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GLUING AN INFINITE NUMBER OF INSTANTONS

MASAKI TSUKAMOTO

Abstract. This paper is one step toward infinite energy gauge theory and

the geometry of infinite dimensional moduli spaces. We generalize a gluing

construction in the usual Yang-Mills gauge theory to an “infinite energy” situ-

ation. We show that we can glue an infinite number of instantons, and that the

resulting ASD connections have infinite energy in general. Moreover they have

an infinite dimensional parameter space. Our construction is a generalization

of Donaldson’s “alternating method”.

§1. Introduction

Since the remarkable paper of S. K. Donaldson [D1] appeared in 1983,

Yang-Mills gauge theory has been one of central themes in geometry and

mathematical physics. There are plenty of papers on this subject, and many

interesting theories have been developed.

But most of them study only finite energy ASD connections and their

finite dimensional moduli spaces. We know little about infinite energy ASD

connections and their moduli spaces. In fact I don’t know even whether

such connections exist in general situations. This paper is one step in this

direction. We will show that we can construct a huge amount of infinite

energy ASD connections by using a “gluing construction”.

Gluing ASD connections is a well-known technique in Yang-Mills the-

ory [D1], [D2], [DFK], [DK], [FU], [T1], [T2], but we usually study a gluing

of two (or a finite number of) instantons. In this paper we study a glu-

ing of infinitely many instantons, and show that this new gluing technique

produces the desired infinite energy ASD connections. Moreover we show

that the construction of “gluing an infinite number of instantons” has the

following interesting new feature; To define the gluing of ASD connections,

we need to introduce a “gluing parameter space”, which is isomorphic to
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SU(2) in the case of gluing two SU(2) instantons. In the case of gluing

infinitely many SU(2) instantons, the gluing parameter space becomes the

infinite product of the copies of SU(2). This gigantic parameter space is the

interesting new feature of our approach.

Although the above “infinite dimensional gluing parameter space” is

the source of the richness of the construction, it also causes several serious

difficulties in analysis. In particular, we cannot use the usual Fredholm

deformation theory because of infinite degrees of freedom of the parameter

space. We overcome this difficulty by adapting Donaldson’s “alternating

method” in [D2] to this situation. This decomposes the problem into an

infinite number of small pieces where we can use the usual Fredholm defor-

mation theory.

I think that the technique of “gluing an infinite number of instantons”

probably can be applied to other equations∗, e.g., the Seiberg-Witten equa-

tion, pseudo-holomorphic curves, etc. In fact the classical Mittag-Leffler

theorem in complex analysis can be considered as a variant of this gluing

technique. Singularities of a meromorphic function are instanton-like ob-

jects, and the Mittag-Leffler theorem constructs a meromorphic function

which has an infinite number of singularities given in the complex plane. In

other words the result of this paper is a Yang-Mills analogue of the Mittag-

Leffler theorem.

The organization of the paper is as follows. In Section 2 we present

notation and state main theorems. We establish basic estimates in Section 3.

The details of the gluing construction are given in Section 4. We discuss a

moduli problem in Section 5.

Acknowledgement. I wish to thank Professor Kenji Fukaya for his

suggestion and help during the course of this work.

§2. Main results

2.1. Brief review of Yang-Mills theory

To begin with, we review some basic notions of Yang-Mills theory. For

the details, see [DK] or [FU]. Let G be a Lie group SU(2) or SO(3).

∗After I posted a preprint version of this paper to the arXiv in 2005, I was informed
that there is a paper of M. Macr̀ı, M. Nolasco and T. Ricciardi [MNR] which studies
an “infinite energy” situation for selfdual vortices in R

2. From [MNR] I learned that
there is a paper of S. Angenent [A] which develops a gluing technique for infinitely many
solutions of an elliptic PDE of the form ∆u + f(x, u) = 0 in R

n. [MNR] adapts this
gluing technique to an elliptic equation with singular sources. I think that our alternating
method is different from the analytic technique in [A].
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Let C(G) be the center of G, i.e., C(SU(2)) = {±1} and C(SO(3)) =

1. Suppose that X is a closed oriented Riemannian 4-manifold and that

E → X is a principal G bundle over X. Let adE be the Lie algebra

bundle associated with E. A connection A on E is said to be irreducible if

the isotropy group of A in the gauge group is equal to C(G). (C(G) acts

trivially on all connections.)

A connection A is said to be anti-self-dual, or ASD, if the self-dual part

of its curvature is zero:

F+
A = 0.

If A is an ASD connection, then we have the Atiyah-Hitchin-Singer complex

for A:

0 −→ Ω0(adE)
dA−→ Ω1(adE)

d+
A−→ Ω+(adE) −→ 0,

where Ω+ is the space of self-dual 2-forms and d+
A denotes the self-dual part

of dA. An ASD connection A is said to be acyclic if the above complex is

exact (acyclic). The Atiyah-Hitchin-Singer complex is exact if and only if

d∗A + d+
A : Ω1(adE) −→ Ω0(adE) ⊕ Ω+(adE)

is isomorphism. Here d∗A is the formal adjoint of dA : Ω0(adE) → Ω1(adE).

A is said to be regular if A is irreducible and d∗A + d+
A is surjective.

Example 2.1. Let X be the 4-sphere S4 with the usual round metric.

All non-flat G ASD connections on S4 are regular. This follows from the

Weitzenböck formula. For example, see [FU, Chapter 6].

Example 2.2. K3 surface has a non-flat, irreducible, acyclic SO(3)

ASD connection. See [DK, Section 9.1.3].

2.2. Gluing construction

Next we introduce the following convenient definition.

Definition 2.3. A 5-tuple (X,xL, xR, E,A) is called a gluing data if

it satisfies the following (i)–(v):

(i) X is a closed oriented Riemannian 4-manifold.

(ii) xL and xR are two distinct points in X.

(iii) E is a principal G bundle over X.

https://doi.org/10.1017/S0027763000009466 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000009466


110 M. TSUKAMOTO

(iv) A is an irreducible acyclic ASD connection on E. (We can replace

this condition with the weaker condition that A is a regular ASD

connection. See the remark at the end of Section 5.)

(v) The metric on X is flat in some neighborhoods of xL and xR. (See

the remark below.)

Remark 2.4. The condition (v) in the Definition 2.3 is artificial and

just for simplicity. We can construct our gluing argument without this

condition; see [D2, (4.48) Proposition]. Actually, this condition is allowable

in the following sense. Let g be a Riemannian metric on X which does not

satisfy the condition (v). Let A be an irreducible acyclic (resp. regular)

g-ASD connection on E. Then small perturbation gives a new metric g ′

satisfying the condition (v) and an irreducible acyclic (resp. regular) g ′-ASD

connection A′. This fact follows from the usual implicit function theorem.

Definition 2.5. Let (Xi, x
L
i , x

R
i , Ei, Ai), (i ∈ Z), be a sequence of

gluing data indexed by integers. This sequence is said to be of finite type if

it satisfies the following:

{(Xi, x
L
i , x

R
i , Ei, Ai) | i ∈ Z} is a finite set.

(Of course, the sequence itself is an infinite sequence.) This condition as-

sures the uniformity of analysis and geometry on each data.

We will define a connected sum of gluing data. This construction is

a generalization of the “conformal connected sum” construction in [D2,

pp. 306–307] and [DK, Section 7.2.1].

Let (X,xL, xR, E,A) be a gluing data. By the condition (v) in Def-

inition 2.3, there are an oriented Euclidean coordinate ξ centered on xR

and an oriented Euclidean coordinate η centered on xL. We set k := 0.9,

and we define the annular region ΩR and the “shells” R− and R+ in the

neighborhood of xR by

ΩR := {ξ | kN−1
√
λ < |ξ| < k−1N

√
λ},

R− := {ξ | kN−1
√
λ < |ξ| < N−1

√
λ},

R+ := {ξ | N
√
λ < |ξ| < k−1N

√
λ}.

Here N and λ are positive parameters. We define ΩL, L− and L+ in the

same way by using the Euclidean coordinate η centered on xL. So L− is the
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inner “shell” of ΩL and L+ is the outer “shell”; see Figure 1. (Figure 1 is a

variant of [D2, Diagram (4.13)].) We define the open set U by

U := X \ (B̄(xR, kN−1
√
λ ) ∪ B̄(xL, kN−1

√
λ )).

Here B̄(xR, kN−1
√
λ ) and B̄(xL, kN−1

√
λ ) are the balls |ξ| ≤ kN−1

√
λ

and |η| ≤ kN−1
√
λ.

In the later gluing argument, “error terms” will be supported in the

shells R± and L±. The volumes of these shells are determined by the pa-

rameters λ and N . We will choose λ small and N large. The value of N

will be fixed in the end of Section 3. We choose λ so small that

(1) λN100 � 1.

Here “100” does not have a particular meaning. The point is that λ is very

small. (In the above, we set k = 0.9. This value “0.9” does not have a

particular meaning, either. The point is that k is smaller than 1.)

PSfrag replacements

XxL xR

U

ΩL ΩR

L− L+ R+ R−

Ui Ui+1

R+
i = L−

i+1 R−
i = L+

i+1

ΩR
i = ΩL

i+1

xR R−

R+

ΩR

kN−1
√
λ

N−1
√
λ

N
√
λ

k−1N
√
λ

]i∈ZXi

Figure 1: A gluing data and a connected sum.

Let (Xi, x
L
i , x

R
i , Ei, Ai)i∈Z be a sequence of gluing data of finite type.

We have ΩR
i , R−

i , R+
i , and ΩL

i , L−
i , L+

i , and Ui for each i ∈ Z. We define

the connected sum

]i∈Z Xi := · · · ]X−1]X0]X1] · · · .
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by identifying ΩR
i and ΩL

i+1. The identification map between ΩR
i and ΩL

i+1

is defined by

(2) η = λξ̄/|ξ|2.

Here ξ is an oriented Euclidean coordinate centered on xR
i , and η is an

oriented Euclidean coordinate centered on xL
i+1. ξ 7→ ξ̄ is any reflection.

R−
i and R+

i are identified with L+
i+1 and L−

i+1, respectively. The connected

sum space ]i∈Z Xi is covered by the open sets Ui:

]i∈Z Xi =
⋃

i∈Z

Ui.

Since the identification map (2) is conformal, ]i∈Z Xi has a natural conformal

structure which is compatible with the metrics of the given manifolds Xi.

(Note that ASD condition is conformally invariant.)

Next we will define a gluing of the principal G bundles Ei.

Definition 2.6. We define the gluing parameter space GlP and the

effective gluing parameter space EGlP by

GlP :=
∏

i∈Z

HomG((Ei)xR
i
, (Ei+1)xL

i+1
) ∼= GZ,

EGlP :=
∏

i∈Z

(HomG((Ei)xR
i
, (Ei+1)xL

i+1
)/C(G)) ∼= (G/C(G))Z.

Here HomG((Ei)xR
i
, (Ei+1)xL

i+1
) is the set of G-isomorphisms between the

fibres (Ei)xR
i

and (Ei+1)xL
i+1

, and it is isomorphic to G.

If x ∈ Xi is a point in a small neighborhood of xR
i , then the fibre (Ei)x

can be identified with (Ei)xR
i

by using the parallel transport along the ra-

dial line from xR
i to x. This “exponential gauge” centered on xR

i defines

a local trivialization of Ei over ΩR
i . In the same way we define a trivial-

ization of Ei over ΩL
i by the exponential gauge centered on xL

i . (For the

detail of exponential gauge, see [FU, Chapter 9] or [DK, Section 2.3.1].)

Let ρ = (ρi)i∈Z ∈ GlP be a gluing parameter. ρi is an isomorphism be-

tween the fibres (Ei)xR
i

and (Ei+1)xL
i+1

. Since we have the identification

ΩR
i
∼= ΩL

i+1 in (2) and the bundle trivializations Ei|ΩR
i

∼= ΩR
i × (Ei)xR

i
and

Ei+1|ΩL
i+1

∼= ΩL
i+1 × (Ei+1)xL

i+1
, ρi defines an identification map between
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Ei|ΩR
i

and Ei+1|ΩL
i+1

covering the base space identification (2). (See the

diagram below.) We define a principal G bundle E(ρ) over ]i∈Z Xi by using

this identification map.

(3)

Ei|ΩR
i

exp. gauge−−−−−−→ ΩR
i × (Ei)xR

i




y





y

ρi

Ei+1|ΩL
i+1

exp. gauge−−−−−−→ ΩL
i+1 × (Ei+1)xL

i+1

The gluing construction in Section 4 will give an ASD connection A(ρ)

on E(ρ) which is “close” to Ai over each Ui:

Theorem 2.7. For any positive number ε > 0 and p ≥ 1, we can

choose the parameters N and λ so that there exists an ASD connection

A(ρ) on E(ρ) for all ρ ∈ GlP such that

||A(ρ) −Ai||Lp(Ui) < ε for all i ∈ Z.

(Since there is a natural identification between E(ρ) and Ei over Ui, A(ρ)−
Ai is well defined over Ui.) Moreover, if there are infinitely many non-flat

ASD connections Ai in the given sequence of gluing data, then the ASD

connection A(ρ) has infinite L2-energy :

||F (A(ρ))||L2 = +∞.

In the above, the norm || · ||Lp(Ui)
is defined by using the Riemannian

metric onXi. Since the L2-norm of a 2-form is conformally invariant, the L2-

norm of the curvature ||F (A(ρ))||L2 is well-defined. (]i∈Z Xi has the natural

conformal structure.) We will prove a more precise result in Section 4.

In Section 5 we will discuss a moduli problem. Our main result is the

following. (Here the parameters N and λ are chosen appropriately.)

Theorem 2.8. Let ρ and ρ′ be two gluing parameters. Then A(ρ) is

gauge equivalent to A(ρ′) if and only if [ρ] = [ρ′] in EGlP. Here the gauge

equivalence is defined by usual smooth bundle maps between the principal G

bundles E(ρ) and E(ρ′).

The effective gluing parameter space EGlP = (G/C(G))Z has infinite

degrees of freedom. Hence we can consider that our ASD connections A(ρ)

have infinite dimensional parameter space.
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2.3. Outline of the alternating method

We will construct the ASD connection A(ρ) by applying “Donaldson’s

alternating method” in [D2]. Here we explain the basic idea of it. The

alternating method is an iterative process for solving the ASD equation.

First we construct the initial approximate solution A
(0)(ρ) on E(ρ) by us-

ing cut-off functions. Of course, this A
(0)(ρ) is not ASD in general, i.e.,

F+(A(0)(ρ)) 6= 0. The alternating method iteratively improves this A
(0)(ρ)

as follows;

Step 0: To cancel the “error term” F+(A(0)(ρ)), we slightly perturb

A
(0)(ρ) over each X2i and construct A

(1)(ρ) on E(ρ) by using these

perturbations and cut-off functions. The new error term F +(A(1)(ρ))

becomes smaller than the old error term F+(A(0)(ρ)).

Step 1: To cancel the error term F+(A(1)(ρ)), we slightly perturb A
(1)(ρ)

over each X2i+1 and construct A
(2)(ρ) on E(ρ) by using these per-

turbations and cut-off functions. The new error term F +(A(2)(ρ))

becomes smaller than the old error term F+(A(1)(ρ)).

Step 2 is the same as Step 0, and Step 3 is the same as Step 1. In general,

Step (2n): We slightly perturb A
(2n)(ρ) over each “even” manifold X2i and

construct A
(2n+1)(ρ).

Step (2n+ 1): We slightly perturb A
(2n+1)(ρ) over each “odd” manifold

X2i+1 and construct A
(2n+2)(ρ).

The error terms F+(A(n)(ρ)) go to 0 as n goes to infinity, and the sequence of

the approximate solutions A
(n)(ρ) converges to the desired ASD connection

A(ρ). This is the outline of the alternating method in Section 4.

§3. Main estimates

In this section we establish basic estimates for the proofs of Theo-

rems 2.7 and 2.8. These are essentially the reproduction of the estimates in

[D2, (4.22) Lemma and (4.24) Remarks]. We follow the arguments of [D2,

IV (iii)].

Fix p > 6 and let (X,xL, xR, E,A) be a gluing data. We have open sets

L±, R± and U on X. Let us consider the following map over X:

Lp
1(Ω

1(adE)) × L2p(Ω1(adE)) −→ Lp(Ω0(adE) ⊕ Ω+(adE)),

(b, a) 7−→ DAb+ [a ∧ b]+ + (b ∧ b)+.
(4)
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Here DA is the differential operator d∗A + d+
A : Ω1(adE) → Ω0(adE) ⊕

Ω+(adE). Since we suppose that A is acyclic in Definition 2.3, DA becomes

an invertible map from Lp
1 to Lp. Hence if a ∈ Ω1(adE) is small in L2p and

σ ∈ Ω+(adE) is small in Lp, then we can solve the following equation for

b ∈ Ω1(adE):

(5) DAb+ [a ∧ b]+ + (b ∧ b)+ = −σ,

and we get a solution b which satisfies

(6) ||b||Lp
1(X) ≤ const · ||σ||Lp(X).

(This is because b = 0 is a solution to (5) if σ = 0.)

Suppose that a is a smooth form defined on U and that the self-dual

part of the curvature σ := F+(A + a) is supported in L+ ∪ R+. (σ is also

defined on U .) We extend a and σ to X by zero, and set

δ := ||σ||L∞(X).

The volume of (L+ ∪ R+) which contains the support of σ is bounded by

const ·N 4λ2. Hence if a is small in L2p and δ is bounded by some constant,

then we have a small solution b to (5) for sufficiently small λ. In the later

gluing argument σ will be the “error term” and b will be the “perturbation”

described in Section 2.3.

Let us introduce a cut-off function ψ which satisfies supp(dψ) ⊂ L−∪R−

and ψ = 0 on X \ U and ψ = 1 on U \ (L− ∪ R−). We can choose ψ such

that

(7) |dψ| ≤ 20N√
λ
.

(Note that 20N/
√
λ is a large number because we choose λ very small.) We

define the “new error term” τ by τ := F+(A+ a+ ψb) on U .

τ = F+(A+ a) + d+
A(ψb) + ψ[a ∧ b]+ + ψ2(b ∧ b)+

= σ + (dψ ∧ b)+ + ψ(d+
Ab+ [a ∧ b]+ + (b ∧ b)+) + ψ(ψ − 1)(b ∧ b)+

= (1 − ψ)σ + (dψ ∧ b)+ + ψ(ψ − 1)(b ∧ b)+

= (dψ ∧ b)+ + ψ(ψ − 1)(b ∧ b)+, (supp(σ) ∩ supp(1 − ψ) = ∅).

Hence τ is supported in L− ∪R−, and we have

(8) ||τ ||L∞ ≤ 20N√
λ

||b|L−∪R− ||L∞ + ||b|L−∪R− ||2L∞ .

https://doi.org/10.1017/S0027763000009466 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000009466


116 M. TSUKAMOTO

Note that the “old” error term σ is supported in L+ ∪ R+ and that the

“new” error term τ is supported in L− ∪R−.

Proposition 3.1. For any κ > 0, there is η > 0 such that if δ ≤ κ,

||a||L2p ≤ η and λ� 1, then we have the following :

(i) ||b||L2p ≤ C1(N) · λ(p+2)/2p · δ.
(ii) ||τ ||L∞ ≤ C2 ·KN ·N4 · δ. Here we put KN := N/(N −N−1)3.

(iii) ||ψ · b||Lp
1
≤ C3(N) · λ2/p · δ.

(iv) ||F (A+ a+ ψ · b) − F (A+ a)||L2(U) ≤ C4(N) · λ · δ.
Here C1(N), C3(N), C4(N) are constants depending on N , and C2 is a con-

stant independent of N . (The fact that C2 is independent of N is essential

to the later argument.)

Proof. The proof follows [D2, (4.22) Lemma]. In our case, some care

must be paid to interactions between L± and R∓.

(i) This follows from (6) and the Sobolev embedding L
4p/(p+2)
1 ↪→ L2p. (Note

that this Sobolev embedding does not hold at p = ∞.)

||b||L2p ≤ const · ||b||
L

4p/(p+2)
1

≤ const · ||σ||L4p/(p+2)

≤ C1(N) · λ(p+2)/2p · δ.

(ii) The estimate of the L∞ norm of τ can be derived from the L∞ norm

of b over L− ∪ R−. (See (8).) First we will estimate a “leading term” of b.

Let b̃ be the solution to

DAb̃ = −σ.
Since DA = d∗A ⊕ d+

A is invertible, we have the Green kernel G(x, y) for DA:

b̃(x) = −
∫

X
G(x, y) · σ(y) dy.

G(x, y) has a singularity along the diagonal such that

|G(x, y)| ≤ const · 1

d(x, y)3
.

Here d(x, y) is the distance between x and y. This is because DA is a first

order elliptic differential operator. (For the details, see [D2, (4.22) Lemma].)

In the complement of a neighborhood of the diagonal, G(x, y) is bounded.
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Let us consider the case x ∈ R−. Since σ is supported in L+ ∪R+,

b̃(x) = −
∫

L+

G(x, y) · σ(y) dy −
∫

R+

G(x, y) · σ(y) dy.

Because the distance between R− and L+ is sufficiently large, the first term

can be easily estimated:
∣

∣

∣

∣

∫

L+

G(x, y) · σ(y) dy

∣

∣

∣

∣

≤ const · vol(L+) · δ ≤ const ·N 4 · λ2 · δ.

This implies that the interaction between R− and L+ is comparatively small.

The second term is more delicate. Since d(R+, R−) = N
√
λ −N−1

√
λ, we

have
∣

∣

∣

∣

∫

R+

G(x, y) · σ(y) dy

∣

∣

∣

∣

≤ const · vol(R+) · δ

(N
√
λ−N−1

√
λ)3

≤ const ·KN ·N3 ·
√
λ · δ,

(

KN =
N

(N −N−1)3

)

.

Using (1) in Section 2.2, we get

|b̃(x)| ≤ const ·KN ·N3 ·
√
λ · δ.

We have the same estimate in the case x ∈ L−.

Next we will estimate the “lower term”. Set b = b̃+β. Then β satisfies

DAβ + [a ∧ b]+ + (b ∧ b)+ = 0.

From the Sobolev embeddings,

||β||L∞ ≤ const · ||DAβ||L6 , (L6
1 ↪→ L∞),

≤ const · (||a||L12 · ||b||L12 + ||b||2L12)

≤ const · (||a||L2p · ||b||L3
1
+ ||b||2L3

1
), (L3

1 ↪→ L12),

≤ const · (η · ||b||L3
1
+ ||b||2L3

1
).

From (6) we have

||b||L3
1
≤ const · ||σ||L3 ≤ const ·N 4/3 · λ2/3 · δ.

Hence

||β||L∞ ≤ C(N) · λ2/3 · δ, (C(N) is a constant depending on N).
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Since C(N) · λ2/3 �
√
λ, b̃ is the leading term of b over R− ∪ L−:

(9) ||b|R−∪L− ||L∞ ≤ const ·KN ·N3 ·
√
λ · δ.

Substituting this into (8), we conclude that

||τ ||L∞ ≤ 20N√
λ

· ||b|R−∪L− ||L∞ + ||b|R−∪L− ||2L∞ ≤ C2 ·KN ·N4 · δ.

(iii) Since ∇A(ψ · b) = dψ ⊗ b+ ψ · ∇Ab and |dψ| ≤ 20N/
√
λ,

||ψ · b||Lp
1
≤ 20N√

λ
· vol(L− ∪R−)1/p · ||b|L−∪R− ||L∞ + ||b||Lp

1

≤ const ·N 1+4/p · λ−1/2+2/p · ||b|L−∪R− ||L∞ + ||b||Lp
1
.

From (6) and (9)

||ψ · b||Lp
1
≤ C3(N) · λ2/p · δ.

(iv)

F (A+ a+ ψb) = F (A+ a) + dA(ψb) + ψ[a ∧ b] + ψ2(b ∧ b).

Hence

||F (A+ a+ ψb) − F (A+ a)||L2(U) ≤ ||ψb||L2
1
+
√

2 ||a||L4 · ||b||L4 +
√

2 ||b||2L4 .

The arguments in (i) and (iii) show

||ψb||L2
1
≤ C(N) · λ · δ, ||b||L4 ≤ C ′(N) · λ · δ.

It follows that

||F (A+ a+ ψb) − F (A+ a)||L2(U) ≤ C4(N) · λ · δ.

Proposition 3.1 is sufficient to prove Theorem 2.7, but Theorem 2.8

needs more. Next we will establish a “parametrized version” of Proposi-

tion 3.1, which is the key estimate for the proof of Theorem 2.8. Here we

follow the arguments in [D2, (4.24) Remarks].

Suppose that a and σ smoothly depend on a parameter t ∈ [0, 1]: a =

a(t), σ = σ(t). (To be precise, it is enough to assume that a : [0, 1] → L2p

and σ : [0, 1] → L∞ are smooth maps.) Set δ = δ(t) = ||σ(t)||L∞(X). If δ ≤ κ

and ||a||L2p(X) ≤ η for all t, (κ and η are the constants in Proposition 3.1),

then we have the following proposition.
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Proposition 3.2. If we choose η and λ sufficiently small, then we

have the following estimates:

(i)

∣

∣

∣

∣

∣

∣

∣

∣

∂b

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L2p(X)

≤ C5(N) · λ(p+2)/2p

(

∣

∣

∣

∣

∣

∣

∣

∣

∂σ

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L∞(X)

+ δ ·
∣

∣

∣

∣

∣

∣

∣

∣

∂a

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L2p(X)

)

.

(ii)

∣

∣

∣

∣

∣

∣

∣

∣

∂τ

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L∞(X)

≤ C6 ·KN ·N4 ·
∣

∣

∣

∣

∣

∣

∣

∣

∂σ

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L∞(X)

+C7(N) ·λ1/p · δ ·
∣

∣

∣

∣

∣

∣

∣

∣

∂a

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L2p(X)

.

Here C5(N) and C7(N) are constants depending on N and C6 is a constant

independent of N .

Proof. (i) It is clear that b : [0, 1] → Lp
1 is smooth. Differentiating the

equation DAb+ [a ∧ b]+ + (b ∧ b)+ = −σ with respect to t, we get

DA

(

∂b

∂t

)

+

[

∂a

∂t
∧ b
]+

+

[

a ∧ ∂b

∂t

]+

+

(

∂b

∂t
∧ b
)+

+

(

b ∧ ∂b

∂t

)+

= −∂σ
∂t
.

Put D′
A( · ) = DA( · ) + [a ∧ · ]+ + ( · ∧ b)+ + (b ∧ · )+. Then

D′
A

(

∂b

∂t

)

= −
[

∂a

∂t
∧ b
]+

− ∂σ

∂t
.

Since DA is invertible and ||a||L2p < η and ||b||L2p < C1(N) · λ(2+p)/2pδ are

sufficiently small,
∣

∣

∣

∣

∣

∣

∣

∣

∂b

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L2p

≤ const ·
∣

∣

∣

∣

∣

∣

∣

∣

D′
A

(

∂b

∂t

)
∣

∣

∣

∣

∣

∣

∣

∣

L4p/(p+2)

≤ const

(

∣

∣

∣

∣

∣

∣

∣

∣

∂σ

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L4p/(p+2)

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

∂a

∂t
∧ b
]+
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L4p/(p+2)

)

≤ C(N)

(

λ(2+p)/2p

∣

∣

∣

∣

∣

∣

∣

∣

∂σ

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L∞

+

∣

∣

∣

∣

∣

∣

∣

∣

∂a

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L2p

||b||L2p

)

≤ C5(N) · λ(2+p)/2p

(
∣

∣

∣

∣

∣

∣

∣

∣

∂σ

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L∞

+ δ ·
∣

∣

∣

∣

∣

∣

∣

∣

∂a

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L2p

)

.

Here we have used the fact that ∂σ/∂t is supported in L+ ∪ R+ whose

volume is O(λ2).

(ii) Differentiating τ = (dψ ∧ b)+ + ψ(ψ − 1)(b ∧ b)+ with respect to t, we

have

∂τ

∂t
=

(

dψ ∧ ∂b

∂t

)+

+ ψ(ψ − 1)

{(

∂b

∂t
∧ b
)+

+

(

b ∧ ∂b

∂t

)+}

.
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From (7) and (9)

∣

∣

∣

∣

∣

∣

∣

∣

∂τ

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L∞

≤ 20N√
λ

∣

∣

∣

∣

∣

∣

∣

∣

∂b

∂t

∣

∣

∣

∣

L−∪R−

∣

∣

∣

∣

∣

∣

∣

∣

L∞

+ 2
√

2 · ||b|L−∪R− ||L∞

∣

∣

∣

∣

∣

∣

∣

∣

∂b

∂t

∣

∣

∣

∣

L−∪R−

∣

∣

∣

∣

∣

∣

∣

∣

L∞

(10)

≤ 20N√
λ

∣

∣

∣

∣

∣

∣

∣

∣

∂b

∂t

∣

∣

∣

∣

L−∪R−

∣

∣

∣

∣

∣

∣

∣

∣

L∞

+C(N) ·
√
λ · δ ·

∣

∣

∣

∣

∣

∣

∣

∣

∂b

∂t

∣

∣

∣

∣

L−∪R−

∣

∣

∣

∣

∣

∣

∣

∣

L∞

.

Set b = b̃+ β with DAb̃ = −σ as in the proof of Proposition 3.1 (ii). Then

∂b̃

∂t
(x) = −

∫

X
G(x, y) · ∂σ

∂t
(y) dy, (G(x, y) is the Green kernel),

= −
∫

L+

G(x, y) · ∂σ
∂t

(y) dy −
∫

R+

G(x, y) · ∂σ
∂t

(y) dy.

This can be estimated in the same way as before and we get
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂b̃

∂t

∣

∣

∣

∣

∣

L−∪R−

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L∞

≤ const ·KN ·N3 ·
√
λ ·
∣

∣

∣

∣

∣

∣

∣

∣

∂σ

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L∞

.

We have ∂b/∂t = ∂b̃/∂t+ ∂β/∂t and ∂β/∂t satisfies

DA

(

∂β

∂t

)

+

[

∂a

∂t
∧ b
]+

+

[

a ∧ ∂b

∂t

]+

+

(

∂b

∂t
∧ b
)+

+

(

b ∧ ∂b

∂t

)+

= 0.

Using the above (i) and the Sobolev embedding, we get

∣

∣

∣

∣

∣

∣

∣

∣

∂β

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L∞

≤ const ·
∣

∣

∣

∣

∣

∣

∣

∣

DA

(

∂β

∂t

)∣

∣

∣

∣

∣

∣

∣

∣

L6

, (L6
1 ↪→ L∞),

≤ C(N) · λ(2+p)/2p

(
∣

∣

∣

∣

∣

∣

∣

∣

∂σ

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L∞

+ δ ·
∣

∣

∣

∣

∣

∣

∣

∣

∂a

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L2p

)

.

Hence
∣

∣

∣

∣

∣

∣

∣

∣

∂b

∂t

∣

∣

∣

∣

L−∪R−

∣

∣

∣

∣

∣

∣

∣

∣

L∞

≤ C ·KNN
3
√
λ

∣

∣

∣

∣

∣

∣

∣

∣

∂σ

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L∞

+ C(N) · λ(2+p)/2p · δ
∣

∣

∣

∣

∣

∣

∣

∣

∂a

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L2p

.

Substituting this into (10), we conclude that

∣

∣

∣

∣

∣

∣

∣

∣

∂τ

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L∞

≤ C6 ·KNN
4

∣

∣

∣

∣

∣

∣

∣

∣

∂σ

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L∞

+ C7(N) · λ1/p · δ
∣

∣

∣

∣

∣

∣

∣

∣

∂a

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L2p

.
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Here we fix the value of N . Any value of N with

C2 ·KN ≤ 1

2
, C6 ·KN ≤ 1

2
,

will do. (Note that KN = N/(N − N−1)3 converges to zero as N → ∞.)

So let N be a large positive number which satisfies the above. (This choice

depends on the gluing data (X,xL, xR, E,A).) Then Proposition 3.1 (ii)

and Proposition 3.2 (ii) become:

(ii)′ ||τ ||L∞ ≤ 1

2
·N4 · δ,

(ii)′
∣

∣

∣

∣

∣

∣

∣

∣

∂τ

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L∞

≤ 1

2
·N4 ·

∣

∣

∣

∣

∣

∣

∣

∣

∂σ

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L∞

+ C7(N) · λ1/p · δ ·
∣

∣

∣

∣

∣

∣

∣

∣

∂a

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L2p

.

Remark 3.3. In fact, the parameter N can be chosen independent of

the gluing data (X,xL, xR, E,A). See [D2, p. 308, (4.14)] and the proof of

[D2, (4.22) Lemma]. But we don’t need this fact in this paper.

§4. Donaldson’s alternating method

In this section we prove Theorem 2.7. Let (Xi, x
L
i , x

R
i , Ei, Ai)i∈Z be a se-

quence of gluing data of finite type as in Section 2. The finite type condition

means that we can apply the estimates in Section 3 to all (Xi, x
L
i , x

R
i , Ei, Ai)

with the same constants. (This is the reason for introducing this notion.)

To begin with, we make one remark on the conformal transformation

(2) which identifies ΩR
i and ΩL

i+1:

Remark 4.1. The coordinate transformation (2) is only conformal and

not an isometry. Hence the metric of Xi is different from the metric of

Xi+1 over the identified region ΩR
i

∼= ΩL
i+1. The derivative of (2) over

ΩR
i = {kN−1

√
λ < |ξ| < k−1N

√
λ} has the following bound independent of

λ:
∣

∣

∣

∣

∣

∣

∣

∣

∂η

∂ξ

∣

∣

∣

∣

∣

∣

∣

∣

=
λ

|ξ|2
≤ N2

k2
,

∣

∣

∣

∣

∣

∣

∣

∣

∂ξ

∂η

∣

∣

∣

∣

∣

∣

∣

∣

=
λ

|η|2
≤ N2

k2
.

Here || · || is the operator norm. In particular, if ξ ∈ R−
i = L+

i+1, then
∣

∣

∣

∣

∣

∣

∣

∣

∂ξ

∂η

∣

∣

∣

∣

∣

∣

∣

∣

≤ 1

N2
.

It follows that

||ω||L∞(L+
i+1) ≤

1

N4
||ω||L∞(R−

i )

for a 2-form ω under the identification R−
i = L+

i+1.
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Let ρ = (ρi)i∈Z ∈ GlP be a gluing parameter, (ρi ∈ HomG((Ei)xR
i
,

(Ei+1)xL
i+1

)), and E(ρ) be the principal G bundle over ]i∈Z Xi defined in

Section 2.2. As we explained in Section 2.3, we will inductively construct

a sequence of connections A
(0)(ρ),A(1)(ρ),A(2)(ρ), . . . , on E(ρ) which con-

verges to an ASD connection A(ρ). This is a generalization of the alternat-

ing method in [D2, IV (iv)]. At the n-th stage of the iteration we will have

a connection A
(n)(ρ) which is expressed by

A
(n)(ρ) = (Ai + a

(n)
i (ρ))i∈Z.

Here a
(n)
i (ρ) is an element of Ω1(adEi) over Ui and we have Ai + a

(n)
i (ρ) =

Ai+1 + a
(n)
i+1(ρ) over Ui ∩ Ui+1 under the identification ρi. Then they com-

patibly define the connection A
(n)(ρ) on E(ρ).

Let us consider the following “inductive hypotheses”:

Hypotheses 4.2. (i) Let σ(n) := F+(A(n)(ρ)) be the self-dual curva-

ture of A
n(ρ), and set

δn :=

{

supi∈Z ||σ(n)
2i ||L∞(X2i) if n is even.

supi∈Z ||σ(n)
2i+1||L∞(X2i+1) if n is odd.

Here σ
(n)
i is the restriction of σ(n) on Ui. (We extend σ

(n)
i to Xi by zero.)

We suppose that σ(n) is supported as follows:

supp(σ(n)) ⊂
{

∐

i∈Z
(L+

2i ∪R+
2i) if n is even.

∐

i∈Z
(L+

2i+1 ∪R+
2i+1) if n is odd.

And we suppose that δn has the following bound:

δn ≤ κ, (κ is the constant in Proposition 3.1 and will be given later).

(ii) We suppose that a
(n)
i has the following bound:

||a(n)
i ||L2p(Ui) ≤ η, (η is also the constant in Proposition 3.1).

If these conditions hold at the n-th stage of the iteration and λ � 1,

then we can pass to the (n+1)-th stage as follows. If n is even, then we use
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the construction in Section 3 on each X2i and get b
(n)
2i . We define a

(n)
i (ρ)

over Ui by

a
(n+1)
2i (ρ) := a

(n)
2i (ρ) + ψ2i · b(n)

2i ,

a
(n+1)
2i+1 (ρ) := a

(n)
2i+1(ρ) + ψ2i · ρ2ib

(n)
2i ρ

−1
2i + ψ2i+2 · ρ−1

2i+1b
(n)
2i+2ρ2i+1.

(11)

Here ψi is a cut-off over Xi as in Section 3. Note that ψ2i · ρ2ib
(n)
2i ρ

−1
2i and

ψ2i+2 · ρ−1
2i+1b

(n)
2i+2ρ2i+1 are well-defined over U2i+1. From the arguments in

Section 3 and Proposition 3.1 (ii)′ at the end of Section 3, we have

supp(σ(n+1)) ⊂
∐

i∈Z

(R−
2i ∪ L−

2i) =
∐

i∈Z

(L+
2i+1 ∪R+

2i+1),

||σ(n+1)
2i ||L∞(X2i) ≤

1

2
·N4δn.

Taking account of Remark 4.1, we have

||σ(n+1)
2i+1 ||L∞(X2i+1) ≤

1

2
δn.

Thus

(12) δn+1 ≤ 1

2
δn.

If n is odd, then we use Proposition 3.1 over each X2i+1 and construct a

similar procedure to pass to the (n + 1)-th stage. The estimate (12) holds

as long as we can continue this iteration. Hence

(13) δn ≤ 1

2n
δ0.

We start the iteration by defining A
(0)(ρ) = (Ai + a

(0)
i (ρ))i∈Z by

a
(0)
2i+1(ρ) := (ψ2i+1 − 1)(A2i+1 − ρ2iA2iρ

−1
2i − ρ−1

2i+1A2i+2ρ2i+1),

a
(0)
2i (ρ) := ψ2i+1(−A2i + ρ−1

2i A2i+1ρ2i) + ψ2i−1(−A2i + ρ2i−1A2i−1ρ
−1
2i−1).

(14)

Here each Ai is the connection matrix in the exponential gauge centered

at xL
i and xR

i . These expressions are well-defined on U2i+1 or U2i and

compatible over the overlap regions. The self-dual curvature of A
(0)(ρ) is

supported in
∐

(L−
2i+1 ∪ R−

2i+1) =
∐

(L+
2i ∪ R+

2i). Since each |Ai| is O(
√
λ)
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and |dψi| is O(1/
√
λ) (cf. (7)), we have a constant κ independent of λ such

that

(15) ||σ(0)
i ||L∞(Xi) ≤ κ.

We take this κ as the constant in Proposition 3.1. The condition (i) in

Hypotheses 4.2 is satisfied at n = 0. Since a
(0)
i is supported in the overlap

whose volume is O(λ2), we have

(16) ||a(0)
i ||L2p(Ui) ≤ const · λ(2+p)/2p.

Therefore the condition (ii) is also satisfied at n = 0 if we choose λ � 1.

Then we can start the iteration.

The geometric decay (13) shows that the condition (i) in Hypotheses 4.2

is always satisfied as long as the condition (ii) is valid. At the n-th stage of

the iteration, if n is even, Proposition 3.1 (i) shows

||a(n+1)
2i − a

(n)
2i ||L2p(U2i) ≤ const · λ(2+p)/2pδn ≤ const · λ(2+p)/2p δ0

2n
.

From Remark 4.1,

||a(n+1)
2i+1 − a

(n)
2i+1||L2p(U2i+1) ≤ const · λ(2+p)/2p δ0

2n
.

We have similar estimates when n is odd, and

(17) const · λ(2+p)/2p + const · λ(2+p)/2p
∑

n≥0

δ0
2n

≤ const · λ(2+p)/2p � 1.

Hence the condition (ii) in Hypotheses 4.2 is satisfied for any n if we choose

λ small enough. Thus we can continue the iteration indefinitely and the

sequence {a(n)
i (ρ)}∞n=0 has a limit ai(ρ) in L2p(Ui).

Proposition 3.1 (iii) and an argument similar to the above show that

{a(n)
i (ρ)}∞n=0 converges to ai(ρ) also in Lp

1(Ui). From the geometric decay

(13), the self-dual curvature of Ai + ai(ρ) becomes 0. Thus we get an ASD

connection

A(ρ) = (Ai + ai(ρ))i∈Z.

(17) shows that this is close to Ai over each Ui:

(18) ||ai||L2p(Ui) ≤ const · λ(2+p)/2p.

So we get a conclusion:
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Theorem 4.3. For all sufficiently small λ, A(ρ) is an ASD connection

on E(ρ) such that

||A(ρ) −Ai||L2p(Ui) ≤ C8 · λ(2+p)/2p for all i ∈ Z.

Here C8 is a constant independent of i, ρ, λ.

In general this ASD connection A(ρ) has infinite energy:

Theorem 4.4. If there are infinitely many non-flat ASD connections

Ai in the given sequence of gluing data, then the L2-energy of A(ρ) is infi-

nite: ||F (A(ρ))||L2 = +∞.

Proof. We will show that the loss of energy over each Ui during the

iteration is sufficiently small. At the n-th stage of the iteration, if n is even,

we can apply Proposition 3.1 (iv) to (11) and get

||F (A2i + a
(n+1)
2i ) − F (A2i + a

(n)
2i )||L2(U2i) ≤ const · λ · δn ≤ const · λ

2n
.

Since F (A2i+1 +a
(n+1)
2i+1 )−F (A2i+1 +a

(n)
2i+1) is supported in the overlaps and

the L2-norm of a 2-form is conformally invariant,

||F (A2i+1 + a
(n+1)
2i+1 ) − F (A2i+1 + a

(n)
2i+1)||L2(U2i+1) ≤ const · λ

2n
.

We have the same estimates in the case that n is odd. Hence

||F (Ai + ai) − F (Ai + a
(0)
i )||L2(Ui) ≤ const · λ

∑

n≥0

1

2n
≤ const · λ.

Next we will show that ||F (Ai+a
(0)
i )−F (Ai)||L2(Ui) is also small. An estimate

similar to (15) shows

|F (Ai + a
(0)
i ) − F (Ai)| ≤ const, (independent of λ).

Since this is supported in the overlaps, we get

||F (Ai + a
(0)
i ) − F (Ai)||L2(Ui) ≤ const · λ.

Hence

||F (Ai + ai) − F (Ai)||L2(Ui) ≤ const · λ.

https://doi.org/10.1017/S0027763000009466 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000009466


126 M. TSUKAMOTO

From the finite type condition, we have a positive constant M indepen-

dent of λ such that ||F (Ai)||L2(Ui) ≥M if Ai is not flat and λ is sufficiently

small. Therefore if we take λ� 1, then

||F (Ai + ai)||L2(Ui) ≥
1

2
M

for non-flat Ai. Since there are infinitely many non-flat Ai, we conclude

that

||F (A(ρ))||L2 = +∞.

§5. Moduli problem

We will prove Theorem 2.8 in this section. The proof is a generalization

of [D2, (4.31) Lemma]. We always suppose that λ is sufficiently small.

We need the following elementary result.

Lemma 5.1. Let K be a positive number and ε be a positive number

with ε ≤ 1/100. Let {αn}, {sn}, (n = 0, 1, 2, . . . ), be sequences of non-

negative numbers which satisfy the following recurrence inequalities:

αn+1 − αn ≤ ε
(

sn +
1

2n
αn +

1

2n
K
)

,

sn+1 ≤ 1

2
sn +

1

2n
αn +

1

2n+1
K.

Suppose that

α0 ≤ ε ·K, s0 ≤ K.

Then we get

αn ≤ 10ε ·K for all n.

Proof. Set tn := 2nsn. Then we have t0 ≤ K, and the above recurrence

inequalities become

αn+1 − αn ≤ ε

2n
(tn + αn +K),

tn+1 ≤ tn + 2αn +K.

We will inductively prove αn ≤ 10ε ·K for all n. Suppose that this is true

if n ≤ n0 for some n0. Then

tn ≤ K + 2(10εK)n +Kn = K{1 + (1 + 20ε)n}, (n ≤ n0 + 1).
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Hence

αn0+1 − α0 =

n0
∑

n=0

(αn+1 − αn)

≤
∑

n≥0

ε

2n
[K{1 + (1 + 20ε)n} + 10εK +K]

= εK(6 + 60ε) ≤ 7εK.

Thus

αn0+1 ≤ εK + 7εK ≤ 10εK.

Proposition 5.2. For two gluing parameters ρ = (ρi)i∈Z and ρ′ =

(ρ′i)i∈Z, let K := supi∈Z |ρi − ρ′i|. Then we have

||ai(ρ) − ai(ρ
′)||L2p(Ui) ≤ C9 · λ(2+p)/2pK for all i ∈ Z.

Here C9 is a constant independent of i, λ, ρ, ρ′.

Proof. Let ρ̄(t) = (ρ̄i(t))i∈Z, (0 ≤ t ≤ 1), be a path in GlP such that

each ρ̄i(t) is the geodesic from ρi to ρ′i in G. Since the distance d(ρi, ρ
′
i) is

equivalent to |ρi − ρ′i|:

C−1|ρi − ρ′i| ≤ d(ρi, ρ
′
i) ≤ C|ρi − ρ′i| for some constant C,

we have |dρ̄i/dt| = d(ρi, ρ
′
i) ≤ C ·K.

Let A(n)(ρ̄(t)) = (Ai +a
(n)
i (ρ̄(t)))i∈Z be the connection on E(ρ̄(t)) con-

structed by the iterative process in Section 4; this is parametrized by t and

we can apply Proposition 3.2. We define αn = αn(t) and sn = sn(t) by

αn := sup
i∈Z

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂t
a

(n)
i

∣

∣

∣

∣

∣

∣

∣

∣

L2p(Xi)

,

sn :=











supi∈Z

∣

∣

∣

∣

∣

∣

∂
∂tσ

(n)
2i

∣

∣

∣

∣

∣

∣

L∞(X2i)
if n is even.

supi∈Z

∣

∣

∣

∣

∣

∣

∂
∂tσ

(n)
2i+1

∣

∣

∣

∣

∣

∣

L∞(X2i+1)
if n is odd.

From the definition of a
(0)
i in (14),

∣

∣

∣

∣

∂

∂t
a

(0)
i

∣

∣

∣

∣

≤ const ·
√
λ ·K.
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Here we used the fact that the connection matrices in the exponential gauges

are O(
√
λ). Since ∂a

(0)
i /∂t is supported in the overlaps, we get
∣

∣

∣

∣

∣

∣

∣

∣

∂

∂t
a

(0)
i

∣

∣

∣

∣

∣

∣

∣

∣

L2p(Xi)

≤ const · λ(2+p)/2pK.

In a similar way, we have
∣

∣

∣

∣

∣

∣

∣

∣

∂

∂t
σ

(0)
i

∣

∣

∣

∣

∣

∣

∣

∣

L∞(Xi)

≤ const ·K.

Hence

(19) α0 ≤ const · λ(2+p)/2pK, s0 ≤ const ·K.
Next we will establish recurrence inequalities on αn and sn. If n is

even, then Propositions 3.1 and 3.2 give bounds for ||b(n)
2i ||L2p(X2i) and

||∂b(n)
2i /∂t||L2p(X2i). Then, from the inductive definitions (11) and the ge-

ometric decay (13),
∣

∣

∣

∣

∣

∣

∣

∣

∂

∂t
a

(n+1)
2i

∣

∣

∣

∣

∣

∣

∣

∣

L2p(X2i)

≤ αn + const · λ(2+p)/2p
(

sn +
1

2n
αn

)

,

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂t
a

(n+1)
2i+1

∣

∣

∣

∣

∣

∣

∣

∣

L2p(X2i+1)

≤ αn + const · λ
(2+p)/2p

2n
K

+ const · λ(2+p)/2p
(

sn +
1

2n
αn

)

.

It follows that

(20) αn+1 − αn ≤ const · λ(2+p)/2p
(

sn +
1

2n
αn +

K

2n

)

.

Similarly, from Proposition 3.2 (ii)′ at the end of Section 3,
∣

∣

∣

∣

∣

∣

∣

∣

∂

∂t
σ

(n+1)
2i

∣

∣

∣

∣

∣

∣

∣

∣

L∞(X2i)

≤ N4

2
sn + const · λ

1/p

2n
αn.

Since σ
(n+1)
2i+1 = ρ̄2iσ

(n+1)
2i ρ̄−1

2i on U2i ∩ U2i+1 and σ
(n+1)
2i+1 = ρ̄−1

2i+1σ
(n+1)
2i+2 ρ̄2i+1

on U2i+1 ∩ U2i+2, we get
∣

∣

∣

∣

∣

∣

∣

∣

∂

∂t
σ

(n+1)
2i+1

∣

∣

∣

∣

∣

∣

∣

∣

L∞(X2i+1)

≤ const · δn+1 ·K +
1

2
sn + const · λ

1/p

2n
αn

≤ const · K

2n+1
+

1

2
sn + const · λ

1/p

2n
αn.
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Here we have used Remark 4.1. This shows

(21) sn+1 ≤ 1

2
sn + const · λ

1/p

2n
αn + const · K

2n+1
.

The inequalities (20), (21) hold also in the case that n is odd. So we can

apply Lemma 5.1 with initial values (19) and ε = const ·λ(2+p)/2p. Then we

get

αn ≤ const · λ(2+p)/2pK.

Therefore

||a(n)
i (ρ) − a

(n)
i (ρ′)||L2p(Ui) =

∣

∣

∣

∣

∣

∣

∣

∣

∫ 1

0

∂

∂t
a

(n)
i dt

∣

∣

∣

∣

∣

∣

∣

∣

L2p(Ui)

≤ const · λ(2+p)/2pK,

for all i and n. So we get a conclusion:

||ai(ρ) − ai(ρ
′)||L2p(Ui) ≤ const · λ(2+p)/2pK.

The following is Theorem 2.8.

Theorem 5.3. For two gluing parameters ρ and ρ′, A(ρ) is gauge

equivalent to A(ρ′) if and only if [ρ] = [ρ′] in EGlP.

Proof. If [ρ] = [ρ′] in EGlP, we have εi ∈ C(G) with ρ′i = εiρi for

all i ∈ Z. Since the center C(G) acts trivially on connections, it is clear

from the construction in Section 4 that we have ai(ρ) = ai(ρ
′). And we

can choose γi ∈ C(G) such that γi+1 = εiγi. Then these γi give a gauge

transformation h = (γi)i∈Z : E(ρ) → E(ρ′) with h.A(ρ) = A(ρ′).

Conversely, suppose that there is a gauge transformation g : E(ρ) →
E(ρ′) with g.A(ρ) = A(ρ′). This means that there is a gauge transformation

gi : Ei → Ei over each Ui such that

dAigi = giai(ρ) − ai(ρ
′)gi,

gi+1ρi = ρ′igi.

Because Ai is irreducible, we have a constant C independent of λ such that

min
γ∈C(G)

||γgi − 1||C0(Ui) ≤ C · ||dAigi||L2p(Ui).
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The proof of this inequality is standard. For example, see [D2, (4.31)

Lemma]. We can suppose that ||gi − 1||C0(Ui) ≤ C · ||dAigi||L2p(Ui) without

loss of generality. From (18) and Proposition 5.2,

||gi − 1||C0 ≤ C · ||giai(ρ) − ai(ρ
′)gi||L2p

≤ C · ||gi − 1||C0(||ai(ρ)||L2p + ||ai(ρ
′)||L2p) + C · ||ai(ρ) − ai(ρ

′)||L2p

≤ const · λ(2+p)/2p||gi − 1||C0 + const · λ(2+p)/2pK.

Since λ is sufficiently small, we get

||gi − 1||C0 ≤ const · λ(2+p)/2pK.

On the other hand, the “compatibility condition” gi+1ρi = ρ′igi means

ρ′i − ρi = (gi+1 − 1)ρig
−1
i + ρig

−1
i (1 − gi).

Hence

|ρ′i − ρi| ≤ const · (||gi+1 − 1||C0(Ui+1) + ||gi − 1||C0(Ui))

≤ const · λ(2+p)/2pK.

Since this holds for all i, it follows

K ≤ const · λ(2+p)/2pK.

If we choose λ small enough, then this shows K = 0 and ρ = ρ′.

Remark 5.4. So far we have studied only acyclic connections. But this

is just for simplicity. The condition (iv) in Definition 2.3 can be replaced

with

(iv)′ A is a regular ASD connection on E.

If we glue an infinite number of regular ASD connections, then the resulting

ASD connections are parametrized by

EGlP ×
∏

i∈Z

Bi ⊂ EGlP ×
∏

i∈Z

H1
Ai
.

Here Bi is a small ball centered at the origin in H1
Ai

:= kerDAi . This

generalization is a simple application of the methods in this paper and [D2,

pp. 324–325]. The proof is routine, so I omit the details.
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