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Abstract

Nonlinear parabolic partial differential equation governing the evolution of complex envelope in slowly varying envelope
approximation is solved using variational approach. The basic nonlinear phenomena of relativistic and ponderomotive self-
focusing in a plasma are taken into account. Self-focusing, self-phase modulation as well as self-trapping of dark hollow
Gaussian beam is studied for higher orders of hollow Gaussian beam (n).
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1. INTRODUCTION

Theoretical and experimental study of the evolution of high
power laser beams as they propagate through plasmas is an
active area of research due to their potential relevance in
plasma based accelerators (Sarkisov et al., 1999), inertial
confinement fusion (Tabak et al., 1994; Regan et al.,
1999), ionospheric modification (Perkins & Goldman,
1981; Guzdar et al., 1998; Gondarenko et al., 2005), and
new radiation sources (Suckewer & Skinner, 1990, 1995;
Benware et al., 1998; Foldes et al., 1999; Fedotov et al.,
2000). Specifically, in the laser plasma interaction, the gen-
eric process of the self-focusing of the laser beams (Chiao
et al., 1964; Kelley, 1965; Sodha et al., 1974, 1976; Milch-
berg et al., 1995; Saini & Gill, 2006; Gill & Saini, 2007; Yu
et al., 2007; Gill et al., 2010; Kaur et al., 2010) has been
focus of attention as it affects many other nonlinear pro-
cesses. It plays crucial role in beam propagation and arises
due to increase of the on-axis index of refraction relative to
edge of the laser beam. For example, for ponderomotive
force type nonlinearity, electrons are expelled from the
region of high intensity laser field. On the other hand, relati-
vistic self-focusing results from the effect of quiver motion
leading to reduced local plasma frequency. The self-focusing
is counterbalanced by the tendency of the beam to spread
because of diffraction. In the absence of nonlinearities,

the beam will spread substantially in a Rayleigh length,
Rd(∼ka0

2), where k is the wavenumber and a0 is the initial
spot size of the laser beam.

Self-focusing and filamentation are among the most
dangerous nonlinear phenomena that destroy the uniformity
of overall irradiation required for direct-drive fusion exper-
iment as well as leads to seeding and growth of hydro-
dynamic instabilities. Experimental as well as theoretical
observations of relativistic self-focusing and ponderomotive
self-channeling have been reported in a number of investi-
gations (Faenov et al., 2007; Chessa et al., 1998; Kurki-
Suonio et al., 1989; Abramyan et al., 1992; Tzeng & Mori,
1998; Monot et al., 1995; Krushelnick et al., 1997; Konar
& Manoj, 2005; Wagner et al., 1997; Chen et al., 1998; Bor-
isov et al., 1998). The dynamics of ponderomotive channel-
ing in underdense plasma has recently been studied
experimentally (Borghesi et al., 2007). Relativistic laser-
plasma interaction physics has also been focus of attention
as many nonlinear processes playing key roles in the gener-
ation of new ion sources as reported recently (Laska et al.,
2007; Strangio et al., 2007; Torrisi et al., 2008). Further,
there have been a series of novel experiments to study rich
physics issues in nuclear and particle physics, atomic physics
(Stoehlker et al., 2003), plasma physics (Hoffmann et al.,
2005; Schaumann et al., 2005) and applied sciences
(Kuehl et al., 2007; Kasperczuk et al., 2008). Such exper-
iments have opened new vistas in this field and are supposed
to pay rich dividents to multidisciplinary character of laser
produced plasma.
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Some of the approximate theories used to study self-
focusing process are a paraxial ray approximation (PRA)
(Akhmanov et al., 1968; Sodha et al., 1974, 1976),
moment theory approach (Firth, 1977; Lam et al., 1977),
variational approach (Firth, 1977; Anderson & Bonnedal,
1979), and source-dependent expansion method (Sprangle
et al., 2000). Each of these theories has limitations in describ-
ing completely the experimental/computer simulation
results. However, the most used theory based on
Wentzel-Krammers-Brillouin approximation and paraxial
ray approach (PRA) is given by Akhmanov et al. (1968)
and developed by Sodha et al. (1976). Due to its mathemat-
ical simplicity, it has been extensively used to account for
general features of self-focusing as witnessed by the increas-
ing number of publications. However, this theory being local
in character overemphasizes the field closest to beam axis and
lacks global pulse dynamics. Furthermore, it also predicts un-
physical phase relationship (Karlsson et al., 1991). It has also
been pointed out that PRA is not applicable when high power
laser beams are used (Subbarao et al., 1998). Another global
approach is variational approach, though crude to describe
the singularity formation and collapse dynamics, is fairly
general in nature to describe the propagation and correctly
predicts the phase.
Most of the research work on self-focusing of the laser

beam has been confined to the cylindrically symmetric Gaus-
sian beams symmetry (Kumar et al., 2006; Hora, 1975;
Esarey et al., 1997; Sharma et al., 2004; Akhmanov et al.,
1968). Only a few investigations have been reported on the
self-focusing of super-Gaussian beams (Grow et al., 2006;
Fibich, 2007), self-trapping of degenerate modes of laser
beams (Karlsson, 1992), self-trapping of Bessel beams
(Johannisson et al. 2003), elliptical Gaussian beam (Cornolti
et al. 1990), and hollow elliptical Gaussian beam (Cai & Lin,
2004). These types of beams have different type of irradiance
distribution. Recently, the optical beams with central
shadow, generally known as dark hollow beams (DHB)
have attracted the attention of the physics community be-
cause of their wide potential applications in the field of
modern optics, atomic optics, and plasmas (Cai et al.,
2003; Yin et al., 2003; York et al., 2008). A DHB can be ex-
pressed as a finite sum of Laguerre Gaussian beams or Gaus-
sian beams. DHBs have been widely studied both from
experimental and theoretical aspect (Arlt & Dholakia,
2000; Zhang et al., 2004). For the explanation of dynamics
and other propagation characteristics, several theoretical
models for dark hollow Gaussian Beam (DHGB) like the
TEM01 mode doughnut beam, some higher order Bessel
beams, superposition of off-axis Gaussian beams, and
DHGB have been reported in several recent investigations
(Arlt & Dholakia, 2000; Zhu et al., 2002; Deng et al.,
2005; Mei & Zhao, 2005). However, the propagation charac-
teristics of coherent DHBs in a plasma or any other nonlinear
media have received little attention. In recent investigations,
Sodha et al. (2009a, 2009b) have presented a modified para-
xial like approach to study self-focusing of a HGB in plasma.

In the present investigation, authors have studied evolution of
DHGB in a plasma when relativistic and ponderomotive non-
linearities are considered.
The organization of the paper is as follows: In Section 2, a

model is setup in a weakly relativistic regime in underdense
plasma starting from Ampere’s and Faraday’s laws. These
equations under approximate conditions leads to an evol-
ution equation. Lagrangian for the problem is setup and vari-
ational approach is used. In Section 3, authors have studied
the self-trapped mode, and Section 4 is devoted to discus-
sion. In Section 5, conclusions of present investigation are
presented.

2. BASIC FORMULATION

The present model is setup in a weakly relativistic regime in
underdense plasma. Starting from Ampere’s and Faraday’s
laws and in the absence of the external charge and current,
we have the following set of equations:

�∇ × �B = 1
c

∂�D
∂t

, (1)

�∇ × �E = − 1
c

∂�B
∂t

. (2)

where �E and �B are the electric and magnetic field vectors,
respectively. �D = e�E is the displacement vector. Also, the in-
duced current density due to laser-plasma interaction exists in
the dielectric permittivity, e.
Combining the above two equations gives:

�∇ × �∇ × �E + 1
c2

∂2 �D
∂t2

= 0. (3)

Assuming wave propagation in z-direction and the electric
and magnetic fields in the xy-plane, Eq. (3) is reduced to:

∇2�E + ω2

c2
e�E = 0. (4)

Further the relativistic ponderomotive force on the elec-
trons modifies the electron density. The relativistic pondero-
motive force on electrons is given by:

�F pe = −me0c
2∇(γ− 1), (5)

where me0 is the electron mass in the absence of the
external field and γ is called the relativistic factor defined
as follows:

γ = √1+ eE

m0ecω

( )2

. (6)

Following Niknam et al. (2009), the dielectric permittivity
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for the cold plasma is:

e = 1− ω2
pe

γω2
, (7)

e = 1− ω2
pe

γω2
exp −m0ec2

Te
(γ− 1)

( )
, (8)

where

ω2
pe0 =

4πne0e2

me0
, (9)

ne = ne0exp −m0ec2

Te
(γ− 1)

( )
, (10)

where ne0 is the maximum electron density at the place in
which the laser electric field is zero. We obtain the follow-
ing evolution equation governing the electric field envelope
in collisionless plasmas as follows:

∇2
⊥ − 2ιk

∂
∂z

+ ω2

c2
1− ω2

pe

γω2

([

× exp −m0ec2

Te
(γ− 1)

( ))]
ψ(r, z) = 0.

(11)

Eq. (11) is a nonlinear parabolic partial differential
equation in which the first term has its origin in diffractional
divergence, in third term within parenthesis, “1” is the free
space propagation term and rest corresponds to relativistic
and ponderomotive self-focusing terms. Since relativistic
and ponderomotive channeling occur together, we investi-
gate their combined effects on the evolution of intense
laser beam in a plasma. Variational approach that have rig-
orous basis, as applied in other fields, is used here to inves-
tigate nonlinear wave propagation. We use procedure of
Anderson and Bonnedal (1979) to reformulate Eq. (11)
into a variational problem corresponding to a Lagrangian
L, so as to make δL

δz = 0. Thus, Lagrangian L corresponding
to Eq. (11) is given by:

L = ιkr ψ
∂ψ∗

∂z
− ψ∗ ∂ψ

∂z

( )
− r

∂ψ
∂r

∣∣∣∣
∣∣∣∣2

+ r
ω2

c2
α2|ψ|2 − ω2

pe0

52c2
1− e−52α2|ψ|2

( )
+ ω2

pe0

2704c2

[

× 1− e−52α2|ψ|2
( )

− ω2
pe0

52c2
α2|ψ|2e−52α2|ψ|2

]
,

(12)

where α = e
√2me0cω

Thus, the solution to the variational problem

δ∫∫∫Ldxdydz = 0, (13)

also solves the nonlinear Schrödinger Eq. (11). Using the

trial function as Gaussian beam of the form as follows:

ψ(r, z) = ψ0(z)
r2

2a2(z)

( )n

exp

× − r2

2a2(z)
+ ιb(z)r2 + ιf(z)

( )
,

(14)

where a(z) is the beam width, b(z) is the spatial chirp, and f(z)
is the phase of the laser beam.Using the ansatz, with expression
forψ as a trial function, we can perform the integration towrite:

<L> = <L0>+<L1> , (15)

where

<L0> = ιka2

22n+1
ψ0

∂ψ∗
0

∂z
− ψ∗

0
∂ψ0

∂z

( )
(2n)!

+ k|ψ0|2
a4

22n
db

dz
(2n+ 1)!+ k|ψ0|2

a2

22n
df

dz
(2n)!

− n2|ψ0|2
22n−1

(2n− 1)!+ n|ψ0|2
22n−1

(2n)!

− |ψ0|2
22n+1

(2n+ 1)!− b2|ψ0|2a4
22n−1

(2n+ 1)!

(16)

<L1> = ω2a2

c2
α2|ψ0|2
22n+1

(2n)!+ ω2
pe0a

2

104c2

× c′ − 2n(1− n) c′ − 2
e

( )
Log(52α2|ψ0|2)

[ ]
−

ω2
pe0a

2

5408c2
c′ − 2n(1− n) c′ − 2

e

( )
Log

[

(52α2|ψ0|2)
]+ ω2

pe0a
2

5408c2
[1− (2n− 4n2)

× (c′ + Log(52α2|ψ0|2)],

(17)

where c′ = 0.57721 is Euler’s constant. Using the procedure of
(Anderson&Bonnedal, 1979; Saini &Gill, 2006), we arrive at
the following equation for a:

d2a

dz2
= 2

k2a3
− 4n

k2a3(2n+ 1)
+ 22n+2

a(2n+ 1)!

× − (2n)!
22n+2

+ 51ω2
pe0

10816ω2α2|ψ0|2
(c′ − 2n(1− n)

[

× c′ − 2
e

( )
Log(52α2|ψ0|2)

+ ω2
pe0

10816ω2α2|ψ0|2
(1− (2n− 4n2)

× (c′ + Log(52α2|ψ0|2))+
51ω2

pe0

5408ω2α2|ψ0|2

× 2n(1− n) c′ − 2
e

( )
+ ω2

pe0

5408ω2α2|ψ0|2

× (2n− 4n2)
]
.

(18)
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After normalization using η = cz
ωa20

, we arrive at the following
equations for an, f:

d2an
dη2

= 2
a3n

− 4n
(2n+ 1)a3n

+ 22n+2k2a20
an(2n+ 1)!

× − (2n)!
22n+2

+ 51ω2
pe0

10816ω2α2|ψ0|2
(c′ − 2n(1− n)

[

c′ − 2
e

( )
Log(52α2|ψ0|2)+

ω2
pe0

10816ω2α2|ψ0|2

×(1− (2n− 4n2)(c′ + Log(52α2|ψ0|2))

+ 51ω2
pe0

5408ω2α2|ψ0|2
2n(1− n) c′ − 2

e

( )
+ ω2

pe0

5408ω2α2|ψ0|2

(2n− 4n2)
]

(19)

df

dη
= n

2a2n
+ 22n−1k2a20

(2n)!
− (2n)!
22n+2

+ 51ω2
pe0

10816ω2α2|ψ0|2
[

× c′ − 2n(1− n) c′ − 2
e

( )
Log(52α2|ψ0|2)

(
)

+ ω2
pe0

10816ω2α2|ψ0|2
(1− (2n− 4n2)

×(c′ + Log(52α2|ψ0|2))
)
+ 51ω2

pe0

5408ω2α2|ψ0|2
2n(1− n)

(c′ − 2
e
)+ ω2

pe0

5408ω2α2|ψ0|2
(2n− 4n2)

]

+ 22n−1k2a20
(2n)!

− (2n)!
22n+1

α2|ψ0|2 +
51
5408

[

ω2
pe0ω

22n(1− n) c′ − 2
e

( )
+ ω2

pe0(2n− 4n2)

5408ω2

]
.

(20)

3. SELF-TRAPPED MODE

For an initially planewave front, dadz = 0 and a= 1 at z= 0, the
condition d2a

dz2 = 0 leads to the propagation ofDHGB in the uni-
form waveguide/self-trapped mode. The conditions under
which this occurs are termed as critical conditions and their
graphical representation is known as the critical curve.
By putting d2a

dz2 = 0 in Eq. (18), we obtain a relation be-
tween dimensionless initial beam width parameter (ρ0) and
critical values of power of the beam Π(=α2 |ψ0|

2) taking
into account relativistic-ponderomotive type nonlinearity.
The critical condition leads to general expression for determi-
nation of critical threshold for various orders of n. The
expression when simplified is given as follow:

1 = 2n
(2n+ 1)

− 22n+1

(2n+ 1)!
ω2a20
c2

×
−(2n)!
22n+2

+ 51ω2
pe0

10816ω2α2|ψ0|2
(c′ − 2n(1− n)

[

c′ − 2
e

( )
Log(52α2|ψ0|2).

+ ω2
pe0

10816ω2α2|ψ0|2
(1− (2n− 4n2)

× (c′ + Log(52α2|ψ0|2))+
51ω2

pe0

5408ω2α2|ψ0|2
2n(1− n)

× c′ − 2
e

( )
+ ω2

pe0

5408ω2α2|ψ0|2
(2n− 4n2)

]
,

(21)

where ρ0 = a0ω
c , is the initial dimensionless beam width

parameter.
The nature of self-focusing is further highlighted through

the critical curves. DHB undergoes self-focusing when the
condition d2a

dz2 < 0 is satisfied whereas for d2a
dz2 > 0, HGB dis-

plays either oscillatory or steady state self-focusing.

4. DISCUSSION

Eq. (19) describes the beam dynamics in plasmawith relativis-
tic and ponderomotive nonlinearities taken into account. Eqs.
(19) and (20) are nonlinearly coupled ordinary second order
differential equations governing the normalized beam width
parameter an and phase f. There are several terms appearing
on right hand side (R.H.S.) of Eqs. (19) and (20). Analytical
solutions to these equations are not possible. We therefore
seek numerical computational techniques to study beam dy-
namics. Before that, it is worthnoting to understand the phys-
ical mechanisms and origin of various terms on R.H.S. of Eq.
(19). The first and second terms on R.H.S of Eq. (19) are
responsible for diffractional divergence of the laser beam
which has its origin in the Laplacian (∇⊥

2 ) appearing in the
evolution Eq. (11). It is noteworthy to point out that the
second term in Eq. (19) weakens the divergence of laser
beam solely because of its sign. Further, within parenthesis,
the first term comes from free space propagation and the rest
of the terms represent the combined effects of ponderomotive
self-channeling and relativistic self-focusing. Self-focusing/
defocusing of laser beam in plasma is determined by the com-
peting mechanisms on the R.H.S. of Eq. (19). The normalized
beam width parameter, an< 1 corresponds to self-focusing
and an> 1 is the result of diffractional dominance over all
other terms leading to defocusing of laser beam. However,
as mentioned in the Introduction, long distance of several Ray-
leigh lengths (Rd) are prerequisite for novel applications of
laser produced plasma. In Figure 1, the plot of normalized
beam width parameter, an with dimensionless distance of
propagation, η is shown for various orders of n. In this case,
free space propagation term on R.H.S of Eq. (19) within par-
enthesis is not taken into account. Further, it is observed that
defocusing of the laser beam occurs for all n values but de-
crease with increase in n. However, situation changes drasti-
cally when the combined effects of both relativistic and
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ponderomotive nonlinearities along with free space propa-
gation term are taken into account. It is observed from Figure 2
that oscillatory self-focusing takes place for all higher orders
of n. It is also important to notice that beam propagates oscil-
latory and infinitely over several number of Rayleigh lengths.
Inspite of higher order, defocusing is not observed for all
powers. It is in contrast to the results of Sodha et al.
(2009a) where defocusing is observed with increase in n.
This is apparently a consequence of variational approach
where in averaging process the contribution of whole wave
front is considered. On the other hand, PRA takes into account
only rays that are very close to the beam-axis. Another aspect
of this phenomenon observed here is that oscillatory character
becomes slow with increase in the value of n. We have
numerically analyzed the evolution of normalized beam
width as a function of distance of propagation, η for four
values of n with other parameters chosen as follows:

a0 = 0.002 cm, k = 1.25 × 103 cm−1,

ω pe0 = 0.01 × ω, ω = 1.778 × 1014
rad
sec

.

Eq. (20) describes the evolution of longitudinal phase, f
with the dimensionless distance of propagation (η). As is ap-
parent from the R.H.S of Eq. (20), which is a complicated
function of n, normalized beam width an and intensity par-
ameter, α2 |ψ0|

2 besides other parameters, determines the
nature of phase. It is observed from Figure 3, the phase is
negative for lower values of n (=0,1), but becomes positive
with further increase in n. However, for lowest order of n, ob-
served phase is negative and does not show oscillatory charac-
ter. This is due to the fact that the R.H.S. of Eq. (20) for n= 0
depends only on α2 |ψ0|

2 maintaining a linear relationship.
However, oscillatory character is obtained for n≠ 1, as self-
focusing of the main beam enters into the picture. Wiggles ob-
served in f versus η graph are more pronounced for higher
values of n.

To further elucidate the results for deleanating the under-
lying physics, we numerically analyze the dependence of di-
mensionless initial beam width parameter (ρ0) as a function
of critical values of beam power Π (=α2|ψ0|

2) for various

Fig. 1. (Color online) Variation of normalized beam width an(η) with di-
mensionless distance of propagation η for the case when free space propa-
gation term is not taken into account with the following set of parameters
for the various orders of n: a0= 0.002 cm, ωpe0 0.01 × ω,
ω = 1.778 × 1014 rad

sec, k= 1.25 × 103 cm−1, intensity parameter, α2|ψ0|
2=

0.8. Solid curve corresponds to n= 0, dashed curve to n= 1, dotted curve
to n= 2 and dotdashed curve to n= 3.

Fig. 2. (Color online) Variation of normalized beam width an(η) with di-
mensionless distance of propagation η for the case when both relativistic
and ponderomotive nonlinearities alongwith free space propagation term
are considered with the same set of parameters as in the caption of Figure 1
for the various orders of n. Solid curve corresponds to n= 0, dashed curve to
n= 1, dotted curve to n= 2 and dotdashed curve to n= 3.

Fig. 3. (Color online) Plot of longitudinal phase f(η) versus dimensionless
distance of propagation η for the case when both the mechanisms (relativistic
self-focusing and ponderomotive self-channeling) are considered for the
same set of parameters as mentioned in the caption of Figure 1. Solid
curve corresponds to n= 0, dashed curve to n= 1, dotted curve to n= 2
and dotdashed curve to n= 3.

Fig. 4. Variation of the dimensionless initial beam width (ρ0) as a function
of measure of critical beam power (Π) for the case when both the mechan-
isms are present with n= 0.
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orders of n when both relativistic and ponderomotive nonli-
nearities are taken into account. The results are depicted in
the form of graphs. The critical curves for the propagation
of the HGB in a plasma have been computed for a chosen
set of parameters, n, c′ and Ω(= ω pe0

ω ). The critical curve
for the DHGB characterizes the self-focusing region in
1/ρ20 − Π space. Those points that lie below the critical
power curve correspond to the propagation of the HGB
with self-focusing whereas the points lying above the critical
curve result in oscillatory or steady defocusing of HGB.
Points on the critical curve lead to the propagation of the
HGB in self-trapped mode. Figure 4 depicts such graph
showing that the dependence of 1/ρ20 for n= 0 is much
weaker on the high intensity, a result consistent with earlier
calculation based on variational approach (Anderson,
1978). However, initial beam width is much higher than
the earlier investigations. Substantial decrease in dimension-
less beam width as a function of Π is observed for higher
order of n. Although the results corresponding to n= 4 in

Figure 5 are quite similar to those obtained for n= 0, how-
ever, the following departure is observed:
Dependence of 1/ρ20 as a function of Π is initially fast

which becomes slow for large Π. However, contrary results
are observed for n= 2 in Figure 5, where 1/ρ20 reaches maxi-
mum followed by steady decrease with Π. The result is quite
similar to those of Misra and Mishra (2009).
It is worthnoting that critical power curves exhibit some

distinct features for different values of n, particularly for
odd values of n. Both qualitatively as well as quantitatively
different characteristics are obtained in critical curves.
There is a sharp contrast witnessed for even and odd values
of n shown in Figures 4–8 where 1/ρ20 as a function of Π
is displayed. Critical curves shown in Figures 7 and 8 are
quite similar but with different trapped powers. However, be-
havior for n= 1 in Figure 6 is quite astonishing and interest-
ing when significant departure is observed. There is a
significant decrease in 1/ρ20 with Π till minimum value is ob-
tained. This is followed by increase in Π and finally exhibit a
saturation behavior with Π (independent of Π).

Fig. 5. (Color online) Variation of the dimensionless initial beam width (ρ0)
as a function of Π with n= 2 and n= 4. Solid curve corresponds to n= 2
and dashed to n= 4.

Fig. 6. Dependence of the dimensionless initial beam width (ρ0) as a func-
tion of Π with n= 1.

Fig. 7. Dependence of the dimensionless initial beam width (ρ0) as a func-
tion of Π with n= 3.

Fig. 8. Dependence of the dimensionless initial beam width (ρ0) as a func-
tion of Π with n= 5.
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5. CONCLUSIONS

In the present investigation, authors have studied the self-
focusing and self-phase modulation of laser beam with rela-
tivistic and ponderomotive nonlinearities. Equation for
normalized beam width and phase is derived using vari-
ational approach. When free space propagation term is not
considered, the beam defocuses for all values of n. However,
when relativistic as well as ponderomotive nonlinearities
alongwith free space term are taken into account, oscillatory
self-focusing is observed over several Rayleigh lengths. This
result is in contrast to those of Sodha et al. (2009a). Phase
exhibit peculiar behavior for different values of n as it be-
comes positive as well as negative. Lastly, we have studied
some distinct features of critical power curves for even and
odd values of n. Substantial decrease in dimensionless
beam width (ρ0) as a function of Π is also observed for
higher orders of n.
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