = 1 (H+ ion beam).
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It is important to point out that the solitary wave will not exist
when the coefficient of the nonlinear term of the K–dV equation
[Eq. (20)] vanishes for some critical values of the plasma param-
eters μ, σi, σb, χ, ub0, and H. Assuming A≈ 0, we obtain

x[(si − V2
p )(s2

b − mVb)2 − m(msb − 3V2
b )(si − V2

p )]
= (si − 3V2

p )(s2
b − mV2

b ) − m(msb − V2
b )

(23)

From Eq. (23), the critical values of the plasma parameters can
be obtained for the nonexistence of the solitary waves in the quan-
tum plasma. The critical value of ion beam density (Nbc) is

Nbc = 1− [(si − 3V2
p )(s2

b − mV2
b ) − m(msb − V2

b )]
[(si − V2

p )(s2
b − mVb)2 − m(msb − 3V2

b )(si − V2
p )]
(24)

Again, for some critical values H, Vp, and Vb, the solitary wave
will be non-dispersive if the coefficient B ≈ 0 in K–dV equation
[Eq. (20)]. In this case, H = 2, or Vp = ���

si
√

, or Vb = �����
msb

√
.

The variation of critical ion beam density (Nbc) with ion beam
velocity and ion beam temperature is shown in Figure 5.

It is observed that Nbc does not depend on H and increases
slowly with the increase of ub0 and after a certain value of ub0,
it is suddenly increased to attain a maximum value. Then, Nbc

decreases rapidly with the increase of ub0. Moreover, Nbc is
small for large values of ub0.

But, the solitary waves near the critical density of ion beam in
the quantum plasma can be obtained through the derivation of a
modified K–dV equation using different stretching coordinates

j = (x − Vpt) and t = 13t (25)

The solution of the modified K–dV equation near critical ion
beam density will be represented by Paul et al. (1996) and Mondal
et al. (1998)

w1c = w0c sec h(h/D′) (26)

where w0c and Δ′ are the amplitude and width of solitary wave
near critical ion beam density. Moreover, double-layer (shock-
like) solution of ion acoustic wave in the quantum plasma near
critical ion beam density may be obtained from the nonlinear
equation combining the K–dV equation and the modified K–
dV equation (Paul et al., 1996; Mondal et al., 1998; Kaur et al.,
2017),

wd =
w0d

2
[1− tanh(h/D′′)] (27)

where w0d and Δ′′ are the amplitude and the width of DLs.

Summary and conclusions

In this paper, we have used the one-dimensional QHD model to
investigate ion acoustic solitary waves in a dense quantum plasma
in the presence of ion beam. For the study of the nonlinear behav-
ior of ion acoustic waves, the K–dV equation has been derived by
using the reductive perturbation technique. It is seen that the for-
mation and structure of solitary waves are significantly affected by
the presence of ion beam in quantum plasma. Ion acoustic soli-
tary waves in the quantum plasma may be compressive or rarefac-
tive depending upon the values of ion beam parameters, that is
velocity, density, and temperature of the ion beam. Our results
may be useful for understanding the beam–plasma interactions
and the formation of nonlinear wave structures in dense quantum
plasma. The model includes a quantum statistical effect through
the equation of state and quantum diffraction effect through the
parameter H. It is known that quantum effects in plasma become
important when thermal de Broglie wavelength becomes much
larger than the average interparticle distance. In most practical sit-
uations, quantum effects for the ions may be neglected because of
their heavier mass than the electrons.

To the best of our knowledge, no work on the ion acoustic sol-
itary waves in degenerate plasma in the presence of ion beam has
been reported till now. In our analysis, the explicit form of solitary
waves in the quantum plasma is obtained from the K–dV equa-
tion and the structure of solitary waves is graphically discussed
for different values of density, velocity, and temperature of the
ion beam.

Our main findings are:

i) Both compressive and rarefactive solitary waves may be
excited in the quantum plasma depending upon the values
of ion beam parameters but the quantum diffraction has
no role in it.

ii) Compressive solitary wave will be excited for ion beam veloc-
ity ub0 = 1.3 and 1.4, and amplitude will increase with the
increase of ub0; but the solitary wave will be rarefactive for
ion beam velocity ub0 = 0.1–1.2 and the amplitude will
decrease with the increase of ub0.

iii) For low values of ion beam density (nb0 = 0.1, 0.2, and 0.3),
the solitary waves will be compressive and the amplitudes are
increased with the increase of beam density; but for large val-
ues of nb0 (0.7, 0.8), the solitary wave will be rarefactive and
amplitude decreases with the increase of beam density.

iv) Compressive solitary waves will be excited for ion beam tem-
perature σb = 0.0, 0.2, 0.25 and the amplitude increases with
the increase of σb; but for σb = 0.3 and 0.35, the solitary
waves will be rarefactive in nature and amplitude decreases
with the increase of σb.

Fig. 5. Variation of critical value of ion beam density with ion velocity (nb0) for differ-
ent ion beam temperature (σb) in quantum plasma with fixed values of plasma
parameters Vp = 1.6, σi = 0.1, μ = 1 (H+ ion beam).
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v) For the numerical estimation of A, B, and the electrostatic
potential of solitary waves, we have considered H+ ion
beam and the value of μ = 1(μ =mi/mb). For He+ beam (μ
= 1/4) and Ar+ beam (μ = 1/40), numerical estimation can
be made and in these cases, the structure of solitary will be
different. From numerical estimation and graphical repre-
sentation of solitary waves, it is seen that the solitary waves
will be always rarefactive.

vi) The quantum diffraction parameter H plays important roles
in the width of solitary waves in the quantum plasma. For H
< 2 and H > 2, the width may be increased or decreased
depending upon the values of ion beam parameters.

However, with reference to laboratory and space plasma, inter-
esting results would be obtained on the propagation of electro-
static waves in a bounded system like plasma-filled waveguides.
The boundaries in such a system may add additional effects.
The wave with no dispersion in an unbounded system may
become dispersive in the bounded system; and the stable wave
of an unbounded system may become unstable in bounded geom-
etry (Ghosh et al., 2014; Paul et al., 2016). Moreover, relativistic
effect in plasma is important in many practical situations, for
example, in space–plasma phenomena (Vette, 1970), the plasma
sheet boundary of Earth’s magnetosphere (Grabbe, 1989), Van
Allen radiation belts (Shprits et al., 2013), and laser–plasma inter-
action experiments (Marklund and Shukla, 2006). Following the
works of Das and Paul (1985) in nondegenerate plasma, ion
acoustic solitary waves in degenerate (quantum) plasma have
been studied by Sahu (2011). Assuming the relativistically degen-
erate plasma, the nonlinear propagation of electrostatic solitary
has been studied by Mamun and Shukla (2010) and others
(Akbari-Moghanjoughi, 2011; Masood and Eliasson, 2011).
Later, Chandra et al. (2013) have considered two-temperature
electrons in a relativistically degenerate plasma and have theoret-
ically investigated the electro-acoustic solitary waves. It has been
shown that the relativistic degeneracy parameter significantly
influences the conditions of the formation and properties of sol-
itary waves. Recently, Hossen and Mamun (2014) have studied
theoretically and numerically the nonlinear propagation of mod-
ified EAWs in an unmagnetized, collisionless, relativistic degener-
ate quantum plasma through the derivation of the nonplanar K–
dV equation which admits a wave solution for the solitary wave
profile. More recently, Paul et al. (2019) have considered an ultra-
relativistic degenerate dense electron–ion–positron plasma for the
study of envelope solitary waves and rogue waves and have
obtained significant results which can be further studied in the
presence of an electron beam or ion beam following the concept
of the present paper.

Some works on the nonlinear propagation of ion and electron
acoustic waves in a fully relativistic quantum plasma with ion
and electron beams are in progress and these will be reported
later.

Acknowledgment. The authors are thankful to the referee for his valuable
comments which helped to modify the paper in the present form.

References

Abrol PS and Tagare SG (1979) Ion-acoustic solitary waves in an
ion-beam-plasma system with nonisothermal electrons. Physics Letters A
75, 74–76.

Agrawal G (1989) Nonlinear Fiber Optic. San Diego, CA: Academic, Chaps.
2–5.4.

Akbari-Moghanjoughi M (2010) Effects of ion-temperature on propagation of
the large-amplitude ion-acoustic solitons in degenerate electron-positron-
ion plasmas. Physics of Plasmas 17, 082315.

Akbari-Moghanjoughi M (2011) Propagation of arbitrary-amplitude ion
waves in relativistically degenerate electron-ion plasmas. Astrophysics and
Space Science 332, 187–192.

Ali S and Shukla PK (2006) Dust acoustic solitary waves in a quantum
plasma. Phys. Plasmas 13, 129902.

Ali S, Moslem WM, Shukla PK and Schlickeiser R (2007) Linear and non-
linear ion-acoustic waves in an unmagnetized electron-positron-ion quan-
tum plasma. Physics of Plasmas 14, 082307.

Ang LK, Kwan TT and Lau YY (2003) New scaling of child-langmuir law in
the quantum regime. Physical Review Letters 91, 208303.

Azechi H (2006) FIREX project. Plasma Physics and Controlled Fusion 48B, 267.
Bailung H, Sharma SK and Nakamura Y (2010) Effect of ion beam on the

propagation of rarefactive solitons in multicomponent plasma with negative
ions. Physics of Plasmas 17, 062103.

Bala P, Gill TS, Bains AS and Kaur H (2017) Ion-acoustic dressed solitary
structures in two component plasma with Tsallis-nonthermal velocity dis-
tribution of electrons. Indian Journal of Physics 91, 1625–1634.

Baluku TK and Hellberg MA (2012) Ion acoustic solitons in a plasma with
two-temperature kappa-distributed electrons. Physics of Plasmas 19,
012106.

Barnes WL, Dereux A and Ebbesen TW (2003) Surface plasmon sub wave-
length optics. Nature 424, 824–830.

Chandra S, Paul SN and Ghosh B (2012) Linear and non-linear propagation
of electron plasma waves in quantum plasma. Indian Journal of Pure &
Applied Physics 50, 314–319.

Chandra S, Paul SN and Ghosh B (2013) Electro-acoustic solitary waves in
relativistically degenerate quantum plasma with two-temperature electrons.
Astrophysics and Space Science 343, 213–219.

Chattopadhyaya S and Paul SN (2012) Existence of compressive and
rarefactive solitary waves in presence of cold positive and negative ions
with drift for single temperature plasma. The African Review of Physics 7,
003289.

Danehkar A (2018) Electron beam-plasma interaction and electro-acoustic
solitary waves in a plasma with suprathermal electrons. Plasma Physics
and Controlled Fusion 60, 065010.

Das R (2012) Effect of ion temperature on small-amplitude ion acoustic soli-
tons in a magnetized ion-beam plasma in presence of electron inertia.
Astrophysics and Space Science 341, 543–549.

Das R and Deka P (2015) Korteweg-de Vries solutions in high relativistic elec-
tron beam plasma. International Journal of Engineering Research 6, 864–
870.

Das GC and Paul SN (1985) Ion‐acoustic solitary waves in relativistic plasmas.
Physics of Fluids 28, 823–825.

Das GC and Singh KI (1991) Spherical solitons in ion-beam plasma.
Contributions to Plasma Physics 31, 15–25.

Das GC, Singh KI and Karmakar B (2011) Solitons in ion-beam plasmas
bounded by cylindrical geometry. Canadian Journal of Physics 67, 609–613.

Dip PR, Hossen MA, Salahuddin M and Mamun AA (2017) Electro-acoustic
solitary waves and double layers in a quantum plasma. European Physical
Journal D 71, 52.

El-Labany SK (1995) Propagation of ion-acoustic solitons in a warm ion beam
plasma system. Journal of Plasma Physics 54, 285–293.

Gell Y and Roth I (1977) The effects of an ion beam on the motion of solitons
in an ion beam-plasma system. Plasma Physics 19, 915.

Ghosh KK, Paul B, Das C and Paul SN (2008) Analytical study of the ion-
acoustic solitary waves in a drift plasma consisting of two-temperature elec-
trons. Journal of Physics A: Mathematical and Theoretical 41, 335501.

Ghosh B, Paul SN and Banerjee S (2014) Instability of electron plasma waves
in an electron-hole bounded quantum dusty plasma, world academy of sci-
ence, engineering and technology. International Journal of Mathematical,
Computational, Physical and Quantum Engineering 8, 954.

Gill TS, Bala P, Kaur H, Saini NS, Bansal S and Kaur J (2004)
Ion-acoustic solitons and double-layers in a plasma consisting of positive
and negative ions with non-thermal electrons. European Physical Journal
D 31, 91–100.

Laser and Particle Beams 379

https://doi.org/10.1017/S0263034619000697 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034619000697


Goldman MV (1983) Progress and problems in the theory of type III solar
radio emission. Solar Physics 89, 403–442.

Grabbe C (1989) Wave propagation effects of broadband electrostatic noise in
the magneto tail. Journal of Geophysical Research 94, 17299.

Haas H, Garcia LG and Goedert J (2003) Quantum ion-acoustic waves.
Physics of Plasmas 10, 3858.

Hoffmann RA and Evans DS (1968) Field‐aligned electron bursts at high lat-
itudes observed by OGO 4. Journal of Geophysical Research 73, 6201–6214.

Hossen MR and Mamun AA (2014) Modeling of modified electro-acoustic
solitary waves in a relativistic degenerate plasma. Journal of the Korean
Physical Society 65, 2045–2052.

Huibin L and Kelin W (2009) Solitons in an ion-beam plasma. Journal of
Plasma Physics 44, 151–165.

Ikezi H (1973) Experiments on ion acoustic solitary waves. Physics of Fluids
16, 1668.

Karmakar B, Das GC and Singh I (1988) Ion-acoustic solitary waves in ion-
beam plasma with multiple-electron-temperatures. Plasma Physics and
Controlled Fusion 30, 1167.

Kaur N, Singh K and Saini NS (2017) Effect of ion beam on the characteris-
tics of ion acoustic Gardner solitons and double layers in a multicomponent
superthermal plasma. Physics of Plasmas 24, 092108.

Kaur N, Singh K, Ghai Y and Saini NS (2018) Nonplanar dust acoustic sol-
itary and rogue waves in an ion beam plasma with superthermal electrons
and ions. Plasma Science and Technology 20, 074009.

Killian TC (2007) Ultra cold neutral plasmas. Science 316, 705–8.
Kremp D, Bornath T, Bonitz M and Schlanges M (1999) Quantum kinetic

theory of plasmas in strong laser fields. Physical Review E 60, 4725.
Krivoruchko SM, Fainberg VB, Shapiro VD and Shevchenko VI (1975)

Solitary charge density waves in a magnetoactive plasma. Soviet JETP 40,
1039–1043.

Lonngren KE (1983) Soliton experiment in plasma. Plasma Physics 25, 943.
Madelung E (1927) Quantentheorie in hydrodynamischer Form. Zeitschrift

für Physik 40, 322–326.
Mamun AA and Shukla PK (2010) Solitary waves in an ultra relativistic

degenerate dense plasma. Physics of Plasmas 17, 104504.
Manfredi G, Hervieux PA, Yin Y and Crouseilles N (2009) Collective elec-

tron dynamics in metallic and semiconductor nanostructures. In
Massobrio C, Bu-lou H and Goyenex C (eds), Advances in the
Atomic-Scale Modeling of Nanosystems and Nanostructured Materials.
Heidelberg: Springer, p. 1.

Marklund M and Shukla PK (2006) Nonlinear collective effects in
photon-photon and photon-plasma interactions. Reviews of Modern
Physics 78, 591–640.

Masood W and Eliasson B (2011) Electrostatic solitary waves in a quantum
plasma with relativistically degenerate electrons. Physics of Plasmas 18, 034503.

Misra AP and Adhikary NC (2011) Large amplitude solitary waves in ion-
beam plasmas with charged dust impurities. Physics of Plasmas 18, 122112.

Misra AP and Bhowmik C (2007) Nonplanar ion-acoustic waves in a quan-
tum plasma. Physics Letters A 369, 90.

Mondal KK, Paul SN and Roychowdhury A (1998) Ion-acoustic solitons and
shocks in negative ion-beam relativistic plasma. IEEE Transactions on
Plasma Sciences 26, 987–994.

Mushtaq A and Khan SA (2007) Ion acoustic solitary wave with weakly trans-
verse perturbations in quantum electron-positron-ion plasma. Physics of
Plasmas 14, 052307.

Paul SN, Mondal KK and Roychowdhury A (1996) Effects of negative ions
on the ion acoustic solitons and double layers in a relativistic plasma.
Fizika B 5, 73–84.

Paul SN, Das C, Paul I, Bandyopadhyay B, Chattopadhyaya S and De SS
(2012) Ion acoustic solitary waves in an electron-ion-positron plasma.
Indian Journal of Physics 86, 545–553.

Paul I, Bhattacharya SK, Paul SN and Chatterjee A (2016) Instability of ion-
acoustic wave in a quantum dusty plasma bounded in finite geometry.
Journal of Physical and Chemical Sciences 4, 1–4.

Paul SN, Chatterjee A and Paul I (2017) Nonlinear propagation of ion-
acoustic waves in self-gravitating dusty plasma consisting of non-isothermal
two-temperature electrons. Indian Journal of Physics 91, 101–107.

Paul SN, Roychowdury A and Paul I (2019) Modulation instability of bright
envelope soliton and rogue waves in ultra-relativistic degenerate dense
electron-ion-positron plasma. Plasma Physics Reports 45, 1011–1025.

Saberian E, Esfandyari-Kalejahi A, Rastkar-Ebrahimzadeh A and
Afsari-Ghazi M (2013) Propagation of ion-acoustic solitons in an electron
beam-superthermal plasma system with finite ion-temperature: Linear and
fully nonlinear investigation. Physics of Plasmas 20, 032307.

Sah OP and Manta J (2009) Nonlinear electro-acoustic waves in quantum
plasma. Physics of Plasmas 16, 032304.

Sahu B (2011) Quantum ion-acoustic solitary waves in weak relativistic
plasma. Pramana 76, 933–944.

Schamel H (1973) A modified Korteweg-de Vries equation for ion acoustic
wavess due to resonant electrons. Journal of Plasma Physics 9, 377–387.

Shapiro SD and Teukolsky SA (1983) Black Holes, White Dwarfs and Neutron
Stars. New York, NY: John Wiley & Sons.

Shprits YY, Subbotin D, Drozdov A and Usanova M (2013) Unusual stable
trapping of the ultra relativistic electrons in the Van Allen radiation belts.
Nature Physics 9, 699–703.

Tagare SG (1973) Effect of ion temperature on propagation of ion-acoustic
solitary waves of small amplitudes in collisionless plasma. Plasma Physics
15, 1247.

Vette JI (1970) Summary of Particle Population in the Magnetosphere.
Dordrecht: Reidel, p. 305.

Washimi H and Taniuti T (1966) Propagation of ion-acoustic solitary waves
of small amplitude. Physical Review Letters 17, 996–998.

Yajima T and Wadati M (1990) Solitons in electron beam plasma. Journal of
the Physical Society of Japan 59, 237–3248.

Yashvir , Tiwari RS and Sharma SR (1988) Dressed ion acoustic soliton in an
ion-beam plasma system. Canadian Journal of Physics 66, 824–829.

Zank GP and McKenzie JF (1998) Solitons in an ion-beam plasma. Journal of
Plasma Physics 39, 183–191.

380 Indrani Paul et al.

https://doi.org/10.1017/S0263034619000697 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034619000697

	Nonlinear propagation of ion acoustic waves in quantum plasma in the presence of an ion beam
	Introduction
	Basic equations
	K--dV equation
	Results and discussions
	Variation of the coefficients of the nonlinear term and the dispersive term
	Ion acoustic solitary waves

	Summary and conclusions
	Acknowledgment
	References


