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We investigate droplet impact on a solid substrate in order to understand the influence
of the gas in the splashing dynamics. We use numerical simulations where both the
liquid and the gas phases are considered incompressible in order to focus on the
gas inertial and viscous contributions. We first confirm that the dominant gas effect
on the dynamics is due to its viscosity through the cushioning of the gas layer
beneath the droplet. We then describe an additional inertial effect that is directly
related to the gas density. The two different splashing mechanisms initially suggested
theoretically are observed numerically, depending on whether a jet is created before
or after the impacting droplet wets the substrate. Finally, we provide a phase diagram
of the drop impact outputs as the gas viscosity and density vary, emphasizing the
dominant effect of the gas viscosity with a small correction due to the gas density.
Our results also suggest that gas inertia influences the splashing formation through a
Kelvin–Helmholtz-like instability of the surface of the impacting droplet, in agreement
with former theoretical works.
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1. Introduction
Droplet impact is involved in a large number of industrial applications and natural

phenomena from ink-jet printing to fuel atomization, surface treatment or soil erosion
(Rein 1993; Yarin 2006; Josserand & Thoroddsen 2016). Understanding the physics of
impacts, as well as predicting and/or controlling their outcome, thus remains a major
challenge in fluid mechanics.

Droplets may impact on different substrates, solid surfaces, thin liquid films or
deep liquid pools in particular, and very different dynamics can be observed, from
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smooth deposition to violent splashes (Marengo et al. 2011). Investigation of drop
impact started more than a century ago with the experimental studies of Worthington
using pioneering photography techniques at the end of the 19th century (Worthington
1876). Since then, drop impact has been an intensive subject of research, particularly
in these past twenty years thanks to the parallel improvement of both high speed
imagery (Thoroddsen, Etoh & Takehara 2008) and numerical simulations (Fuster
et al. 2009; Agbaglah et al. 2011). However, despite these numerous works, a full
understanding of droplet impact dynamics is still lacking. It depends in fact on many
physical parameters, the impact velocity, the drop radius, the liquid viscosity and the
liquid–gas surface tension in particular, usually characterized by the Reynolds and
Weber numbers defined below. On the other hand, although the influence of the gas
on droplet impact was noticed approximately thirty years ago (Esmailizadeh & Mesler
1986), the surrounding gas was usually neglected because the density and viscosity
ratios between liquid and gas are always large in experiments. However, theoretical,
numerical and experimental works have now shown that the surrounding gas clearly
influences the dynamics. This influence is manifested at early times by the formation
of a dimple beneath the drop at impact that leads to the entrapment of a gas bubble
(Mehdi-Nejad, Mostaghimi & Chandra 2003; Smith, Li & Wu 2003; Purvis & Smith
2004; Thoroddsen et al. 2005). More importantly, it has been observed experimentally
that the surrounding gas pressure can suppress the splash at low pressures (Xu, Zhang
& Nagel 2005). Since then, numerous studies have investigated the mechanism by
which gas pressure influences the splash dynamics. These studies have involved and
combined theoretical, experimental and numerical approaches (Korobkin, Ellis &
Smith 2008; Mandre, Mani & Brenner 2009; Hicks & Purvis 2010; Mani, Mandre
& Brenner 2010; Driscoll & Nagel 2011; Duchemin & Josserand 2011, 2012; Hicks
et al. 2012; Kolinski et al. 2012; Mandre & Brenner 2012; Kim et al. 2014; Riboux
& Gordillo 2014; Liu, Tan & Xu 2015; Guo, Lian & Sussman 2016). It has been
demonstrated that splashing is closely linked with the dynamics of the thin film of
gas, beneath the drop before impact but also during the fast spreading of the drop
after impact.

In particular, it has been explained that dimple formation leading to bubble
entrapment is due, as a first approximation, to the viscous cushioning of the gas
beneath the drop (Smith et al. 2003; Purvis & Smith 2004; Korobkin et al. 2008;
Mandre et al. 2009; Mani et al. 2010; Duchemin & Josserand 2011). The lubrication
pressure in the gas deforms the drop before contact, forming a dimple, so that
contact occurs along a circle entrapping the gas bubble, as observed experimentally
(Thoroddsen et al. 2005; Driscoll & Nagel 2011; Bouwhuis et al. 2012; Kolinski
et al. 2012; Tran et al. 2013).

However, this dynamics is far more complex than expected: although the cushioning
of such gas films is dominated by the lubrication dynamics, the usual incompressible
lubrication theory is not able to explain the splashing transition that occurs when the
gas pressure varies. Indeed, because of the Maxwell law for gases (Maxwell 1866),
the viscosity, which is the only gas parameter involved in the lubrication equation,
remains approximately constant when the gas pressure is varied because it is the
(approximately constant) product between the mean-free path and the density that
determines the viscosity. Therefore, additional parameters and physical mechanisms
have to be considered to explain the influence of the gas pressure on the dynamics.
Essentially, three different physical effects have been suggested that depend on the
gas pressure: the compressibility of the gas that is subjected to high pressure when
the film is thin (Mandre et al. 2009; Mani et al. 2010), the inertial correction to
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the lubrication regime (Mandre & Brenner 2012) with its purely inertial limit in the
air cushioning (Moore, Ockendon & Oliver 2013; Moore & Oliver 2014) and the
non-continuum dynamics in the thin gas layer when its thickness becomes of the order
of the mean-free path (quantified by the Knudsen number) (Duchemin & Josserand
2011, 2012; Mandre & Brenner 2012). These effects may also have to be considered
in the situation where the expanding liquid layer wets the substrate, thus involving a
moving contact line (Yokoi et al. 2009; Riboux & Gordillo 2014). For instance, the
compressibility of the gas beneath the drop clearly affects the dimple formation and
the bubble entrapment (Mandre et al. 2009; Mani et al. 2010; Mandre & Brenner
2012). Similarly, the non-continuum dynamics affects the bubble entrapment dynamics
and the expansion of the liquid lamella on the substrate (Duchemin & Josserand
2012; Mandre & Brenner 2012; Riboux & Gordillo 2014). However, a direct link
between the bubble entrapment and the splashing is still lacking, so that it is not
clear how this dynamics could explain the pressure dependence on the splashing.
Inertial effects have been invoked through the Bernoulli pressure jump (Riboux &
Gordillo 2014, 2015) and/or a Kelvin–Helmholtz-like instability of the expanding
liquid sheet that could even be enhanced by the non-continuum correction (Kim et al.
2014; Liu et al. 2015). In a recent paper, Riboux & Gordillo (2014) have gathered
the contributions to the wetting expanding liquid lamella of the lubrication pressure,
taking into account the non-continuum correction to the contact angle dynamics, with
the suction pressure due to the Bernoulli pressure on top of the lamella. Quantitative
estimates based on reasonable assumptions on the dynamics gave good agreement with
experiments, suggesting that the influence of the gas pressure is due to the sum of
these different contributions, although a direct measure of these different contributions
would be interesting to perform (Riboux & Gordillo 2014, 2015). Finally, these
different mechanisms have raised the question of whether the expanding lamella is
formed before or after the droplet wets the substrate, leading to qualitatively different
splashing scenarios, as suggested by Mandre & Brenner (2012). In fact, Riboux &
Gordillo (2014) argue and develop their model assuming that the bubble entrapment
is independent from the splashing that is then clearly a consequence of the rapidly
expanding liquid rim that is wetting the substrate. In contrast, it has been argued that
the liquid lamella could skate on a thin gas layer while splashing (Driscoll & Nagel
2011; Duchemin & Josserand 2011; Kolinski et al. 2012).

Therefore, despite intense research, the final word on the influence of the
surrounding gas on the detailed mechanisms of splash formation has not been written.
In particular, if the various relevant effects involving the gas have been identified,
namely compressibility, inertia, contact-line dynamics and non-continuum effects, their
quantitative contributions still remain to be investigated and the interplay between the
lamella formation and the wetting of the substrate needs also to be clarified (Riboux
& Gordillo 2014; Josserand & Thoroddsen 2016).

In this paper, we investigate the influence of the gas inertia on the splashing
dynamics by performing numerical simulations of drop impact on a solid surface,
solving the incompressible Navier–Stokes equations for each fluid, using the Gerris
flow solver (Popinet 2006), as shown in figure 1. The goal here is to clearly identify
and thus discriminate a purely incompressible effect in the gas dynamics. Indeed,
by varying only the gas density and viscosity, we seek to isolate the gas inertia
correction to the cushioning since neither compressibility nor non-continuum effects
are taken into account by our numerics. The key point of our approach lies in
solving the full Navier–Stokes equations and not a reduced model involving the
lubrication approximation for the gas cushioning and the inviscid dynamics for the
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 1. (Colour online) Snapshots of droplet impact on a solid substrate obtained by
solving the axisymmetric two-phase Navier–Stokes equations using the Gerris solver, for
Re=1000, We=370, α=0.003 and m=0.15. The images correspond to the dimensionless
times (a) t=−0.1, (b) t= 0, (c) t= 0.048, (d) t= 0.087, (e) t= 0.2 and ( f ) t= 0.6.

liquid, as done by most of the numerical and analytical studies of this problem until
now (Smith et al. 2003; Purvis & Smith 2004; Korobkin et al. 2008; Mandre et al.
2009; Duchemin & Josserand 2011; Hicks et al. 2012), which consist of completely
neglecting the gas inertia. Solving the full incompressible Navier–Stokes equations for
both the gas and the liquid phase remains nowadays a real challenge in the context of
drop impact in order to capture the dimple and the bubble entrapment correctly (Guo
et al. 2016; Josserand, Ray & Zaleski 2016) which explains why reduced models
have been mostly used until now. Therefore our work will help to disentangle the
influence of the different contributions in the splashing dynamics by focusing on
purely incompressible mechanisms.

2. Problem and method
2.1. General description

We consider a spherical droplet of diameter D = 2R, of a liquid of density ρl and
viscosity µl falling from a small height h between the droplet and the substrate, with
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an initial velocity U0 normal to the substrate, surrounded by a gas of density ρg,
viscosity µg, the liquid–gas surface tension being γ (see figure 2). The substrate
is dry and flat and a typical partially wettable surface is considered with a contact
angle θ = 90◦ for the sake of simplicity. We have also tested other contact angles
(from θ = 0 to θ = 180◦) finding no qualitative changes in the mechanisms described
below, so that we only show here the results for θ = 90◦. It also indicates that the
details of the moving contact line does not play a significant role in the impact
dynamics, because of the rapid spreading, although it could be crucial in the receding
dynamics of the drop as observed experimentally (Bartolo, Josserand & Bonn 2005).
Notice however, that the full account of the moving contact-line dynamics can be
implemented in numerical simulations using specific boundary conditions (Afkhami,
Zaleski & Bussmann 2009; Legendre & Maglio 2015; Mahadi, Afkhami & Kondic
2015; Mahady, Afkhami & Kondic 2016; Afkhami et al. 2017). Experiments are
typically achieved by releasing a pendant liquid droplet from a height H�D, that then
falls under gravity, so that U0 ∼

√
gH. If the Froude number (Fr = U2

0/(gD)∼ H/D)
is large, the liquid inertia dominates the gravitational force so that gravity can be
neglected during impact itself. We assume a spherical droplet although its shape can
sometimes be affected both by the initial oscillations triggered by the dynamics of
detachment (Wang, Kuan & Tsai 2013; Thoraval, Li & Thoroddsen 2016) and the
gas drag (Thoroddsen et al. 2005). Indeed, we will focus here on the short time
dynamics that will be mostly determined by the radius of curvature of the bottom of
the drop that we suppose to be close to R. In general, drop impact is characterized
by two dimensionless numbers based on the liquid drop parameters: the Reynolds
number that compares inertial effects with viscous effects

Re=
ρlU0D
µl

(2.1)

and the Weber number which compares inertial effects with capillary effects

We=
ρlU2

0D
γ

. (2.2)

Here, since we neglect gravity, compressibility and non-continuum effects, only two
additional dimensionless numbers are present in the problem: the density and viscosity
ratio α = ρg/ρl and m= µg/µl respectively. Note that the incompressible lubrication
of the gas layer is controlled by the Stokes number alone:

St=
µg

ρlU0D
=

m
Re
, (2.3)

which is nothing more than the ratio between the viscosity ratio and the Reynolds
number. Compressibility is often neglected for droplet impact problems as long as
the impact velocity is much below the speed of sound in both fluids (Lesser & Field
1983). In fact, if this assumption is usually correct for most of the flow and in the
liquid domain, it has been shown that it is not the case in the small region beneath
the drop just before the impact if the gas pressure is small enough (Mandre et al.
2009). There, because of the high pressure coming from the inertia of the drop
cushioning the thin gas film, the lubrication gas pressure can overcome the ambient
pressure so that compressible effects have to be taken into account. The potential
influence of compressibility on the splashing dynamics has been studied in great
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FIGURE 2. Calculation domain. The domain is constituted of a square. A semi-circular
droplet of diameter D, density ρl and viscosity µl falls from a height h with an initial
velocity U0. The surrounding gas has a density ρg, a viscosity µg and a surface tension
γ . The bottom boundary (z= 0) is considered as a solid substrate with no-slip condition
and a contact angle θ = 90◦ is defined.

detail in the framework of the simplified model solving the lubrication equation for
the gas and an inviscid dynamics for the liquid drop approximated by a parabolic
shape (Mandre et al. 2009; Mani et al. 2010; Mandre & Brenner 2012). Although
it shows that changing the surrounding gas pressure, as done in the pioneering
experiments of Xu et al. (2005), can lead to different compressible regimes, no clear
relation between this dynamics and the suppression of the splash was deduced beside
qualitative arguments (Mandre & Brenner 2012). This is why in the present paper we
propose to investigate the dynamics omitting the compressibility of the gas in order
to isolate the different effects leading to the splash in the dynamics. In particular, our
approach will help to identify a purely incompressible inertial contribution favouring
the splashing at high gas pressure (in our case it corresponds then to high gas density),
explaining thus how a lower gas density could eventually suppress the splash.

Within this framework, the system obeys the Navier–Stokes equations for incom-
pressible flow with surface tension and sharp interfaces that read:

ρ(∂tu+ u · ∇u)=−∇p+∇ · (2µD)+ γ κδsn (2.4)
∇ · u= 0, (2.5)

where p and u are the pressure and velocity fields respectively. D= 1/2(t∇u+∇u)
is the rate-of-strain tensor (Dij≡ (∂iuj+ ∂jui)/2). The distribution function δs is a delta
function which insures the jump conditions at the interface, κ the curvature and n the
normal vector to the interface. In this formulation the density ρ(x, t) and viscosity
µ(x, t) are fields that take constant values (ρl and ρg for the density, µl and µg for
the viscosity). Finally, since we are interested in the short-time dynamics after impact,
we can make the assumption that the dynamics is axisymmetric, although the influence
of three-dimensional effects would need to be investigated in the future.
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2.2. Numerical method
The set of incompressible two-fluid Navier–Stokes equations (2.4) and (2.5) is solved
in dimensionless form using the free code Gerris (Popinet 2003, 2006, 2009) in a
two-dimensional axisymmetric geometry (using cylindrical space variable r and z).
Rescaling the density, space, time, velocity and pressure by ρl, D, D/U0, U0 and
ρlU2

0 respectively, the Navier–Stokes equations become (using the ∗ for dimensionless
variables):

ρ∗
du∗

dt∗
=−∇

∗p∗ +
1

Re
∇
∗
· (2µ∗D∗)+

1
We
κ∗δ∗s n, (2.6)

involving the Reynolds and Weber numbers defined above. The density ρ∗ and
viscosity µ∗ fields now take values 1 in the liquid phase and α and m in the gas
phase. The dimensionless strain tensor now reads D∗ij ≡ (∂∗i u∗j + ∂

∗

j u∗i )/2. For the sake
of simplicity, we will drop the ∗ in what follows. Gerris solves this set of equations
using a finite-volume method on an adaptive tree-structured (quadtree/octree) mesh.
Momentum and pressure are computed by a projection method and the velocity
advection is calculated by a second-order Bell–Collela–Glaz scheme. The interface
is tracked by a volume-of-fluid/piecewise linear interface calculation (VOF/PLIC)
method (Li 1995) with a mixed Young’s centred scheme (Tryggvason, Scardovelli &
Zaleski 2011) to determine the normal vector and a Lagrangian-explicit scheme for
VOF advection. Curvature is computed by the height-function method and surface
tension is estimated from curvature by a balanced continuous-surface-force method
(Popinet 2009). The density and viscosity fields are computed based on the VOF
fraction C using an arithmetic mean. The adaptive mesh refinement is controlled
using the following criteria, as illustrated in figure 3:

(i) the gradient of the VOF function C tracking the interface,
(ii) the variation of the vorticity,

(iii) the curvature in the meshes near the interface,
(iv) the solid surface.

The refinement consists in dividing a square parent cell into four (eight in three
dimensions) square children cells of size half that of the parent one. Therefore, the
level of refinement n corresponds to a cell size 2−n smaller than the computational
unit size. Finally, a no-slip boundary condition is imposed on the solid substrate
boundary (z = 0), while free slip is imposed on the other two boundaries (the
last one, corresponding to r = 0 comes from the axial symmetry). Because of the
Navier–Stokes solver, this no-slip boundary condition imposes in fact an effective slip
length of the order of half of the grid size at the substrate and a convergence study
needs to be performed to investigate the influence of such a condition on the results.

In this paper, since we want to characterize the influence of the gas properties
(density and viscosity) on the dynamics, we have kept all the other quantities constant,
specifically Re= 1000 and We= 370. In other words we are performing a parametric
study by varying only the ratios α and m (notice that the Stokes number also varies
since the gas viscosity does). These values of the Reynolds and Weber numbers have
to be compared with those of the original experiment of Xu et al. (2005), Re∼ 10 000
and We ∼ 1500 that are significantly higher. In fact, numerical simulations at such
high Reynolds and Weber numbers are possible but may rapidly suffer from a lack of
spatial resolution because of the thin liquid layer formed at impact. The influence of
the gas density is however present for the values of the parameters chosen here so that
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(a) (b)

FIGURE 3. (Colour online) Snapshots of the adaptive mesh refinement at two different
instants of the impact: (a) just before impact where most of the refinement is concentrated
on the interface and solid surface, and (b) a zoom after the impact when a layer of liquid
is skating above the solid surface, the red curve representing the interface.

a qualitative parametric study of the mechanisms involved is possible. Furthermore,
in the actual configuration, a typical simulation run takes about 12 hours on one
core of a powerful machine with a refinement level n = 11 while it would take
almost 5 days for n = 12, making the parametric study done here difficult. Finally,
our numerics can be understood as the impact of a drop of smaller diameter than
the original experiment, with a higher liquid viscosity, smaller velocity and smaller
surface tension. For instance, considering the velocity and the drop diameter both
divided by two compared to the experiment, one would obtain our numerical value
by multiplying the liquid viscosity by 2.5 and dividing the surface tension by 2,
something that can easily be obtained experimentally. The initial distance h between
the droplet and the substrate has been set such that it has no influence on the impact
dynamics, leading to h = 0.1 in dimensionless unit. A typical impact obtained by
numerical simulations is shown in figure 1 for α = 0.003 and m = 0.15. The origin
of time is taken as the virtual time at which a perfectly spherical droplet falling at
constant speed would contact the solid providing the droplet does not deform. In
other words, the numerical simulation starts at dimensionless time t = −h. As the
droplet approaches the solid substrate, the gas cushioning delays the contact between
the droplet and the substrate that happens slightly later than for t = 0 and not at
the droplet bottom (r = 0) but rather at a positive radius: a small bubble of gas
is subsequently entrapped by the dynamics between the expanding liquid drop and
the solid substrate. This bubble cannot really be distinguished in figure 1 but its
formation can be observed on the refined mesh of figure 3(b) which is taken before
the bubble entrapment, and will be characterized below. The drop then spreads on
the substrate and a thin jet emerges at some angle, forming the splash. The splash
deforms with time and a characteristic S-shape is created (Josserand et al. 2016).

Numerical convergence for drop impact simulation is a hard challenge because of
the small structures created by the impact (Josserand et al. 2016) but also due to the
moving contact-line dynamics that has to be accounted for in the present configuration.
The numerical convergence of our results has been tested by measuring the minimal
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FIGURE 4. (Colour online) Evolution with time of hmin(t), the minimal air thickness in
the numerics, for different maximum refinement levels n (numbers indicated bottom left
of the figure) for m= 0.1 and α= 0.001. The grid size is then proportional to 1/2n near
the substrate. Although small deviations can be observed between the different levels, we
observe a rapid convergence of the results. The straight line indicates the free fall of
the drop and the inset shows a zoom of the figure near the time where the bubble is
entrapped.

film thickness, which is one of the most sensitive quantities among those that depend
on the mesh size and on the boundary condition on the substrate. Figure 4 shows this
quantity as a function of time for increasing mesh refinement demonstrating a good
convergence for refinement levels above n = 10. For the rest of this paper, all the
results will be computed using the same maximum refinement level n= 11. However,
the convergence for the dynamics of the moving contact line cannot be obtained in our
numerics because of the no-slip boundary conditions that leads to a singular behaviour
in the continuum limit (Dussan 1979). Physically, the flow is regularized by small-
scale effects, that can be accounted for through an effective boundary slip condition
at the solid surface, with a slip length of the order of a few tens of nanometres (Bonn
et al. 2009). To obtain numerical convergence for this dynamics, complex boundary
conditions at the moving contact line involving the mesh size have to be introduced
(Afkhami et al. 2009; Legendre & Maglio 2015; Afkhami et al. 2017). Keeping a
fixed maximum refinement level avoids the question of the numerical convergence
of the moving contact-line dynamics, since it corresponds then to a fixed slip length
boundary condition at the solid substrate. For instance, for a millimetre drop diameter,
the slip length in our simulations is approximately 250 nanometres, clearly larger than
the physical one, but with no expected qualitative change in the dynamics.

2.3. Scaling analysis
Prior to performing a parametric study of the dynamics, it is useful to define and to
estimate some quantities related to the impact. In particular, a geometrical argument
based on the intersection of the impacting drop with the substrate shows that, at short
times, the vertical length of the intersection h(t) varies like t while the horizontal one
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FIGURE 5. (Colour online) Radius rw, defined as the radius of minimal height as a
function of time t − td, where td = 0.102 is the time at which the dimple beneath the
drop appears, for α = 0.001 and m = 0.1. The inset shows the relation between rw and
√

t− td. Symbols denote the temporal evolution of the r-coordinate of the hmin point and
the dashed curve represents the law rw =

√
3(t− td)/2.

follows rc(t) ∼
√

h ∼
√

t. This simple argument has been used since Wagner (1932),
implying a self-similar dynamics of the impact at short times (Josserand & Zaleski
2003; Smith et al. 2003). More precisely, a quantitative estimate can even be done
for the foot of the jet following

√
3t/2 (Riboux & Gordillo 2015; Philippi, Lagrée &

Antkowiak 2016) (notice that the 3/2 factor, in contrast with the 3 in the literature,
comes from the rescaling by D used here instead of R) but remarkably, the general
square-root-of-time law (with possibly a different prefactor) describes correctly all
the horizontal scales at small times (Josserand & Zaleski 2003). Figure 5 shows the
spreading radius rw(t), defined as the position where the interface height is minimum,
as a function of time for α = 0.001 and m = 0.1 as an illustration of this evolution.
In fact, it has been shown that the spreading radius varies only slightly with the fluid
viscosity and surface tension (Josserand & Zaleski 2003), so that the curves obtained
with other parameters will show the same overall aspect. The curve is well fitted by
the predicted law:

rw(t)∼
√

3(t− td)/2, (2.7)

where td is the time when the dimple starts to form beneath the drop. Remarkably, the
fit overestimates the spreading radius at very short time, probably because of a small
capillary correction when the dimple forms. Rapidly however, the predicted law gives
a very good approximation of the spreading radius.

Small discontinuities can be observed above t− td ∼ 0.03 corresponding to rw∼ 0.2.
Above these values, the central bubble has been entrapped and the dynamics of
the numerical contact line induces a sequence of contact zone separated by bubbles
as illustrated in figure 6. There, rw(t) is defined as the largest value of the liquid
in contact with solid, explaining the discontinuities in the curve 5. These bubbles
are formed by an instability of the moving contact line but note that due to the
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FIGURE 6. (Colour online) The expanding lamella after bubble entrapment (t = 0.059)
for the same parameters as in figure 5. The liquid–gas interface is drawn while the solid
surface is the dashed line plotted at z= 0. Small bubbles are entrapped within the wetted
area due to the rapid expansion of the lamella, as displayed in the inset that shows a
zoom of the wetted area.

cylindrical symmetry of our calculations these bubbles are in fact tori that would
be unstable in three dimensions. These bubbles are similar to those observed in
numerical simulations of drop impacts on a thin liquid film (Josserand et al. 2016)
and reminiscent of experimental observations by Li, Vakarelski & Thoroddsen (2015b).
How these bubbles would fare under refinement of the grid has not been investigated
but their size would likely vary.

This well-known bubble entrapment mechanism has been observed experimentally
(Thoroddsen, Etoh & Takehara 2003; Thoroddsen et al. 2005) and numerically
(Mehdi-Nejad et al. 2003; Smith et al. 2003; Korobkin et al. 2008; Mandre et al.
2009; Duchemin & Josserand 2011) in many studies and contexts. It is usually
explained using the lubrication equation framework in the gas (Smith et al. 2003;
Korobkin et al. 2008; Mandre et al. 2009; Mani et al. 2010) and we will rephrase
now the scaling arguments for consistency. Indeed, when the drop approaches the
solid, the gas layer beneath the drop becomes very thin so that the gas inertia can
be neglected in the Navier–Stokes equations leading to the lubrication equation for
the gas layer thickness h(r, t), involving the pressure pg(r, t) in the gas, written here
in dimensionless form:

∂h
∂t
=

1
12r St

∂

∂r

(
rh3 ∂pg

∂r

)
. (2.8)

Using the scalings induced by the geometrical argument above and considering that
∂th∼ 1, we obtain the following scaling for the lubrication pressure in the gas:

pg ∼
St r2

c

h3
∼

St
h2
∼

St
t2
. (2.9)

On the other hand the pressure in the liquid pl needed for the deformation of the
drop at impact can be estimated using the same self-similar argument by balancing
the pressure force pl ×πr2

c with the momentum variation in the half-sphere of radius
rc (in dimensionless form, the vertical velocity is U∗ = 1, and the liquid density is
ρ∗ = 1, kept in the first formula below to avoid confusion):

d
dt

(
ρ∗

2
3
πr3

c U∗
)
= 2πρ∗r2

c
drc

dt
U∗, (2.10)
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yielding (taking now ρ∗ = U∗ = 1 and using the fact that rc(t) =
√

t so that
drc/dt= 1/(2rc))

2πrc ∼ pl ×πr2
c , (2.11)

which leads to the scaling for the pressure in the liquid near the impact zone:

pl ∼
2
rc
∼

2
√

t
. (2.12)

The entrapment of the bubble can be interpreted within this simplified scaling analysis:
when t is small enough, the lubrication pressure pg is much bigger than the inertial
one pl needed to deviate the impacting drop so that the drop skates on a thin gas layer.
On the other hand, when t increases, the lubrication pressure decreases much more
rapidly than the inertial one so that at a critical time, the gas layer cannot any more
deviate the liquid that then enters in contact with the solid. This threshold, measured
in term of entrapment time te or height he = te, radius re =

√
te and volume Ve ∝ r2

e he
can be estimated by balancing the two pressures pl ∼ pg leading to:

h∗ ∼ te ∝ St2/3, re ∝ St1/3 and Ve ∝ St4/3. (2.13a−c)

Measuring these quantities experimentally remains a difficult challenge because
of the small values of the Stokes numbers but this has been done eventually using
complex optical techniques (Driscoll & Nagel 2011; Bouwhuis et al. 2012; Kolinski
et al. 2012; Klaseboer, Manica & Chan 2014; Li, Vakarelski & Thoroddsen 2015a).
The results are somehow puzzling since the theoretical predictions have not always
been observed or only in a narrow range of Stokes numbers. We have investigated
numerically the radius of the entrapped bubble by measuring the radius re of the first
contact between the droplet and the solid and the height he of the gas film at that time
taken at r= 0, for different Stokes numbers, by varying the gas viscosity. As shown in
figure 7(a), the scaling laws work well for a large range of Stokes numbers, proving
that the lubrication is clearly in action at first order. However they fail for small or
very large Stokes numbers: the finite size of the drop affects the scaling for high
Stokes numbers while one may expect inertia effects to dominate lubrication theory
at small Stokes numbers (Wilson & Duffy 1998; Luchini & Charru 2010), as already
observed numerically for the impact on a liquid surface (Jian et al. 2015; Josserand
et al. 2016). This variation of the entrapped bubble size with the gas density at small
Stokes numbers is a first manifestation of an effect related to the gas inertia in the
impact. This is shown in figure 7(b), where the volume is plotted as the density ratio
varies for a fixed Stokes number (St = 10−5), exhibiting a decrease of the bubble
entrapped with decreasing gas density. There, while a monotonic increasing trend can
be seen, a high scattering of the data is also observed. This scattering comes from
the small gas density that enhances numerical instability. In particular, large velocity
gradients form in this region where the maximum refinement level is reached, so
that these gradients are probably not sufficiently well resolved. Future studies should
use higher refinement to clarify this point. When comparing the lubrication pressure
with the Bernoulli pressure in this configuration, it has been shown that the threshold
between inertia and lubrication occurs for α ∼ St2/3 (Josserand et al. 2016), in good
qualitative agreement with the plateau observed at small density ratio in figure 7(b).
Even if it is tempting to associate this volume decrease with a smaller angle of jet
formation and thus with a weaker splash, the full dynamics needs to be investigated
further to elucidate the splashing mechanisms.
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FIGURE 7. (Colour online) (a) Thickness of the gas layer he, radius of the first contact
point re and volume of the central entrapped bubble Ve versus the Stokes number St
(logarithmic scale) for density ratio α= 0.003 (this implies m=Re · St= 1000 St), symbols
represent simulation results. Dashed lines represent the scaling laws he = 2.6 St2/3, re =

3.3 St1/3 and Ve = 28.314St4/3 respectively. (b) Ve versus density ratio α for St= 10−5.

3. Identification of two splashing mechanisms
In order to investigate the influence of the gas properties on the splashing

mechanism, we perform a collection of numerical simulations by varying only the
gas density and viscosity through the ratios α and m respectively. The results on
the bubble entrapment suggest that this dynamics is a priori dominated by the gas
viscosity (through the Stokes number, involving the viscosity ratio m) but with a
small correction due to inertia (involving then the density ratio r), as highlighted by
the variation of the entrapped bubble with the gas density. The variation of the impact
dynamics with the viscosity ratio can be observed in figure 8 where the temporal
evolution of the interface profile at the early stage of impact is shown for three
different values of m for a fixed value of α = 0.003. As the gas viscosity decreases,
the impact dynamics presents three different regimes and exhibits in particular two
distinct splashing mechanisms: at the highest viscosity ratio m= 0.15, figure 8(a), a
jet emerges from the drop just before the contact with the solid, leading eventually to
a splash forming rapidly a large angle with the substrate. We call this mechanism the
jet splash. When the viscosity ratio is decreased, for m = 0.04 (figure 8b), a splash
is still present but it is formed by the detachment of a jet from the rapid spreading
of the liquid already in contact with the substrate, leading eventually to a splash
forming firstly a small angle with the substrate (typically below 5◦ here). We call
this mechanism the detachment splash. Then at even smaller gas viscosity (m= 0.01,
figure 8c), no splash is observed, the rapid spreading of the drop on the substrate
remains stable. This regime is called the spreading. Such splashing jet angle variation
has already been observed when varying the Reynolds number (Thoraval et al. 2012)
and it is interesting to notice here that the gas density can similarly affect this angle.

Our numerics have thus helped to identify two different splashing mechanisms
depending on whether a jet is formed before or after the liquid wets the solid. Such
distinct behaviours have been in fact already suggested by Mandre & Brenner (2012)
based on qualitative arguments but it is to our knowledge the first time that they are
observed in numerical simulations. Although the two splashing mechanisms exhibit
different behaviours for the jet formation at small times, their further evolution shows
eventually similar features for the jet deviation shape, as can be seen in figure 9
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FIGURE 8. (Colour online) Interface evolution in time at the early stage of impact
for α = 0.003 but different viscosity ratios m: (a) jet splash, m = 0.15, the interfaces
from left to right correspond to t = 0.025, 0.030, 0.035, 0.040, 0.080 respectively;
(b) detachment splash, m = 0.04, the interfaces from left to right correspond to t =
0.015, 0.020, 0.025, 0.030, 0.035, 0.080 respectively; (c) spreading, m= 0.01, the interfaces
from left to right correspond to t= 0.007, 0.010, 0.015, 0.030, 0.040 respectively. The line
z= 0 represents the solid substrate.
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FIGURE 9. (Colour online) Interface profiles at the same time t = 0.5 for density ratio
α = 0.003 and for the two viscosity ratios m = 0.15 and m = 0.04 at which splash was
observed in figure 8. The line z= 0 represents the solid substrate.

where the interface is shown for the two splashing cases of figure 8 at the later time
t= 0.5. There, the two interface shapes are similar forming a characteristic shape that
resembles the letter ‘S’. In the lowest viscosity case the jet is only slightly closer
to the horizontal than for the higher viscosity case. To illustrate further on the two
different splashing mechanisms, we show in figure 10 the pressure and velocity fields
at the onset of the jet formation for m = 0.04 (detachment splash, a) and m = 0.15
(jet splash, b). Higher pressure is observed in the detachment case because of the
arrest of the liquid by the contact with the solid substrate. By contrast, the velocity
field clearly exhibits the skating of the liquid jet on a thin gas layer in the case of
the jet splash.

The formation of the splash is even clearer in figure 11 where the evolution of
the positions of the rim of the expanding liquid sheet (defined as its maximum
r-coordinate) is drawn for different viscosity ratios. Two main behaviours can be
observed at large times/radius (for r/D > 0.5 typically): a splash is formed for the
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FIGURE 10. (Colour online) Pressure (colour) and velocity (arrows) fields at time t= 0.04
for the two different splashing mechanisms at α = 0.003. (a) The detachment splash for
m= 0.04 and (b) the jet splash for m= 0.15. In (b) the liquid layer is skating on a thin
gas film, and the velocity field in the liquid is almost parallel, while in (a) the liquid is
arrested by the substrate, leading to a weaker and more complex velocity field, and higher
pressure.
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FIGURE 11. (Colour online) Evolution in time of the position of the rim of the
liquid sheet for various viscosity ratios m = 0.01, 0.035, 0.04, 0.06, 0.07, 0.15 with a
constant density ratio α= 0.003. NS represents non-splashing spreading, DS represents the
detachment-splash regime and JS the jet-splash behaviour. Inset shows a zoom at small
times (around r/D∼ 0.3). The position of the rim is defined as the maximum r-coordinate
of the expanding liquid lamella. The local minimum observed around r/D ∼ 0.6 for
m= 0.035 corresponds to the formation of a liquid rim on the spreading lamella.

highest values of m (here for m > 0.04) while the rim remains attached to the
substrate for the two lowest values. Since the position is taken at the edge of the
expanding rim, this explains why even for the no-splash regime the height is still
slowly growing with time. Looking more precisely at the short-time evolution (around
r/D∼ 0.3 to be compared with the bubble entrapment at r/D∼ 0.2), one can observe
the detachment-splash regime for m = 0.04 where the dynamics follows for a short
time the evolution of the smaller viscosities until they depart and then follows a
splash dynamics.
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FIGURE 12. (Colour online) Position evolution of the rim of the thin liquid sheet on
varying the density ratio α = 0.0005, 0.001, 0.0015, 0.004 with a constant viscosity ratio:
(a) m= 0.037 and (b) m= 0.07. NS represents non-splashing spreading, DS represents the
detachment-splash regime and JS the jet-splash behaviour. The local minimum observed
in (a) around r/D ∼ 0.6 for α = 0.001 corresponds to the formation of a liquid rim on
the spreading lamella.

These behaviours can also be observed when the gas density varies, as shown
in figure 12 where the evolution of the position of the rim is plotted for varying
density ratios α for two different viscosity ratios m = 0.037 and m = 0.07. For the
first case, the splash is suppressed for low enough density ratio (below α = 10−3)
and the detachment-jet dynamics is observed for α = 0.0015. When the viscosity
ratio is increased to m= 0.07, the splash threshold is lowered when the density ratio
decreases but there no suppression is obtained for the lowest density ratio available
in our numerics. These results are particularly important since they show that even
in incompressible gas dynamics the density can influence the impact and eventually
suppress the splash. Together with the variation of the entrapped bubble size with gas
density, it suggests that gas inertia does influence the splashing threshold. However,
this effect appears here as a correction to the dominant incompressible lubrication
mechanism.

4. Phase diagram
The influence of the gas properties on the impact dynamics can be summarized in

a phase diagram obtained by varying only the gas viscosity and density, through their
ratio with the liquid ones, all the other parameters kept constant. It corresponds thus
to fixed Reynolds and Weber numbers (the same as those used until now, Re= 1000
and We= 370). Figure 13 shows the phase diagram for the whole range of parameters
studied here, with a variation of the gas density and viscosity over approximately
two orders of magnitude. In this phase diagram the regions leading to the different
splash mechanisms are marked using different symbols and colours. At first glance,
one can see that the splashing/spreading boundary, but also the detachment-/jet-splash
boundary, depends almost only on the gas viscosity, as suggested by the previous
results showing that the incompressible lubrication dynamics was the dominant effect
on the short-time dynamics of the impact. However, one can notice an effect of
the gas density at small densities showing that the low gas densities (corresponding
thus to low pressure) tend to lower and sometimes even suppress the splashing, in
qualitative agreement with the experimental observation (Xu et al. 2005). Interestingly,
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FIGURE 13. (Colour online) Phase diagram of the impact outcome concerning the
splashing dynamics. NS represents non-splashing spreading, DS represents the detachment-
splash regime and JS the jet-splash behaviour.

the detachment-splash regime always separates the two main behaviours (spreading
and jet splashing) and can thus be considered as a transition domain.

Finally, now that we have observed that gas density can influence the splashing
of a droplet on a solid substrate even in the incompressible flow limit, it is crucial
to identify the physical mechanisms involved in this dependency! Indeed, since the
gas density in this incompressible limit enters in the equations through the inertial
term, we need to understand its effect. In that framework, we should distinguish two
different situations, whether the splash is initiated before or after the contact and
wetting with the solid. Since the spreading dynamics after contact with the substrate
involves the complex dynamics of the moving contact line, we will focus first on the
transition between detachment and jet splash. In that situation, the main difference
between the jet and the detachment splashes comes from the observation that a jet
is ejected from the drop prior to contact for the jet splash, in contrast with the
detachment splash. It suggests that an instability mechanism involving gas inertia is
enhanced by the gas density. When the jet is initiated before the contact (jet-splash
regime), we can consider that the droplet is spreading and skating on a thin layer
of air and it is tempting to draw an analogy with the atomization of liquid jets
(Boeck & Zaleski 2005; Fuster et al. 2013). In fact, it has been already suggested
and demonstrated experimentally that in this case, the rapid skating of the liquid on
a thin gas layer can develop a Kelvin–Helmholtz (KH) like instability that generates
the splash (Kim et al. 2014; Liu et al. 2015). In particular Liu et al. (2015) has
shown that the splash could be suppressed by draining the air layer beneath the drop
near the contact location, emphasizing the role of the skating of the liquid on the
gas layer. The KH instability involves the density ratio as well as the viscosity ratio
in the growth rate of the instability (Villermaux 1998; Yecko & Zaleski 1999; Yecko,
Zaleski & Fullana 2002; Boeck & Zaleski 2005; Fuster et al. 2013), and although
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FIGURE 14. (Colour online) Evolution of maximal vorticity in the gas as a function of
time for different viscosity ratios ranging from m= 0.01 to m= 0.15 and α= 0.001 to α=
0.004, covering the different splash and spreading regimes. NS represents non-splashing
spreading, DS represents the detachment-splash regime and JS the jet-splash behaviour.

the shear flow induced by the skating has a complex structure, such an instability
should be present in the dynamics prior to the contact. To quantify the shear induced
by the dynamics, we measure the vorticity (ω = ∂zu − ∂rv) in the gas layer beneath
the droplet. Figure 14 shows the evolution of the maximum of this vorticity in the
gas layer as a function of time for different viscosity ratios (ranging from m= 0.01
to m = 0.15) and density ratios (α = 0.001 and α = 0.004): as expected for the
lubrication regime in the gas layer, we observe a strong dependence of the vorticity
following roughly ω ∝ 1/µg (this can be inferred from the shear stress balance at
the interface between the gas layer and the liquid spreading). On the other hand, no
dependency on the gas density is observed since for a fixed viscosity ratio m (see
in particular for m = 0.037 ∼ 0.04 in the figure), we cannot distinguish the curves
for the three density ratios (α = 0.001, 0.003 and 0.004). Then, even if the shear
flow here is more complex than in situations considered usually in theoretical studies,
we can argue that the KH instability for fixed m will be enhanced by the increase
of the gas density. Therefore, we expect the jet splash to form in this situation at
higher values of α than the detachment splash, as observed in the numerics. On the
other hand, the transition between the detachment splash and the spreading cannot be
explained by this KH instability of the liquid skating on a thin gas layer, since the
expanding liquid sheet wets the substrate. In that case, it has been suggested that the
strong damping of the spreading due to the contact of the liquid with the solid would
generate the splash and in that case the lift force that deviates the liquid jet needs to
be identified (Mandre & Brenner 2012). In a recent work Riboux & Gordillo (2014)
proposed to decompose this lift force in two contributions, one coming from the gas
dynamics near the rapidly moving contact line, the other being the suction due to
the Bernoulli pressure acting on top of the spreading liquid layer. The gas density
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is involved in these two contributions in different ways, through the non-continuum
effect for the force near the contact line and through the gas inertia in the Bernoulli
pressure. In our numerics, only the Bernoulli pressure involves the gas density since
the non-continuum effects are not accounted for. Therefore, our approach can be seen
as an illustration of the influence of the lift force due to the Bernoulli suction on the
detachment-splash/spreading transition.

Finally, quantitative comparisons between our results and the experimental results
of Xu et al. (2005) and Riboux & Gordillo (2014) would be interesting to perform
in order to precisely separate the different effects involved in the splashing dynamics.
Unfortunately, such a quantitative study is not possible in the context of this paper
because our impact parameters (Reynolds and Weber numbers) are too different from
the experimental ones. Such work is thus postponed to a further investigation.

5. Conclusion

In this paper, we have performed a parametric numerical study of droplet
impact on a solid substrate in the incompressible limit both for the gas and the
liquid flow, allowing us to identify the influence of the gas by varying the gas
density and viscosity only. We have shown that the dominant effect involved in
the splashing/spreading transition comes from the gas viscosity and is due to the
lubrication regime holding beneath the drop at the impact. However, the variation of
the dimensions of the entrapped bubble with the gas density at small Stokes numbers
indicates that a correction due to gas inertia is also present. This is confirmed when
the splashing/spreading transition is investigated: firstly we distinguish numerically
for the first time two different splashing mechanisms, depending on whether a jet
is ejected from the drop prior to the contact with the substrate or not, leading to
the jet-splash and detachment-splash regimes respectively. Then, a phase diagram for
the splashing/spreading transition is obtained by varying both the gas density and
viscosity in the region of interest. There, the first-order incompressible lubrication
dynamics is observed but with a clear correction due to the gas density, particularly
present for small density ratios. Finally, we interpret the gas density dependence
separating the two types of splash mechanisms as a Kelvin–Helmholtz-like instability,
as suggested earlier (Kim et al. 2014; Liu et al. 2015), that is enhanced when
the gas density is increased, exhibiting a genuine splashing mechanism. For the
transition between spreading and splashing, our numerics are in agreement with the
model proposed previously (Mandre & Brenner 2012; Riboux & Gordillo 2014): the
Bernoulli pressure acting on the rapidly spreading liquid jet induces the suction of
the liquid that can lift up the lamella when the gas density is high enough. Our
results have thus helped to isolate purely inertial mechanisms that are at play in the
splashing transition. However, their quantitative contributions with respect to other
contributions coming from compressibility and/or non-continuum effects cannot be
evaluated in the present study. Such numerical investigations would still be difficult
to do for two reasons: firstly, we are not aware of any accurate numerical methods
being able to deal simultaneously with two-phase flows with resolved interfaces,
compressible dynamics and non-continuum effects. The method of Li (2016) could
be useful in that respect. Second, even if we have obtained good qualitative results,
quantitative estimates of the different contributions to the splashing should eventually
be performed for realistic impact parameters, something that is probably not too
difficult to reach in the near future, given the rapid improvements of the numerical
methods and computational power (Agbaglah et al. 2011).
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