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Experimental investigation of the
three-dimensional flow structure around a pair of
cubes immersed in the inner part of a turbulent
channel flow
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The origin and evolution of the three-dimensional flow structures around a pair of
roughness cubes embedded in the inner part of a turbulent channel flow (Reτ∞ = 2300,
where Reτ∞ is the friction Reynolds number of the incoming turbulent channel flow)
are measured using microscopic dual-view tomographic holography. The cubes’ height,
a = 1 mm, corresponds to 91 wall units or 3.9 % of the half-channel height. They are
aligned in the spanwise direction and separated by a, 1.5a and 2.5a. This paper focuses
on the mean flow structure, and the data resolution allows detailed characterization of
the open separated regions upstream, along the sides, on top of and behind the cubes, as
well as measurements of wall shear stresses from velocity gradients. The flow features a
horseshoe vortex, a vortical canopy engulfing each cube, a near wake arch-like vortex and
multiple interacting streamwise vortices. Most of the boundary layer vorticity is entrained
into the horseshoe vortex. The canopy, consisting of wall-normal vorticity to the sides, and
spanwise vorticity on top of the cube, originates from the front surface. The streamwise
vortices originate from realignment of the other components along the corners of the front
surface. Merging of streamwise structures around and behind each cube causes formation
of a large streamwise vortex rotating in the same direction as the inner horseshoe leg, with
remnants of the outer leg under it. This merging occurs earlier and the entire flow structure
becomes more asymmetric with decreasing spacing. Peaks and minima in the distributions
of the wall shear stress are associated with the formation of and interactions among the
near-wall vortices.

Key words: boundary layer structure, turbulent boundary layers

† Email address for correspondence: katz@jhu.edu

© The Author(s), 2021. Published by Cambridge University Press 918 A31-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

18
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:katz@jhu.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.184&domain=pdf
https://doi.org/10.1017/jfm.2021.184


J. Gao, K. Agarwal and J. Katz

1. Introduction

Turbulent boundary layers over rough surfaces are abundant in the natural environment
and in a variety of engineering applications. Numerous studies have already investigated
the effects of roughness shape, arrangement, density and dimensions on the mean velocity
profiles and turbulence statistics in the boundary layer. The frequently discussed similarity
hypothesis assumes that the flow structure in the outer region is independent of the
particular roughness geometry, and resembles that of a smooth-wall turbulent boundary
layer with proper scaling (Townsend 1976; Raupach, Antonia & Rajagopalan 1991).
According to Jiménez (2004), this hypothesis is valid when the rough-wall turbulent
boundary layer is ‘well characterized’, which requires that both k+ = kUτ /ν and δ/k
have large values, typically k+ > 50 and δ/k > 40. Here, k is the roughness scale, Uτ

is the friction velocity, ν is the kinematic viscosity and δ is the boundary layer thickness.
Closer to the wall, in the so-called roughness sublayer, the flow is directly affected by the
roughness elements, hence it exhibits significant spatial heterogeneity. The thickness of
this layer typically extends from the wall up to 2k–5k. Numerous studies have examined
the validity of the similarity hypothesis and range of the well-characterized conditions,
too many to summarize here. Some have supported it (e.g. Bakken et al. 2005; Flack,
Schultz & Connelly 2007; Squire et al. 2016), but others have shown that the criteria are
not universal and depend on the roughness geometry, e.g. for cubic and two-dimensional
(2-D) roughness (Krogstad & Antonia 1999; Lee, Sung & Krogstad 2011; Volino, Schultz
& Flack 2011; Choi et al. 2020). Knowledge of the specific flow structures generated, as the
roughness elements interact with the boundary layer, is necessary for understanding how
momentum and turbulence are generated and transported away from the near-wall region.
Yet, many of the questions related to the interaction between roughness and the boundary
layer have still not been answered satisfactorily. Therefore, improved understanding,
modelling and control of the roughness impact require detailed investigations of the
inner part of the roughness sublayer, namely the flow around individual roughness
elements. Such understanding might lead to improved predictions of e.g. drag and noise
in engineering applications (Devenport et al. 2018; Wu, Christensen & Pantano 2020),
as well as heat and mass transfer in urban and vegetation canopies in the atmospheric
boundary layer.

Performing fully resolved measurements or simulations in a boundary layer while
maintaining both high k+ and δ/k is a challenging task (Hong, Katz & Schultz 2011;
Piomelli 2019). Nevertheless, recent numerical investigations have provided valuable
insights into the flow structures in the roughness sublayer. Since the present study focuses
on cubic roughness elements, the following summary of numerical studies is limited to
those involving this geometry. More general reviews of this topic can be found in e.g.
Krogstad & Antonia (1999), Jiménez (2004) and Marusic et al. (2010). Direct numerical
simulation (DNS) has been employed to study the flow over an array of relatively large
cubes (δ/k = 8) by Coceal et al. (2007) and Leonardi & Castro (2010). Direct numerical
simulation studies have also been conducted at Reτ ∼ 450 (Reτ = δUτ /ν, where Reτ is
the friction Reynolds number) in developing boundary layers over periodically aligned
and staggered cubic roughness elements of varying height, spatial arrangement and δ/k
ranging from approximately 16 to 285 (Lee et al. 2011; Ahn, Lee & Sung 2013; Choi
et al. 2020). They show that the cubic roughness significantly modifies the near-wall
high- and low-momentum streamwise streaks. Yang et al. (2019) use large eddy simulation
(LES) and DNS to characterize the flow over sparsely distributed staggered and aligned
roughness cubes with δ/k = 3.5 and Reτ = 350. They show that secondary flow structures
generated by the cubes have a significant effect on the drag coefficients. Yang & Wang
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3-D measurements of the flow around two roughness cubes

(2013) use LES to study the noise generated by arrays of hemispherical, cuboid and
cylindrical roughness elements with δ/k = 8 and Reτ = 1307. Their results show the
important role of flow separation and reattachment associated with shapes with sharp
frontal edges, e.g. cubes, in the generation of noise.

There are limited experimental data on the flow in the inner part of rough wall boundary
layers, especially in regions located below the roughness height. Light reflection from
the wall and the complex three-dimensional (3-D) motions with high velocity gradient
introduce major difficulties. Most of the available data are based on point or planar
measurements. For example, using 3-component laser Doppler velocimetry, George (2005)
provides data for the velocity profile and turbulence below the top of circular cylindrical
roughness for δ/k in the 25 to 100 range and Reτ = 2400. Particle image velocimetry (PIV)
has been widely used in recent years (Westerweel, Elsinga & Adrian 2013). For example,
Hong et al. (2011, 2012) have studied the near-wall flow over pyramidal roughness
with δ/k = 50 and Reτ > 3500 in a refractive index-matched facility. The formation of
U-shaped vortices wrapping around the roughness elements with their quasi-streamwise
legs extending downstream has been conjectured based on interpretation of the 2-D
data in multiple planes. These observations have been subsequently confirmed by 3-D
measurements using digital holographic microscopy (Talapatra & Katz 2012, 2013).
Understanding how the legs of these vortices interact and their effect on the wall-normal
momentum transport has been one of the initial motivations of the present work.
Stereoscopic PIV has been used to investigate the impact of secondary flow structures in
the roughness sublayer induced by random roughness (δ/k ∼ 22, Reτ ∼ 5000) on the flow
structure and turbulence (Mejia-Alvarez & Christensen 2013; Barros & Christensen 2014).
The PIV-based statistics of mean velocity, turbulent kinetic energy, Reynolds stresses and
spatial correlations for the roughness sublayer above and between tightly packed cubic
roughness elements have also been reported in Reynolds & Castro (2008), Takimoto et al.
(2011) and Blackman et al. (2017).

The flow around isolated large cubes has been widely used as a canonical configuration
for investigating 3-D separated flows and for benchmarking numerical predictions.
A number of experimental and computational studies have revealed the constituent flow
structures, including the horseshoe vortex wrapped around the cube, the arch-type vortex
in the recirculation region behind the cube and the separated flows on the surfaces
(Martinuzzi & Tropea 1993; Hussein & Martinuzzi 1996; Yakhot, Liu & Nikitin 2006;
Lim, Thomas & Castro 2009; Diaz-Daniel, Laizet & Vassilicos 2017). These studies have
shown that turbulence level of the incoming flow, δ/k, and the Reynolds number affect
the flow structure surrounding the cube and its wake region (Castro & Robins 1977;
Hearst, Gomit & Ganapathisubramani 2016; Diaz-Daniel et al. 2017). Essentially, all of
this work involves large cube relative to the boundary layer thickness, namely δ/k < 10,
hence it should be categorized as the flow over obstacles, which is typically relevant for the
atmospheric boundary layer. The measurements typically involve one-dimensional (1-D)
and 2-D techniques as well as surface flow visualizations aimed at interpreting the complex
3-D flow structures (Castro & Robins 1977; Martinuzzi & Tropea 1993; Sousa 2002).
Recently, time-resolved 3-D tomographic imaging combined with shake-the-box particle
tracking has been applied to measure the time-resolved and mean flow structures around a
discrete cube with the size equal to the boundary layer thickness (Schröder et al. 2020).

To the best of our knowledge, there are no 3-D experimental data on the flow structure
around roughness elements in general, and cubic ones in particular, embedded in the
inner part of turbulent boundary layers, namely high k+ and δ/k. To understand what
kind of flow structures are generated around such elements, and how structures associated
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with neighbouring elements interact, the present paper focuses on detailed measurements
of the turbulent channel flow around an isolated pair of cubic roughness elements with
k+ = 91 and δ/k = 25.4 (i.e. Reτ∞ = 2300). This study has been motivated initially
by the possibility that U-shaped horseshoe vortices generated by neighbouring elements
interact to affect the wall-normal momentum transport (Hong et al. 2012; Talapatra & Katz
2012). Since the flow induced by neighbouring streamwise vortices is expected to intensify
with decreasing distance between them, the present experiments have been performed
for varying cube spacings. Owing to the stringent spatial resolution requirements,
the measurements are performed using microscopic dual-view tomographic holography
(M-DTH) (Gao & Katz 2018). The data presented in this paper focus on the mean flow
structure. Among the many findings, the data resolve: (i) the open-type separated flows
along the surfaces of the cubes, (ii) the origin and evolution of the vortices around the cube
and its near wake, (iii) the interactions among the multiple streamwise-aligned vortical
structures, (iv) the impact of the flow structure on the distributions of wall shear stresses,
(v) flow blockage and channelling and (vi) the effect of cube spacing on these phenomena.
The experimental set-up and measurement techniques are presented in § 2, followed by
presentation and discussion of results in § 3, and conclusions in § 4.

2. Experimental set-up and measurement techniques

2.1. Test facility
The experiments have been performed in an index-matched channel flow facility, where
the channel walls and the cubes are made of acrylic whose refractive index is matched
with that of the fluid, a concentrated aqueous solution of sodium iodide. The specific
gravity of the fluid is 1.8, and its kinematic viscosity is 1.1 × 10−6 m2 s−1. Detailed
descriptions of this facility are documented in several previous publications (Hong et al.
2011; Bai & Katz 2014; Joshi, Liu & Katz 2014; Zhang et al. 2017). The relevant part
of this facility, including the settling chamber, the converging nozzle, the 3.3 m long
203.2 mm × 50.8 mm cross-section channel and the diffuser are illustrated in figure 1.
The channel walls are smooth except for the pair of cubes mounted on the bottom
surface 2.6 m downstream of the entrance. During all the present tests, the channel has
been operated at the same mean centreline velocity, Uc = 2.5 m s−1, as that in Zhang
et al. (2017). Based on velocity measurements described in that paper, the mean flow
sufficiently far upstream of the cubes is a fully developed turbulent channel flow with
Reτ∞ = hUτ∞/ν = 2300, corresponding to δν∞ = 11 µm, i.e. Uτ∞ = ν/δν∞ = 0.1 m
s−1. The pair of cubes are aligned in the spanwise direction and have a nominal height
(a) of 1 mm, corresponding to 91δν∞ or 3.9 % of h, where h is the half-channel height.
The experiments have been performed for cubes separated nominally by λ = 1.0a, 1.5a
and 2.5a. The selected spacing is based on previously reported distance of 0.79a between
horseshoe legs and the cube sidewall at the cube’s trailing edge (Yakhot et al. 2006).
Hence, the present widest gap (2.5a) would leave a space of approximately 1.0a between
vortices, not accounting for channelling effects, presumably resulting in a relatively weak
interaction between legs. In contrast, the smallest gap is expected to force the two legs
close to each other, hence induce significantly stronger interactions. Furthermore, the
selected spacings also fall into the range where DNSs by Leonardi & Castro (2010) show
that varying the spacing should cause significant variations in near-wall flow structure
and distribution of skin friction. Each pair of cubes is machined as part of a 110 mm
diameter disk that is flush mounted in the channel window. Parallel alignment of the
cubes has been verified by comparing the alignment of the cube surface to the flow
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Figure 1. The experimental set-up, including the channel, the pair of cubes with varying spacing mounted
on the bottom wall and the local particle injection system. Adapted with permission from Gao & Katz (2018)
© The Optical Society.

direction, by the nearly zero lateral flow crossing the z = 0 plane and by the symmetric
distribution of wall shear stresses with respect to this plane (discussed later in § 3).
Precision measurements of the cube shapes have shown that because of machining errors,
the actual dimensions of the cube and spacing differ slightly from the nominal values.
Hence, they are listed in table 1 as aij, where i refers to the cube spacing, and j to the
direction, with x, y and z corresponding to the streamwise, wall-normal and spanwise
directions, respectively. In the rest of the paper, all the dimensions are normalized by the
respective cube scales in the corresponding directions, so all the cubes appear to have the
same size in comparative plots. Appropriately concentrated particle seeding is required for
resolving the flow structure at scales that are much smaller than that of the cube. Hence,
as illustrated in the top-left inset of figure 1 and following Sheng, Malkiel & Katz (2008),
Talapatra & Katz (2013) and Ling et al. (2016), the 2 µm tracer particles have been injected
locally at a very low speed (0.03Uc) from a series of 100 µm injection ports located 330
port diameters upstream of the cubes. This low injection speed and large distance to the
sample volume have been chosen to have negligible effects on the flow and turbulence
in the sample volume based on prior experience under similar conditions. In Sheng et al.
(2008) and Sheng, Malkiel & Katz (2009), it is shown for a smooth wall channel flow that
the velocity profile and all Reynolds stress components agree very well with DNS data, and
Talapatra & Katz (2012, 2013) show agreement between mean velocity profiles measured
using digital holographic microscopy with similar local seeding and data obtained using
2-D PIV with global seeding for a rough-wall boundary layer.

2.2. Measurement techniques and data processing
In general, to perform volumetric 3-D velocity measurements, one has the option of using
either tomographic PIV together with shake-the-box particle tracking (Schröder et al.
2020), or M-DTH (Gao & Katz 2018). The optical set-up for tomographic PIV typically
involves four cameras aligned in different directions, a relatively large field of view (FOV)
and moderate to low magnification. The latter is needed for maintaining a depth of field
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Streamwise dimension Wall-normal dimension (height) Spanwise dimension

λ1 = 0.936 mm a1x = 1.040 mm a1y = 0.960 mm a1z = 1.028 mm
λ2 = 1.534 mm a2x = 1.000 mm a2y = 1.000 mm a2z = 0.990 mm
λ3 = 2.444 mm a3x = 1.040 mm a3y = 0.930 mm a3z = 0.947 mm

Table 1. Precise dimensions (aij) of and spacing (λi) between the cubes.

that covers the entire width of the sample volume. In contrast, holographic microscopy is
particularly suitable for high resolution measurements near boundaries, where the sample
volume can be observed at magnifications ranging between 4X to 20X. The shallow depth
of focus of the microscope objectives is compensated by recording and reconstructing
the hologram to obtain a 3-D particle field (Katz & Sheng 2010). Hence, this method
is particularly suitable for the present application, where the entire FOV is a few cubic
millimetres, and the required spatial resolution is tens of microns.

The dual beam microscopic digital holography system used for the detailed velocity
measurements is illustrated in figure 2, and described in detail in Gao & Katz (2018).
Owing to the inherent depth-of-focus problem of conventional single-view holographic
tracking (Katz & Sheng 2010), preliminary tests performed during early phases of the
present project have shown that single-view imaging is not accurate enough for resolving
fine details of the 3-D flow around the cube. Hence, we have developed and implemented
the M-DTH system (Gao & Katz 2018). The optical set-up consists of two inclined in-line
holography systems. Data processing consists of the following steps: (i) precision mapping
of the two sample volumes onto each other using a 3-D self-calibration procedure.
Based on analysis of noisy synthetic data and experimental particle fields, the mapping
uncertainty can be maintained at approximately 1 µm; (ii) reconstruction of the two
instantaneous 3-D intensity fields, each containing elongated particle traces aligned in
the corresponding axial directions of the in-line holography beams; (iii) mapping of the
intensity field of one view into the next; (iv) truncating the elongated particle traces by
multiplying the two 3-D fields, which reduces the length of the traces to approximately
twice the particle diameter as opposed to 5–20 times without truncation; (v) particle
detection and matching of the truncated traces in the two exposures based on a series
of criteria, following procedures described in Sheng et al. (2008) and Talapatra & Katz
(2013). These criteria include results of 3-D cross-correlations in local sub-volumes,
particle shapes, continuity, constraints on velocity and acceleration, etc.; (vi) measuring
the particle displacement and using first-order singular value decomposition (SVD) (Sheng
et al. 2008) for mapping the unstructured velocity distribution onto a regular grid.

To accelerate the extensive data processing, a series of in-house GPU-based codes
have been developed, tested and implemented to perform all the processing steps. The
fourteen times speed-up achieved by the GPU processing has made the application of
M-DTH a feasible tool for processing large amount of data in a timely manner. The
present codes, which process a 3-D velocity field in approximately 20 minutes, could be
further streamlined to achieve faster rates. Owing to the small FOVs involved, even small
(micron scale) distortions introduced by the optical components and the channel windows
need to be accounted for. Consequently, a procedure that utilizes the self-calibration
results has been developed to determine the 3-D aberration function, i.e. the distortions
along the axis of the laser beam, assuming that the in-plane aberrations are negligible.
This spatially varying aberration function has been subsequently evaluated based on the
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Figure 2. The M-DTH set-up consisting of two inclined microscopic inline holography systems, with the
sample volume located in the region where the beams intersect. The three FOVs are shown on the bottom right.
Adapted with permission from Gao & Katz (2018) © The Optical Society.

known, independently measured, location of the bottom and cube surfaces. Results have
shown that the location of these surfaces can be determined to be well within 1 µm. This
procedure has enables us to position the velocity vectors properly relative to bottom and
cube walls.

In the optical set-up illustrated in figure 2, the beam of a double-head Nd:YAG laser
(New Wave Solo PIV) is spatially filtered, collimated and split to illuminate the sample
volume from two angles. One beam is perpendicular to the channel wall, and the other is
nominally inclined at 36◦ to the wall-normal direction. The region where the two beams
overlap is the sample volume, which is shown magnified in the top-right corner. The
sample volume size is 4.2 mm × 2.8 mm × 1.5 mm (382δν∞ × 255δν∞ × 136δν∞) in the
streamwise (x), spanwise (z) and wall-normal (y) directions, respectively. The origin of the
coordinate system is located on the wall, between front surfaces of the cubes. To cover the
entire region of interest, the data have been acquired using three different FOVs for each
cube spacing, as illustrated in the bottom-right corner of figure 2. The first, FOV 1, focuses
on the space between and behind the cubes; FOV 2 is centred around one of the cubes; and
FOV 3 extends up to three cube heights upstream of the cubes. The in-line holograms
are recorded at a magnification of 8X using infinity-corrected long-range microscope
objectives (MO1 and MO2). The planes of focus, which are indicated by the dashed
lines, are located slightly below the sample volume. The holograms are recorded by two
identical interline-transfer, CCD cameras (Imperx B6640), which have 6600 pixel × 4400
pixel arrays with a pixel size of 5.5 µm, resulting in overall image resolution of 0.69 µm
per pixel. The hologram pairs are acquired at a rate of 1.5 Hz with 25 µs delay between
exposures.

On average, 1900 hologram pairs have been processed for each spacing and FOV. During
segmentation of the 3-D truncated particle traces, the selected threshold of signal-to-noise
ratio for identifying a particle in the multiplied intensity fields has been set to 11. This
level is approximately 38 % more stringent than that reported in Gao & Katz (2018). Each
hologram typically provides 1700 unstructured vectors. The ensemble-averaged velocity
field at each grid point is calculated using first-order SVD to project all the unstructured
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vectors located within an ellipsoid centred on this point. This projection is weighted
based on the exact location of each unstructured vector relative to the grid point, and
inherently gives increasing weight with decreasing distance of the unstructured data from
the grid point. If not particularly specified, for most of the data presented in this paper,
the interpolation volume is a 100 µm diameter sphere, and the vector spacing is 60 µm
in all directions. The number of unstructured vectors used for determining the velocity
at each point is 106 ± 49. The SVD analysis also provides the velocity gradients at each
grid point directly (Sheng et al. 2008; Talapatra & Katz 2013). Based on evaluation of the
uncertainty in the measurements (see the Appendix), the interpolation volume diameter is
increased to 150 µm for calculating the velocity gradients. For both the velocity and its
gradients, a median filter of 5 × 5 × 5 points is used for identifying outliers, and replacing
them with the average of all the 3-D neighbours. In certain areas, especially near walls,
the size and shape of the interpolation volume is adjusted to resolve specific flow features,
e.g. separated flows along the cube walls. Here, the semi-axis length in the surface-normal
direction is reduced to 10 µm and those in the surface-parallel directions are enlarged to
100 µm, the latter to ensure that the volume contain a sufficient number of unstructured
points. In this case, the surface-normal grid spacing is 10 µm, and the surface-parallel one
remains 60 µm.

The calculated mean velocity components are denoted as U, V and W in the x, y and
z directions, respectively. The mean vorticity components are denoted as Ωx, Ωy and Ωz,
and the wall shear stress tensor components are denoted as τxy, τyz, etc. The methods for
evaluating the uncertainty in the present measurements are discussed in the Appendix.
The results show that the uncertainty in all the mean velocity components is less than
1 % of the centreline velocity, and that involving velocity gradients, e.g. the vorticity, is
approximately 0.18Uc/a. The uncertainty in the wall shear stresses, which, as noted above,
are calculated using different interpolation volumes, is 0.1ρU2

τ∞.

3. Results

3.1. Flow structures near the surface of the cube
The main vortical structures around one of the cubes for λ = 2.5a (widest gap) is
visualized by an iso-surface of Λ2 (Jeong & Hussain 1995) in figure 3(a). Corresponding
sample vortex lines with the vorticity magnitude colour coded are presented in figure 3(b).
They are selected to intersect with the peak vorticity magnitude on the cube mid-x–y
plane above and behind the cube as well as with y = 0.12a far upstream. Distributions
of streamlines in wall-normal, spanwise and axial planes coinciding with the middle of
the cube are shown in figures 3(c), 3(d) and 3(e), respectively. Contour lines of Λ2 at the
same level as in figure 3(a) are also presented to facilitate a comparison between them.
The vortex located upstream of the cube close to the channel wall is part of the horseshoe
vortex. It forms as the boundary layer separates and rolls up (figure 3d), presumably owing
to the local cube-induced adverse pressure gradient (Simpson 2001). As the horseshoe
vortex wraps around the cube, its legs become aligned in the streamwise direction. In the
inner side (the one facing the other cube), the swirling motion induced by the horseshoe
leg can be seen at z/a3z = −0.75 in figure 3(e). In the outer side, the leg signature appears
as the curved streamlines centred around z/a3z = −3. Along with these legs, there are
a series of other streamwise structures whose origin and interactions among them are
discussed later.

A vortex canopy covers the cube and the separated flow regions on its top and side
surfaces. The vortex lines indicate that this canopy is dominated by wall-normal vorticity
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Figure 3. Characteristic primary flow structure around one of the cubes for λ = 2.5a. (a) Iso-surface of
Λ2 = −0.1U2

c /a2; and (b) vortex lines colour coded with the vorticity magnitude. (c–e) Selected in-plane
streamlines: (c) x–z plane at y/a3y = 0.5, (d) x–y plane at z/a3z = −1.79 and (e) y–z plane at x/a3x = 0.5.
Blue lines: contour of Λ2 = −0.1U2

c /a2 showing the intersections with the vortical canopy, arch-like and
horseshoe vortices.

along the inner and outer sides, and by spanwise vorticity above the cube. Consistent
with the orientation of the vortex lines, as quantified later, the magnitude of the vorticity
associated with the canopy is substantially higher than that of the secondary streamwise
structures. The arch-like vortex behind the cube (figure 3a), as referred to by Hussein
& Martinuzzi (1996), is located within the separated region there. Its vertical legs and
spanwise top are also evident in the sample x–z and x–y planes, respectively. Note that the
streamlines in figure 3(d) indicate that this separated zone is not a closed ‘bubble’, with
the flow passing through its centre exiting above the arch-like vortex. As elucidated later,
all the separated zones around the cube are open and involve complex 3-D flow structures.
Even for the widest gap, the presence of the neighbouring cube causes significant flow
asymmetry. Figure 3(c) demonstrates that the separation regions along the sidewall and
behind the cube in the inner side are smaller than those at the outer side. Furthermore,
figure 3(e) shows that the flow induced by the horseshoe vortex and other secondary
streamwise structures are not symmetric. There is also a net spanwise flow towards the
outer side over most of the area surrounding these vortices, which affects the interaction
among them further downstream.

The extent of asymmetry induced by the neighbouring cube and its dependence on the
spacing are illustrated in figure 4 by a series of x–z sections showing the streamlines
and distributions of Ωy. Note that since the cube sizes and locations in these plots are
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matched, the displayed FOVs differ owing to the slight differences in cube size (table 1),
magnification and location of the sample area for the three cases. Several trends are
evident. First, at all elevations, the wall-normal vorticity components associated with the
canopy and the arch-type vortex are parts of the same pair of continuous vorticial layers.
They start near the front surface of the cube, have high peaks outside of the separated
regions along its sides and extend well downstream of the arch, where they spread and
decay. The magnitude of Ωy increases with distance from the channel floor, peaks at
y/aiy = 0.5–0.75 and then decreases near the top of the cube. The trends at low y/aiy can
be explained by near-wall interactions between the canopy and the secondary streamwise
vortices (details follow). Near the top, the wall-normal vorticity transitions to a layer with
high spanwise vorticity above the cubes (see figure 5). The flow at the outer side appears
to be less affected by the cube spacing. Here, the length and width of the separated regions
along the sidewall as well as distribution of Ωy appear to be similar for all cases. Near
the inner sidewall, the separated region is thinner, and the width of the layer with high Ωy
decreases with the spacing. Further details on the separated flows over the cube surfaces
obtained using thinner interpolation volumes are discussed in the following section and
presented in figure 6. The asymmetry is also evident in the relative size of the two legs of
the arch-like vortex.

The streamlines near the wall within the separated regions reveal a series of singular
points. The separated flows in front of the cubes visible at y/a = 0.025 and y/aiy = 0.15
(figure 4a–f ) and in the x–y sample data (figure 5) are associated with the horseshoe
vortex rollup. The swirling flows and foci associated with the arch-like vortex behind the
cube extend from the channel floor to approximately y/aiy = 0.8 (0.75 is shown), while
decreasing in area. A series of saddle points appear on the boundaries and inside the
separated regions in front of, behind and on top of the cube. Their locations along with
that of the stagnation point on the front surface are listed in table 2. All the positions are
presented in their scaled coordinates. The locations of the centres of relevant surfaces are
also provided for convenience. As the spacing decreases, the saddle points in front of (SB

1 )
and behind the cube (SB

2 and SB
3 ) shift towards the inner side, while those on the top (ST

1
and ST

2 ) shift towards the outer side. Here, superscripts B and T refer to the vicinity of
the bottom and the top surface, respectively. These shifts are associated with changes to
the mean flow direction. Near the bottom the incoming flow upstream of cube is deflected
towards the outer side, presumably by cube-induced blockage, as is particularly evident
for the narrowest spacing (figure 4a). It should be noted that saddle points SB

1 , SB
2 and

SB
3 in the near-wall region have been seen in the DNS results for a single cube by Yakhot

et al. (2006). The asymmetry is also noticeable in the near-wall streamlines along the outer
perimeter to the sides and behind the cubes, e.g. in the converging streamlines which are
associated with interactions of the horseshoe vortices with the outer flow. These patterns
along the outer periphery behind a single cube have been reported by Martinuzzi & Tropea
(1993), based on experimental surface visualizations, and by Yakhot et al. (2006).

Spanwise vorticity and streamwise velocity distributions in x–y cross-sections aligned
with the mid-plane of the cube showing the horseshoe vortex, vortical canopy, and the
arch-like vortex are presented in figure 5. Several trends are evident: (i) it appears that in
this plane, the different gaps between the cubes have limited influence on the spanwise
vorticity distribution; (ii) the spanwise vorticity has peaks in the frontal head of the
horseshoe vortex, and at the top of the vortical canopy, the latter being consistent with
the wall-normal vorticity along the sides of the cube. Further downstream, including in
the separated region behind the cube, Ωz decreases and appears to be diffused over a
broad area, also in accordance with the trends of Ωy in top views (figure 4); (iii) upstream,
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3-D measurements of the flow around two roughness cubes
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Figure 4. In-plane streamlines in a series of x–z planes superimposed on colour contour of Ωya/Uc for
(a,d,g,j,m) λ = 1.0a; (b,e,h,k,n) λ = 1.5a; and (c, f,i,l,o) λ = 2.5a. The planes are located at (a–c) y/a = 0.025;
(d–f ) y/aiy = 0.15; (g–i) y/aiy = 0.50; ( j–l) y/aiy = 0.75; (m–o) y/aiy = 1.02. The size of FOV in each
column, represented by individual panel size, has been adjusted such that the cubes in each row are aligned and
of the same size, to aid comparison among the three cases.

it appears that a substantial fraction of the boundary layer vorticity is entrained into the
horseshoe vortex and the much thinner structure in front of it. The height of the latter is
6δν∞, i.e. slightly higher than the viscous sublayer far upstream. While the rollup of a
horseshoe vortex ahead of obstacles has been seen before in numerous studies, including
those involving large cubes (Hearst et al. 2016; Diaz-Daniel et al. 2017), the formation
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Figure 5. Streamlines in the x–y mid-planes superimposed on the colour contour of (a,c,e) Ωza/Uc and
(b,d, f ) U/Uc. (a,b) λ = 1.0a; (c,d) λ = 1.5a; and (e, f ) λ = 2.5a. These mid-planes are located at (a,b)
z/a1z = −0.96; (c,d) z/a2z = −1.27; (e, f ) z/a3z = −1.79. The size of FOV in each row, represented by
individual panel size, has been adjusted such that the cubes in each column are aligned and of the same size,
to aid comparison among the three cases.

of a second structure farther upstream have mostly been seen under laminar upstream
conditions (Diaz-Daniel et al. 2017; Schröder et al. 2020). Considering the distance from
the wall, laminar-like behaviour should not be surprising; (iv) only a small fraction of the
upstream vorticity is located above the streamline leading to the stagnation point on the
front surface, hence contributes to the vorticial canopy above the cube. The rapid increase
in Ωz occurs close to the top front corner of the cube, suggesting that the origin of most
of this vorticity, as quantified later, is located along the front surface; and (v) while the
reverse flow inside the separated region above the cube can be as high as −0.15Uc, owing
to blockage effect the velocity at y ∼ 1.3a is already 0.7Uc, i.e. the shear strain there is
of the order of 104 s−1. This level is comparable to the wall shear strain rate far upstream
(U2

τ∞/ν). In several places, such as under the horseshoe vortex, as well as the bottom
parts of the forward face and behind the cube, the fast reverse flow, which can be as high
as −0.2Uc, generates opposite sign vorticity. The locations of the marked singular points
are included in table 2. The height of the stagnation point, ranging from 0.65 to 0.67 cube
heights for different spacings, is in good agreement with those reported in Yakhot et al.
(2006), Hearst et al. (2016) and Diaz-Daniel et al. (2017). The heights of the horseshoe
head (FB

1 ) and the top of the arch-like vortex (FA
3 ) are similar (differences less than 0.05a)

to those reported based on DNS in Diaz-Daniel et al. (2017).
The next discussion focuses on the flow structure very near the cubes’ surfaces. As

noted in § 2.2, to resolve these flows, the interpolation ellipsoid is 20 µm thick in the
surface-normal direction. Figure 6 provides two views for each surface and cube spacing.
The wall-parallel views correspond to planes located 15 µm away from sidewalls and
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cubes

Stagnation point Singular points in figure 4 Singular points in figure 5

ST SB
1 SB

2 SB
3 FA

1 FA
2 FA

3 FB
1

λ1 0.00, 0.67, −0.88 −1.04, 0.03, −0.62 1.10, 0.03, −0.81 2.15, 0.03, −0.53 1.26, 0.15, −1.27 1.41, 0.15, −0.56 1.44, 0.82, −0.96 −0.44, 0.16, −0.96
λ2 0.00, 0.66, −1.20 −1.01, 0.03, −1.12 1.11, 0.03, −1.17 2.27, 0.03, −0.98 1.29, 0.15, −1.65 1.40, 0.15, −0.90 1.49, 0.81, −1.27 −0.47, 0.14, −1.27
λ3 0.00, 0.65, −1.72 −0.98, 0.03, −1.65 1.10, 0.03, −1.67 2.20, 0.03, −1.61 1.28, 0.15, −2.13 1.41, 0.15, −1.42 1.41, 0.79, −1.79 −0.43, 0.14, −1.79

Singular points in figure 6(c) Singular points in figure 6(f )

SO
1 SO

2 FO
1 FO

2 SI
1 SI

2 FI
1 FI

2
λ1 0.11, 0.76, −1.47 0.83, 0.79, −1.47 0.57, 0.91, −1.47 0.08, 0.17, −1.47 N/A N/A N/A N/A
λ2 0.10, 0.52, −1.79 0.98, 0.64, −1.79 0.37, 0.85, −1.79 0.13, 0.11, −1.79 0.13, 0.38, −0.76 0.67, 0.78, −0.76 0.51, 0.87, −0.76 0.15, 0.29, −0.76
λ3 0.15, 0.56, −2.31 0.94, 0.55, −2.31 0.54, 0.87, −2.31 0.16, 0.21, −2.31 0.12, 0.46, −1.27 0.64, 0.82, −1.27 0.53, 0.87, −1.27 0.14, 0.21, −1.27

Singular points in figure 6(i) Extent of separation regions

ST
1 ST

2 FT
1 FT

2 XF
sep XF

sep
λ1 0.14, 1.02, −0.98 0.95, 1.02, −1.08 0.22, 1.02, −1.30 0.23, 1.02, −0.59 −1.04 2.22
λ2 0.09, 1.02, −1.24 0.87, 1.02, −1.42 0.21, 1.02, −1.59 0.26, 1.02, −0.94 −1.06 2.38
λ3 0.13, 1.02, −1.87 0.86, 1.02, −1.93 0.24, 1.02, −2.05 0.29, 1.02, −1.49 −0.93 2.18

Centres of the cube surfaces

CF
s CI

s CO
s CT

s
λ1 0, 0.50, −0.96 0.50, 0.50, −0.46 0.50, 0.50, −1.46 0.50, 1, −0.96
λ2 0, 0.50, −1.27 0.50, 0.50, −0.77 0.50, 0.50, −1.77 0.50, 1, −1.27
λ3 0, 0.50, −1.79 0.50, 0.50, −1.29 0.50, 0.50, −2.29 0.50, 1, −1.79

Table 2. The scaled 3-D coordinates (x/aix, y/aiy, z/aiz) of the front surface stagnation point (ST), the centres of the cube surfaces (CF
s , CI

s , CO
s and CT

s ), the singular points
marked in figures 4–6 as well as the streamwise extent of the separation regions in front of (XF

sep) and behind (XA
sep) the cube. The superscripts F, I, O, T , A and B refer to

the front, inner, outer and top surfaces as well as the arch vortex, and the vicinity of the bottom wall, respectively.
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Figure 6. The flow structure very close to the surfaces of the cube: streamlines in surface-parallel planes and
velocity vectors in surface-normal mid-planes superimposed on colour contour of the streamwise velocity;
(a–c) 15 µm from the outer surface, (d–f ) 15 µm from the inner surface and (g–i) 20 µm from the top surface.
For (a,d,g) λ = 1.0a, (b,e,h) λ = 1.5a and (c, f,i) λ = 2.5a. The dash-dot lines correspond to U = 0. The
spanwise coordinates of the outer and inner surfaces (zO

i /aiz and zI
i /aiz, respectively) are provided in table 2.
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3-D measurements of the flow around two roughness cubes

20 µm above the top surface. The wall-normal views show the mid-x–z planes for the
sidewalls (i.e. y/aiy = 0.5) and x–y plane crossing the centre of the cubes for the top.
Each wall-parallel streamline pattern contains at least one, but in most cases four singular
points whose locations are also listed in table 2. The separation lines in the forward parts,
where streamlines converge from both sides, have a saddle point in the middle. The latter is
labelled as SO

1 , SI
1 and ST

1 , where the superscripts O, I and T refer to the outer, inner and top
surfaces, respectively. Attachment lines, where the streamlines diverge, with a saddle point
in their centres (SO

2 , SI
2 and ST

2 ) are also evident further downstream. The flow patterns
along the outer (figure 6a–c) and inner side (figure 6d–f ) appear to be qualitatively similar
(except for the narrowest spacing), each featuring a major focus close to the top (FO

1 , FI
1)

and a minor one near the bottom (FO
2 , FI

2), in addition to the separation and attachment
lines. However, in the inner side, the foci are sources, i.e. the radial velocity component
near the centre is positive, and in the outer side, the foci are sinks. The top surfaces have
separation lines bounded in both sides by sink-like foci (FT

1 and FT
2 ), and what appears

to be curved attachment lines that start parallel to sidewalls and end close to the back of
the cubes. In all cases and surfaces the separated regions do not form closed ‘bubbles’,
i.e. part of the flow circumvents the separation lines and penetrates the separated zones
somewhere along the forward side. This observation implies that outlets should also exist
somewhere, presumably out of plane. For example, along the inner sides, the flow enters
the separated regions from the upstream bottom corner. On the top, the upstream flows
penetrate from both sides between the foci and the peripheral attachment line.

To elucidate the complex phenomena involved, figure 7 presents selected 3-D
streamlines, with their distance from the relevant surfaces colour coded. Starting from
the inner wall (figure 7a,d,g), streamlines originating from the forward surface, turn
around the bottom corner and enter the domain located downstream of the separation
line. They then turn upward (owing to the flow induced by the streamwise vortices)
and subsequently upstream near the middle of the surface, as part of the reverse flow
seen in the planar views. These streamlines then spiral away from the wall around the
centre of the focus located close to the top of the cube in the planar view, and then
leave the separated zones close to the top surface. Other streamlines (not shown) spiral
around the bottom focus. Along the outer side (figure 7b,e,h), the trajectories have similar
general features although magnitudes and locations differ. One of the selected sample
streamlines enters the separated region near the bottom, spirals around the bottom focus
away from the wall and then get entrained into the separated zone behind the cube, which
is also open. The other enters the vicinity of the surface from the downstream end of
the cube, and then circumvent the upper focus before turning downstream. On the top of
the cube (figure 7c, f,i), one of the shown streamlines enters the separated region from
the side, rotates around the focus, lifts upward upon reaching the front separation line
and then turns downstream. The other streamline has a 3-D spiralling trajectory that
starts near the focus. These trajectories elucidate the flow phenomena that generate the
complex streamline patterns observed in the wall-parallel planes. Subsequent discussions
on the evolution of streamwise structures will elucidated some of the causes for these
phenomena. Finally, the corresponding surface-normal planes demonstrate the width of
the open separated regions, which increase from 20 µm to 70 µm with increasing gap
for the inner surface but remain at approximately 120 µm for the mid-outer and mid-top
planes.

As mentioned before and demonstrated by selected streamlines presented in figure 8, the
separated region behind the cube is also open. The flow enters this region from the lower
sides, spirals around the centre of the arch-like vortex while changing its orientation from
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Figure 7. Selected 3-D streamlines, which are entrained into the open-type separation regions for λ = 2.5a
along the cube’s (a,d,g) inner side, (b,e,h) outer side (note the change in orientation) and (c, f,i) top. For (a–c)
3-D perspectives looking at the surface, (d–f ) spanwise view and (g–i) top view. The streamlines are colour
coded with the distance from the relevant surface.

y

x

x

x
y

z

z

Outer side

Inner side

y/a3y: 0.1 0.3 0.5 0.7 0.9

(b)(a) (c)

Figure 8. Selected 3-D streamlines, which are entrained into the open-type separation region behind the cube
for the λ = 2.5a. (a) A 3-D perspective, (b) top view and (c) spanwise view. The streamlines are colour coded
with the distance from the bottom wall.

x–z to x–y planes and then leaves at an elevation of about the cube height. Accordingly,
the x–z planar views for low elevations (figure 4a–f ) show streamlines from both sides
of the cube being entrained into the arch legs. Such entrainment does not occur at higher
elevations. Similarly, the x–y planes (figure 5a,c,e) show the flow leaving the separated
region above the top of the arch. Before concluding this section, it should be noted that
occurrence of open separation on all the surfaces is consistent with topologically based
kinematic theorems by Hunt et al. (1978). They argue that separation regions formed
around any 3-D surface-mounted obstacle must be open.

918 A31-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

18
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.184


3-D measurements of the flow around two roughness cubes

3.2. Evolution and impact of streamwise vortices
The next discussion follows the evolution and interactions of streamwise vortices. A series
of y–z sections showing the distributions of Ωx and vectors of (V , W) aimed at elucidating
the evolution of these structures around and behind the cube are presented in figures 9
and 10, respectively. We have also tried to present the evolution of streamwise structures
in terms of swirling strength (not shown), but trends appear to be quite similar to those
depicted using the vorticity. As is evident, the cubes are surrounded by multiple vortices,
which are labelled for clarity as A–D with superscripts I and O referring to the inner and
outer surfaces, respectively (figure 9l). The counter-rotating legs of the horseshoe vortex
that rolls up upstream of the cube (focus FB

1 in figure 5a) and persist, at least for a while
downstream of it, are labelled as AI and AO. The asymmetry of this legs increases with
decreasing cube spacing, with the inner leg being located closer to the side surface and
having a higher peak vorticity magnitude than those of the outer leg. Consequently, in the
narrowest case, the horseshoe vortex leg associated with the neighbouring cube is also
visible in the left-most corner of the plots. Upstream of the front surface, the horseshoe
vortices and thin layers with counter-rotating vorticity under them are the only visible
structures. As the flow impinges on the front surface, it creates a source-like radial outflow
pattern originating from the central stagnation point. The spanwise location of this point
is biased towards the inner side and its elevation is approximately 2/3 of the cube’s height.
Both coordinates are not affected significantly by the spacing (figure 9(d–f ) and point ST
in table 2). Early signs of counter-rotating secondary vortices, which form between the
horseshoe legs and the sidewalls (BI and BO), appear at x/aix = −0.06, become distinct
downstream the leading edge (figure 9g–i) and reach maximum size at x/aix = 0.24.
With decreasing cube spacing, their peak vorticity magnitude and area (hence presumably
their strength) decrease along the inner sides. Additional counter-rotating pairs (CI /DI

and CO/DO) appear near the top corners immediately downstream of the leading edge
(figure 9g–i). The origin and mechanisms affecting the generation and evolution of each
of these structures is discussed in the following section.

Around x/aix = 0.5, in all cases, the pairs of vortices around the top edges start shifting
towards the outer side with the mean lateral flow. In the process, vortex CI migrates to the
top of the cube (figure 9m–r), and BI to the upper inner corner. Furthermore, vortices DI

and CO diffuse (expand and become weaker), and vortex DO shifts to the outer top corner
and starts merging with BO while pushing CO away from the surface. The merging process
is particularly evident at x/aix = 1.08, where the combined structure is labelled as EO. An
additional pair of vortices (GI and GO) forms near the bottom wall within the separated
region. Subsequent developments behind the cube are illustrated in figure 10 (note the
difference in colour scale). While still visible at x/aix = 1.38, the positive vortices BI ,
DI and CO disappear, and GI diminishes by x/aix=1.74. The negative vortices, namely
CI and EO (BO and DO) roll around each other and merge to form a larger structure
(H, figure 10d–f ), which is centred behind the cube. This vortex entrains part of the
positive vorticity originating from the outer leg of the horseshoe vortex (AO) towards
the bottom. The extent of interactions with the inner leg depends on the cube spacing.
For λ = 1.0a, the inner leg (AI) is already merged with H at x/aix = 2.16 to create a
large streamwise vortex that occupies most of the space behind the cube (figure 10g). At
x/aix=2.58, the shown FOV covers both cubes (FOV 1 in figure 2) to demonstrate that
a mirror image of this process evolves around the neighbouring cube as well with the
vortex rotating in the opposite direction. The resulting 3-D wake structure is also depicted
in figure 10(p) using iso-surfaces of Ωx. For λ = 1.5a, the merging with AI only begins
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Figure 9. A series of y–z planes showing the distributions of Ωxa/Uc superimposed on V–W vectors for
(a,d,g,j,m,p,s) λ = 1.0a, (b,e,h,k,n,q,t) λ = 1.5a and (c, f,i,l,o,r,u) λ = 2.5a. The plane locations are x/aix =
(a–c) −0.24, (d–f ) −0.06, (g–i) 0.04, ( j–l) 0.24, (m–o) 0.48, (p–r) 0.90 and (s–u) 1.08. The increment between
contour lines is 0.2. The 0-contour line is omitted for clarity. The size of FOV in each column, represented by
individual panel size, has been adjusted such that the cubes in each row are aligned and of the same size, to aid
comparison among the three cases.
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Figure 10. A series of y–z planes showing the distributions of Ωxa/Uc and in-plane velocity vectors
highlighting the evolution of streamwise vortices behind the cubes for (a,d,g,j,m,p) λ = 1.0a, (b,e,h,k,n,q)
λ = 1.5a and (c, f,i,l,o,r) λ = 2.5a. The planes are located at x/aix = (a–c) 1.38, (d–f ) 1.74, (g–i) 2.16, ( j–l)
2.58 and (m–o) 3.78. Increment between contour lines is 0.1. The 0-contour line is omitted for clarity. (p–r)
Corresponding smoothed iso-surfaces of Ωxa/Uc = ±0.16 between and downstream of the cubes. The size of
FOV in each column, represented by individual panel size, has been adjusted such that the cubes in each row
are aligned and of the same size, to aid comparison among the three cases.
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at x/aix ∼ 2.16 and is almost completed at x/aix = 3.78 (figures 10(n) and 10(q)). For
λ = 2.5a one can still find a distinct inner horseshoe vortex legs at x/aix = 3.78, although
there are signs of interaction with other structures at this location. Note that the direction
of the large streamwise vortex behind each cube is the same as that of the inner leg of
the horseshoe vortex. The vorticity from the other/outer legs is entrained into narrow
near-bottom layers. Interestingly, if the two cubes are replaced with a single obstacle
with a similar total width, the near wake would have a pair of horseshoe legs rotating
in the opposite direction. Possible reasons for the dominance of one of the vorticity
components (negative in figures 9 and 10) might be related to asymmetry in the peak
vorticity of the horseshoe legs, with that of the inner one being higher. Specific reasons
for this asymmetry, involving realignment and stretching of vortices, is discussed in the
following section. Another source of asymmetry involves the stronger positive wall-normal
flow between the cubes, which initiates the migration of vortex CI around the top corner.
Between the large vortices dominating the near wake, the induced flow points away from
the wall. As discussed later, this induced flow affects the distributions of wall shear stresses
and streamwise velocity between the cubes.

3.3. Origin and evolution of vortical structures
This section identifies the origin of the vortical structures on the various surfaces along
with key phenomena affecting their evolution by stretching and turning. The analysis
focuses on the role of the mean flow features, deferring discussions on the impact of the
turbulent terms, such as gradients of vorticity–velocity correlations, to subsequent papers.
As discussed before, the near-surface velocity is resolved using first-order SVD involving
an interpolation volume shaped as an oblate ellipsoid with a base diameter of 200 µm in
the surface-parallel directions, and a surface-normal size of 20 µm. The grid spacing is 10
and 60 µm in the surface-normal and -parallel directions, respectively. The corresponding
velocity gradients as well as the vorticity and wall shear stress components are calculated
by re-applying SVD with the same oblate interpolation volume but using the structured
velocity distributions. Application of SVD here serves as a convenient low-pass filter. The
figures correspond to the intermediate spacing (λ = 1.5a), but the discussions include
comments on the effects of spacing with reference to results presented before.

The following discussion shows that most of the vortical structures discussed before
have origins either upstream of the cube or on its front surface. Figure 5 already shows
that head of the horseshoe vortex upstream of the cube contains rolled-up boundary layer
vorticity. The next question involves the origin of the vortical canopy engulfing the cube.
The vorticity distributions along with the streamlines 30 µm upstream of the front surface
are presented figure 11(a–c). As is evident, the radial flow away from the stagnation point
generates Ωy > 0 on the inner half and Ωy < 0 on the outer half of the surface, as well as
Ωz > 0 below the stagnation point and Ωz < 0 above it. The vorticity signs and directions
are consistent with those of the canopy (figures 4 and 5). In contrast, and as one would
expect, Ωx is very small. We have also tried to calculate the surface-normal gradients of
Ωy and Ωz to estimate the vorticity diffusion from the wall. While the results give the
correct signs of vorticity flux, questions about the uncertainty in the vorticity gradients
compared to their magnitude have led to a decision not to present them. Unlike the front
of the cube, the side and top surfaces have little impact on the vortical canopy, and in
fact, figures 4 and 5 show that the canopy is separated from these surfaces. As for the
streamwise vortices, they are not generated by viscous diffusion, but rather by realignment
of Ωy and Ωz along the edges of the front surface. This process is demonstrated in
figure 11(d–f ), which shows the distributions of vortex straining terms that affect Ωx in the
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Figure 11. The structure of vorticity at x/a2x = −0.03 for λ = 1.5a. (a–c) Colour contours of (a) Ωx, (b) Ωy
and (c) Ωz superimposed on the in-plane streamlines. (d–f ) Colour contours of vortex straining terms affecting
the streamwise vorticity: (d) �x∂U/∂x + �y∂U/∂y + �z∂U/∂z, (e) �y∂U/∂y and ( f ) �z∂U/∂z.
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Figure 12. The x–y mid-plane for λ = 1.5a, showing colour contours of vortex straining terms affecting
Ωz: (a) Ωx∂W/∂x + Ωy∂W/∂y + Ωz∂W/∂z and (b) Ωz∂W/∂z, both superimposed on contour lines of Ωz.
Incremental difference between lines is Ωza/Uc=0.5.

vorticity transport equations. Summing Ωy∂U/∂y (figure 11e), Ωz∂U/∂z (figure 11f ) and
the streamwise straining term, Ωx∂U/∂x (which is negligible here), results in a series of
peaks with alternating signs distributed along the edges of the front surface (figure 11d).
The signs and location of these peaks are consistent with those of vortices BI , CI , DI ,
DO, CO and BO evident in figure 9(g–l). This agreement confirms that, except for the
horseshoe legs, the rest of the streamwise structures originate from the realignment of Ωy
and Ωz at the edges of the front surface. Specifically, the upper pairs (C and D) are results
of opposing effects with spatially varying magnitudes of Ωy and Ωz, while both contribute
constructively to the near-bottom secondary vortex (B).
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Figure 13. The x–z mid-plane for λ = 1.5a, showing colour contours of vortex straining terms affecting
Ωy: (a) Ωx∂V/∂x + Ωy∂V/∂y + Ωz∂V/∂z and (b) Ωy∂V/∂y both superimposed on contour lines of Ωy.
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(c) Contours of Ωy∂V/∂y superimposed on in-plane velocity vectors in a y–z plane located at x/a2x = 0.24.

Vortex stretching dominates in the evolution of the vortical canopy. A sample
comparison between the stretching term for Ωz (Ωz∂W/∂z) and the sum of all the spanwise
vorticity straining terms (Ωj∂W/∂xj) in the cube mid-plane is presented in figure 12.
There is little difference between them, with both showing that the spanwise stretching
peaks at the head of the horseshoe vortex and above the forward part of the cube, both
consistent with the location of the Ωz maxima (figure 5). In both cases, the spanwise
stretching is associated with the flow circumventing an obstacle, namely the bottom of
the cube near the horseshoe head (figures 4 and 9a–f ), and the separation line above the
cube (figures 6(g–i) and 9(g-i)). Further downstream the magnitude of Ωz above the cube
is reduced by flow contraction that continues up to x/a2x = 2.5. Phenomena affecting
the evolution of Ωy along the sides are demonstrated in figures 13(a) and 13(b). After
being produced on the front surface, Ωy is enhanced by vertical stretching as the flow
circumvents the forward part of the cube (figure 9g–l) and the separated regions along the
side surfaces (figure 6a–f ). This stretching occurs along most of the sides (figure 13c),
but not at their bottom corners, where the flow contracts vertically under the influence
of the axial secondary vortices BI and BO. The resulting reduction in the magnitude of
Ωy near the bottom corners is evident in figure 4(a–f ). With decreasing spacing, the area
with vertical stretching weakens along the inner side (not shown), hence the thickness of
the canopy along this surface decreases (figure 4g–i). Near the trailing edges and behind
the cube, Ωy∂V/∂y changes sign owing to vertical contraction induced by several effects,
most prominently, the flow induced by vortices BI and BO and other structures that they
interact with (figure 9m–r). In the near field behind the cube, the vertical contraction is
associated with an upward flow induced by the arch vortex and downward flow behind
the cube (figure 9s–u). Note that this discussion focuses on the mean flow effects, but the
evolution of vorticity is also affected by turbulent dispersion, which is beyond the present
scope.

Finally, mechanisms affecting the evolution of horseshoe legs and the secondary
structures between them and the sidewall are highlighted in figure 14. The discussion
focuses on the x–z plane that intersects the centre of the horseshoe legs, i.e. the magnitude
of Ωx there is maximum (figure 14a). The sum of straining terms affecting Ωx (figure 14b),
and the distributions of the individual terms (figure 14c–e) demonstrate, as expected,
that the legs of the horseshoe vortex originate from realignment of Ωz in front of the
cube (figure 14e). Subsequently, around the corner and forward part of the sides, Ωx
is enhanced by axial stretching (figure 14c). The maximum of Ωx coincides with these
regions, with the inner leg subjected to higher straining, hence have a higher maximum
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Figure 14. The structure of streamwise vorticity in the x–z plane located at y/a2y = 0.18 for λ = 1.5a:
(a) colour contour of Ωx superimposed on the in-plane streamlines; and (b–e) the corresponding colour
contours of vortex straining terms affecting Ωx: (b) Ωx∂U/∂x + Ωy∂U/∂y + Ωz∂U/∂z superimposed on
contour line of Ωx; (c) Ωx∂U/∂x superimposed on contour line of Ωx; (d) Ωy∂U/∂y superimposed on contour
line of Ωy; and (e) Ωz∂U/∂z superimposed on contour line of Ωz.

vorticity compared to the outer leg. This latter trend increases with decreasing cube
spacing (figure 9j–l). Further downstream, the total straining term along the paths of the
legs changes sign, consistent with the reduction in vorticity there, but its magnitude is
smaller than that near the leading edge. As discussed before, in the aft part and downstream
of the cube, the legs interact with other axial vortices. The outer leg is entrained under the
large structure forming behind the cube, which, depending on spacing, entrains the inner
leg (figure 10d–i). As for the secondary structures (BI and BO), as discussed before, they
are originated from realignment of Ωy and Ωz at the bottom corners of the front surface
(figure 11d–f ). Consistent effects are also evident from figures 14(d) and 14(e). Along the
sides, Ωz∂U/∂z continues to contribute constructively to the axial vorticity, but Ωy∂U/∂y
changes sign, and together with streamwise contraction (figure 14c) reduces Ωx. Overall,
straining increases Ωx magnitude in the BI and BO structures in the forward part of the
cube, and decreases it in the aft part. These trends are consistent with those observed in
figure 9. To elucidate the contribution of Ωz in this region, note that a layer with Ωz > 0
forms on both sides of the cube (see line contours in figure 14e) after being fed from
the lower part of the front surface (figure 11c) and enhanced by spanwise stretching and
realignment of Ωy.

3.4. Wall shear stress distributions
The flow structure around the cubes causes significant variations in the wall shear stress
distributions, as depicted in figures 15 and 16. The results are normalized by the wall shear
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sufficiently far upstream, ρU2
τ∞. Focusing first on the vicinity of the cube (figure 15),

the streamwise shear stress, τ+
xy , peaks along the sides of the cube, in the space between

the horseshoe legs and vortices BI and BO, which are marked by red and blue lines,
respectively. The downward flow induced by these vortices brings high-momentum fluid
towards the wall, increasing the wall-normal velocity gradients there. The peak magnitude
is 2.4 in the outer side and increases from 2.1 to 2.7 with increasing spacing on the
inner side. In front of the cube, τ+

xy < 0, and its magnitude peaks under the horseshoe
heads, which are marked by black lines. Another region with τ+

xy < 0 is located behind
the cube, peaking in magnitude under the central part of the arch-like vortex. The extents
of the separation regions upstream and downstream of the cube, which are defined by the
lines where τ+

xy = 0 and marked as XF
sep and XA

sep in figure 15(b), are listed in table 2. In
front of the cube, the length of the separation region is about 1.0a, close to that measured
in Martinuzzi & Tropea (1993), but smaller than the 1.2a and 1.4a reported by Yakhot
et al. (2006) and Diaz-Daniel et al. (2017), respectively, for larger cubes. Behind the cube,
the separation region extends to approximately 1.35 cube heights downstream from the
back surface. This value is slightly smaller than the 1.4a–1.5a range found in Martinuzzi
& Tropea (1993), Yakhot et al. (2006), Hearst et al. (2016), Diaz-Daniel et al. (2017) and
Schröder et al. (2020). This discrepancy might be attributable to the differences in h/a,
presumably owing to the lower momentum, but higher turbulence levels in the region
where the present cube is located. The magnitude of τ+

yz (figure 15d–f ) peaks between the
region where the horseshoe legs turn downstream and the front corners but remains high
under the legs along the sides of the cubes. The peak magnitudes on both sides appear to
increase with cube spacing, with the inner values being lower than the outer ones. Behind
the cube the distributions of τ+

yz have local maxima downstream of the foci corresponding
to the arch-like vortex near the wall (figure 4a–c). Elevated τ+

yz can also be seen under
the large streamwise vortex forming behind the cube, especially for λ = 1.0a, where it
develops closer to the back surface (figure 10g–i).

The streamwise shear stress distributions further upstream and downstream of the
cubes are plotted in panels (a,b,c) and (d,e, f ) of figure 16, respectively, showing data
obtained from different fields of view. In some cases, the magnitudes of the peaks differ
by approximately 10 %, which, as discussed in the Appendix, is consistent with the
uncertainty in the wall shear stress measurements. In general, the shear stress distribution
around both cubes appear to be quite similar (within the uncertainty limit), confirming the
symmetric alignment of the cubes relative to the flow. As far as 3a upstream of the cubes,
τ+

xy is already significantly smaller than 1, implying the cube-induced adverse pressure
gradients already influence the flow there. This observation is also demonstrated by the
mean velocity profiles at x = −3a for two spanwise locations and all the spacings, which
are presented in figure 17(a). There is already a momentum deficit in the viscous sublayer
and the covered range of the log layer compared to the fully developed turbulent channel
flow measured in the same facility and location without the roughness cubes (Zhang
et al. 2017). The corresponding wall-normal velocity profiles presented in figure 17(b)
clearly show that ∂V/∂y > 0 for all cases, implying that ∂U/∂x < 0, i.e. the flow is
being slowed down by the adverse pressure gradients. The magnitude of ∂W/∂z in this
region is negligible. Linear fitting to the local ∂U/∂x and the magnitude of the velocity
deficit suggest that the cube effects could extend to about x = −5a. The magnitude of
∂V/∂y decreases with increasing cube spacing, both at z = 0, i.e. the line of symmetry
between cubes, and at the spanwise location of the cube centre. Following the streamwise
development of the wall stress along z = 0, τ+

xy decreases upstream the cube, then increase
rapidly between the cubes, and then decreases again further downstream. The variations
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Figure 17. Profiles of (a) U+, and (b) V+ at x = −3a, both at z = 0 and in spanwise planes aligned with the
cube centre.

in stress increase with decreasing spacing, characterized by the minimum (τ+
xy ∼ 0.2) at

x/a ∼ −1, the maximum at x/a = 0.5 associated with flow channelling and streamwise
vortices, and the broad area with τ+

xy < 0.3 at x/a > 2.3. The latter is associated with the
positive wall-normal flow induced by the large pair of merged streamwise vortices that
form behind the cubes (figure 10). It should be noted that the instantaneous realizations
(not shown) indicate that the near-wall flow direction in this area becomes negative
intermittently.

It would be of interest to demonstrate how the evolution of shear stresses is related to
the development of the entire mean velocity profiles along the z = 0 line and the effect
of spacing on them. The streamwise and wall-normal velocity profiles are presented in
figures 18(a) and 18(b), respectively. In each series, the first row provides data for x ≤ 0,
and the second row, for x ≥ 0. Starting from x/a = −2.52, there is already an increasing
streamwise momentum deficit with decreasing spacing. The difference between profiles
peaks at x/a = −0.54, at about the same planes of the horseshoe head, and then starts
decreasing as the flow starts accelerating into the gap between the cubes. There, the
very near-wall flow (y/a < 0.1) accelerates, but a spacing-dependent momentum deficit
develops at 0.1 < y/a < 0.6. Both phenomena are associated with the horseshoe legs
and to some extent, the secondary axial vortex BI . At y/a < 0.1, high-momentum flow
is driven towards the wall between these vortices, as discussed before, and some of it
makes it to the other side of the horseshoe leg under this vortex (figure 9j–r). This
effect is intensified for the narrow spacing owing to the close proximity of both inner
legs. At 0.1 < y/a < 0.6, the horseshoe legs induce a positive wall-normal velocity along
the centreline, which drives low-momentum flow away from the wall. At x/a > 1, the
persistent decrease in streamwise momentum is driven initially by the horseshoe legs,
and then further downstream by the large vortical structures developing behind the cubes
(figure 10g–o). As one would expect, the momentum deficit increases with decreasing
spacing. All the vertical velocity profiles (figure 18b) have positive slopes at x/a ≤ −0.54
that increase with decreasing spacing, owing to the adverse pressure gradients there.
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Figure 18. Evolution of (a) U/Uc, and (b) V/Uc profiles along z = 0.

At −0.54 < x/a < 1.5, the near-wall profiles have maxima induced by the horseshoe
legs. Further downstream, the maxima shift upward under the influence of the large scale
merged streamwise vortices.

3.5. Gap-dependent blockage and channelling
The blockage to the channel, the flow channelling between cubes and the asymmetry in
the flow structure around each cube can be evaluated by analysing the evolution of bulk
velocity, Ub. It is defined as the streamwise velocity averaged over an area with height
aiy, and width L (figure 19a) upstream and downstream of the cubes, and L − aiz/2 at
0 ≤ x/a ≤ 1. For λi = 1.0a and 1.5a, L = (λi + aiz)/2, i.e. the sample area extends from
the centre of the cube to z=0 on the inner side, and by the same distance on the outer
side. For λ = 2.5a, L = (λ+ a3z)/2–150 µm since for this case, the FOV ends in the
outer side. The values of Ub are normalized both by Uc and U′

b, the latter being the
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bulk velocity over the same height far upstream of the cubes based on the streamwise
velocity profiles in the same channel flow available in Zhang et al. (2017). The implications
of cube-induced flow blockage are further evaluated by examining the evolution of
the vertical and spanwise velocity components along the edges of the sample area.
The vertical velocity component, Vb (figure 19c), is averaged along upper edges of these
areas (blue lines in figure 19a), and the spanwise velocity, Wb (figure 19d), along their outer
boundaries (red lines in figure 19a). Note that based on the continuity equation a · ∂Ub/∂x
is balanced by Vb and a · Wb/L. In this discussion, the flow asymmetry induced by the
neighbouring cube can be readily observed by comparing the results for the inner and
outer sides. Several trends are evident. First, in all parts of the flow field, the differences
between bulk velocity components in the inner and outer sides increase with decreasing
cube spacing. They are substantial for λ = 1.0a, especially between and downstream of
the cube, and decrease to a few per cent for λ = 2.5a. Second, at x < 0, Ub decreases
and the other components increase in magnitude with decreasing distance from the front
surface, as the axial blockage accelerates the flow vertically and laterally outward. As
discussed before, even at x/a = −3, Ub/U′

b ∼ 0.9, i.e. the flow is already slowed down
and begins to circumvent the cubes. The decrease in Ub and the corresponding increases
in Vb and magnitude of Wb intensify with decreasing spacing. In contrast, the lateral flow
along the plane of symmetry between cubes (at z = 0) remains persistently very small
(<0.01Uc), confirming that the flow around the two cubes is symmetric, and that the
observed phenomena are not caused by cubes’ misalignments. Third, at 0 < x/a < 1, Ub
increases abruptly on both sides owing to flow channelling, but then continues to decrease
at a mild rate along the inner side while remaining higher than that on the outer side.
While Vb decreases on both sides, it remains positive along the inner side, but becomes
negative at x/a > 0.5 in the outer side. The persistent upward flow between cubes, and
downward flow along the outer side contribute to the previously discussed circulation that
causes the migration and merging of axial vortices around the cube. Finally, downstream
of the cube, the bulk flow appears to be influenced by the gap-dependent development of
large streamwise vortices. Hence, Vb remains negative and Ub increases monotonically in
the outer side, while in the inner side, Ub does not change significantly with x/a, and its
magnitude decreases with decreasing spacing. The latter is consistent with trends of the
wall shear stress in this region.

4. Summary and conclusions

The 3-D flow structures around a pair of roughness cubes embedded in the inner part of a
turbulent channel flow (a/δν∞ = 91, a/h = 0.039) are investigated experimentally using
M-DTH. The incoming flow is a fully developed turbulent channel flow over a smooth wall
with Reτ∞ = 2300. To investigate the effect of lateral spacing, the pair of cubes are aligned
in the spanwise direction, and separated by a, 1.5a and 2.5a. The present paper focuses on
the mean flow features, including the origin and evolution of the primary vortices and
the interactions among them, the structure of the separated regions around the cubes as
well as the distributions of wall shear stresses. The flow structures around each cube are
qualitatively similar to those previously reported for larger isolated cubes (Martinuzzi &
Tropea 1993; Yakhot et al. 2006; Lim et al. 2009; Hearst et al. 2016; Diaz-Daniel et al.
2017; Schröder et al. 2020). Some flow features, e.g. the stagnation point on the front
surface, appear to be insensitive to the cube size and incoming flow conditions. Other
features, e.g. the extents of separation regions in front of and behind the cube are smaller
near the present substantially smaller cube.
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Figure 19. (a) The areas in the inner and outer sides of the cube used for evaluating the blockage. At x < 0
and x/a > 1, this area extends from the centre of the cube (black solid line), and at 0≤ x/a ≤ 1, it extends
outward from the side surface of the cube (black dashed line). (b–d) Axial profiles of (b) the streamwise
bulk velocity, (c) wall-normal velocity averaged over the upper edge of the sample area (blue line in a) and
(d) spanwise velocity averaged over the lateral edge of the sample area (red line in a). Here, U′

b (=0.53Uc) is
the bulk velocity in the fully developed channel flow far upstream of the cubes calculated for the same area
from data available in Zhang et al. (2017).

Upstream of each cube the boundary layer separates and most of its spanwise vorticity
rolls up into the head of the horseshoe vortex and is enhanced by spanwise stretching as
the flow circumvents the front surface. As discussed in the introduction, rollup of such
structures in front of obstacles in boundary layers is well known (Simpson 2001). The legs
of this vortex wrap around the front of the cube, realign in the streamwise direction and
persist past the downstream end of the cube, where they interact with other streamwise
structures.

Each cube is covered by a vortical canopy, consisting mostly of wall-normal vorticity
outside of the separated regions along the side surfaces, and spanwise vorticity above the
separated region on the top surface. The vorticity magnitude is height dependent owing
to interactions with the strain field generated by streamwise vortices. Starting from mid
cube, the vorticity layer expands and decreases in magnitude. It extends to the arch-like
vortex, the dominant structure in the separated region behind the cube, where the vorticity
magnitude is substantially lower than that close to the leading edge. This vortex canopy
originates mostly from the front surface of the cube, where the vertical and spanwise
vorticity components are generated as the flow near the surface accelerates nearly radially
from the stagnation point. The associated pressure gradients presumably cause diffusion
of vorticity from the wall. The canopy vorticity magnitude is intensified immediately
downstream of the front surface by stretching in the spanwise direction above the cube,
and in the vertical direction along the sides. The thickness of the inner part of this canopy
deceases with decreasing cube spacing. In the aft part and downstream of the cube,
contraction contributes to a reduction in both vorticity components.

In addition to the horseshoe legs, the cube is surrounded entirely by a series of other
streamwise vortices. These findings are consistent with results of numerical simulations
involving a much larger cube (Lim et al. 2009) or a square cylinder (da Silva et al. 2020).
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These vortices originate from the corners of the front surface owing to partial realignment
of the above-mentioned spanwise and wall-normal vorticity generated on the front surface.
Shortly after being generated, the strength of these vortices evolves further by realignment
of other components, e.g. the counter-rotating vortices located between the horseshoe legs
and the cube surface (identified as BI and BO) are enhanced by realignment of Ωz. The
presence of the neighbouring cube causes asymmetry in the magnitude, location, size and
evolution of the streamwise vortices, including the horseshoe legs. In particular, starting at
x/a = 0.5, the vertical flow away from the bottom between the cubes, which is induced by
the horseshoe legs, causes outward lateral migration and merging of streamwise structures
that have the same sign as the inner horseshoe leg. Vortices of the opposite sign are pushed
away from the surfaces and diffuse. Behind the cube, the merged structure further pairs
with the inner horseshoe leg, forming a large streamwise vortex that is as big as the cube.
This vortex entrains the (counter-rotating) outer horseshoe leg, confining it to a narrow
space located near the bottom. Consequently, the downstream signature of the pair of cubes
consists of pair of cube-size counter-rotating vortices, each spinning in the same direction
as the inner leg of the corresponding cube, with thin layers of counter-rotating vorticity
near the wall. These processes occur earlier and are more intense with decreasing spacing
but happen in all the present cases. For the widest spacing, the merging process with the
inner leg is not completed at the downstream end of the sample volume.

All the separated flow regions in front of and downstream of the cube as well as those
on the side and top surfaces are open. Sample 3-D streamlines are used for elucidating
the phenomena generating the complex near surface flow topologies, which include foci,
saddle points as well as separation and attachment lines. Along the side surfaces, the fluid
enters the separated region at low elevations, spirals away from the surface and exits near
the upper trailing edge. Over the top, the flow enters from both sides around the corners
and, after spiralling, leaves from the back. Behind the cube, the flow enters from both
sides at low elevation, swirls around the centre of the arch-like vortex while rising and
then leaves at an elevation of approximately the cube height. The separated zones on the
sides and behind the cube are also linked at low elevations. With decreasing spacing, the
flow around the cube become increasingly asymmetric. In the inner side, the separation
line in front of the cube tilts towards the front surface, the separation zone on the sidewall
shrinks and the arch leg becomes smaller. On the outer side, the flow structure seems to
be less affected by spacing.

The presence of the cubes causes deceleration, hence reduction in streamwise
momentum and wall shear stress at least as far as three cube heights upstream of the
front surface. The streamwise wall shear stress magnitude has peaks under the horseshoe
head in front of the cube, and to the sides of the cube, in the region where the horseshoe
legs and the secondary vortices BI and BO induce downward flow towards the wall. The
peak stress magnitude in the inner side decreases with decreasing spacing, presumably
owing to the weaker and rapidly diminishing BI vortex. Behind the cube, the merged
large pair of counter-rotating vortices induce an upward flow, reducing the wall shear
stress between them. This phenomenon is more evident for the narrowest spacing since
the merging occurs earlier, and the vortices are located closer to each other. The spanwise
wall stress magnitude peaks between the front corners of the cubes and the region where
the horseshoe vortex legs turn downstream. Also, the lateral flows induced by the merged
large vortices behind the cubes enhance the spanwise stress under them.

As noted in the introduction, one of the motivations for the present study has been
previously observed interactions among U-shaped vortices generated by neighbouring
pyramid elements (Hong et al. 2012; Talapatra & Katz 2012). In contrast, the present

918 A31-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

18
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.184


3-D measurements of the flow around two roughness cubes

results suggest that interactions between legs of the horseshoe vortices generated by
neighbouring cubes is not a major contributor to the wall-normal transport. The shear
stress between them remains high, and they do not appear to lift away from the surface
even when they are close to each other. Instead, migration and merging of streamwise
vortices generated by the same cube, including the inner horseshoe leg, create a large
vortex behind the cube. Then, interaction between vortices generated by neighbouring
cubes does transport momentum away from the wall further downstream, as is evident
from the reduced wall shear stresses there. The upward and outward flow that affects the
migration and merging of streamwise vortices is driven, at least in part, by the asymmetric
gap-dependent blockage to the bulk flow.

In summary, the ensemble-average flow around the cubes exhibits strikingly complex
interacting flow structures. Included are a vortical canopy originated from the front
surface, horseshoe vortex containing the upstream boundary layer vorticity, multiple
streamwise secondary vortices originated from vortex realignment along the corners of
the front surface and the arch-like vortex containing canopy vorticity in the near wake. All
the separated regions on the side and top surfaces as well as upstream and downstream
of the cubes are open, and connected, especially near the bottom. As expected, the lateral
neighbouring cube induces significant flow asymmetry, which increases with decreasing
spacing. This asymmetry causes preferential merging of multiple axial vortices around
and behind the cubes, resulting in formation of a large streamwise vortex, one behind
each cube, which rotates in the same direction as the inner leg of the horseshoe vortex.
These flow phenomena affect the wall shear stress distribution over the entire sample area,
including generation of peaks that are as high as three times the far field wall stress. The
next study, which will be a subject of future publication, will examine the impact of the
strain field generated by these flow features on the evolution of turbulence in the passage.
Modal analysis (e.g. proper orthogonal decomposition) can be applied to instantaneous
velocity fields to further investigate the dynamics of flow structures. Studies of the changes
to the flow and turbulence when the elements are embedded in a rough wall will also
follow.
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Appendix

In the 3-D particle tracking, each unstructured vector is calculated from the displacement
of a tracer particle. Therefore, the uncertainty in the unstructured vectors comes from
the uncertainty in locating the particle, i.e. uncertainty of the intensity-weighted centroid
of the truncated trace. Detailed results of tests to determine the position accuracy using
synthetic particles, with and without added noise, are discussed in Gao & Katz (2018).
In tomographic holography, the elongated particle traces are truncated by multiplying the
intensity distributions of the particle traces after using a 3-D self-calibration procedure to
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match the two views. The intensity-weighted centroid of each truncated trace is used as the
3-D coordinate of the corresponding particle. Tests using thousands of synthetic particles
show that the position uncertainty is 0.24 µm in the x–z directions and 0.45 µm in the
y direction. The higher wall-normal uncertainty is attributed to the rhombus-like shape of
the truncated trace. Correspondingly, for the 25 µs time interval between exposures, the
uncertainties of unstructured vectors are 0.014 m s−1 in the x–z directions and 0.025 m s−1

in the y direction.
The uncertainty of the structured mean velocity, which is determined from the

unstructured vectors using SVD (see § 2.2), has also been evaluated using synthetic data.
The particles are randomly distributed in a sample volume of the same dimensions as
those in the actual experiment. The particle number density and number of instantaneous
realizations are also identical to actual values. The particles follow the flow in the far
upstream boundary layer, i.e. the mean wall-normal and spanwise velocity components
are zero. To simulate the effect of turbulence, velocity variations (standard deviation) of
0.2 m s−1, corresponding to 8 % of the centreline velocity, are imposed on all three velocity
components across each instantaneous sample volume. Furthermore, the above-mentioned
uncertainty in individual unstructured vectors is also added. Using the ‘standard’ 100 µm
diameter spherical interpolation volume and 60 µm vector spacing in all directions, the
error of the calculated structured mean velocity is 0 ± 0.008Uc in all directions. Using the
150 µm diameter interpolation volume for vorticity calculation, the error in the calculated
vorticity is 0 ± 0.181Uc/a in the x direction, 0 ± 0.180Uc/a in the y direction and
0.008 ± 0.183Uc/a in the z direction. Synthetic data have also been used to quantify the
uncertainties of wall shear stresses (and vorticity near the front surface), which involve the
thin oblate interpolation volumes (see § 3.3). The mean error of the streamwise shear stress
is −0.011 ± 0.114ρU2

τ∞, and that of the spanwise shear stress is 0.001 ± 0.120ρU2
τ∞.
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