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SUMMARY

Visual displays of data in the parasitology literature are often presented in a way which is not very informative regarding
the distribution of the data. An example being simple barcharts with half an error bar on top to display the distribution of
parasitaemia and biomarkers of host immunity. Such displays obfuscate the shape of the data distribution through display-
ing too few statistical measures to explain the spread of all the data and selecting statistical measures which are influenced
by skewness and outliers. We describe more informative, yet simple, visual representations of the data distribution com-
monly used in statistics and provide guidance with regards to the display of estimates of population parameters (e.g. popu-
lation mean) and measures of precision (e.g. 95% confidence interval) for statistical inference. In this article we focus on
visual displays for numerical data and demonstrate such displays using an example dataset consisting of total IgG titres
in response to three Plasmodium blood antigens measured in pregnant women and parasitaemia measurements from the
same study. This tutorial aims to highlight the importance of displaying the data distribution appropriately and the
role such displays have in selecting statistics to summarize its distribution and perform statistical inference.

Key words: Parasitological data, display, graph, statistical inference, descriptive analysis.

INTRODUCTION

In the parasitology literature, we have noticed as
statistical reviewers, that frequently visual displays
of the data are presented which are not very inform-
ative regarding the distribution of the data, and that
better visual displays should have been selected by
the authors. Examples of ‘poor’ quality displays,
selected from a search of papers published in 2014 in
Parasitology, are provided (de-identified) in Fig. 1
and represent common visualizations seen in the bio-
logical, veterinarian and clinical literature. The fea-
tures of these examples that make them ‘poor’
quality displays are, the raw data are hidden by too
few summary statistic(s) (group mean and either top
half of error bar or no error bar). In the statistics litera-
ture there are many textbooks and articles that advise
against using such plots and provide simple alternative
displays (Wainer, 1984; Huff, 1993; Campbell, 2009;
Freeman et al. 2009; Weissgerber et al. 2015). The
purpose of this article is to summarize the advice on
how to select appropriate displays and the simple
alternatives proposed in these texts for researchers in

parasitology. Visual displays for numerical data (mea-
surements such as parasitaemia and laboratory anti-
body data) will be the focus of this article, as from
our experience, researchers have the most difficulty
in selecting appropriate displays for such data due to
the variety of plots available.

Statistical concepts and terminology

The purpose of most data analyses is either descrip-
tive or to perform statistical inference. Before we can
define these types of analyses and explain how dis-
playing data is crucial to both, some statistical con-
cepts and terminology needs to be introduced. The
focus of most studies is to identify covariates (also
termed exposures or predictors) that explain the
variability in an outcome; for example, does parasit-
aemia (covariate) explain the variability in haemo-
globin levels (outcome) from African children
(population of interest). Equally the ‘population of
interest’ may be fish or mammals, or mice or cells
in an in vitro experiment with relevant covariates
and outcomes measured, but for the purpose of
this illustrative piece we will use examples relating
to human populations. It is rarely feasible to obtain
data from the entire population (of humans, fish,
mammals, mice or cells) so instead we collect data
from a subset of the population, called a sample.
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The distribution of a variable measured in a sample is
called the empirical distribution.Statistics are functions
of thedata values observed in a sample, and they canbe
viewed in two ways, as: (1) summarizing an empirical
distribution of a variable (i.e. that of your sample) or
(2) an estimate of a population parameter (more on
this when statistical inference is discussed below).
The empirical distribution of a variable is commonly
summarized using two types of statistics: one that
measures location (centre or peak around which the
bulk of the data lie) and others that measure spread
(how distant observations are from the location or
centre). In this tutorial the sample mean and median
will be used to measure the location of an outcome’s
empirical distribution and the sample S.D., inter-quar-
tile range and range to measure its spread (these statis-
tics are defined in Table 1). Standard errors (S.E.) and
95% confidence intervals (CIs) are also functions of the
outcome values observed in a sample, but they do not
describe the empirical distribution of the outcome,
they are used to draw conclusions about the population
fromwhich the outcomewas sampled (these terms are
defined inTable 1 anddiscussed inmoredetail below).
Descriptive analyses focus on describing the empir-

ical distribution of a variable, by first plotting the dis-
tribution and then calculating suitable statistics to
summarize its location and spread. Statistical infer-
ence is much more complex and uses the empirical
distribution of the variable to draw conclusions
about the distribution in the population. First, a
probability distribution is selected for the population
distribution of say the outcome variable. Since only
data from a sample of individuals (mice, cells or para-
site isolates) have been collected, the population dis-
tribution is selected to resemble the empirical
distribution of the sample. The normal distribution
is an example of a widely used probability

distribution. Second, the population parameters of
the chosen probability distribution are estimated
using statistics. For example, the parameters of the
normal distribution are the population mean and
population S.D. which are estimated by the sample
mean and sample S.D. Lastly, measures of how pre-
cisely a population parameter is estimated by a statis-
tic, such as S.E. and 95%CIs are derived. Even though
these statistics are derived from the single sample of
data we have collected, the measures represent char-
acteristics of the sampling distribution. The sampling
distribution of a statistic is the distribution of the stat-
istic calculated from repeated random samples of a
given size, n, drawn from the study population.
The main point to note about descriptive analyses

and statistical inference is that the first step of both
should be to display the empirical distribution of
the outcome and that the choice of statistics to
describe the empirical distribution or estimate
population parameters should be informed by the
shape of the empirical distribution of the variable.
Now that the importance of displaying the empirical
distribution of data has been established we can
discuss how it should be displayed.

Displaying the empirical distribution of data

A variety of factors should be considered when select-
ing a plot to display the empirical distribution of data,
such as: research question (e.g. Are you interested in
how an outcome varies with a particular exposure?);
study design (e.g. Were the data measured at a single
time point or several time points?); measurement/
assay factors (e.g. Is there a lower limit of detection?);
purpose (Descriptive or statistical inference?); and
measurement scale of the data collected. The measure-
ment scales of most of the data can be classified as

Fig. 1. Examples of poor displays found in a cursory search of this journal. In the left panel the bar indicates the
group mean and the error bar is the mean + s.D. ***P < 0·001 for comparison of means of group B, C and D vs group A;
###P < 0·001 for comparison of means of group D vs group B; and §§§P < 0·001 for comparison of means of group D
vs group C. In the right panel the bar is the group mean and **P < 0·001 for comparison of means of group B, C and D vs
group A. The features of these examples that make them poor quality displays are, the raw data are hidden by too few
summary statistic(s). For example in the left panel only the group mean and top half of the error is displayed, while in the
right panel only the group means are displayed.
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either numerical or categorical. Numerical data can be
divided into continuous (decimal numbers e.g.
haemoglobin, temperature, body weight) or discrete
(whole numbers or counts, e.g. number of hospital
admissions) and categorical data into ordinal (charac-
teristics can be ordered e.g. socio-economic status
with three categories; low, medium and high),
nominal (characteristics have no ordering e.g.
species of malaria infection; Plasmodium falciparum,
Plasmodium vivax, Plasmodium ovale, Plasmodium
malariae, etc.) or binary (characteristic has two cat-
egories e.g. sex; males and females).
The plot selected to show the empirical distribution

of a data variable depends on the measurement scale.
Continuous data are displayed using histograms, box-
plots and dotplots, while bar charts are used to display
the distribution of discrete and categorical data.
Histograms can also be used to display discrete data,
if it has a wide range of values. This tutorial will
provide advice on how to display continuous and

discrete data using such plots. Displaying categorical
data using bar charts are not discussed.

Example dataset description

To illustrate how to plot the empirical distribution
of continuous data and use it in a descriptive analysis
and to inform statistical inference, we use an
example dataset of 317 pregnant women (93
malaria infected and 224 parasite-free during preg-
nancy) attending antenatal clinics of the Shoklo
Malaria Research Unit in north-western Thailand
which has been published previously (Fowkes et al.
2012). The variables used here for illustrative pur-
poses are total IgG titre (units optical density
(OD)) in response to three Plasmodium blood stage
antigens (a P. falciparum merozoite (Pf merozoite),
P. falciparum infected erythrocyte (Pf-IE) and
P. vivax merozoite (Pv merozoite) antigen). All
women in the example dataset had a total IgG titre

Table 1. Definition of statistics used to measure the location and spread of an outcome’s empirical
distribution

Statistic Definition

Measures of location

Mean The summed data values divided by the number of observations.

Median Midway value in a set of observations, 50% of the data values are above and below the median
(50th percentile). Can be used to describe the middle or location of data with an empirical
distribution that is normal/symmetric or skewed.

Measures of spread

Standard Deviation
(S.D.)

The S.D. is the square root of the variance, and the (sample) variance is the average squared
deviation from the mean. The S.D. describes the spread of the data values.

Inter-quartile range
(25th–75th percentile)

A range in which the middle 50% of data are contained (i.e. data values between the 25th and
75th percentiles). Used to describe the spread of the middle 50% of data.

Range The values between which all the observed data values are contained.

Statistical inference only

Standard Error (S.E.) Is a measure of the spread of the sampling distribution of an estimate. For example the S.E. of the
sample mean is estimated by the sample S.D. divided by the square root of the sample size.

95% confidence
interval

A plausible range of values for the population parameter. The confidence level of a confidence
interval (CI, i.e. the 95%) is unintuitive to interpret, it tells us if the study were repeated nu-
merous times (say 20) and a 95% CI calculated for each repeated study, that 95% of the CIs (i.e.
19, on average) will contain the true population parameter. When we interpret the 95% CI
derived from our single study we assume that our 95% CI is one of the 19 that contain the
population parameter and not the one that misses!

P-value Evaluate/quantifies the strength of evidence against a null hypothesis. A null hypothesis is
typically a neutral statement about the population of interest (e.g. there is no difference in
population means for two groups). The P-value is the probability of obtaining the observed
sample statistic (e.g. sample mean difference) or a more extreme result when there is no
difference in the population parameter (e.g. population mean) between the groups of interest
(e.g. treatment and control).
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measurement recorded in response to each
Plasmodium blood stage antigen (Table 2). For the
purposes of illustration the dataset has been
modified and we assume that IgG titres in response
to each antigen have been measured at delivery and
are the outcome variable of interest. The research
question is: does antibody response to each antigen
at delivery differ between women exposed to
malaria during pregnancy (parasite-infected cases)
and parasite-free controls? To illustrate how to
display the empirical distribution of discrete data,
parasitaemia measurements (number of asexual
parasites μL−1 of blood – any species of malaria)
from 168 women (a single measurement per
woman) taken at one of the follow-up visits (as
only three were positive at baseline).
In the following sections, we demonstrate appro-

priate plots (The good) for visualizing the
empirical distribution of IgG titres (continuous vari-
able) by a binary variable (malaria infected cases and
parasite-free controls), and demonstrate how such
plots can be used in a descriptive analysis and to

inform statistical inference. We also perform similar
demonstrations for discrete parasitaemia measure-
ments, which are much more challenging to visualize
and analyse. The ‘good’ plots for continuous vari-
ables only are contrasted with inappropriate displays
of such data (The bad) that are frequently presented in
the literature. All plots were created using the statis-
tical package Stata (StataCorp, 2013); example code
for these plots is provided in an online appendix to fa-
cilitate practical application.

APPROPRIATE DISPLAYS OF THE EMPIRICAL

DISTRIBUTION FOR DESCRIPTIVE ANALYSES

AND TO INFORM STATISTICAL INFERENCE – The

good

Continuous variables

Examining the shape of the empirical distribution of a
continuous variable using suitable displays can help
you select appropriate statistics to describe its location
and spread and to decide on an approach for statistical

Table 2. Summary statistics describing the distributions of IgG titres for three Plasmodium blood stage
antigens measured from blood samples collected from 317 pregnant women

Median IgG titer (units OD)
{25th–75th percentile}

[Range]
Pf merozoite antigen Pf infected erythrocyte antigen Pv merozoite antigen

Malaria infected case (n= 93) 0·12 0·34 0·16
{0·07–0·44} {0·20–0·80} {0·09–0·31}
[0·002–1·54] [0·07–1·16] [5 × 10−4–1·47]

Non-infected control (n= 224) 0·04 0·13 0·07
{0·02–0·08} {0·07–0·22} {0·04–0·14}
[2·5 × 10−4–0·68] [0·01–1·06] [0·001–1·16]

Table 3. Glossary of terms used to describe the shape of a variable’s empirical distribution

Term Definition

Normal or Bell-
shaped

A symmetrical distribution with a single peak. The curve either side of the peak resembles the
outline of a bell.

Skewed An asymmetrical distribution with a single peak. If the tail on the left side of the peak is longer or
fatter than the right side the distribution is referred to as negatively skewed. If the tail on the right
side of the peak is longer or fatter than the left side the distribution is referred to as positively
skewed (e.g. the empirical distribution of parasitaemia measures and antibody levels determined
by immunoassays are typically positively skewed).

Truncated A distribution whose values are limited to lie above and/or below a given threshold(s) or within a
certain range (e.g. parasitaemia determined by microscopy can only detect parasite burdens above
50 parasites μL−1 of blood)

Zero-inflated A distribution characterized by the presence of a large portion of zero values, in addition to con-
tinuous or discrete non-zero (i.e. positive) values

Multimodal A distribution with multiple peaks.
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inference. The most common shapes that researchers
will encounter for continuous variables are normal or
skewed (both defined in Table 3). If the display
reveals the data’s empirical distribution is approxi-
mately normal, then the sample mean and S.D. are
suitable measures of location and spread, and the
normal distribution can be used for statistical infer-
ence about the population. This is no longer the
case if the display reveals that the data’s empirical dis-
tribution is highly skewed, where the median should
be used as a measure of location and the inter-quartile
range (25th–75th percentiles) and/or range as mea-
sures of spread. The effect of positive or negative
skewness is to pull the mean above or below the
median, respectively (i.e. the mean no longer reflects
where the bulk of the data lies). Note that if the em-
pirical distribution is approximately normal or sym-
metric then the mean should be similar to the
median. The example in this tutorial deals with
only normal and positively skewed data. Advanced
statistical techniques are required if the data’s empir-
ical distribution has one of the other shapes men-
tioned in Table 3 or some other shape.
The most accurate display shows all the data

points collected in a sample, but this may be
difficult to do in an uncluttered way when the
sample is large. Accordingly, we recommend the
use of different plots depending on sample size.
The threshold used to define a small and large
sample in the following sections is simply a guide.

Displays for small samples

If the sample is small (⩽30 individuals) then display all
the data using a dotplot. Figure 2 presents dotplots of

IgG titre in response to each Plasmodium blood stage
antigen. Data are a random subset of 30 (15 parasite-
free controls and 15 malaria infected cases) out of
the 317 pregnant women. Each dot on the plot repre-
sents an observation for an individual, plotted along
the y-axis is IgG titre in response to each antigen
with observations for cases and controls plotted
alongside each other for comparison. If women have
the same IgG titre in response to a particular
antigen the observations are stacked horizontally, so
that the frequency of a particular observation is
represented, for example, in antigen group Pf-IE
merozoite (Fig. 2) five controls have an IgG titre of
0·04 OD.
How should we interpret Fig. 2 for a descriptive

analysis and to inform statistical inference?
Descriptive analysis: the dotplot clearly shows that
IgG titre in response to each antigen tend to be
lower with less spread for parasite-free controls com-
pared with malaria infected cases. For both cases and
controls, the IgG titres in response to each antigen
tend to be bunched towards zero with a tail stretching
towards the right, which indicates that the data’s em-
pirical distribution for each group is positively
skewed (defined in Table 3). Accordingly, the loca-
tion and spread for each group is best described and
compared using the median and interquartile range
(and/or range), respectively. Measures of location
and spread can be included on dotplots, but make
sure you have selected them based on the shape of
the distribution. If the dotplot function in the statis-
tical package you are using defaults to adding mea-
sures of location and spread to the plot, check what
the default settings are and make sure they are suit-
able. Statistical inference: the descriptive analysis

Fig. 2. Dotplot of IgG titres in response to each Plasmodium blood stage antigen. Data presented are a random subset
of 30 (15 non-infected controls and 15 malaria infected cases) out of the 317 pregnant women included in the example
dataset.
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showed that the data’s empirical distribution is posi-
tively skewed; therefore, statistical inference based
on the normal distribution is not appropriate. The
most straightforward approach to statistical
inference for skewed data is to transform the data’s
empirical distribution so that the transformed
values are close to a normal distribution. This ap-
proach will be adopted in this tutorial and is

explained in detail in section ‘Appropriate displays
for statistical inference ’.

Displays for large samples

If the sample is large (>30 individuals), histograms and
box & whisker plots are appropriate displays. Figures 3
and 4 are histograms and box & whisker plots of IgG

Fig. 3. Histogram of IgG titres in response to each Plasmodium blood stage antigen from 317 pregnant women (224 non-
infected controls and 93 malaria infected cases) included in the example dataset.

Fig. 4. Box & whisker plots of IgG titres in response to each Plasmodium blood stage antigen from 317 pregnant
women (224 non-infected controls and 93 malaria infected cases) included in the example dataset. Box represents the inter-
quartile range and the horizontal line within the box represents the median IgG titre. The whiskers end at the largest
and smallest IgG titre excluding any outliers, and the circles outside the whiskers are outliers.
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titre in response to each antigen for the 93 malaria
infectedcasesand224parasite-freecontrols.Ahistogram
is constructed by dividing the data range into several
non-overlapping equally sized bins (categories) and
the number of observations falling into each bin
counted. The bins are displayed on the x-axis and the
frequency (or percent or proportion) on the y-axis. A
box & whisker plot consists of a box which represents
the inter-quartile range, that is 25% of the IgG titres
lie above the top of the box (i.e. 75th percentile), the
box itself contains the middle 50% of the IgG titres
and 25% of the IgG titres lie below the bottom of the
box (i.e. 25th percentile). The horizontal line within
the box represents the median IgG level (i.e. 50th per-
centile). The whiskers end at the largest and smallest
IgG values excluding any outliers. The outliers are
defined as those observations greater than 1·5 times
the inter-quartile range from the top or bottom of the
box, and are represented as points outside the whiskers.
Of note, the criterion for determining an outlier may
differ between statistical packages, the definition we
have given is used by the common statistical packages
(e.g. Stata, R, SAS and SPSS). Histograms should be
used to identify the shape of the data’s empirical distri-
bution. If the histogram reveals that the shape of the
data’s empirical distribution is normal or skewed, then
box & whisker plots are more efficient displays of these
shapes and are particularly useful for comparing how
the location and spread of normal and skewed distribu-
tions vary across several groups (compareFig. 3with 4).
Both histograms and box&whisker plots are better dis-
plays of larger datasets than dotplots, where the latter
can lookrathermessyfora largenumberofobservations.
For more details on box & whisker plots, dotplots and
other displays see (Freeman et al. 2009).

How should we interpret Figs 3 and 4 for a descrip-
tive analysis and to inform statistical inference?
Descriptive analysis: similar to dotplots (Fig. 2) the
histograms and box & whisker plots (Figs 3 and 4)
also display the differences in the distribution of
IgG titre in response to each antigen between cases
and controls, that is the IgG titre for controls are
lower and less variable (spread of histogram is nar-
rower and the box & whisker plots have a narrower
box and smaller whiskers) than cases. The histograms
(Fig. 3) and box & whisker plots (Fig. 4) show a ten-
dency for the observations below the median to be
contained in a narrower range than the data above
the median, which indicates the IgG titre in response
to each antigen for cases and controls are positively
skewed. Statistical inference: will proceed as outlined
in the previous section ‘Displays for small samples’.

Discrete variables

Discrete numerical data (whole numbers such as
counts) are also very common in parasitology, in the
form of parasitaemia (e.g. number of asexual para-
sites μL−1 of blood), gametocytaemia (e.g. number
of gametocytes μL−1 of blood). Displaying discrete
data are more challenging than displaying continuous
data. Bar charts (although not ideal for displaying the
empirical distribution of continuous data – see
Fig. 1), can be used to display the frequency with
which values of a discrete variable occur.
In the example parasitaemia dataset (see section

‘Example dataset description’ for a description) there
are a large percentage (23% or 39/168) of women
who did not have a malaria infection (i.e. parasitaemia
measurement recorded as zero) and such data is often

Fig. 5. The distribution of 129 non-zero discrete parasitaemia measurements presented in a bar chart. There were 39 zero
measurements out of 168 observations.
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referred to as zero-inflated data. For zero-inflated
data, we recommend plotting the non-zero measure-
ments (e.g. parasitaemia in thosewhohad amalaria in-
fection) and reporting the percentage of zero
measurements. Figure 5 is a bar chart of the parasit-
aemia data for those women who had a malaria infec-
tion (i.e. had non-zero parasitaemia measurements
recorded). On the horizontal axis are the numbers of
parasites, going from a minimum of 16 parasites to
maximum of 11 078 parasites, while on the vertical
axis is the frequency with which these measurements
occur. The vertical axis could also be rescaled to per-
centages, which facilitates the comparison of groups.
The bar chart shows that the empirical distribution
of the parasitaemia measurements is highly positively
skewed. However, if the discrete variable has a large
number of unique values then plots suitable for con-
tinuous data (dot plots for smaller datasets, box plots
or histograms for larger datasets) would be appropri-
ate. Since there are 49 unique values for the parasit-
aemia data plotted in Fig. 5, it would be reasonable
to apply plots for continuous data to this discrete vari-
able (see section ‘Continuous variables’ for further
details). Note the extreme positive skew makes the
mean a poor location statistic for these data (mean
number of parasites per host is 555, which is much
greater than the median of 64 – these sample statistics
were calculated including the zero measurements). In
the case when the discrete variable consists of a large
number of unique categories/counts (and consequent-
ly is amenable to analysis with statistical methods for
continuous variables), a possible approach to make
the distribution approximately normal (or less
skewed) would be to take a log transformation (as illu-
strated in section ‘Transformation of IgG titre values’),
but this is often impossible if the discrete variable has a
high frequency of zeroes (O’Hara & Kotze, 2010). A
brief discussion of how to analyse discrete data and
what summary statistics to use is provided under
‘Discrete variables’ in the next section.

APPROPRIATE DISPLAYS FOR STATISTICAL

INFERENCE

Continuous variables

As we described in the introduction, statistical infer-
ence is performed to draw conclusions about the dis-
tribution of population parameter based on its
empirical distribution. The ‘good’ displays of the
IgG titre’s empirical distribution showed that its
shape in both the small and large sample size exam-
ples was positively skewed. In the following sections
we will use the complete dataset (n= 317) to show
how taking the natural log-transformation of posi-
tively skewed data can result in an empirical distri-
bution that is approximately normal.
We also recommend statistical inference plots

which display estimates (statistics used to estimate

a population parameter) and 95% CIs (a plausible
range of values for the population parameter of inter-
est) rather than the mean ± one S.E. which corre-
sponds to the 67% CI for the population parameter
(i.e. the 67% CI is less likely to contain the true
population parameter than the 95% CI).

Transformation of IgG titre values

Data can often be transformed to remove skewness
and make the data’s empirical distribution resemble
a normal distribution. The histograms (Fig. 3) and
box & whisker plots (Fig. 4) showed that total IgG
titre in responses to all three antigens were positively
skewed for cases and controls. When data are positive-
ly skewed a log-transformation can often be applied to
each data point to make the distribution of the data re-
semble a normal distribution (note a log-transform-
ation cannot be applied to zero or negative values).
As mentioned earlier the parameters that govern the
shape of a normal distribution are the population
mean and S.D., and the sample mean and sample S.D.
are used to estimate the population parameters.
Box & whisker plots are used to display the loge-

transformed IgG titres (Fig. 6). The loge-transformed
total IgG titres appear to be normally distributed, for
example each box looks relatively symmetric around
the median value and there are considerably fewer
outliers. The length of each box also appears similar
for cases and controls across antigens, which shows
that the spread or variance of the antibody levels
(log-transformed) is similar for the malaria infected
cases and parasite-free controls. Histograms are also
very useful for determining whether data are approxi-
mately normally distributed data (if the histogram is
symmetric and roughly bell-shaped, and the mean is
similar to the median, then the assumption of normal-
ity is typically accepted). Quantile–quantile (Q–Q)
plots are another useful display for examining nor-
mality (see Kohler & Kreuter, 2012 for more details).

Statistical inference plots

Statistical inference plots depict estimates and 95%
CIs (defined in Table 1) for the population para-
meters of interest. We now demonstrate how to
make statistical inferences about the population
mean loge-transformed IgG titre to the Pf merozoite
antigen between cases and controls in the example
dataset. In the previous section we established that
a normal distribution is an appropriate model for
the population distribution of the log-transformed
data. The estimates are the sample mean loge-trans-
formed IgG titre to Pf merozoite antigen for cases
and controls, and the limits of the 95% CI are calcu-
lated from: sample mean ± (1·96 × S.E. of the sample
mean) where the S.E. of the sample mean equals the
sample S.D. divided by √n (n is 93 for malaria
infected cases and 224 for parasite-free controls).
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The value 1·96 in the 95% CI calculation for the
population mean is suitable for this example
because the sample size is large, however, when the
sample size is less than 60 the 1·96 should be
replaced with the 97·5th percentile of the t distribu-
tion with the degrees of freedom (D.F.) equal to n – 1.
Once the sample size is larger than 60 the 97·5th per-
centile of the t distribution is close to 1·96, whereas
for smaller sample sizes this value increases with de-
creasing sample size (i.e. more conservative CIs are
calculated for smaller sample sizes).
We can interpret the results on the original scale

(as log-transformed variables do not retain the ori-
ginal units of measurement) by exponentiation (typ-
ically ex on a calculator or the exp()function in most
statistical packages) of the estimate and the limits of
the CI calculated on the loge-scale. The exponen-
tiated estimate is the geometric mean and the expo-
nentiated 95% CI is for the population geometric
mean, which have the same units as the outcome
(in our example IgG titre measured in OD units).
The geometric mean should closely approximate
the median of the untransformed data if the loge-
transformed data are normally distributed.
In Fig. 7 the x-axis represents malaria exposure

group (malaria infected or parasite-free), and the y-
axis is the mean loge IgG titre in the left panel and
the back transformed results (i.e. the exponentiated
mean loge IgG response and corresponding 95% CI
for population mean loge IgG titre) on the original
ODunits in the right panel, with the dots representing
the sample mean (arithmetic left panel and geometric

right panel) for controls, the squares representing
the sample mean for cases and the error bars portray-
ing the 95% confidence limits for the populationmean.
The statistical inference plots in Fig. 7 suggest the
population geometric mean IgG level (or, alternative-
ly, the population mean loge IgG level) in response to
each antigen is higher for cases than controls.
Some researchers like to add P-values examining

the strength of evidence against the null hypothesis
(which, in this example, is that the population mean
IgG level for cases is the same as controls) to statistical
inference plots. If it is the researcher’s preference to
include P-values on such plots, we recommend
stating the exact P-value and not presenting stars or
symbols to indicate whether the P-value is below a
particular threshold, e.g. <0·05 (see Fig. 1). When
the P-value is very small, then stating, for example,
the P-value is <0·001 is acceptable.
In situations where continuous data (original data

values) are not normally distributed and a trans-
formation of the data cannot alleviate this problem,
then statistical inference plots of medians and 95%
CIs for the population median (using statistical
methods not covered in this tutorial, such as those
presented in (Campbell & Gardner, 1988), an
approach based on the beta distribution and the
bootstrap method) or box & whisker plots along
with P-values from an applicable non-parametric
test (e.g. Mann–Whitney U (Hart, 2001)) are
recommended.
Statistical inference plots are not restricted to dis-

playing statistical inferences regarding population

Fig. 6. Box &whisker plots of natural log-transformed IgG titres in response to each Plasmodium blood stage antigen from
317 pregnant women (224 non-infected controls and 93 malaria infected cases) included in the example dataset. Box
represents the inter-quartile range and the horizontal line within the box represents the median loge-transformed IgG titre.
The whiskers end at the largest and smallest loge-transformed IgG titre excluding any outliers, and the circles outside the
whiskers are outliers.

1359Presenting parasitological data

https://doi.org/10.1017/S0031182015000748 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182015000748


means andmedians, but statistical inferences concern-
ing any population parameter of interest can be dis-
played (e.g. proportions, odds, rates etc.) assuming
suitable estimates and 95% CIs can be derived (see
online SupplementaryFigure 1 as an example of a stat-
istical inference plot for the population proportion).

Discrete variables

Statistical inference plots are also difficult for dis-
crete data, due to the combination of skew and
zeroes mentioned above. Generally the mean or
expected count (discrete value) is estimated by mod-
elling the counts with an appropriate probability dis-
tribution for discrete data such as Poisson or
negative binomial, or zero-inflated versions of these
distributions that can account for the high frequency
of zeros (Bolker et al. 2009; O’Hara & Kotze, 2010).
Such modelling is beyond the scope of an accessible
article on data display.

INAPPROPRIATE DISPLAYS FOR DESCRIPTIVE

ANALYSES AND STATISTICAL INFERENCE – The

bad and th e e r ro r ba r

In parasitological research bar charts (bar starts at
zero and extends to the group mean) with the
upper half of the error bar on top (comically referred
to as detonator plots) are often used to describe the
distribution of a continuous variable or display

statistical inferences about the population mean
(Fig. 1). There are two categories of error bars com-
monly displayed on detonator plots: descriptive and
inferential. In the following sections detonator plots
with descriptive error bars (descriptive detonator
plots) and detonator plots with inferential error
bars (inferential detonator plots) will be compared
with box & whisker plots and statistical inference
plots, respectively. For further details on detonator
plots and the error bars typically displayed see
(Cumming et al. 2007; Vaux, 2008).

Descriptive detonator plots vs box & whisker plots

Descriptive detonator plots can obscure the shape of
the data distribution by the use of summary statistics
that are not robust (i.e. interpretation of the statistic
changes depending on the shape of the data distribu-
tion) to skewness/outliers (e.g. mean and S.D.) or
through the use of too few robust summary statistics
(displaying only the mean and maximum). For
example, in Fig. 8 detonator plots comparing the dis-
tribution of the raw (i.e. untransformed) IgG titres
with each antigen between cases and controls are pre-
sented. The descriptive error bars are the sample
mean plus one S.D. in panel A and the maximum in
panel B. No information is presented for the distribu-
tion of the data below the top of the bar (i.e. below the
sample mean). Much of the discussion relating to
Fig. 8, panel A, is applicable to Fig. 1.

Fig. 7. Left panel: sample mean loge IgG titre in response to antigen Pfmerozoite between cases and controls, and the 95%
confidence interval (CI, error bars) for the population mean. Right panel: geometric mean loge IgG titre (OD) into
antigen Pf merozoite between cases and controls, and the 95% CI (error bars) for the population geometric mean.
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Our examination of appropriate displays for the
data’s empirical distribution revealed that the distri-
bution of IgG titres to each antigen for cases and
controls was positively skewed. As mentioned
earlier the effect of positive or negative skewness is
to pull the mean above or below the median, re-
spectively (i.e. the mean no longer reflects where
the bulk of the data lies). For example in Fig. 8,
the mean of the untransformed IgG tires is
plotted, and without our previous investigation
using the ‘appropriate’ displays the reader would
not know that the mean is not the most appropriate
measure of location.
In addition, the reader would also conclude from

Fig. 8 that the difference in IgG titres for cases and
controls is much larger than it appears due to the
effect of the positive skewness (e.g. difference in
means between cases and controls is 0·26, 0·30 and
0·17 for Pf merozoite, Pf-IE and Pv merozoite
groups). The median (a measure of central tendency
that is robust to skewness), however, indicates that
the difference in IgG titres to each antigen for cases
and controls is not as large as that displayed in Fig. 8
(e.g. difference in medians between cases and controls
is only 0·08, 0·22 and 0·08 forPfmerozoite,Pf-IE and
Pvmerozoite groups – the medians for the groups are
also displayed in Fig. 4 and are provided in Table 2).
We know from the boxplots in Fig. 4 that there is

less variability in measurements from controls

compared with cases and the IgG titres to each
antigen for cases and controls are positively skewed,
but such useful information about the spread/distri-
bution of the IgG titres cannot be easily ascertained
from either (or both) of the detonator plots in
Fig. 8. The detonator plot with error bars equal to
one S.D. suggests that the distribution of IgG titres
is normally distributed, and can be summarized
using the mean and S.D. If the data were normally dis-
tributed then 67% of the observations should fall
between the mean ± one S.D., which is not the case
for the IgG titres to Pf merozoite antigen from cases
(the mean minus one S.D. is −0·1 but the 16·5th per-
centile is 0·04 OD units) and raises questions that the
assumption of normality may not be well supported
by these data. Drawing this conclusion from Panel
A of Fig. 8 requires the viewer to roughly calculate
the mean minus the S.D. (or the lower limit of the
error bar). Skewness can only be diagnosed using
this plot if the data are positive valued or the error
bars contain implausible values. In all other situations
it is impossible to diagnose skewness or deviations
from normality using a detonator plot with error
bar equal to mean + one S.D. The detonator plot dis-
playing the mean and maximum is also not very in-
formative and only shows you how far the
maximum is from the mean. Since the mean (not
the median) is being displayed we cannot be certain
whether 50% of the observations lie between the

Fig. 8. Detonator plot of the distribution of IgG titres in response to each Plasmodium blood stage antigen from 317
pregnant women (224 non-infected controls and 93Malaria infected cases) included in the example dataset. In both panels
the bar indicates the mean. Left panel: mean plus one S.D. is the error bar. Right panel: maximum is the error.
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mean and the maximum (without assuming the data
are normal or symmetric) and cannot unambiguously
determine whether the data are skewed (even if the
minimum were included it may be difficult to diag-
nose skewness or deviations from normality because
these single minimum and maximum values may be
outliers). The scale of detonator plots beginning at
zero is also misleading as zero values may be biologic-
ally implausible or not observed in the study sample.
The need tomake strong assumptions (e.g. normal-

ity) or perform additional calculations in order to draw
conclusions fromdescriptivedetonator plots about the
shape of the data illustrates that descriptive detonator
plots cannot faithfully display the data and that box &
whisker plots are a superior alternative.

Inferential detonator plots vs statistical inference plots

Inferential detonator plots are essentially statistical
inference plots with the lower half of the inferential
error bar removed and the mean displayed using a
bar extending from zero rather than a point.
Omitting the lower half of the error bar impedes
the viewer’s ability to visualize the lower range of
plausible values for the population parameter. As
mentioned previously, the sample mean of the ori-
ginal data values may not represent the true centre

of the empirical distribution, as is the case for our
data example (see Fig. 9).

DISCUSSION

Misrepresentation of the shape of the data distribu-
tion can lead to incorrect statistical inferences about
the population being made (e.g. making inferences
about the population mean when data are positively
skewed, as illustrated in sections ‘Descriptive deton-
ator plots vs box&whisker plots’ and ‘Inferential det-
onator plots vs statistical inference plots’). Potential
differences in conclusions can also arise when exam-
ining data using different plots.
Dotplots, histograms and box & whisker plots can

be produced in all standard statistical software
packages and are far superior to descriptive deton-
ator plots commonly used to display the distribution
of continuous variables in the parasitology literature.
The ‘good’ displays discussed in this article either
show all the data, the frequency of observations in
small groupings of the continuous variable, or
summary statistics that are robust to skewness (e.g.
median, inter-quartile range, minimum, maximum
and outliers), respectively. Another advantage of
these ‘good’ displays for descriptive analyses over
descriptive detonator plots is that the same features
are presented in the display, unlike detonator plots

Fig. 9. Inferential detonator plots of the sample mean IgG titre in response to antigen Pf merozoite between cases and
controls (bars). Left panel: mean plus S.E. is the error bar. Right panel: upper limit of the 95% confidence interval for the
population mean is the error bar.
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where the error bars need to be selected and may be
inconsistent from plot to plot.
Inferential detonator plots and statistical inference

plots for displaying statistical inferences concerning
a population parameter (estimates and 95% CIs) are
similar, but inferential detonator plots display too
little information wastefully (e.g. display the esti-
mate (a single point) using a bar extending from
zero to the estimate and only the top half of the
error bar), whereas statistical inference plots
display the estimate as a point and the upper and
lower halves of the error bar.
The example used in this tutorial is very simple

(with the outcome variable measured at a single time
point from independent individuals). More advanced
topics, such as appropriate data displays to help
inform linear regression analyses (used to examine
the association between an outcome and multiple con-
tinuous and categorical covariates), are provided in
(Zuur et al. 2010). Note that while the ‘good’ displays
illustrated in this tutorial can be applied to dependent
data (e.g. data collected in longitudinal studies), they
do not accurately represent trends over time or clus-
tering of repeated measurements collected from the
same individual (for simple approaches to visualizing
and analysing repeated measurement data see
(Matthews et al. 1990)).
In order to promote the wider adoption of the

‘good’ displays discussed in this article, it might be
helpful for major parasitology journals to provide
guidance to authors on data visualization or link to
such guidance (which is what the BMJ, a major
medical journal, does (Group, 1997)), and inform
reviewers of the importance of transparent data
display and the potential impact on downstream in-
ference. This combined with better dissemination of
the wealth of statistical resources available (e.g. text-
books, webpages etc.) to senior researchers and PhD
students, either through access to statistics courses
or online resources, would also improve the quality
of displays used in the parasitology literature.

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please
visit http://dx.doi.org/10.1017/S0031182015000748
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