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We study the incipient motion of single spheres in steady shear flow on regular
substrates at low particle Reynolds numbers. The substrate consists of a monolayer
of regularly arranged fixed beads, in which the spacing between beads is varied
resulting in different angles of repose and exposures of the particle to the main
flow. The flow-induced forces and the level of flow penetration into the substrate are
determined numerically. Since experiments in this range had shown that the critical
Shields number is independent of inertia but strongly dependent on the substrate
geometry, the particle Reynolds number was fixed to 0.01 in the numerical study.
Numerics indicates that rolling motion is always preferred to sliding and that the
flow penetration is linearly dependent on the spacing between the substrate particles.
Besides, we propose an analytical model for the incipient motion. The model is
an extension of Goldman’s classical result for a single sphere near a plain surface
taking into account the angle of repose, flow orientation with respect to substrate
topography and shielding of the sphere to the linear shear flow. The effective level of
flow penetration is the only external parameter. The model, applied to triangular and
quadratic arrangements with different spacings, is able to predict the dependence of
the critical Shields number on the geometry and on the orientation of the substrate.
The model is in very good agreement with numerical results. For well-exposed
particles, we observed that the minimum critical Shields number for a certain angle
of repose does not depend sensitively on the considered arrangement. At large
angles of repose, as expected in fully armoured beds, the model is consistent with
experimental results for erodible beds at saturated conditions.

Key words: multiphase and particle-laden flows, particle/fluid flow, sediment transport

1. Introduction
Incipient particle motion is important in a wide variety of industrial and natural

processes. Applications in technology include positioning (Bleil, Marr & Bechinger

† Email address for correspondence: andreas.wierschem@fau.de
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2006; Sawetzki et al. 2008) and assembling of particles (Yin et al. 2001; Nguyen &
Yoon 2009), laminar flow assays (Brooks & Tozeren 1996), cleaning of surfaces (Fan
et al. 1997; Burdick, Berman & Beaudoin 2005), pneumatic conveying (Stevanovic
et al. 2014), removal of atmospheric pollution in cleaning of ventilating air and
gravitational and centrifugal sedimentation of particle suspensions forming slurries in
liquids (Derksen 2011) among others. Incipient particle motion is also the initial stage
of several environmental phenomena such as sediment transport in rivers, granular
bed erosion and dune formation (Hermann 2007; Groh et al. 2008; Wierschem
et al. 2008). Given the wide range of applications, the onset of particle motion
has been scope of several studies during the last century, mostly at high Reynolds
numbers (Shields 1936; Chang 1939; Paintal 1971; Mantz 1977; Yalin & Karahan
1979; Kuhnle 1993; Marsh 2004; Vollmer & Kleinhans 2007; Valyrakis et al. 2010).
The existing data concerning the threshold for incipient motion under turbulent
conditions, coming from both experimental data and theoretical or numerical models,
are widely scattered (Buffington & Montgomery 1997; Marsh 2004). Scattering of
the experimental data is mainly due to the difficulty of controlling and determining
flow and particle parameters in turbulent systems. The former includes the fluctuating
nature of hydrodynamic forces given by short-term nonlinear pressure gradients
induced by turbulence (Vollmer & Kleinhans 2007) or by the duration of energetic
near-bed turbulent events (Valyrakis et al. 2010) among others. The latter refers to
size, shape, orientation, compactness and roughness of sediments, generally yielding
an ambiguous definition of incipient criteria (Bravo, Ortiz & Perez-Aparicio 2014).

In the last decade, authors started focussing on granular motion under laminar
conditions (Charru, Mouilleron & Eiffel 2004; Loiseleux et al. 2005; Charru et al.
2007; Ouriemi et al. 2007; Lobkovsky et al. 2008; Martino, Paterson & Piva 2009;
Ouriemi, Aussillous & Guazzelli 2009; Derksen 2011; Derksen & Larsen 2011;
Agudo & Wierschem 2012; Seizilles et al. 2013; Agudo, Dasilva & Wierschem 2014;
Seizilles et al. 2014; Hong, Tao & Kudrolli 2015; Agudo et al. 2017). Considering
steady laminar flow drastically reduces difficulties in characterising the shear stress
acting on the sediment and avoids the wide spectrum of length scales interacting with
the bed (Derksen & Larsen 2011). This regime is encountered in applications such as
transportation of heavy oil (Mouilleron, Charru & Eiff 2009) or solid gas hydrate in
pipes, filtration (Olayiwola & Walzel 2009) or microfluidics (Thompson & Bau 2008;
Amini et al. 2012; Li, McKinley & Ardekani 2015). Even in high-Reynolds-number
flows, the particle Reynolds number may be of order one or smaller if the particles
are sufficiently small (Happel & Brenner 1983; Guazzelli & Morris 2012).

The effect of laminar flow acting on a particle in the vicinity of a wall has been
extensively studied analytically in the literature. Goldman, Cox & Brenner (1967)
obtained a solution of the Stokes equation for the translational and the rotational
velocity of a sphere moving parallel to a flat rigid surface in a shear flow. Later,
O’Neill (1968) solved the problem for the particular case in which the sphere
was in contact to the surface, providing an expression for the drag force and the
corresponding torque acting on the sphere. Other authors approached the problem
for semi-spheres attached to the wall (Price 1985; Sugiyama & Sbragaglia 2008)
or for spherical caps exposed to an axisymmetric Stokes flow (El-Kareh & Secomb
1996). First Saffman (1965), and later Leighton & Acrivos (1985) also considered
the contribution of the lift force acting on a sphere. Taking into account lift forces,
Krishnan & Leighton (1990) obtained the translational and rotating velocity of a
rough sphere rolling in a smooth horizontal plane. Yet, compared to drag force lift
may be neglected at small particle Reynolds numbers (Leighton & Acrivos 1985;

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

37
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.370


286 J. R. Agudo and others

King & Leighton 1997). Recently, Mo et al. (2015) experimentally and numerically
determined the critical conditions for suspension of a single sphere placed on a flat
surface.

Other authors experimentally studied incipient particle motion in laminar flow
over irregularly arranged sediment beds. In an annular channel, Charru et al. (2004)
observed an increase in compactness of a monodisperse granular bed due to the local
particle arrangement. This bed armouring yielded an increase of the threshold for
particle motion up to a saturated state characterised by a critical Shields number
of approximately 0.12 independent of inertia. Similar values for the critical Shields
number were provided in other experimental (Loiseleux et al. 2005; Ouriemi et al.
2007; Seizilles et al. 2014) and numerical (Derksen 2011) studies at particle Reynolds
numbers lower than one. In contrast, in a cross-sectional channel, Lobkovsky et al.
(2008) reported a considerably higher value of about 0.3 at saturated conditions. Using
the same experimental set-up, Hong et al. (2015) found critical Shields numbers
ranging between about 0.10 and 0.37 depending on the bed armouring level and
particle size. The critical Shields number for the incipient motion of a single bead
on an irregularly arranged layer of fixed spheres was found to range between 0.02
and 0.04, apparently depending on details of the bed geometry (Charru et al. 2007).

The strong effect of the local grain arrangement on the incipient particle motion
was first noticed under turbulent flow conditions. Fenton & Abbott (1977) observed
that incipient conditions depend largely on the exposure of the particle to the flow. To
account for the impact of geometry on the incipient motion, some authors considered
geometrical factors as the angle of repose (Miller & Byrne 1966; Wiberg & Smith
1987; Dey 1999), exposure to the flow (Fenton & Abbott 1977; Kirchner et al. 1990;
Armanini & Gregoretti 2005), relative grain protrusion (Chin & Chiew 1993) or
streamwise bed slope (Whitehouse & Hardisty 1988; Dey & Debnath 2000; Loiseleux
et al. 2005). Turning to laminar conditions, Martino et al. (2009) experimentally
recorded the influence of the burial degree on the onset of motion of an isolated
cylinder partially exposed to the flow. Simulations of disordered assemblies of
uniformly sized spheres attached to a flat bottom documented again an important
impact of the local bed geometry on the hydrodynamic forces acting on the spheres
(Derksen & Larsen 2011). In recent experiments carried out with substrates made
from regularly arranged sphere monolayers, we corroborated the strong effect of the
substrate geometry on the incipient motion of a single bead (Agudo & Wierschem
2012). In laminar shear flow, we found critical Shields numbers ranging from 0.015
to 0.06 as sole function of the substrate geometry. Further experiments also revealed
the role of the substrate geometry on the incipient particle motion for multi-particle
systems (Agudo et al. 2014).

Several models including geometrical properties of the bed have been developed
to predict the incipient motion, mostly under turbulent conditions. Most of them,
whether analytical (Wiberg & Smith 1987; Kirchner et al. 1990; Chin & Chiew
1993; Ling 1995; Dey 1999; Vollmer & Kleinhans 2007; Ali & Dey 2016), numerical
(Drake & Calantoni 2001; McEwan & Heald 2001; Yergey, Beninati & Marshall
2010; Bravo et al. 2014), probabilistic (Cheng & Chiev 1998; Papanicolaou et al.
2002; Wu & Chou 2003) or semi-probabilistic (Soepyan et al. 2016), determine the
threshold for incipient motion by solving the force balance on the particle or by
addressing the torque balance at a contact point between particle and bed. In both
cases, the hydrodynamic forces are usually modelled assuming coefficients for drag
and lift forces in a certain range of Reynolds numbers. This approach has also been
used for laminar flows (Loiseleux et al. 2005). Hence, a main challenge for the
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corresponding models is a proper formulation for the drag and lift coefficients, which
can be applied in the proper range of Reynolds numbers, bed geometries, shapes
or particle orientations (Mando & Rosendahl 2010). The definition of drag and lift
coefficients, however, varies widely in literature. In addition, most of the theoretical
and empirical approaches for the drag coefficient at defined Reynolds numbers are
based on a freely falling particle (Morsi & Alexander 1972; Wiberg & Smith 1987;
Ling 1995; Dey 1999; Bravo et al. 2014) or are only valid for a specific bed geometry
(Coleman 1967; Vollmer & Kleinhans 2007; Ali & Dey 2016). Regarding the lift
coefficient, there is a much smaller theoretical or empirical basis in literature than
for drag. A typical assumption is that the lift coefficient was proportional to the drag.
Yet, the proportionality factor strongly depends on the considered Reynolds number
range (Saffman 1965; James 1990; Dey 1999) and on the exposure degree (Brayshaw,
Lynne & Reid 1983; Vollmer & Kleinhans 2007) and, hence, on the bed geometry.

A further problem in computing the hydrodynamic forces arises from the velocity
profile over the exposed area of the particle. At high Reynolds numbers, the main
tendency of current models is to assume a mean logarithmic velocity distribution in
the wall layer corrected by the equivalent roughness height of Nikuradse (Nikuradse
1933; van Rijn 1984; Wiberg & Smith 1987; Nezu & Nakagawa 1994; Wu & Chou
2003; Vollmer & Kleinhans 2007). For laminar conditions, the velocity profile close
to the particle is typically assumed to vary linearly with the height (Ouriemi et al.
2009; Derksen & Larsen 2011). This linear assumption can also be applied to the
viscous sublayer in turbulent flows (Ling 1995; Dey 1999; Bravo et al. 2014; Ali &
Dey 2016) at roughness Reynolds numbers below 3 (Wiberg & Smith 1987). Note
that the definition of the roughness Reynolds number is based on the scale length of
the bed roughness and therefore is based on an average bed geometrical factor.

For turbulent conditions, different studies evidence the existence of a non-zero
average velocity on the top of the sediment bed (James & Davis 2001; Pokrajac,
Manes & McEwan 2007; Yergey et al. 2010). At high Reynolds numbers, the
main tendency of current models is to adopt a virtual or effective zero level at a
constant distance below the top of the substrate. Averaging over a region upstream and
downstream of the considered particle, Kirchner et al. (1990), for instance, defined the
effective zero level as 16 % of the particle diameter below the top of the bed spheres.
This definition, however, was assumed to characterise the small-scale topographic
structure of a variety of mixed sphere surfaces. Other theoretical models consider the
effective zero level as 25 % of the particle diameter below the top of the bed spheres
(Cheng & Chiev 1998; Dey 1999; Wu & Chou 2003; Vollmer & Kleinhans 2007)
based on previous studies of van Rijn (1984). Later experimental observations on a
mobile bed revealed a flow penetration of 21 % below the top of the bed particles
for a weakly mobile bed (Dey et al. 2012). In laminar flow, Goharzadeh, Khalili &
Jorgensen (2005) showed experimentally that the flow penetration is of the order of
the particle diameter and depends on the particle Reynolds number. A flow penetration
dependency on the Shields number was later noticed experimentally (Mouilleron et al.
2009) and numerically (Ouriemi et al. 2009). In a rigorous model, the level of flow
penetration should be considered as a function of the bed geometry as is also evident
from the numerical studies by Derksen & Larsen (2011). This premise has not been
contemplated in current models so far. The level of flow penetration strongly affects
the average velocity with which the hydrodynamic forces are computed and also
the point of attack of the drag force (Wiberg & Smith 1987; Wu & Chou 2003;
Vollmer & Kleinhans 2007; Ali & Dey 2016). Consequently, the critical threshold for
incipient motion is very sensitive to the flow penetration level as shown by Yergey
et al. (2010).
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Another source of uncertainty in current models is related to the considered
mechanism of incipient motion. At high Reynolds numbers, the mechanism of
incipient motion depends on the exposure of the particle to the flow and thus on
the local bed geometry. For well-exposed spheres at near-critical conditions, motion
is supposed to occur by rolling (Wu & Chou 2003; Valyrakis et al. 2010). For
individual particles buried within the sediment bed, lifting seems to be the most
appropriate mechanism (Valyrakis et al. 2010). Hence, most models consider rolling
(White 1940; James 1990; Ling 1995) or lift (Ling 1995) as the incipient mechanism.
Another mechanism that has been studied is sliding (Paintal 1971; Wiberg & Smith
1987; Loiseleux et al. 2005) including also spherical particles rotating in place before
dislodgment from their initial positions (Dey 1999). For laminar flows, the situation
apparently simplifies. Rolling and sliding are assumed to be the main incipient
mechanisms (Loiseleux et al. 2005) while lift forces are usually neglected (Leighton
& Acrivos 1985; Wiberg & Smith 1987; Ling 1995; Derksen 2011; Hong et al. 2015).
For individual beads, Agudo et al. (2014) showed experimentally that rolling was
the only mechanism of incipient motion even for buried spheres. Recently, Kudrolli,
Scheff & Allen (2016) have shown experimentally and theoretically that rolling stands
as the mechanism of motion for well-exposed individual beads at particle Reynolds
numbers up to 1500. This points to a preferential torque balance rather than a force
balance to model the onset of an individual bead exposed to the flow. In the case
of more than one loose bead, sliding may appear as mechanism of incipient motion
depending on the bed geometry as experimentally observed by Agudo et al. (2014).

Another limitation of current models arises from the evaluation of the lever arms,
which strongly depend on the streamwise orientation of the particle and thus on the
local bed geometry. Most models assume average or empirical geometrical factors to
determine the lever arms or, more generally, the effect of the local geometry on the
hydrodynamic force (Wiberg & Smith 1987; Kirchner et al. 1990; Chin & Chiew
1993; Ling 1995; Dey 1999; Vollmer & Kleinhans 2007). It is only recently that
the lever arms of hydrodynamic forces have been analysed in detail based on the
three-dimensional bed geometry (Ali & Dey 2016). The model presented by Ali &
Dey (2016), however, considers a bead on a closely packed sediment bed only. For
laminar conditions, it is clear that the resultant hydrodynamic force does not act on
the particles centre of gravity since viscous forces are expected to be stronger on the
surface area exposed to the flow. This has been shown experimentally by Kudrolli
et al. (2016) in their study of an individual sphere resting on a rough surface in a
cone-plate rheometer. This also holds true for high Reynolds numbers, since the line
of action of the hydrodynamic force depends on the velocity distribution close to
the exposed surface area of the particle (Dey 1999; Wu & Chou 2003; Vollmer &
Kleinhans 2007; Kudrolli et al. 2016).

Given the aforementioned limitations for predicting the incipient motion as a
function of the local bed geometry, the actual state of the art still provides a
scattered range of thresholds depending on the premises or assumptions adopted
in the models. This is shown for instance by Marsh (2004) in their comparison of
four different models predicting incipient motion on irregularly arranged sediment
beds at high Reynolds numbers. In laminar flow, the number of models predicting
incipient motion as a function of the bed geometry is scant compared to turbulent
flow. This stands despite its well-documented importance on the critical Shields
number.

In the present article, we address incipient particle motion of a single bead as a
function of geometrical properties of the substrate at small particle Reynolds numbers.
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FIGURE 1. (Colour online) Single bead resting on a quadratic substrate exposed to a flow
with shear rate γ̇ and side view with angle between the symmetry axis of the substrate
and the flow direction, β, equal zero.

We study the steady shear flow over quadratically arranged sphere monolayers
numerically and determine the effective zero level of the shear flows. To describe
the impact of the substrate geometry on the critical Shields number under creeping
flow conditions, we propose an analytical model. The model does not rely on any
empirical value in order to evaluate the hydrodynamic forces. Hence, no calibration
is needed. Nor are any empirical or average geometrical factors assumed to address
the effect of the local geometry on the critical Shields number. The model is in good
accordance with recent experimental results (Agudo & Wierschem 2012; Agudo et al.
2014) and numerics, showing a better agreement than other models in the literature.

The article is organised as follows. The considered system is defined in § 2. The
numerical study is described in § 3 and the analytical model is derived in § 4. The
results are discussed and compared to existing models in § 5. Finally, the conclusions
are summarised in § 6.

2. Formulation of the problem
We consider a single sphere of diameter DP deposited on a regular substrate and

exposed to a steady shear flow of a viscous incompressible Newtonian fluid of
constant density, ρ, and kinematic viscosity, ν. The substrate consists of a layer of
fixed spheres of same diameter DP, as in previous experiments (Agudo & Wierschem
2012; Agudo et al. 2014). Figure 1 depicts an example for a single bead resting on
a quadratically arranged substrate with constant spacing, a, between beads. On the
downstream side, the bead contacts the substrate spheres at point A. The equilibrium
position of the single bead resting on the substrate is characterised by the angle of
repose, ϕ. The angle of repose, which coincides with the pivot angle for the case of
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Main flow direction

A

A
O

O

(a) (b)

FIGURE 2. (Colour online) Sketch of the forces acting on a single bead resting on the
substrate: side view (a) and top view (b). The surface of the spherical cap exposed to the
shear flow, SCAP, is darkened. The red arrow in (b) represents the main flow direction and
β the orientation angle of the main flow direction with respect to the symmetry axis of
the substrate.

non-cohesive beads, is the angle of the slope that has to be overcome by the incipient
motion (Julien 2010). χ is the angle between the bead surface at effective zero level
and the vertical axis. The orientation angle of the main flow direction with respect
to the symmetry axis of the substrate is defined as β, see figure 2(b). As coordinate
system we use spherical coordinates with its origin in the centre of the exposed bead
as shown in figure 1. Its radial, polar and azimuthal coordinates are indicated by r,
ϑ and φ, respectively.

We assume slight penetration of the shear flow into the substrate as shown for
laminar flows in the previous numerical study by Derksen & Larsen (2011). They
found for an arbitrarily arranged monolayer of spheres in a shear flow an effective
zero level for the average flow profile that depends on the sphere occupancy, i.e. the
number of spheres per area. In a Cartesian coordinate system with its origin in the
centre of the mobile sphere, as shown in figure 1, the profile of the undisturbed flow
is γ̇ (z∗+ z)êx, where γ̇ is the shear rate, z∗ is the vertical distance between the centre
of the sphere and the effective zero level and êx is the unit vector in flow direction.
Accordingly, the particle Reynolds number for the shear flow is given by

ReP =
γ̇D2

P

ν
. (2.1)

In the following, we consider particle Reynolds numbers below one. Figure 2
illustrates the forces acting on the bead. In general, the shear flow exerts a drag
force, FD, and a lift force, FL, on the particle. The effective weight, FG − FB, where
FG and FB are gravity and buoyancy force, respectively, pushes the particle on the
substrate, and interacts via the Coulomb friction force, FT , and normal force, FN . LD,
LL and LG, are the level arms of drag force, lift force and effective weight for the
rotation axis in A; lD and lL are the level arms of drag force and lift force for the
rotation axis in the bead centre, O, respectively. The surface of the spherical cap
exposed to the shear flow is darkened in figure 2(a). The relative magnitude of the
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FIGURE 3. Geometry for the numerical calculation of the flow field around a single sphere
and the determination of the critical Shields number. Flow direction is from left to right.

characteristic flow-induced shear force to the effective particle weight is described by
the Shields number, θ :

θ =
νγ̇

(ρS/ρ − 1)gDP
, (2.2)

where g is the acceleration due to gravity and ρS is the density of the mobile bead. At
ReP lower than one, the critical Shields number for incipient motion, θC, was found
to be independent of relative density and viscosity, and therefore of inertia (Agudo &
Wierschem 2012; Agudo et al. 2014).

3. Numerical approach
Numerically we studied systems with substrates made from monolayers of

quadratically arranged spheres. The monolayer is formed by 14 particles along
and 18 particles perpendicular to the main flow direction. The orientation angle, β, is
equal to zero. We checked that the critical Shields number is independent from side,
inflow and outflow effects at these dimensions. The single bead is located on top of
the substrate centre. To employ two-dimensional inflow and outflow conditions, we
implement a step of height DP before and after the substrate. Each step has a length
of 8.62 ·DP. Spacing between the substrate spheres varies from approximately zero to
slightly below 0.414 ·DP, which is the maximum value for placing a single sphere on
top of the substrate. The shear flow is produced by a top plate moving horizontally
at constant speed. The gap between the top of the substrate and the moving plate,
h, is 5 · DP in accordance with experiments by Agudo & Wierschem (2012). The
geometry is shown in figure 3.

The steady Navier–Stokes equations were solved numerically with the finite volume
method using the SIMPLE algorithm implemented in OpenFOAM-2.3.1. To solve the
Poisson equation for the pressure, we used the generalised geometric algebraic
multi-grid solver. The domain was modelled and discretised into a structured mesh
of hexahedral elements with SALOME 7.5.1. A maximum number of 3 refinement
levels were defined at the single sphere within the substrate, as shown in figure 4.
Within a refinement level, the starting element edge length is halved around all the
spheres. At all solid boundaries, the no-slip condition holds for the velocity and zero
gradient for the pressure. The flanks are modelled by periodic boundary conditions
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FIGURE 4. Structured mesh of hexahedral elements with an element edge length of
0.0788 · DP and approximately 7 million elements. The zoom depicts the meshing area
of the single particle. The element edge length at the particle surface is refined to an
element edge length of 0.0197 ·DP.

for velocity and pressure. At the inlet, we defined a Couette flow and used the
zero-gradient condition for the pressure. At the outlet, we used no backpressure and
the zero-gradient condition for the velocity.

To focus on creeping flow conditions, the particle Reynolds number was fixed at
0.01 in all numerical calculations. The particle on the substrate remained at rest. For
each geometry, the critical Shields number, defined as in (2.2), is determined from the
particle density for which the torque balance or the force balance is zero, respectively.
The torque balance corresponds to the critical Shields number for the onset of rolling
motion while the force balance to that for sliding motion. For the onset of rolling
motion, the particle density reads

ρS =
FBLG +Mτ +MP

gVPLG
, (3.1)

where VP, is the particle volume. Mτ and MP are the torque caused by friction and
pressure exerted by the flow, respectively. Forces and torques are calculated using the
OpenFOAM forces library. For the onset of sliding motion, we consider

|FT | =µFN, (3.2)

where µ is the friction coefficient. In this case, the particle density reads

ρS =
1

gVP

(
FD

cos ϕ −µ sin ϕ
sin ϕ +µ cos ϕ

+ FL + FB

)
. (3.3)

For sliding motion, the highest density and hence the smallest critical Shields
number is obtained in the frictionless case. At the low particle Reynolds number
studied, the lift force is smaller than the drag force by 3–4 decimal powers in
accordance with Derksen & Larsen (2011). Due to their small contribution, we
disregard the lift force in the following considerations.

We assume numerical convergence at residual values for velocity and pressure
below 10−6. Figure 5 shows a grid convergence study for the critical Shields number

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

37
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.370


Shear-induced incipient motion of a single sphere at low ReP 293

0.040
0 10 20 30

Number of cells

40

0.041
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FIGURE 5. Grid convergence study for the critical Shields number for rolling motion.
Substrate spacing a/DP = 0.035. The calculated GCI12 for the finest mesh refinement is
4.8× 10−5. The line is to guide the eye.

for rolling motion on the substrate with a spacing of 0.0345 ·DP. The critical Shields
number increases with the number of volume elements and tends to an asymptotic
value. Yet, the difference between 29 million and 41 million elements is approximately
0.35 %. To check grid independency, we calculated the grid convergence index (GCI)
(Roache 1994, 1997, 1998). The GCI12 of the critical Shields number for the finest
grid has a value of 0.0048 %. The GCI23 between the grids with 29 and 19.5 million
elements is 0.01 %. Both GCIs indicate that our simulations are within the asymptotic
range of convergence. Based on this result we used 29 million elements for all
simulations due to computational efficiency.

To check the accuracy of our numerical implementation, we also calculated the drag
force on a single sphere near a plain wall in creeping flow. Goldman et al. (1967)
obtained for the factor by which the drag force deviates from that in unbounded flow a
value of 1.7005, while Chaoui & Feuillebois (2003) calculated the factor to be 1.7006
and O’Neill (1968) to be 1.7009. For about 29 million elements, we obtained a factor
of 1.7104, which is approximately 0.6 % higher than the other values. Like O’Neill
(1968) and Derksen & Larsen (2011) we also calculated the scaled drag and lift forces
F∗D and F∗L:

F∗D =
FD

ηγ̇ (DP/2)2
, (3.4)

F∗L =
4

Re
FL

ηγ̇ (DP/2)2
, (3.5)

where η is the dynamic viscosity. We obtained for F∗D a value of 32.3 and for F∗D,
9.2, which corresponds to deviations of 0.3 % and 0.2 % from the respective values
proposed by Derksen & Larsen (2011). We further checked the accuracy by comparing
it to the study of shear flow past a bump on a plane wall by Price (1985). While Price
studied the creeping flow limit, we considered a flow at a particle Reynolds number
of 0.01. Retaining from an infinite series of terms a finite number, Price obtained for
the dimensionless drag force defined by (3.4) a value of 0.716 and a separation point
at 73.3◦. For the drag force, we obtained numerically a value of 0.695, which is 3 %
below Prices result. We found the separation point at an angle of 76.4◦, again quite
close to Price’s results.

The monolayer partly shields the sphere against the shear flow and, hence, weakens
the drag force exerted on the sphere. Figure 6(a) depicts the relative impact of
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FIGURE 6. Impact of shielding by the substrate as a function of the spacing between
substrate spheres: (a) relative drag force, (b) ratio between pressure and friction forces in
main flow direction and (c) distance of the lines of action of these forces above the bead
centre. The shielding factor b in (a) is the ratio of the drag force to the solution for a
sphere on a plane wall (Goldman et al. 1967). Solid and open symbols in (c) indicate
the distance of the lines of action of friction and pressure forces from the bead centre,
respectively.

shielding, b, by comparing the drag force to the solution of Goldman et al. (1967).
Accordingly, b = FD/(1.5πfηγ̇D2

P) where f is equal to 1.7005. The figure shows
that shielding reduces the drag force by approximately 30 % if the substrate spheres
are close to contact. With increasing spacing, the sphere is buried deeper into the
substrate and the drag force is reduced to less than 20 % at the largest spacing
studied. As shows figure 6(b), the ratio between contributions due to pressure, FPx,
and friction, Fτx, remain close to 1:2, which is the ratio for a bead in a plug flow at
creeping flow conditions (Durst 2008). Hence, the effect of shielding is roughly the
same for both contributions. Figure 6(c) depicts the distance of the lines of action
of friction and pressure forces in main flow direction above the bead centre, lDτ/DP

and lDτ/DP, respectively. While the line of action of the friction force moves away
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FIGURE 7. Critical Shields number as a function of the spacing between substrate spheres.
Solid and open symbols indicate the critical Shields numbers for frictionless sliding and
for rolling motion, respectively.

from the centre as the sphere is buried deeper into the substrate at higher spacing,
the line of action of the pressure force remains at the sphere centre, as expected for
a normal force distribution on a sphere.

The critical Shields number for rolling motion and frictionless sliding as a function
of the spacing between substrate spheres is shown in figure 7. At narrow spacing, the
Shields number hardly changes. As spacing widens up to its maximum, the critical
Shields number ever-stronger increases. As shows figure 7, the critical Shields number
for rolling motion is always smaller than for sliding. At the narrowest spacing, the
critical Shields number is approximately 0.039 and it is approximately 0.44 at the
largest spacing.

Figure 8(a) shows the velocity in main flow direction, UX , averaged over four unit
cells of substrate spheres at the centre of the configuration. The velocity remains
about zero until a certain level below the top of the substrate. From here upwards,
the velocity increases and approaches the ideal Couette profile at approximately 20 %
of the particle diameter above the substrate. Hence, the mean velocity gradient at
the substrate centre is slightly smaller than that at the steps. Extrapolating the linear
profile over the substrate centre to zero yields an effective zero level, z0, below the
top of the substrate. Figure 8(b) shows that the effective zero level, obtained from a
linear fit to the velocity data in the range between 0.4 ·DP and 4.4 ·DP above the top
of the substrate spheres, increases linearly from approximately 8 % for narrow spacing
to approximately 13 % at the largest spacing: z0/DP = 0.077+ 0.13(a/DP).

The velocity in main flow direction within the interstices of the monolayer is
shown in figure 9 comparing the flow with and without a bead on top of the
substrate. The presence of the bead alters the flow through the interstices noticeable
in a neighbourhood of approximately 3 bead diameters. Particularly it deflects part
of the flow through the void underneath the bead. Figure 9(c) depicts the volume
flux underneath the bead centre plain, V̇U. It has been non-dimensionalised with the
volume flux V̇S = π(DP/2)2γ̇DP/2. The volume flux underneath the bead has a local
maximum at a spacing of less than 30 % of the sphere diameter. It decreases at
narrower spacing due to the proximity of the substrate spheres and at larger spacing
due to the proximity of the bead to the bottom plate.

4. Derivation of the analytical model
As shown numerically, rolling is the incipient mechanism of motion for spherical

particles. This is in agreement with previous experimental (Agudo et al. 2014, 2017;
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FIGURE 8. (Colour online) (a) Velocity in main flow direction averaged over four unit
cells of substrate spheres at the centre of the configuration together with a linear fit
indicated by solid (black) and dashed (blue) lines, respectively. The inset depicts a zoom at
the top of the substrate. Extrapolation of the linear fit to zero velocity yields the effective
zero level, z0. Substrate spacing a/DP : 0.268. Effective zero level below the top of the
substrate. The line is a linear fit to the data. (b) Effective zero level below the top of the
substrate. The line is a linear fit to the data.

Kudrolli et al. 2016) and theoretical observations (Kudrolli et al. 2016) for an
individual bead. In what follows, we derive a model for incipient rolling motion
based on the torque balance. We use the linear velocity profile with an effective zero
level acting on the exposed bead as the driving mechanism. The exposure of the bead
depends on the substrate geometry. To enable motion, the bead has to overcome the
angle of repose, which again is a function of the substrate geometry. Lift forces are
not considered in the balance of forces, yet they are negligible compared with drag
forces as observed in the numerical calculations. The force and torque balances thus
read

FN = FD sin ϕ + (FG − FB) cos ϕ, (4.1)
FT = FD cos ϕ − (FG − FB) sin ϕ, (4.2)

FDLD = (FG − FB)LG, (4.3)
|FT |6µFN . (4.4)

At low particle Reynolds numbers, the bead moves through the troughs of the
substrate and does not travel in main flow direction (Agudo & Wierschem 2012;
Agudo et al. 2014). This results in a reduction of the shear force exerted by the flow
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FIGURE 9. (Colour online) (a) Velocity in main flow direction and streamlines within
the substrate interstices with (a) and without (b) a particle at the substrate centre. The
opaque regions indicate the location of the substrate spheres. Main flow is from left to
right. Substrate spacing a/DP: 0.268. (c) Dimensionless volume flux underneath the sphere
as a function of substrate spacing.

in the direction of particle motion if the troughs are not in line with the main flow
direction. Hence, including the angle between the substrate symmetry axis and the
main flow direction, β, (4.3) reads

FD cos βLD = (FG − FB)LG. (4.5)

The effective weight acting on the centre of gravity of the sphere is given by

(FG − FB)= (ρS − ρ)g
πD3

P

6
. (4.6)

The lever arm of the effective weight LG can be computed analytically. Expressions
for the drag force and its lever arm with respect to the axis of rotation (A) will be
derived subsequently.
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The drag force exerted by the linear shear flow on a sphere is given by

FD =
3
2πfηγ̇D2

P, (4.7)

where f is a dimensionless coefficient. A value of 1 corresponds to an infinite distance
of the sphere to a wall (Goldman et al. 1967). For a sphere in contact with a plane
wall, values of approximately 1.7 (Goldman et al. 1967; O’Neill 1968; Chaoui &
Feuillebois 2003) have been obtained. For a solid hemisphere (Price 1985) and for a
highly viscous hemispherical droplet attached at a planar wall (Sugiyama & Sbragaglia
2008), the coefficient f is smaller than 1, which is mainly due to a lower surface area
exposed to the flow.

To model the drag force and the flow-induced torque acting on the bead, we start
from the solution for a single sphere on a planar wall. Shielding of the mobile bead
by the substrate is taken into account by a correction factor, b, that depends on the
substrate geometry. The drag force thus becomes

FD =
3
2πbfηγ̇D2

P. (4.8)

In order to evaluate the shielding factor b, one may consider different geometrical
quantities that characterise the fraction of the bead exposed to the flow. One of them is
the exposure degree, E. It is defined as the ratio of the cross-sectional area effectively
exposed to the incident flow to the total cross-sectional area of the particle. It is
frequently used in pressure-driven particle motion (Wiberg & Smith 1987; Wu & Chou
2003; Vollmer & Kleinhans 2007). Another parameter is the protrusion, which is the
distance between the top of the bead and the top of the substrate spheres (Fenton &
Abbott 1977; Armanini & Gregoretti 2005).

The drag force on the bead is due to friction and pressure. For a sphere in
unbounded plug flow, the Stokes law shows that viscous forces are twice as large as
pressure forces (Durst 2008). Figure 6(b) shows that this also holds true approximately
for the bead on the substrate. Yet, deviations from the ratio 2 : 1 indicate that the
geometry does not affect pressure and friction forces equally. Therefore, we model
the effect of shielding on pressure and friction forces separately. Hence, the shielding
factor b is given by b= (2/3)bτ + (1/3)bp, where bτ and bp are the shielding factors
for pressure and friction forces, respectively. For the pressure force, a correction
addressing the cross-sectional area is appropriate (Wiberg & Smith 1987; Wu &
Chou 2003; Vollmer & Kleinhans 2007). For the friction force, however, considering
the exposed surface area is more adequate.

The surface of the spherical cap exposed to the shear flow, SCAP, is (see figure 2a)

SCAP=

∫ π−χ

0

∫ 2π

0

(
D2

P

4

)
sinϑ dφ dϑ =

πD2
P

2
(1− cos(π−χ))=

πD2
P

2
(1+ cosχ) (4.9)

and the corresponding correction factor for the friction force yields

bτ =
SCAP

S
=

1
2
(1+ cos χ), (4.10)

where S is the bead surface. Similarly, the cross-sectional area exposed to the flow is

bp = 1−
χ

π
+

sin(2χ)
2π

. (4.11)
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Hence, the main Shielding factor yields

b=
1
3

(
2−

χ

π
+ cos χ +

sin(2χ)
2π

)
. (4.12)

Substituting (4.12) into (4.8), the drag force exerted by the shear flow results in

FD =

(
π+

π cos χ
2
+

sin(2χ)
3
−
χ

2

)
fηγ̇D2

P. (4.13)

Now, we consider the level arm of the drag force with respect to the axis of rotation
(A) in figure 2. Since pressure is a normal stress, the pressure force acts on the bead
centre, see figure 6(c). The line of action of the friction force, however, lies above
the bead centre. Due to the linear velocity profile, we obtain the viscous force exerted
by the flow from integrating the linear distributed profile, γ̇ z, over the spherical cap
exposed to the flow. Hence, the line of action of the friction force is at the height heff
above the effective zero level (see figure 10):

heff =

∫ π−χ

0
γ̇ z2D2

P sin ϑ dϑ∫ π−χ

0
γ̇D2

P sin ϑ dϑ
=

DP

3
(1+ cos χ), (4.14)

where z = ((DP/2) cos ϑ − (DP/2) cos(π − χ)) in polar coordinates. The lever arm
of the friction force can be computed from (4.14). Both, friction force and its
corresponding lever arm to the axis of rotation (A), depend on the angle of repose.
With the lines of action of pressure and friction forces, the lever arm of the drag
force reads LD = (LDτ2bτ + LDpbp)/(2bτ + bp). It can be computed analytically as a
function of angle χ and, hence, of the angle of repose. Substituting (4.6) and (4.13)
into (4.5) and taking into account the definition of the Shields number, (2.2), one
obtains the following general expression for the critical Shields number:

θC =
1
3f

1
cos β

LG

LD

1(
2−

χ

π
+ cos χ +

sin(2χ)
2π

) . (4.15)

The ratio LG/LD and the angle χ depend on the substrate geometry. For spheres of
same size, the ratio LG/LD is a function of the angle of repose only. In what follows,
we determine the critical Shields number for the quadratic arrangements of different
spacing as considered in numerics. For this substrate, the orientation angle, β ranges
from 0 to ±π/4.

Since the submerged weight acts on the centre of gravity of the sphere, the lever
arm LG is

LΠG =
(DP + a)

4
=

1
2

tan ϕ√
1+ 2 tan2 ϕ

DP. (4.16)

The superscript indicates quadratic configuration, Π . Similarly, the lever arm of the
pressure force is (for derivation see appendix A)

LΠDp =
LΠG

tan ϕ
=

1
2

DP√
1+ 2 tan2 ϕ

. (4.17)
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Effective zero
level

A

O

FIGURE 10. (Colour online) Schematic representation of different scenarios to define the
theoretical zero bed level and the corresponding acting forces.

Since the line of action of the friction force depends on the bead surface exposed
to the flow, its lever arm, LDτ depends on the effective zero level. For the quadratic
arrangement, the effective zero level depends linearly on the substrate spacing (see
figure 8b). For the quadratic substrate with different spacing, the angle χ is coupled
to the spacing and hence to the angle of repose as follows (for derivation see
appendix A):

cos χΠ =
2√

1+ 2 tan2 ϕ
+ 2

(
z0

DP

)
− 1. (4.18)

On the other hand, from figure 10, it can be shown that the lever arm of the friction
force can be expressed by

LDτ = heff + p2 − p1 − z0, (4.19)

where p1 is the protrusion of the single sphere and p2 is the height of the top of the
mobile bead over the axis of rotation A, see figure 10. The lever arm of the drag force
is given by

LΠD =
DP

2


(1+ cos χΠ)

[
2
3
(1+ cos χΠ)−

1√
1+ 2 tan2 ϕ

+ 1− 2
(

z0

DP

)]

2−
χΠ

π
+ cos χΠ +

sin(2χΠ)
2π


+

DP

2


1√

1+ 2 tan2 ϕ

(
1−

χΠ

π
+

sin(2χΠ)
2π

)
2−

χΠ

π
+ cos χΠ +

sin(2χΠ)
2π

 (4.20)

(for derivation see appendix A). In the quadratic configuration, the effective zero level
depends on the spacing and therefore on the angle of repose. Accordingly, (4.15)
remains as a sole function of the angle of repose and the orientation angle β, and
can be computed analytically.
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After the corresponding trigonometric derivation (see appendix A), the critical
Shields number for quadratically arranged substrates reads

θΠC =
1
3f

1
cos β

GΠ (ϕ) with

GΠ
=

tan ϕ√
1+ 2 tan2 ϕ(1+ cos χΠ )

[
2
3
(1+ cos χΠ )−

1√
1+ 2 tan2 ϕ

+ 1− 2
(

z0

DP

)]
+

(
1−

χΠ

π
+

sin(2χΠ )
2π

)
where cos χΠ =

2√
1+ 2 tan2 ϕ

+ 2
(

z0

DP

)
− 1

and
z0

DP
= 0.077+ 0.13

(
a

DP

)
= 0.077+ 0.13

(
2 tan2 ϕ√

1+ 2 tan2 ϕ
− 1

)
.


(4.21)

Analogous to the quadratic geometry, for triangular substrates with spacing a
between spheres, it can be shown that the critical Shields number is given by the
following expression:

θ∆C =
1
3f

1
cos β

G∆(ϕ) with

G∆
=

tan ϕ√
1+ 4 tan2 ϕ(1+ cos χ∆)

[
2
3
(1+ cos χ∆)−

1√
1+ 4 tan2 ϕ

+ 1− 2
(

z0

DP

)]
+

(
1−

χ∆

π
+

sin(2χ∆)
2π

)
where cos χ∆ =

2√
1+ 4 tan2 ϕ

+ 2
(

z0

DP

)
− 1,


(4.22)

where the superscript ∆ indicates the triangular configuration. Further details on the
trigonometric derivation are provided in the appendix A.

5. Discussion

We studied the incipient particle motion on regular substrates in shear flows at low
particle Reynolds numbers numerically and proposed a model to describe the onset.
The flow-induced forces, their dependence on the substrate geometry and the effective
zero level were determined numerically. To ensure grid independence we performed a
grid convergence study as shown in figure 5 and calculated the grid convergence index
(Roache 1994, 1997, 1998). This showed that a grid resolution with approximately 29
million elements is fine enough to determine critical Shields numbers to within 1 %.
Using the case of a sphere on a plane surface and of a hemisphere as benchmark
confirmed this result.

In numerics, we found that the lift force is smaller by several orders of magnitude
than the drag force at the particle Reynolds number studied. This is in line with
previous studies by Leighton & Acrivos (1985) and King & Leighton (1997) for flat
walls and also in agreement with experiments performed with an irregular sediment
bed driven by a fluid flow in a cylindrical channel under laminar flows (Hong et al.
2015). The ratio of the two forces groups around the value for the flat plane. It is also
consistent with the critical Shields number being independent of the particle Reynolds
number as shown experimentally by Agudo & Wierschem (2012). Hence, lift forces
may be neglected.
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While for more than one bead sliding and rolling motion has been observed
(Agudo et al. 2014), numerics show that rolling is always the preferred mechanism
of motion for single spheres independent of substrate spacing. In accordance with
previous experiments (Agudo et al. 2014), this holds true even for high angles of
repose and hidden spheres, since the line of action is always above the centre of
gravity. The numerical calculations show a flow penetration of approximately 8–13 %
of the diameter that increases linearly with the substrate spacing, see figure 8(b).
The dependency of the effective zero level on the geometry has not been taken
into account so far in models for incipient motion. Only a constant level of flow
penetration has been considered in models at high Reynolds numbers: while Kirchner
et al. (1990) assumed a constant flow penetration of 0.16 · DP, others based on
previous studies by van Rijn (1984), considered one of 0.25 · DP (Cheng & Chiev
1998; Dey 1999; Wu & Chou 2003; Vollmer & Kleinhans 2007). In an irregularly
arranged monolayer of spheres, Derksen & Larsen (2011) observed a decrease of
flow penetration with the surface occupancy at particle Reynolds numbers similar to
ours. Their values for the flow penetration are in good agreement with our numerical
results: at same surface occupancy, they deviate only by approximately 5 %. The
agreement between the results for the irregularly arranged monolayer and our regular
substrates shows that our data can be extrapolated to irregular structures without
great error. In an irregular arrangement of mobile beads submitted to a Couette flow,
Ouriemi et al. (2009) numerically found a flow penetration of the order of the particle
diameter at Shields numbers of 0.89, well above the critical Shields number which
was approximately 0.06 in their study. The order of the flow penetration was in good
agreement with experimental results obtained by Goharzadeh et al. (2005). Yet, apart
from the rather large supercritical Shields numbers, we suppose that this discrepancy
to Derksen & Larsen (2011) results and to ours is mainly due to the moving beads
in the mobile bed, which transfer fluid motion to the downside of the beads. At
onset, however, only single events have been observed, see e.g. Charru et al. (2004),
Wierschem et al. (2008) or Seizilles et al. (2014).

As pointed out previously, the numerical calculations may differ from the real
critical Shields numbers by approximately 1 %. Figure 11 compares the critical
Shields numbers from numerics to those of our model according to (4.21). For the
model, we used the numerically calculated effective zero level from figure 8(b) and
its average value of 0.105 ·DP. The model is in very good agreement with numerics.
The inset of figure 11 shows that deviations of the model to numerics are less than
10 %. The discrepancy may have several reasons: First, the characteristic shear rate
in numerics is equal to the velocity of the top plate over the width between substrate
crests and top plate. Hence, the Shields number does not take into account flow
penetration into the substrate. For the model, this results in Shields numbers that
are approximately 3 % lower than in numerics. Second, the model disregards the
perturbed flow around the sphere. Furthermore, the model does not take into account
the flow through the voids underneath the mobile bead (see figure 9). This flow
creates drag that opposes the torque created by the main flow and hence results in a
higher critical Shields number. Comparison between the volume flux underneath the
mobile bead, see figure 9(c), and the trend of the deviation in the inset of figure 11
shows remarkable similarity between the two, indicating that this may be the main
contribution depending on spacing.

The results are also compared to previous experimental studies with uniform
substrates at particle Reynolds numbers lower than one (Agudo & Wierschem 2012).
These experiments were carried out placing a single sphere of (405.9 ± 8.7) µm
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FIGURE 11. (Colour online) Critical Shields number for the quadratic arrangement as
a function of the spacing between substrate spheres. Solid and open squares represent
the numerical values for frictionless sliding and for rolling motion, respectively. The
(blue) solid line shows the results of the model (4.21) with linear dependency of the
effective zero level on spacing. The (red) dotted line shows (4.21) assuming an average
effective zero level of 0.105 · DP. Grey squares indicate the experimental results (Agudo
& Wierschem 2012; Agudo et al. 2014). Solid and open symbols in the inset depict the
deviation of the model with linear dependency of the effective zero level on spacing
and average effective zero level of 0.105 · DP to numeric. The sketches depict the
dynamic position for a single mobile bead surrounded by immobile particles resting on
the quadratic substrate with a spacing of 0.035 ·DP.

diameter on regular substrates made of spheres of same size. The substrates were
arranged in triangular and quadratic order. For the latter, exposure and angle of repose
was varied by using substrates with three different spacing between the beads, a/DP:
0.035, 0.230 and 0.268 (Agudo & Wierschem 2012; Agudo et al. 2014). To build
the quadratic substrates, the glass spheres were deposited and glued onto stainless
steel wire sieves of different mesh sizes and wire diameters. The laminar shear flow
was set up and controlled using a parallel-disk configuration in a rotational rheometer.
Error bars for spacing in the experimental data are added from the data provided
by Agudo & Wierschem (2012). Apart from deviations in the wire mesh size, other
effects derived from the substrate production process, such as variation in height of
the substrate, are expected to contribute considerably in the absolute uncertainty. The
presence of the wire mesh is also expected to reduce the leak flow underneath the
mobile bead.

The data may be further compared to experiments with a single mobile bead
surrounded by immobile particles resting on the quadratic substrate with a spacing of
0.035 ·DP (Agudo et al. 2014). For this caged bead, the initial motion ends once the
bead touches its neighbour in front. This dynamic equilibrium position, as depicted
in the sketch of figure 11, mimics the situation of a single sphere resting on a
quadratic substrate with maximum separation between beads (i.e. about 0.41 · DP).
For a proper comparison, the experimental value is corrected by cos π/4 to take into
account the direction of the particle motion with respect to the main flow direction.
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FIGURE 12. (Colour online) Critical Shields number as a function of the angle of
orientation for a single bead placed on a triangular substrate (a) and on a quadratic
substrate with relative spacing of 0.035 (b). The experimental results are obtained from
Agudo & Wierschem (2012) at particle Reynolds numbers of approximately 0.005. Blue
dashed and dotted lines in (a) (4.22) for triangular substrates with z0/DP= 0.08 and 0.13,
respectively. Blue solid line in (b) (4.21) with linear dependency of the effective zero level
on the relative spacing.

Similarly, one needs to take into account that the caged bead is placed on a second
layer and the gap, h, is thus slightly different from that in numerics and in the model.
The top of the immobile bead forming the second layer is at a distance p1 over the
top of the substrate spheres (see sketch of figure 11). Accordingly, the experimental
Shields number for the caged bead is multiplied by the factor h/(h− p1) for a proper
comparison.

Comparing numerics to experiment in figure 11, we find good accordance
particularly at narrow spacings and for caged beads. For the substrates with a
relative spacing of 0.230 · DP and 0.268 · DP, however, the experimental data result
in somewhat lower values for the critical Shields number. This deviation may be
partially caused for the presence of the sieve in the experimental set-up, which has
a similar geometry as an underlying level of spheres. This reduces the leak flow
underneath the mobile bead as shown in figure 9(c). Apart from the presence of the
sieve, imperfections in substrate preparation and variations in the size of the substrate
beads may result in reduced support of the exposed bead.

The model also takes into account the orientation angle between the main flow
direction and the symmetry axis of the substrate, β. Figure 12 shows a direct
comparison between the experimental data for triangular and quadratic substrates
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FIGURE 13. (Colour online) Comparison between the critical Shields numbers, numerics
and different models as a function of the angle of repose. Open squares: numerics. Blue
solid, dashed, dotted lines: (4.21) with linear dependency of the effective zero level
on spacing, (4.22) for triangular substrates with z0/DP = 0.08 and 0.13, respectively.
Grey triangle and squares show experimental data for single exposed beads (Agudo &
Wierschem 2012). Red solid symbols indicate data from different models: Wiberg & Smith
(1987) (rhomboids), Ling (1995) (triangle), Dey (1999) (circle), Bravo et al. (2014) with
z0/DP = 0.1 (crosses) and 0.3 (pluses), Ali & Dey (2016) (minus). Red dash-dotted line
shows the data from Vollmer & Kleinhans (2007).

(Agudo & Wierschem 2012) with the model according to (4.21) with linear
dependency of the effective zero level on spacing and according to (4.22). Since the
penetration factor, z0/DP remains unknown for the triangular symmetry, we consider
the two extreme cases of the quadratic configuration, z0/DP= 0.08 (dashed line), and
0.13 (dotted line). For a sphere deposited on a closely packed triangular configuration,
however, the critical Shields number is hardly affected by the penetration factor (see
figure 12a). Although small deviations with experiments, the analytical model is
able to track the dependence of the critical Shields number on the orientation of the
substrate.

A comparison of our results to the previously proposed models by Wiberg & Smith
(1987), Ling (1995), Dey (1999), Vollmer & Kleinhans (2007), Bravo et al. (2014),
Ali & Dey (2016) is shown in figure 13. For ease of comparison, the critical Shields
number is plotted as a function of the angle of repose at β equal to zero. Apart from
the numerical results and the model for a quadratic arrangement, we also plotted the
results for the critical Shields number of the triangular configuration. We considered
again the two extreme cases found for the quadratic configuration. As shown in
figure 13, the critical Shields number for the triangular geometry is strongly affected
by the effective zero level particularly at large angles of repose. At small angles of
repose, the effective zero level accounts only for a few per cent. Interestingly, the
results for quadratic arrangements are within the possible range for the triangular
configuration. In particular, at low angles of repose, deviations between quadratic and
triangular geometries are rather small. Thus, although the orientation angle of the
geometry affects the critical Shields number by up to a factor of 2 in the case of the
triangular configuration, if the main flow direction coincides with the bead motion,
the critical Shields number for a certain angle of repose does not depend sensitively
on the considered symmetry (i.e. triangular or quadratic).

Former models in literature were derived for turbulent flows. Yet, for the case
where the particle is located entirely within the viscous sublayer, they can be applied
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for laminar flows at small particle Reynolds numbers. Except for the models by
Vollmer & Kleinhans (2007) and by Ali & Dey (2016), the drag force is described
by a drag coefficient for unbounded flow. All other models result in larger critical
Shields numbers than our numerics. In what follows, we discuss possible reasons for
discrepancies.

The model by Wiberg & Smith (1987) gives values that are rather close to our
numerical data. They used angles of repose between 50◦ and 60◦ as average values for
naturally sorted beds of uniformly sized spheres. Like in our model, they neglected lift.
They, however, modelled the drag force by using only the exposure degree, i.e. by the
cross-sectional area exposed to the flow and did not consider flow penetration into the
substrate. Ling (1995) calculated the onset for a sphere deposited on a closely packed
triangular configuration. Lift and flow penetration were neglected and the point of
attack of the drag force was assumed to coincide with the spheres centre of gravity. As
shown in figure 13, the obtained value overestimates the experimental data by almost
a factor of 3. Besides neglecting flow penetration, the deviation is apparently mainly
due to the smaller lever arm of the drag force.

Different from the aforementioned authors, Dey (1999) and Vollmer & Kleinhans
(2007) took into account flow penetration by considering a constant effective zero level
of 0.25 · DP below the top of the substrate. Similar to our model, they approached
the point of attack of the drag force by integrating the flow velocity over the
exposed cross-sectional area of the sphere. The red dashed-dotted line in figure 13
is obtained by applying the model proposed by Vollmer & Kleinhans (2007) to
a quadratic substrate with different spacings without taking into account turbulent
pressure fluctuations or shear stress excursions and assuming a linear velocity profile
for particle Reynolds numbers lower than one. For sediment beds of uniformly
sized spheres and using the equation for the angle of repose proposed by Ippen &
Eagleson (1955), Dey (1999) used an effective angle of repose of approximately 28◦.
For that value and using the drag coefficient for a freely falling sphere from Morsi
& Alexander (1972), his model yields a critical Shields number of approximately 0.2.
The lift coefficient was obtained by extensive calibration of the model with previous
experimental results. On the other hand, Vollmer & Kleinhans (2007) modelled
the drag and lift forces by using respective coefficients experimentally obtained by
Coleman (1967) for a single sphere placed on a fixed stream bed. Despite the fact
that the models by Dey (1999) and by Vollmer & Kleinhans (2007) reflect very
well the literature data at higher Reynolds numbers, they deviate considerably from
our experimental results (see figure 13) as well as from critical Shields numbers
of approximately 0.02–0.04 recently obtained in laminar flows for a single highly
exposed bead on a disordered substrate (Charru et al. 2007). The deviation may be
due to the negative lift forces of the order of drag considered by the authors at small
particle Reynolds numbers.

Bravo et al. (2014) also considered a flow penetration between 0.1 ·DP and 0.3 ·DP
in their two-dimensional model. Lift forces were addressed with Saffman’s solution
for a sphere in a low shear flow (Saffman 1965). The hydrodynamic forces, however,
were assumed to act on the centre of gravity. This may explain overestimating the
experimental data. Recently, Ali & Dey (2016) proposed a model addressing in detail
the point of attack of hydrodynamic forces based on the proper geometrical analysis
of a sphere placed on a closely packed triangular sediment bed. The effective zero
level was set constant at 0.21 · DP below the top of the substrate according to Dey
et al. (2012). While the drag coefficient was obtained from Coleman’s experiments
(Coleman 1967) inertial lift forces were evaluated with a lift coefficient of 0.85 · CD
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from the study by Chepil (1961). Similar to us, Ali & Dey (2016) incorporated a
correction factor lower than one into their model to account for partial particle burial.
The correction factor was calibrated with available experimental data for irregularly
arranged sediment beds of uniform size. At small particle Reynolds numbers, the
model yields a critical Shields number of approximately 0.15. The large deviation
with respect to our data for the same geometrical configuration may be due to the
contribution of lift forces of the order of drag.

For granular beds, Charru et al. (2004) showed that the number of moving particles
decreases to a saturated value within finite time in laminar flow. The minimum Shields
number to obtain a non-zero saturated value was found to be 0.12 independent of the
initial bed geometry. Similar values have been reported in other studies in laminar
flows (Loiseleux et al. 2005; Ouriemi et al. 2007, 2009; Derksen 2011; Seizilles et al.
2014). As stated by Charru et al. (2004), exposed particles move at lower Shields
numbers and get stuck in caves of the granular beds. In this armoured bed, the
individual beads are then tightly packed and need to overcome high angles of repose.
Other authors have reported higher critical Shields numbers for low particle Reynolds
numbers at saturated conditions (Lobkovsky et al. 2008; Hong et al. 2015). These
authors defined the threshold condition by measuring the depth of the fluid layer
after cessation of granular flow and calculated the Shields number by computing the
solution of shear stress for laminar conditions in a pipe of rectangular cross-section.
While Lobkovsky et al. (2008) found a non-zero saturated value of approximately
0.3, Hong et al. (2015) observed Shields numbers ranging between 0.10 and 0.37
depending on the bed armouring level and grain size.

Since in disordered configurations, triangular structures are the most probable
ones and all orientation angles are equally possible, one may consider the most
unstable triangular configuration being the relevant one. Assuming for the caged
beads angles of repose of above 60◦ and penetration factors of 0.08 to 0.13, (4.22)
yields critical Shields numbers between 0.10 and 0.12 (see figure 13), very similar
to those obtained for a saturated erodible bed by Charru et al. (2004), Ouriemi et al.
(2007). At these angles of repose, quadratic and triangular model show similar values
for the minimum critical Shields number, emphasising the relevance of the studied
system also for granular beds. On the other hand, the maximum critical Shields
numbers found by Hong et al. (2015) in their experimental study of granular beds is
slightly smaller than ours close to maximum angle of repose, indicating that Hong
et al. (2015) indeed reached a very high armouring level.

The relation of our results to disordered configurations is also tightened by the
experimental observation by Agudo et al. (2014) that neighbouring beads do not have
any measurable impact if they are more than 3 bead diameters apart at the low particle
Reynolds numbers considered here. This shows that the regularity of the substrates
considered has only a minor local impact. Variations in the neighbourhood on the level
of the substrate, i.e. deviations from the regular arrangement, are supposed to have
even less impact. Therefore, our model is expected to give reasonable results also for
disordered beds covering the entire range from highly exposed to hidden beads.

6. Conclusions
We have studied the incipient particle motion of a single sphere as function of

geometrical properties of the sediment bed at low particle Reynolds numbers. We
found a preference of rolling over sliding incipient motion and showed the impact
of the substrate geometry on the critical Shields number over the entire range of
spacings. Depending linearly on the spacing, the effective zero level of the shear flow
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penetrates into the substrate by approximately 8 %–13 % of the particle diameter. We
propose a model for the incipient motion as an extension of Goldman’s model for a
single particle near a plane surface. Lift forces are neglected according to numerical
findings. Correcting the drag force by the ratio of the relative area exposed to the
shear flow and using the effective zero level from numerics, the model is able to
predict the critical Shields number as a function of the sediment bed geometry. It
also covers the critical Shields number dependence on the substrate orientation with
respect to the main flow direction. It shows very good agreement with numerics
and is in good agreement with the experimental data. Yet, although the orientation
angle of the geometry affects the critical Shields number, it shows that the minimum
critical Shields numbers for a certain angle of repose do not depend sensitively on
the considered configuration for well-exposed particles.
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Appendix A
From figure 14(a) it can be shown for quadratic arrangements that half of the

diagonal connecting centres of opposed substrate beads is W =
√

2/2(DP + a). The
distance T =

√
D2

P −W2=
√

D2
P − (DP + a)2/2 and the tangent of the angle of repose

is given by

tan ϕ =
DP + a

2T
=

DP + a

2

√
D2

P −
(DP + a)2

2

. (A 1)

Rearranging (A 1) yields

DP + a
DP

=
2 tan ϕ√

1+ 2 tan2 ϕ
. (A 2)

For a bead resting on a triangular substrate with spacing a as depicted in
figure 14(b), the radius of circumscribed and inscribed circle of the equilateral
triangle with vertices DP + a, is given by W =

√
3/3(DP + a) and w=

√
3/6(DP + a),

respectively. Accordingly, the vertical projection of the distance between the
substrate sphere centre (O′) and the bead centre (O), defined as T , results in
T =

√
D2

P − (DP + a)2/2 and the tangent of the angle of repose yields

tan ϕ =
w
T
=

√
3

6
DP + a√

D2
P −

(DP + a)2

3

. (A 3)

Rearranging (A 3), we obtain

DP + a
DP

= 2
√

3
tan ϕ√

1+ 4 tan2 ϕ
. (A 4)
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(a)

(b)

FIGURE 14. Single sphere resting on a quadratically arranged substrate with spacing
a between beads (a) and on a triangularly arranged substrate with spacing a between
beads (b).

The lever arm of gravity and buoyancy forces acts on the bead centre (O). For the
quadratic substrate, it is given by LΠG = (DP + a)/4. Substituting (A 2) yields

LΠG =
1
2

tan ϕ√
1+ 2 tan2 ϕ

DP. (A 5)

For the triangular substrate, the lever arm is given by L∆G = w/2=
√

3/12(DP + a).
With (A 4) this yields

L∆G =
1
2

tan ϕ√
1+ 4 tan2 ϕ

DP. (A 6)

In the case of zero spacing this reduces to L∆G = (
√

3/12)DP.
The lever arm of the drag force acts at a distance heff from the effective zero level

(see figure 10). Therefore, LD = heff + p2 − p1 − z0 with heff = (DP/3)(1+ cos χ), see
(4.14). From figure 15, it can be readily seen that p1 = T , p2 = (T +DP)/2. and that
T = (DP + a)/(2 tan ϕ)= DP/

√
1+ 2 tan2 ϕ. Similarly, for the triangular arrangement,

T = w/(2 tan ϕ) = DP/
√

1+ 4 tan2 ϕ. Using these relationships, one finally arrives at
the following expressions for the lever arm of the viscous force:

LΠDτ =
DP

2

[
2
3
(1+ cos χΠ)−

1√
1+ 2 tan2 ϕ

+ 1− 2
(

z0

DP

)]
(A 7)
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FIGURE 15. (Colour online) Schematic representation of forces acting on a single bead
resting on a quadratic (a) and on a triangular (b) substrate on varying the gap a between
spheres.

and

L∆Dτ =
DP

2

[
2
3
(1+ cos χ∆)−

1√
1+ 4 tan2 ϕ

+ 1− 2
(

z0

DP

)]
, (A 8)

for the triangular substrate.
The level arm of the pressure force acts on the bead centre (O). Accordingly, LDp=

LD/ tan ϕ. Applying (A 5) and (A 6) for the lever arm of gravity and buoyancy forces,
one obtains

LΠDp =
1
2

DP√
1+ 2 tan2 ϕ

(A 9)

and

L∆Dp =
1
2

DP√
1+ 4 tan2 ϕ

. (A 10)

The total level arm is defined as LD = (LDτ2bτ + LDpbp)/(2bτ + bp) where bτ and
bp are the viscous and the pressure correcting factors as defined in (4.10) and (4.11),
respectively. Substituting (4.10), (4.11), (A 7) and (A 9) in the expression for the total
level arm, one finally arrives to (4.20). Analogous to the quadratic case, substituting
now (4.10), (4.11), (A 8) and (A 10) in the expression for the total arm yields

L∆D =
DP

2


(1+ cos χ∆)

[
2
3
(1+ cos χ∆)−

1√
1+ 4 tan2 ϕ

+ 1− 2
(

z0

DP

)]

2−
χ∆

π
+ cos χ∆ +

sin(2χ∆)
2π


+

DP

2


1√

1+ 4 tan2 ϕ

(
1−

χ∆

π
+

sin(2χ∆)
2π

)
2−

χ∆

π
+ cos χ∆ +

sin(2χ∆)
2π

 (A 11)

for the triangular case.
From figures 2 or 15, it can be shown that the level arm of drag force over the

rotation axis in the bead centre, (O), lD, is related to the level arms over the rotation
axis in (A), LD, as lD = LD − (LG/ tan ϕ).
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The angle χ , which is related to the effective zero level, is coupled to the angle of
repose as follows (see figure 15):

cos χΠ =
2s
DP
=

2√
1+ 2 tan2 ϕ

+ 2
(

z0

DP

)
− 1

with s= T −
DP

2
+ z0 =

DP

2

[
2√

1+ 2 tan2 ϕ
+ 2

(
z0

DP

)
− 1

]
(A 12)

for the quadratic substrate and

cos χ∆ =
2s
DP
=

2√
1+ 4 tan2 ϕ

+ 2
(

z0

DP

)
− 1

with s= T −
DP

2
+ z0 =

DP

2

[
2√

1+ 4 tan2 ϕ
+ 2

(
z0

DP

)
− 1

]
(A 13)

for the triangular substrate.
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