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Expressing the evolution equations for the filtered velocity gradient tensor (FVGT) in
the strain-rate eigenframe provides an insightful way to disentangle and understand
various processes such as strain self-amplification, vortex stretching and tilting, and to
consider their properties at different scales in the flow. Using data from direct numerical
simulation of the forced Navier—Stokes equation, we consider the relative importance
of local and non-local terms in the FVGT eigenframe equations across the scales using
statistical analysis. The eigenframe rotation rate (that drives vorticity tilting) is shown to
exhibit highly non-Gaussian fluctuations even at large scales due to kinematic effects, but
dynamically, the anisotropic pressure Hessian plays a key role. The anisotropic pressure
Hessian conditioned on the eigenvalues and principal vorticity components exhibits highly
nonlinear behaviour at low values of normalized local gradients, with important modelling
implications. We derive a generalization of the Lumley triangle that allows us to show that
the pressure Hessian has a preference for two-component axisymmetric configurations
at small scales, with a transition to a more isotropic state at larger scales. Correlations
between the sub-grid stress and other terms in the eigenframe equations are considered,
highlighting the coupling between the sub-grid and nonlinear amplification terms, with
the sub-grid term playing an important role in regularizing the system. These results
provide useful guidelines for improving Lagrangian models of the FVGT, since current
models fail to capture a number of subtle features observed in our results.
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1. Introduction

The velocity gradient tensor provides an effective way to characterize the small-scale
dynamics and kinematics of turbulent flows (Meneveau 2011). By filtering (coarse
graining) the velocity gradient on a length scale £, one is able to analyse the properties of
the velocity gradients at different scales in the flow by varying ¢ (Borue & Orszag 1998),
providing insight into the multiscale dynamics of turbulence. The bare (un-filtered)
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velocity gradient provides insight into the local topology of the flow (Chong, Perry
& Cantwell 1990), and the structure of highly dissipative or vortical regions of the
turbulence (Buaria et al. 2019), while the filtered gradient provides a way to characterize
and understand the dynamics of the turbulent energy cascade (Carbone & Bragg 2020).
Some of the velocity gradient statistics are known to be qualitatively similar across the
scales of the flow, i.e. for varying ¢. For example, the probability density function (PDF)
of the second and third principal invariants of the velocity gradient has the well-known
‘tear-drop’ shape not only for the bare velocity gradients, but also for the filtered ones
(Naso & Pumir 2005; Danish & Meneveau 2018).

The dynamics of the velocity gradient can be analysed effectively from a Lagrangian
perspective, i.e. following a fluid particle trajectory (Vieillefosse 1984; Meneveau 2011).
However, the pressure Hessian and viscous stress are non-local and unclosed in this frame
of reference, requiring in-depth modelling. This work aims to enhance the understanding
of the statistical properties of the velocity gradient dynamics at different scales using data
from direct numerical simulation (DNS) of the forced Navier—Stokes equations.

In Danish & Meneveau (2018), the statistics of the filtered velocity gradients have
been investigated, with a focus on how probability fluxes in the phase space of the
invariants of the filtered velocity gradients behave. In the present work, the multi-scale
characterization of the velocity gradient is extended by analysing it in the strain-rate
eigenframe, formed by the eigenvectors of the symmetric strain-rate tensor. In this frame,
the effect of the incompressibility constraint, the local strain self-amplification/reduction
and the centrifugal force due to rotation of the fluid element can be distinctly untangled.
Also, it has been recently shown that the description of the velocity gradient dynamics
in the strain-rate eigenframe also allows for a dimensionality reduction of the non-local
pressure Hessian when the single-time properties of the velocity gradients are considered
(Carbone, Iovieno & Bragg 2020), allowing for simpler modelling of the pressure Hessian.

An analysis of the velocity gradients in the strain-rate eigenframe has been employed in
previous works for an effective description of the velocity gradient dynamics (Vieillefosse
1982; Dresselhaus & Tabor 1992; Nomura & Post 1998; Lawson & Dawson 2015). In
the pioneering works by Vieillefosse (1982, 1984) the so-called restricted Euler (RE)
model was introduced for an inviscid flow by neglecting the non-local part of the pressure
Hessian, while retaining its local contribution. One of the consequences of setting the
non-local part of the pressure Hessian to zero in the inviscid equations is conservation
of the angular momentum of the fluid element. However, as Vieillefosse demonstrated,
this localization of the pressure Hessian results in a model for the velocity gradients that
exhibits a finite-time singularity. This singularity arises because although the rotation of
the fluid element has a stabilizing effect on the dynamics, the strain self-amplification
mechanism drives the system towards the finite-time singularity, in which the fluid
element is flattened onto a plane (Vieillefosse 1984). In real turbulence, extreme fluid
element deformation can occur either in the form of the fluid element flattening into
planes (pancake shape) or stretching into elongated structures (cigar shape) (Girimaji
& Pope 1990b). There is, however, a bias towards deformation into planes, associated
with the tendency of the intermediate Lyapunov exponent to be positive (Johnson &
Meneveau 2015).

Despite the finite-time singularity, which makes the system impractical for modelling,
the RE model revealed many non-trivial geometrical features of the motion of an
incompressible and inviscid flow (Cantwell 1992). For example, it highlights the
tendency of the intermediate strain-rate eigenvalue to take on positive values and it
reveals the preferential alignment between the vorticity vector and the intermediate
strain-rate eigenvector. However, the RE system conserves several quantities and the
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presence of these first integrals is related to the onset of the singularity. In a real turbulent
flow, the non-local pressure Hessian and viscous stress are key elements which reduce
the number of conserved quantities. One of the conserved quantities in the RE system is
the determinant of the commutator between the symmetric and anti-symmetric parts of the
velocity gradient tensor. That this quantity is conserved implies fundamental constraints
on the eigenframe dynamics, namely, that the ordering of the eigenvalues cannot change
with respect to the initial conditions and, analogously, the vorticity components in
the strain-rate eigenframe cannot change sign (Vieillefosse 1982). The presence of the
non-local pressure Hessian and viscous stress in the real Navier—Stokes system can break
the conservation of this and other quantities that are conserved in RE. One of the objectives
of the present paper is to explore this at different scales in the flow.

Given the crucial role played by the non-local pressure Hessian, as revealed through
the RE model, several subsequent models have sought to derive closure models for this
term, as well as the viscous term appearing the in Navier—Stokes system. Examples
include an early stochastic model based on an exponentiated Gaussian process generating
log-normal dissipation rates (Girimaji & Pope 1990a), the Lagrangian tetrad model
(Chertkov, Pumir & Shraiman 1999; Naso & Pumir 2005), the recent fluid deformation
approximation model (Chevillard ez al. 2008), the Gaussian random fields approximation
(Wilczek & Meneveau 2014), the recent deformation of Gaussian fields model (Johnson &
Meneveau 2016) and closures based on isotropic tensor function representations (Leppin
& Wilczek 2020). The velocity gradient dynamics at high Reynolds number is particularly
challenging to reproduce. Models that are able to predict features of high Reynolds
number flows are constructed using phenomenological arguments such as log-normality
of the pseudo-dissipation of kinetic energy (Girimaji & Pope 1990a) and multifractality of
fully developed turbulence (Pereira, Moriconi & Chevillard 2018). Shell and multi-level
models can also reproduce high Reynolds number flows by capturing the interaction
between neighbouring scales, such that the interaction between multiple scales in the flow
influences the velocity gradients (Biferale ef al. 2007; Johnson & Meneveau 2017).

These models provide closures for the non-local pressure Hessian that are able to
avoid finite-time singularities in the system, and to different degrees, they capture many
of the important statistical properties of the velocity gradients. Work still needs to be
done, however, to improve the accuracy of their predictions. Furthermore, most of these
works, with the exception of the tetrad closure, focused on the bare velocity gradients and
equivalent models for the filtered counterpart, which can explicitly include the sub-grid
stresses, are lacking. All of the aforementioned closure models for the non-local pressure
Hessian and viscous stress require detailed knowledge of the statistical geometry and
invariants of the velocity gradient dynamics. For the filtered gradient, characterizing
the statistical geometry and invariants of the sub-grid stress is also required to guide
the development of Lagrangian models for the filtered velocity gradients. Moreover,
as mentioned earlier, the RE model implies fundamental constraints on the eigenframe
dynamics, and we wish to explore the extent to which these constraints are violated
in Navier—Stokes turbulence, at different scales in the flow. These points motivate the
present work.

In the present work, the statistics of the dynamical terms in the filtered velocity
gradient equations written in the strain-rate eigenframe, are characterized using results
from DNS of statistically steady and isotropic incompressible turbulence. The paper is
organized as follows. In §2, the equations for the velocity gradient in the strain-rate
principal basis are outlined. Details on the numerical simulations are in §3 and
the numerical result are presented in §4. In the numerical analysis, focus is put
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on the characterization of the non-local/unclosed dynamical terms conditioned on
the local/closed dynamical terms. A summary of the main results and the conclusions
are in § 5.

2. Dynamical equations in the strain-rate eigenframe

In this section the equations for the filtered velocity gradient are presented and written in
the eigenframe of the filtered strain-rate tenor. Since the equations for the velocity gradient
in the strain-rate eigenframe are not often employed, and the formulation of these forms
of the equations are only briefly presented in a few previous works (Vieillefosse 1982;
Dresselhaus & Tabor 1992), we will outline the key steps leading to these equations, as
well as discuss the terms appearing in the equations which will be helpful for the results
section.

2.1. Equations for the filtered velocity gradient

The filtered velocity field is governed by the incompressible, filtered, continuity and
Navier—Stokes equations (NSE)

V.i=0, (2.1a)
Dit=dit+ (- V)a=—-VP+vVia—V.r, (2.1b)

where u(x, 1), P(x, t) are the filtered fluid velocity and pressure fields and v is the
kinematic viscosity. We use an isotropic filtering kernel G, with filtering length ¢, with
which we define the filtering operation of an arbitrary field & as (Pope 2000)

E(x.) = /Ge (lx — yI) E(y. 1) dy. 22)

such that & is the bare (un-filtered) field, and é the filtered field. The sub-grid stress is
T=uu — i, (2.3)

where - indicates transposition.
By taking the gradient of (2.1), the equations for the velocity gradient are obtained:

Tr(4) = 0, (2.4a)
DA=-A-A—H" +vV*4—-V (V.1). (2.4b)

The components of the filtered velocity gradient and filtered pressure Hessian in the
standard Cartesian basis are

Aij = ju;, I:I,f = 3]‘31‘13, (2.5a,b)

where 0; denotes the derivative with respect to the Cartesian coordinate x;. In our notation,
Tr(-) indicates the matrix trace, while ‘-’ denotes the standard matrix—matrix product.
It is insightful to consider the equations for the symmetric and anti-symmetric parts of
the filtered velocity gradient. The symmetric part of the filtered velocity gradient, S =
(,Zl + ,ZIT) /2, is the filtered strain rate, while the anti-symmetric part, W= (;1 — IZIT) /2,1s
associated with the filtered vorticity, ® = V x u. The equation for the filtered velocity


https://doi.org/10.1017/jfm.2020.960

https://doi.org/10.1017/jfm.2020.960 Published online by Cambridge University Press

Filtered velocity gradient dynamics in the eigenframe 910 A24-5

gradient (2.4) is decomposed into its symmetric and anti-symmetric part. The filtered
strain rate is governed by

Tr(S) = 0, (2.6a)
DS=-8S.8S+W.-W —HBH' +H - H", (2.6b)

where the Cartesian components of the viscous and sub-grid stress contributions are

HY = v Sy, Hf =0 (97 + 0iye) /2. (2.7a,b)

The filtered vorticity is governed by the equation

Dd=S-d+ 2" — 2", (2.8)
and the Cartesian components of the viscous and sub-grid stress contributions are
é; = V0@, 8§27 = €k Tim, (2.9a,b)

where €;; is the permutation symbol.

2.2. Navier-Stokes equations in the strain-rate eigenframe

The equations for the filtered strain rate (2.6) and filtered vorticity (2.8) are now expressed
in the filtered strain-rate eigenframe, the derivation is detailed in appendix A. For notation
simplicity, the tilde denoting filtering quantities is suppressed in the following.

The strain-rate eigenframe is formed by the strain-rate eigenvectors {v;} and it undergoes
a rigid body rotation, since the eigenvectors remain orthonormal and right oriented
for all times. The angular velocity of the strain-rate eigenframe is associated with the
anti-symmetric tensor IT which represents the rate of rotation in the plane composed of
two of the eigenvectors about the axis of the third, that is /7; = d,v; - v; (Nomura & Post
1998). The equations for the filtered strain-rate eigenvalues A; and eigenframe rotation-rate
IT; dynamics read

3
S 4 =0, (2.10a)

i=1
DA = 4 4 (07— )~ Hiy + Hy — 2100
(A — AT = —qojo] — Hi* + H — HE*, fori #, (2.10c)

where wf = v - w are the vorticity components in the strain eigenframe, o = ||@|| is
the norm of the vorticity and indices in parentheses are not contracted. The symbol (-)*
denotes components in the strain-rate principal basis. In particular the components of the
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pressure, viscous and sub-grid contributions read

HY =v| - H" v, H;*zviT-H”-vj, H§*=viT-H’-vj. (2.11a—c)

i i i
Analogously, the vorticity equation (2.8) in the strain-rate eigenframe reads
D} = Ao — Mo + 2" — 27, (2.12)
where the principal components of the viscous and sub-grid contributions are

Qr=v.2", QF=v .2 (2.13a,b)

Equation (2.10a) is just the incompressibility constraint expressed in the eigenframe.
The first term on the right-hand side of (2.10b) is the strain self-interaction which acts to
amplify the magnitude of the most compressional eigenvalue and suppress the magnitude
of the most extensional eigenvalue. The second term represents a straining produced in the
fluid due to the rotation of the fluid element and the associated centrifugal force. This term
acts only in the plane orthogonal to the vorticity vector. The third, fourth and fifth terms
in (2.10b) are the symmetric contributions from the pressure Hessian, viscous stress and
sub-grid stress. The isotropic part of the pressure Hessian guarantees incompressibility.
The anisotropic part of the pressure Hessian plays a major role in regularization of the
dynamics generated by the local terms (which are expressible in terms of the gradient at
the fluid particle position) and we will analyse its statistics in detail. The viscous stress
acts, on average, as a damping on both the strain rate and the vorticity. However, the
statistical behaviour of the viscous stress differs from that of a simple linear damping and
it also plays a relevant role in the transport of vorticity. The sub-grid stress represents
the effect of the scales that have been filtered out of the filtered gradient dynamics. We
will characterize its statistical properties across the scales and it will be shown how the
sub-grid stress interacts with the pressure Hessian and viscous stress in a non-trivial way.

The contributions to the eigenframe components of the rotation tensor IT are described
by (2.10c). They consist of contributions from the centrifugal stresses due to the rotation
of the fluid element (which is retained in the RE model), the anisotropic pressure Hessian,
viscous and sub-grid stresses, which are defined as

P
e _ L @iop o, Hy
L N T 1 S A PO
o — o o — Ao
o o (2.14)
ve— 0 A -
Y Ag — A ! Ay — Ay

for i #j. The numerators in (2.14) may be interpreted as representing torques, which arise
from local and non-local effects, while the denominator can be interpreted as the moment
of inertia.

Pressure depends quadratically on the velocity gradient through its second invariant
Q0=-Tr(A-A4)/2
1 [ 0.0

P(x,t) = —
== iy ==

(2.15)
Since the kernel in (2.15) decays only algebraically (as opposed to a strongly decaying
exponential kernel, for example) with distance from the fluid particle at x, as ||y — x| !
for the pressure field and as ||y — x||=* for the pressure Hessian, the local and non-local

contributions from P(x, ) to Hif* may be of comparable magnitude. In fact, previous
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results for the bare velocity gradient dynamics show that the contribution from the
non-local pressure Hessian to /77* dominates over the local contribution (She et al. 1991;
Dresselhaus & Tabor 1992). We will consider whether this also is the case for finite
filtering lengths £ > 0.

The dynamics of the vorticity in the eigenframe is described by (2.12). The first term on
the right-hand side of (2.12) is vortex stretching, and the physical mechanism embedded in
that term is particularly clear from this eigenframe perspective. The second represents the
reorientation (tilting) of the vorticity with respect to the eigenframe due to the rotation of
the eigenframe. This term does not affect the evolution of the vorticity magnitude directly
since [1;w;w; = 0, although it indirectly contributes since the vortex-stretching term
depends on ;. Moreover, the angular velocity component along the vorticity direction
does not affect the tilting of vorticity, and corresponds to a redundant degree of freedom
with respect to the dynamical evolution of A; and a)j’.k (Carbone et al. 2020). The RE
contribution to vorticity tilting in (2.12) is

1 w??

REx , % __ J *
— Il = 4 Z p. yRat (2.16)
j#i
which for i = 1 reads as
1 60*2 60*2
TRE* gt — 2 3 ¥ 2.17
i 4</12—/ll+/l3—/11 @ @17

and similarly for other components. The j #i in (2.16) is to remind the reader that when
computing [T} as matrix vector product, IT** corresponds to an anti-symmetric
tensor having zero along the diagonals. Since the ordering of the eigenvalues cannot
change in the RE model (Nomura & Post 1998), this contribution acts as a nonlinear
damping for @] and as a nonlinear amplification for w3 in the RE model. In real turbulence
governed by the NSE, the eigenvalue ordering can change with time, such that the sign,
and therefore the role of this term is not fixed with time.

By substituting (2.10¢) into (2.12) it can be shown that the viscous stress contribution
to vorticity tilting, I1}*w;, is identically cancelled by part of the contribution coming
from £2/* (Dresselhaus & Tabor 1992; Nomura & Post 1998; Lawson & Dawson 2015).
However, we wish to consider the full viscous contribution, £2;*, and therefore do not
expand it into its subparts. The third and fourth terms on the right-hand side of the vorticity
equation (2.12) derive from the anti-symmetric part of the viscous and sub-grid stress.
Since all the other terms in that equation are proportional to @, these are the only terms
that can generate vorticity from an initially irrotational state.

3. Direct numerical simulation

To analyse the dynamical properties of the filtered velocity gradients in the strain-rate
eigenframe, we consider data from a DNS of statistically stationary, isotropic turbulence.
The data we use are from the DNS in Ireland, Bragg & Collins (2016a,b), at a Taylor
microscale Reynolds number R, = 597. Incompressible Navier—Stokes equations were
solved using a pseudo-spectral method on a three-dimensional, triperiodic cubic domain
of length 27, discretized with 2048° grid points. Deterministic forcing scheme kept the
kinetic energy of the flow constant in time. The scale separation between the integral
length scale £ and the Kolmogorov scale 1 in the DNS flow was £/n =~ 812. Further
details on the numerical method used can be found in Ireland ez al. (2013). Details of the
simulation are given in table 1.
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Parameter R, L (€) v N Nproc Kmax1
Value 597 27 0228 0.00013 2048 16384 1.70
Parameter L L/n T T2 /Ty u' ' [y T/t
Value 143 812 1.57 65.4 0.915 12.4 5.75

TABLE 1. Flow parameters for the DNS study (all dimensional parameters are in arbitrary
units). The simulation was performed in parallel on N, processors and all statistics are
averaged over T, the duration of the run; Ry = u/A/v = 2K //5/3v{€) is the Taylor microscale
Reynolds Number, u’ = /2K/3 is the root mean square of fluctuating fluid velocity, K is the
turbulent kinetic energy, A is the Taylor microscale, v is the fluid kinematic viscosity, (€) =
2v fo'("“” «2E (k) di is the mean turbulent kinetic energy dissipation rate, « is the wavenumber
in Fourier space and E(k) is the energy spectrum. The integral length scale is defined as
L= (3n/2K) f(;(’"“" (E(k)/x)dic, n = (v /(€))/* is the Kolmogorov length scale, 7, = J/v/(€)
is the Kolmogorov time scale, u, = ((e)v)3/* is the Kolmogorov velocity scale and 7, = £/’

is the large-eddy turnover time. The maximum resolved wavenumber is K4y = V2N /3, Kmaxn
is the small-scale resolution, L is the domain size and N is the number of grid points in each
direction.

We apply a sharp spectral cutoff at wavenumber &y to obtain the filtered field. In order
to relate the spectral cutoff wavenumber kx to a physical space filtering scale, we define
r =27 /kr (Eyink & Aluie 2009). When constructing the pressure Hessian from the
velocity field, there are some subtleties that must be carefully accounted for in order to
ensure that the pressure Hessian computed has the correct properties. These issues are
discussed in appendix B. The velocity field is filtered at scale £ and the resulting filtered
velocity gradient, pressure Hessian, viscous stress and sub-grid stress are analysed.

4. Results and discussion

We now turn to consider the role of the different terms appearing in the eigenframe
dynamical equations for different filtering scales £, with quantities normalized using the
scale-dependent time scale

7T =/v/(€), 4.1)
where (€) = 2v(||§ |1?) is the scale-dependent dissipation rate. Furthermore, while the
eigenvalues A;, A, A3 are not ordered in the dynamical equations discussed in § 2, it is
standard and helpful to consider results in which the eigenvalues are ordered. Therefore,
in the results that follow, the eigenvalues are ordered A; > A, > A3, with corresponding
ordered eigenvectors v, v,, v3. This ordering allows us to unambiguously interpret the
significance of the sign of the local dynamical terms in (2.10) and (2.12). We also remind
the reader that for notational simplicity the tilde used earlier to denote filtered quantities
has been dropped, and all variables correspond to filtered variables unless otherwise stated.

The results section is organized as follows. We begin by computing the first and
second moments of the terms in the strain-rate eigenvalue and enstrophy component
evolution equations at various filtering scales in §4.1. This helps to understand the
relative importance of the various terms and whether they aid or oppose the growth of
strain-rate eigenvalues and enstrophy components, on average. Next, in § 4.2, we comment
on the average behaviour of the strain-rate eigenvalues and enstrophy components when


https://doi.org/10.1017/jfm.2020.960

https://doi.org/10.1017/jfm.2020.960 Published online by Cambridge University Press

Filtered velocity gradient dynamics in the eigenframe 910 A24-9

Li/n Li/n

-3 -3 -3 oW-o?)4 A (w?~ w3?)/4 - (0*— w}?)/4
C-H;  ACHE e oHG OHY AHY S HY C-H[E A CHE ok —HE

FIGURE 1. (a) Average and (b) variance of the terms in (2.10b), normalized by the
scale-dependent time scale 7, and plotted as a function of the filtering scale ¢y/n. Different
colours distinguish the various terms, while different line types and symbols refer to different
components of those terms.

conditioned on the invariants of the velocity gradient. In § 4.3, we focus on the local
and non-local contributions to the strain-rate eigenframe rotation rate, and the associated
tilting of the vorticity vector with respect to the eigenframe. Then, we turn our attention
to the characterization of the pressure Hessian in §4.4. First, we analyse the diagonal
components of the anisotropic pressure Hessian in the strain-rate eigenframe, conditioned
on the square of the local velocity gradient and filtered at various scales. Then, we illustrate
the preferential state of the pressure Hessian at different scales through a newly proposed
generalization of the Lumley triangle. We proceed to characterize the viscous terms by
focusing on the eigenframe components of the Laplacian of the strain-rate tensor and
vorticity vector in § 4.5. Finally, in § 4.6, we report correlations between the sub-grid stress
and other terms in the velocity gradient equations expressed in the eigenframe, across a
range of scales.

4.1. Contributions to eigenvalue and vorticity component dynamics

Figure 1 shows the averages and second moments of the contributions to the evolution of
the strain-rate eigenvalues, governed by (2.10b). Note that the average contributions need
not be zero. For example, while (H}) = (e/ - H.e)=e' -(H")-e,=0Vi,j(since e
are not random) for a homogeneous flow, (H;.’*) = -H P v;) need not be zero because

v, fluctuates and is correlated with H”. Moreover, v; are the eigenvectors corresponding
to the ordered eigenvalues, which also introduces a bias in the average components. For
example, when computing (v] - H” - v3) we are averaging the components of the Hessian
along the most compressional strain direction (not a generic direction in the flow) and we
expect that the orientation of the H” eigenframe is correlated to the orientation of the
strain-rate eigenframe.

The most negative strain-rate eigenvalue, A3, has on average the largest magnitude
among the strain-rate eigenvalues. An implication of this is, for example, that its
contribution dominates the strain self-amplification, —(/lg) > (ﬂ?) at all scales in the
flow (Tsinober 2001; Carbone & Bragg 2020). The term —A3 drives the RE system
towards a finite-time singularity since it dominates the dynamics, amplifying a negative
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Az (Vieillefosse 1982). However, the rotation of the fluid element gives a strong
stabilizing contribution through ? — w32, with magnitude that is comparable to that of the
self-amplification of A;. The misalignment between w and v; can be then traced back to
the importance of the stabilizing effect of w* — w3?. In particular, the vorticity component
wj (and the corresponding alignment w}/w) is small along the right Vieillefosse tail where
the RE system blows up, as shown in figure 4. The stabilizing effect of the rotation of the
fluid element is exploited in reduced models for the velocity gradient dynamics to avoid
the finite-time singularity thus producing steady-state statistics of the velocity gradient.
Indeed, when the relative weight of the strain self-amplification ad? is reduced with
respect to the magnitude of the rotation term B(w — w;?), through the model coefficients o
and g, then steady-state statistics can be obtained (Wilczek & Meneveau 2014; Lawson &
Dawson 2015). This reduction of nonlinearity is attributed mainly to the pressure Hessian.
On the other hand, the term —A7 has by definition a stabilizing effect on A; while the
corresponding vorticity contribution (w* — wi?) helps the growth of ;.

Since —A3 tends to make the dynamics unstable, it would be expected that, in order
to prevent the velocity gradients becoming singular, the strongest effect of the pressure
Hessian would be on A;. However, the average pressure Hessian contribution to A3, namely
(—HZ}), is the smallest among the pressure components, although its variance is the
largest, as shown in figure 1(b). Nevertheless, on average, this term does tend to hinder
the growth of negative A;. The diagonal components of (—Hf;*), when normalized by 72,
do not show significant variations as a function of €. Therefore, at least on average, Hif *
scales approximately as ~7 2, as expected from dimensional analysis, and consistent with
models such as that of Wilczek & Meneveau (2014), which express the pressure Hessian
as a linear combination of S - S and W - W'. However, we would expect departures from
this scaling for higher-order moments of —Hg * due to intermittency.

The average effect of the pressure Hessian on A; is (—H}) and is positive, indicating
that on average the pressure Hessian helps the growth of A;. This also implies that the
pressure Hessian indirectly contributes to the stretching of w along v;, opposing the
preferential alignment of the vorticity with the intermediate eigenvector v,. Interestingly,
the largest average contribution from the pressure Hessian is for the intermediate
eigenvalue, A,, and (—Hg*) is negative at all scales, driving A, towards negative values.
In this sense, the pressure Hessian hinders vortex stretching, suppressing the nonlinear
amplification of wj through A, (see (2.12)).

The viscous term (H;;) tends to hinder all the eigenvalues, with (H[') < 0, (H33) <0
and (H33) > 0. In the dissipation range, (H}) is largest in magnitude for i = 3, which is
associated with A3 having the largest magnitude on average. Furthermore, (H}5) is very
small compared to the other components, and therefore because of incompressibility,
(H{Y) ~ —(H33). The term is related to the curvature of the strain field and the clear
tendency for (H};) to be small can be a consequence of the moderate fluctuations of the
intermediate eigenvalue. Indeed, the contribution from A, to the strain self-amplification,
namely (/l%), is the smallest among the contributions of the eigenvalues (Tsinober 2001;
Carbone & Bragg 2020). Also, the sign of A, fluctuates and the average A, is small with
respect to the average of the other eigenvalues. The average viscous stress components
vary considerably across the scales, as expected since by definition these terms play a
sub-leading dynamical role outside of the dissipation range.

The role of the sub-grid stress has not been investigated much in the literature, especially
from the perspective of the strain-rate eigenframe. The sub-grid stress contribution to
the dynamics increases with increasing ¢x, and at the largest scales the sub-grid stress
makes a leading order contribution to the eigenvalue dynamics. The sub-grid stress
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has strong variations across the scales even if normalized with a scale-dependent time
scale. However, across all the scales (H]") remains very small compared to the other
components and, as a consequence, (H3;) >~ (H};). The sub-grid stress tends on average
to drive A, towards negative values and it hinders the growth of |4;|. In this sense, for
the intermediate and most compressional principal directions, it acts similarly to the
pressure Hessian, even if the quantitative trends of H,’E;'; and H;; across the scales are very
different.

Figure 1(b) shows the variance of the contributions to the eigenvalue equation. The
results show that the variance of Hfz*) is the largest of the contributions, with the variance
of H{;" and HYy decreasing as £ is increased, but becoming approximately constant in the
inertial range when normalized by 7. On the other hand, the variance of Hj; is almost
independent of £; when normalized by 7, and this component is always the smallest. This
is perhaps the reason why A, undergoes smaller fluctuations in its time evolution than
the other eigenvalues, which confirms the observation by Dresselhaus & Tabor (1992)
concerning the relatively small magnitude and persistency of the intermediate eigenvalue.
The variance of the viscous term, normalized by 7, becomes very small as ¢ is increased,
decreasing as E;‘E with & between 2 and 3.

Since there is a sign ambiguity in the definition of the eigenvectors v;, there is a
corresponding ambiguity in the sign of @?. When solving (2.12) in a Lagrangian frame
this ambiguity is removed through the choice of a particular direction for v; in the initial
conditions. However, we are computing terms based on data in the Eulerian frame (i.e. at
fixed grid points). Therefore, instead of considering the dynamical contributions to (2.12),
we will consider the dynamical contributions to the enstrophy equation (here we are calling
w;? = o}, the enstrophy, although strictly speaking, the enstrophy is [|@[* = }_, ;?)

%D,a);‘ = 1,0 — [Tjwjw; + 2w — 27w, 4.2)

In figure 2(a) we show the averages of the terms on the right-hand side of (4. 2) The
results show that the vortex-stretching term A w}? acts on average to increase ;> and
w32, and to reduce wj?. It is known that although w is preferentially aligned wrth v
(Ashurst et al. 1987; Meneveau 2011), 1;w}? gives on average the largest contribution to
vortex stretching (@' - S - @) = Zi(/l(,-)w;"z) in the limit £/n — 0 (i.e. for the unfiltered
gradients) since A, tends to be larger than A, (Tsinober 2001). Our results show that for £
outside of the dissipation range, the contribution to vortex stretching from A;w}> becomes
increasingly dominant, with (1w R (/lla) 2) in the inertial range. It is also interesting
to note that while the normalized average 7°(Aw}?) changes substantially for i = 2 as
£r is increased from the dissipation to inertial range scales, it varies weakly with ¢, for
i = 1, 3. This is in agreement with the weakening of the preferential alignment between the
vorticity and the intermediate strain-rate eigenvector as £ is increased, while the statistical
alignment of @ with v, and v; depends very weakly on the filtering length (Danish &
Meneveau 2018).

The alignment between the vorticity and the strain-rate eigenvectors is in part governed
by the vorticity tilting term /7;w;. That term plays a central role in determining the
preferential alignment between @ and v, in the RE system, through 77, RE*a) (Dresselhaus
& Tabor 1992; Nomura & Post 1998) and also in real turbulent ﬂows due to the
dominance of local over non-local contributions to the vorticity tilting (Lawson &
Dawson 2015). The vorticity tilting does not directly affect the total enstrophy ||,
but it does contribute to the dynamics of the individual contributions w;?. In particular,
the results in figure 2 indicate that on average I1jw wy; tends to enhance w}? while

reducing w}?. Therefore, the tilting tends to oppose the stretching of vorticity along v,
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FIGURE 2. (a) Average and (b) variance of the terms in (4.2), normalized by the
scale-dependent time scale 7, and plotted as a function of the filtering scale ¢y/n. Different
colours distinguish the various terms, while different line types and symbols refer to different
components of those terms.

and to oppose the compression of vorticity along vs. In this sense, on average, IT;w/wy;

has opposing effects to 1 w;? for i = 1, 3. The results also show that the vorticity tilting
makes a small positive contribution to the growth of 3* on average.

The viscous term acts on average to reduce the magmtude of all the components of
enstrophy, with its effect strongest on 3> and weakest on w}?. As expected, its average
contribution markedly decreases with increasing filtering length as £y moves outside the
dissipation range. The average sub-grid stress contribution to D,w}? in (4.2) increases as
{r is increased and becomes approximately constant in the inertial range when normalized
by 73, where its contribution becomes comparable in magnitude to the vortex-stretching
terms A%, i =2,3. However, the sub-grid contribution is opposite in sign to the
vortex- stretchmg contributions, tending to hinder w}? and w}? and to enhance w3

The variances of the terms on the right-hand 51de of (4. 2) are shown in ﬁgure 2(b). The
variance of the vorticity tilting terms is very large, which indicates sudden rotations of the
vorticity vector with respect to the eigenframe. Similar to the behaviour of the averages
in figure 2(a), the results show that fluctuations in ;w;* are greatest for i = 1, and the
contribution from i = 2 becomes much smaller than that from i = 1 for £ in the inertial
range. Most interestingly, we find that the sub-grid contributions for i = 1, 2 are very
similar (almost identical in the inertial range), while the contribution for i = 3 is much
smaller, a feature preserved across the scales. This indicates that there is not a simple
relationship between the sub-grid and vortex-stretching terms, which poses a challenge for
large-eddy simulation modelling.

We have computed the moments in figures 1 and 2 across a range of Reynolds numbers
(particular case of Re, = 224 shown in appendix D) and obtained similar trends. This
confirms that the statistics are converged and show that the moments depend weakly on
the Reynolds number, at least in the range considered (Re, ~ 200-600). This is not too
surprising given that these are normalized lower-order moments, but we would expect
stronger Reynolds number effects for higher-order moments, due to intermittency.

4.2. Behaviour of eigenvalues and vorticity in the R, Q plane

The statistical behaviour in the R, Q plane, expressed in terms of the joint PDF of
the invariants, is captured qualitatively by most of the models. The agreement between
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models and DNS is particularly good in closures based on tensor representations of
the pressure Hessian in terms of the local velocity gradients squared (Wilczek &
Meneveau 2014) and closures which include multiscale energy transfer (Biferale et al.
2007; Johnson & Meneveau 2017). However, the Gaussian closure underpredicts the
probability along the left Vieillefosse tail, while it overestimates the probability of states
along the right Vieillefosse tail and of vorticity-dominated states. Models based on the
recent fluid deformation (RFD) hypotheses (Chevillard & Meneveau 2006) considerably
underestimate the probability of large values for R, Q. This issue also persists in more
sophisticated closures in which the velocity field is supposed to be Gaussian at some
time in the past (Johnson & Meneveau 2016) or in which multifractality of the gradient
statistics is imposed (Pereira ef al. 2018). To further our understanding of the eigenvalue
and vorticity dynamics, we now show the average of the eigenvalues and eigenframe
vorticity components in the phase space of the velocity gradient invariants.

In figure 3, we show the average of the filtered strain-rate eigenvalues conditioned on the
principal invariants of the filtered velocity gradient (71;|Z°R, 72Q), where R = —Tr(4%)/3
and Q = —Tr(4%)/2. The colour map is in a linear scale, and the results refer to the
filtering lengths ¢/n = 7.0 and £r/n = 67.3. The colour bar range has been truncated
in order to highlight the trend of the variables around the most probable values. The
results show that (4,|R, Q) is relatively large and positive along the right Vieillefosse
tail compared to its value in other regions of the phase space. Since the joint PDF
of R, Q is large along the right Vieillefosse tail (Chong er al. 1998; Liithi, Holzner &
Tsinober 2009; Elsinga & Marusic 2010; Meneveau 2011) then that phase space region
contributes strongly to the tendency for A, to be positive, with (1,) > 0. In contrast,
(AR, Q) is relatively small along the right Vieillefosse tail as compared to the larger
value it takes along the left Vieillefosse tail, where R < 0, corresponding to states of
biaxial compression with 1, < 0. The most compressional eigenvalue (1;|R, Q) tends to
have relatively small magnitudes in the vortex-stretching quadrant (Q > 0 and R < 0),
compared to values it takes on other regions of the R, Q plane. On the other hand, (1,|R, Q)
is positive on average here, showing that it contributes to the stretching of vorticity along
the direction v, in this quadrant.

In figure 4, we show the results for ((Fw})?|7°R, T>Q), for the same filtering lengths
Cr/n =7.0 and €r/n = 67.3. The quantity w?? rather than ! has been employed to
remove the ambiguity of the sign of w; that was discussed earlier, and the colour map
is in logarithmic scale. The quantity <w§2|R, Q) is large over a wide region of the upper
plane Q > 0 where rotational motion dominates the velocity gradients. It also takes
relatively large values close to the right Vieillefosse tail, compared to the values that the
other vorticity components take in that region. The results for (a)g‘z IR, Q) indicate that the
vorticity component along v; is smaller below and in the proximity of the right Vieillefosse
tail compared to other regions of the phase space and is associated with the misalignment
between @ and v; in that region of the R, Q plane (Carbone er al. 2020). This can be
related to the compression along the vorticity axis that arises due to incompressibility of
the flow, described by the second term on the right-hand side of (2.10b) together with
the local pressure Hessian contribution. Since this term is non-negative, then it acts to
suppress the growth of the compressional eigenvalue ;. However, if the vorticity was
perfectly aligned with v; then this term would vanish. Therefore, misalignment of the
vorticity with vz stabilizes the system by providing a mechanism to prevent the blow-up
of 15 along the right Vieillefosse tail. The relatively large value of (a)_ijle, Q) observed in
the quadrant R > 0 and Q > 0 compared to other quadrants is expected, since this is the
quadrant associated with vortex compression (Tsinober 2001).
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FIGURE 3. Average of the filtered strain-rate eigenvalues conditioned on the second and third
principal invariants of the filtered velocity gradient tensor. Panels (a—c) show conditional
averages (FA1|T°R, £2Q), (FA2|T°R, 72Q) and (73| T3R, £2Q), respectively, for £r/n = 7.0 and
(d-f) show the corresponding quantities for £r/n = 67.3. The colour map is in linear scale, and
the thick black lines represent the Vieillefosse tails. Note that average values greater/smaller
than the largest/smallest value in the colour bar are clipped to the colour corresponding to
largest/smallest value in the colour bar.

), (@,

R
FIGURE 4. Average of the square of the vorticity components conditioned on the second and
third principal invariants of the filtered velocity gradient tensor. Panels (a—c) show conditional
averages ((To})?|T°R, 72Q), (Fw})?|T°R, 72Q) and ((Tw})*|T°R, T2Q), respectively, for £ /1 =
7.0 and (d—f) show the corresponding quantities at £/n = 67.3. The colour map is in log; scale
and the thick black lines represent the Vieillefosse tails. Note that average values greater/smaller
than the largest/smallest value in the colour bar are clipped to the colour corresponding to
largest/smallest value in the colour bar.

The conditional averages shown in figures 3 and 4 confirm that, qualitatively, the
statistics are weakly dependent on the filtering length scale, as observed for the probability
density flux in the R, Q plane (Danish & Meneveau 2018). One exception is the behaviour
of w3, for which comparing figures 4(b) and 4(e) reveals significant qualitative changes in
the behaviour of (a)g‘le, Q) as { is increased.
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4.3. Rotation of the strain-rate eigenframe and tilting of the vorticity vector

The tilting of the vorticity vector with respect to the strain-rate eigenframe plays a
central role in determining the geometric alignments of the strain rate and vorticity, and
the rotation rate of the eigenframe can take on very large values even in simple flows
(Dresselhaus & Tabor 1992). This rotation rate is determined by the interaction between
vorticity, pressure gradient and viscous and sub-grid forces, and (2.10c) suggests that
the rotation can be very strong when the differences between the strain-rate eigenvalues
becomes small. To understand this better, and the effect of filtering on these processes,
we now turn to analyse in detail the statistics of the rotation rate of the eigenframe and its
dependence upon the local state of the velocity gradient.

Figure 5(a—c) shows the second moment of the different contributions to the eigenframe
rotation rate 17; (see (2.14)), and figure 5(d—f) shows the PDF of the square of
the difference in the eigenvalues, which represents the resistance of the eigenframe
(Vieillefosse 1982). While the local contributions (captured by the RE model) to the
eigenframe rotation rate have been investigated in detail (Dresselhaus & Tabor 1992),
together with its impact on the vorticity dynamics, the non-local contributions have
received less attention. The second moment of the pressure Hessian contribution is close
to the second moment of the overall rotation rate and they are almost independent of the
filtering length (when normalized by 7). This indicates that the non-local effects on the
rotation rate of the eigenframe dominate over the contribution from vorticity that features
in the RE model. However, we will observe that the local RE term plays a leading role in
the tilting of the vorticity vector. The sub-grid stress also gives an important contribution
to the eigenframe rotation rate, especially at large scales On the other hand, the viscous
contribution is small with <(1?17;*)2) decreasing as E , with & between 2 and 3. The
component <(f *1)2) associated with the angular velocity of the eigenframe along v,,
is much smaller than the other components. If we consider the PDFs of (4, — 4; )7 in
figure 5(d-f) we see that the mode of the random variable is considerably larger for
(1; — A3)? than for the other cases. The reason for this is that due to incompressibility,
(1; — A3)?> — 0 also implies 1, — 0, and the probability of states with strain rate almost
zero is vanishingly small. As a result, the average values of (1; — A3)? are larger than for
(A, — A3)? or (1; — A,)?, implying on average an increased resistance to rotations of the
eigenframe about v,, and hence to ((1:17 ) ) being smaller than the other components.

The results in figure 5(d—f) also indicate that the probability of axisymmetric states
with A, & A, and A, = A3 is quite high, with the probability of observing 1, ~ A, larger,
in agreement with previous results that showed that axisymmetric extension occurs more
often than axisymmetric compression (Lund & Rogers 1994; Meneveau 2011). However,
the probability to observe 7(d; — A3) — 0 is only three times smaller than that for
observing 7(d, — 4;) — 0. A more accurate estimation of the relative occurrence rates
of axisymmetric compression and expansion can be achieved by means of a dimensionless
parameter (Lund & Rogers 1994) as discussed in § 4.4.2. The main effect of filtering on
these PDFs is to simply suppress the tails, associated with reduced intermittency at larger
scales. However, for the PDF of (1, — A3)?, there is also a significant effect of filtering
on the behaviour for (1; — A3)> — 0, with the probability of states with (1; — 13)*> — 0
decreasing as £ is increased.

The quantity 4; — 4; acts as a weight in (2.10c), and the behaviour of /1 depends on
how the various contrlbutlons to I1; on the right-hand side of (2.10c) behave as A; — 4;

varies. To explore this, in figure 6 we show results for <X |4 — > with i > j such that
A; — 4; > 0, where Xj; is either the eigenframe rotation rate [T or else one of the distinct
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FIGURE 5. (a—c) Second moment of the components of the RE, pressure, viscous and sub-grid
contributions to the strain-rate eigenframe rotation rate, together with the overall rotation rate.
(d—f) The PDF of the square of the differences in the eigenvalues, which appear in the equation
for the rotation rate of the eigenframe (2.10c¢).

contributions to I7;, namely HfE* H,f *, [*orII;* (see (2.14)). The results show that

(X§|/l_,~ — /1,~) o (A — A)~% for small T(4 — /l,), 1ndlcat1ng a weak correlation between
(4; — 4;) and the vorticity, pressure Hessian, sub-grid stress and viscous stress in this
range. However, for 7(1; — 4;) > O(1), <X2|/lj — /l,-> starts to increase for some of the cases.
This non-monotonic behaviour is quite intriguing, but the increase cannot persist in the
limit 7 (4; — A;) — oo if the flow field is to remain regular. Also, the results show that the
increase at T(4; — 4;) > O(1) becomes less apparent as the filter length is increased. For
the smallest filter scales, the results in figure 6 show that the dominant contribution to the
eigenframe rotation-rate comes from the pressure Hessian, with important contributions
from the sub-grid stress and RE term associated with vorticity in some cases (e.g.
especially for i = 2,j = 1). At larger scales, however, the sub-grid term makes a strong
contribution, similar in size to that from the pressure Hessian with the RE playing a smaller
role. The viscous contribution is small at all scales and for all components.

The rotation rate of the eigenframe plays an important role in the vorticity dynamics
through the vortex tilting mechanism, described by the term /7;w; in (2.12). The second
moment of [T and the various contributions to it are shown in figure 7(a—c) together
with the PDFs of |11 on in figure 7(d-f). The RE and pressure Hessian contributions to
(T w; 2) are the largest and are similar in size, showing that the local (i.e. that captured

by the RE model) and non-local contributions to ((/1; ;‘) ) are similar. The reason why
the RE term makes a significant contribution to the vorticity tilting that is similar to that
of the pressure Hessian, despite the fact that the former gives a much smaller contribution
to the eigenframe rotation rate, could be related to the weak preferential alignment between
the vorticity and the pressure Hessian (Carbone et al. 2020). The viscous contribution
is small over the range of £r considered, with ((7IT;* *) ) decreasing as E;S, with &
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FIGURE 6. Second moment of the contributions to the eigenframe rotation rate conditioned
on the difference in the eigenvalues. Panels (a,c,e) correspond to £r/n = 7.0 and (b,d,f) to
Lp/n = 209.4.

between 2 and 3. The vorticity tilting about axis v, is slightly larger than the tilting about
the other two axes, in contrast to the reduced eigenframe rotation rate about axis v, shown
in figure 5. However, the difference between the components of ((/1 ;w]’.‘)z) is smaller than

the difference between the components of ((Hi;‘)z) shown in figure 5.

The PDFs of |IT;w;| are shown in figure 7(d—f), revealing wide power-law tails and
large values of vorticity tilting. Quite remarkably, the PDFs are almost insensitive to the
filtering scale €, such that very strong vorticity tilting resulting in highly non-Gaussian
behaviour is a feature that persists beyond just the dissipation range. This intermittent
behaviour, however, is probably kinematic rather than purely dynamical in origin. In
particular, (2.10c) shows that 17; depends on (4; — A)7", such that small values of

7(A; — A;), which occur with high probability, can lead to large values of le'[;cq;".
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FIGURE 7. (a—c) Second moment of the RE, pressure, viscous and sub-grid contributions to the
vorticity tilting term, together with the second moment of the total vorticity tilting term. (d—f)
The PDF of the vorticity tilting term in (2.12).

A peculiar situation to consider is when two eigenvalues intersect (1; = 4;), which
may result in a very large rotation rate of the eigenvectors. Indeed, in that situation,
the directions of two of the strain-rate eigenvectors associated with the coincident
eigenvalues are not well defined. All vectors belonging to the plane orthogonal to the
eigenvector associated with the other (distinct) eigenvalues are strain-rate eigenvectors.
Therefore, the orientation of those eigenvalues can be chosen on the plane orthogonal
to the eigenvector associated with the other (distinct) eigenvalues and there is some
arbitrariness in the projection of the equations for the gradient into the eigenframe.
In the simple RE system, the eigenvalues cannot intersect and the components of the
vorticity in the strain-rate eigenframe cannot change sign. This is due to the several
conservation laws in the RE system, in particular the determinant of the commutator
between the symmetric and anti-symmetric parts of the velocity gradient is a first integral
of the RE system (Vieillefosse 1982). The pressure Hessian and viscous stress are key
to weakening those constraints and reducing the number of first integrals thus avoiding
finite-time singularities. Although our results in figure 5(d—f) show significant probability
for (4; — 4;) — 0, we cannot provide conclusive evidence that eigenvalues can intersect.
For this, we would need to track the non-ordered eigenvalues of fluid particles in the
Lagrangian frame and look for evidence that their ordering changes along the trajectory.
This interesting problem is left for future investigations.

4.4. Characterizing the pressure Hessian

In figure 8(a,c,e) we show the PDFs of the diagonal components of the pressure Hessian
in the eigenframe, filtered at various scales. The PDFs show wide tails for the smallest
filtering lengths £, consistent with the observation of highly intermittent acceleration
statistics in turbulence (Ayyalasomayajula, Warhaft & Collins 2008), but the extreme
events become much rarer as £ is increased, with the PDFs approaching a Gaussian shape
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FIGURE 8. The PDF of the diagonal components of the pressure Hessian in the eigenframe
normalized using scale-dependent time scale 7. Panels (a,c,e) show results for the full pressure

Hessian, and (b,d, f) are for the anisotropic part of the pressure Hessian.

at the largest scales. The PDFs are also strongly positively skewed, with the skewness
decreasing as £ is increased. The local/isotropic part of the unfiltered pressure Hessian is
proportional to the second unfiltered invariant

0= |@l?/4—IISI*/2, (4.3)

and since the PDF of Q is positively skewed (Meneveau 2011), so also will be the PDF
of the local part of the pressure Hessian. The dependence of the non-local contribution to
the pressure Hessian on the local properties of Q is more complicated. However, we note
that during large events where Q > rnz, the local part of the pressure Hessian is expected
to dominate over the non-local part (see below), since extreme events in Q are spatially
localized. For the filtered fields, there is an additional contribution to the isotropic part of

the filtered pressure Hessian since Tr(ED + Zz +H") =0.
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FIGURE 9. Average of the diagonal components of the anisotropic pressure Hessian in the
eigenframe conditioned on (a,c,e) the corresponding eigenvalues squared, and (b,d,f) the
corresponding vorticity components squared. Insets highlight the results for small values of 721;2

and fza);kz.

4.4.1. Characterizing the anisotropic pressure Hessian
The anisotropic pressure Hessian is defined as

A = 1P — LS, (4.4)

and the PDFs of the diagonal components ﬁfg are shown in figure 8(b,d, f), for various £ .
Comparing these results to those in figure 8(a,c,e) reveals that the strong positive skewness
of the PDF of the full pressure Hessian arises from the dominating contribution of the
local pressure Hessian during large events. Indeed, the PDF of HY, is negatively skewed,
indicating that the strongest fluctuations in H5, tend to help the growth of A, (since H{Z;‘;
appears with a minus sign in (2.105)) and hence also vortex stretching. This is in contrast
with the average negative value of —H}; observed in figure 1.
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In order to understand more fully the relationship between H’ l(l) and the local properties

of the flow, in figure 9(a,c,e), we consider the results for (Hf:;lxlf) as a function of the
filtering scale. For i = 1, this quantity is always negative, and since the pressure Hessian
appears with a negatlve sign in front of it in the eigenvalue equation (2.10b), this indicates
that on average H!, acts to amplify A;, for all values of A%. For 74, < O(1), (H/'|22)
becomes increasingly negative with increasing A2, varying almost linearly with A2. The
contribution to A,, namely (H%,|A3), is always positive and therefore on average Hb,
hinders the growth of positive A, for all values of /lg. Furthermore, for T|1,| < O(1),
(H%3|22) increases almost linearly with increasing A2 except for the larger filter scales, for
which a nonlinear behaviour is apparent even for 7|1,| < 1. The behaviour of (H%; |12)
is quite peculiar, showing that on average ITIg amplifies A; (increases |A3|) for very small
7 A3, but then hinders its growth outside of this regime. The range of 75 over which H%;
amplifies A3 on average decreases with increasing filter scale.

Over the entire range of 74; shown, the effect of filtering appears quite weak (it is
more apparent for i = 2 since in that case the results extend over a smaller region of 7 4;
owing to the smaller fluctuations of A, compares with 4; or A3). Nevertheless, the insets
to figure 9(a,c,e) highlight that for (TA)? < 0.3, filtering reduces the magnitude of both
(T?HY|A3) and (T2H%,|A3), whereas the magnitude of (T2HZ%;|A3) is reduced by filtering
in the regime where it is positive, but increased in the region where it is negative.

In figure 9(b.d. f), we consider the results for (Hf;|w;?). For T?w}> 2 3, (Hﬁj)lwfz) is
negative, leading to the ampliﬁcation of A; and positive A,, but the suppression of |A3].
In this regime, (Hj|w}?) o w;? is a good approximation. For 7?w}* < 3, however,
(H l(l)|a) 2) changes sign for i = 2, 3 and has a highly nonlinear behaviour, similar to that

of (H.;|A3). Taken altogether, the results in figure 9 indicate that closures such as the
tetrad model (Chertkov ef al. 1999; Naso & Pumir 2005) and enhanced Gaussian closure
(Wilczek & Meneveau 2014) which predict that the anisotropic pressure Hessian depends
on the square of the local velocity gradient are able to capture several important features,
but not all, especially in the regime of small gradients. B

In figure 10, we show results for the first and second moments of H}; conditioned on

the isotropic part of the pressure Hessian, H;*/3 = 20Q/3 (with little abuse of notation in

the filtered case, in which Q denotes —A4°/2). The results show that (Hf’ f)|2Q/3) varies
almost linearly with Q, but with different slopes for Q > 0 and Q < 0. This provides
some support for closure models that assume a linear relationship between the anisotropic
pressure Hessian and Q (Chevillard & Meneveau 2006; Chevillard et al. 2008; Wilczek
& Meneveau 2014). However, whether such models correctly describe the change in slope
around Q = 0 should be considered in future work. Also, the DNS results indicate that
the average of the norm squared of the anisotropic pressure Hessian conditioned on the
invariant Q approximately scales as |Q| (Chevillard et al. 2008), while it scales as Q?,
by construction, in models that assume a linear relationship between the anisotropic
pressure Hessian and Q.

The second invariant Q is a measure of the relative importance of strain and vorticity
at a given point in the flow. The results in figure 10(a,c,e) indicate that on average H',
aids the growth of A; in strain-dominated regions, but counteracts the growth of A,
in vorticity-dominated regions. The average and the variance of the contribution from

H' is small compared to the contributions from the other diagonal components, in
contrast to what was observed earlier for the full component H{;*. This differing behaviour
is due to the contribution of the isotropic pressure Hessian that is proportional to Q.
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FIGURE 10. (a,c,e) Average and (b.d,f) second moment of the diagonal components of the
anisotropic pressure Hessian conditioned on the isotropic part of the filtered pressure Hessian
(which is equal to 2/3 times the second principal invariant of the velocity gradient Q), for various
filtering lengths £7/7. Insets in (a,c,e) highlight the results for small values of 272Q/3.

In vorticity-dominated regions, the average contribution from ﬁg; becomes increasingly
negative with increasing @, and it therefore helps the growth of positive A,. This
opposes the local part of the pressure Hessian that acts to reduce positive A, events in
vorticity-dominated regions. The third diagonal component H%; counteracts the growth
of |43] in strain-dominated regions, which is critical to stabilize the dynamics. This
feature is absent in the RE model where Hf;.* = 0, which is one reason that system

blows up.

The results in figure 10(b,d,f) for (ﬁﬁ; |20/3), together with the insets of

figure 10(a,c,e), show that the effect of ﬁﬂ; on the eigenframe dynamics does not vanish
when Q — 0, which was also observed in Chevillard et al. (2008), and is something that

is not captured by closure models such as the tetrad model (Chertkov et al. 1999), the
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FIGURE 11. The PDF of s* for (a) the anisotropic pressure Hessian, and () the strain rate.
Dashed lines indicate the probability distribution for a random uncorrelated field.

Lagrangian linear diffusion model (Jeong & Girimaji 2003) or the recent fluid deformation
approximation (Chevillard & Meneveau 2006). Moreover, the peculiar behaviour of
the anisotropic pressure Hessian components observed in figure 9 for small 7A; and
Tw; translates into a non-trivial and non-monotonic behaviour of the pressure Hessian
components at small Q, as shown in the insets of figure 10.

4.4.2. Preferential states of the pressure Hessian

We now turn to characterizing the state of the anisotropic pressure Hessian H” by means
of its eigenvalues ¢;, which are associated with its eigenvectors w;. The eigenvalues of the
full pressure Hessian are denoted by ¢;. The shape of the anisotropic part of the pressure
Hessian can be quantified by means of the dimensionless quantity

S TEDT _ 3V6 fidds

= = 45
i (T @) @+ 65+ D (43)

The variable s* has been proposed in Lund & Rogers (1994), and since only ¢, is not
sign definite, the sign of s* is determined by the sign of ¢,, and the PDF of s* can be
used to quantify the probability of the tensor being found in axisymmetric states. The
PDF of s* is shown in figure 11(a), and the results show that s* is preferentially positive,
indicating that ¢, is also preferentially positive. As £ is increased, the PDF tends to the
constant value of 1/2, corresponding to a uniform random variable (Lund & Rogers 1994).
The preference for positive values of s* indicates that the anisotropic pressure Hessian
exhibits a preference to stretch fluid elements along the direction ws (since —H” appears
in (2.4)), and to compress them in the plane spanned by w; and w;,, that is orthogonal to
ws. In figure 11(b) we show the corresponding results for the strain-rate tensor, for which
s* = —+/6Tr[S*]/(Tr[S?])*/2. The results for this quantity in figure 11(b) show that the
preference for S to be in a state of bi-axial extension is much greater than that for H”,
though in both cases, this preference for bi-axial extension generally becomes weaker as
£ 1s increased.

In order to gain further insight into the state of the full pressure Hessian H”, we aim
to characterize the full space of the independent dimensionless quantities that can be
formed using the invariants of H”. Since H” is symmetric with three real, independent
eigenvalues, two dimensionless quantities can be defined. In the context of the Reynolds
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stresses, the Lumley triangle provides an insightful way to characterize its anisotropic
properties (Lumley 1979; Pope 2000). However, this cannot be applied to H” since it is not
positive definite. As an alternative, we seek to construct an invariant triangle, analogous
to the Lumley triangle, by employing the invariants of the normalized quantity

- HE — H,8;/3
Y JHP HP

which simply corresponds to the normalized components of the anisotropic pressure
Hessian. The first two invariants of b are Tr(b) = 0 and

(4.6)

Hy
/2P P
3H;H;

Therefore b? is bounded, b* € [0, 1]. Moreover, the second invariant of b is related to the
quantity D* through b* = 1 — (D*)?, where
Tr[(H")] ¢1 + ¢ + ¢

D" = — = — . 4.8)
SHENDE) V3 (8 + ¢ +62)

The parameter D* was proposed in Lund & Rogers (1994) to quantify the relative
magnitude of the isotropic dilatation/compression of a tensor. The constraint on the third
invariant is obtained through the discriminant of the characteristic equation of b. Since the
eigenvalues of b are real, it follows that

P=Tr(b*) =1-— 4.7)

A = L(Tr(pH))* — 3(Te(6*))* > 0, 4.9)

and hence |v6Tr(b%)| < (Tr(b*))*>. The zero discriminant case corresponds to
(Tr(b%))> = 6(Tr(b*))*> for which two eigenvalues of b coincide, implying that two
eigenvalues of H” coincide as well, since the eigenvalues of H” are just shifted and scaled
with respect to the eigenvalues of b. When H” is traceless, i.e. the pressure Hessian is
purely non-local, the eigenvalues of b and H” are proportional. In that purely anisotropic
case, we have Tr(b*) = 1 and +/6Tr(b°) = —s*. These relations suggest employing the
following as coordinates on the invariant triangle

3/2

¢ = V6T, x = (Tr(d?) (4.10a,b)

With the coordinates defined in (4.10a,b), a triangle is obtained that has straight sides (the
original triangle proposed by Lumley had two curved sides), since 0 < x < l and |¢| < x.

The following states can be observed on the triangle. The || = x sides correspond to
axisymmetric states (s* = 1 on the right and s* = —1 on the left), and the side x =1
corresponds to purely anisotropic (traceless) state. The point (¢, x) = (0, 0) corresponds
to the isotropic state, while the points (—1, 1) and (1, 1) indicate purely anisotropic
states with s* = —1 and s* = +1, respectively. Moreover, the one-component state, ¢, =
¢> =0 and ¢3 = Tr(H"):¢p3 = Tr(H"), results in |D*| = \/1/3, that is x = |[¢| ~ 0.54.
The two-component axisymmetric state, ¢3 =0 and ¢, = ¢, = Tr(H")/2:¢, = ¢, =
Tr(H")/2, results in |[D*| = /2/3, thatis x = |¢| ~ 0.19.

The degree of isotropy is quantified by y, anisotropy is maximum on the segment y = 1
and decreases towards x = 0 according to (4.7). The state of the intermediate eigenvalue
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of b, that is its distance from the other two eigenvalues, is measured by the deviation
from ¢ = 0, since ¢ = s*x. If the tensor considered (here H”) is always traceless, then
the support of the proposed triangle reduces to a segment and the joint PDF of ¢ and
x reduces to the PDF of s* (with x = 1 fixed). Note that this triangle may be used
to quantify the anisotropy of any symmetric second-order tensor, and does not require
positive definiteness of the tensor. It therefore represents a generalization of the Lumley
triangle.

In figure 12, we show results for this invariant triangle of the pressure Hessian for
various filtering lengths. The colour bar range has been truncated to highlight the
interesting trends across scales. These results are for a sharp spectral filter and our
comparison with results obtained through a Gaussian filtering kernel (not shown) indicates
that the results are not very sensitive to the choice of the filtering kernel. The results for
the smallest filtering scales highlight a high-probability region near the two-component
axisymmetric configuration at x = ¢ = 0.19, and another near the purely anisotropic
state close to the edge x = 1. The probability for the pressure Hessian to be in the
purely isotropic configuration { = x = 0 is low, and there is also a low-probability region
around the centre of the triangle, especially for ¢ < 0, corresponding to s* < 0 and
states of bi-axial stretching of the fluid element (since —H? is in (2.4)). As the filtering
length is increased, the constant-probability lines tend to become parallel to the ¢ axis,
associated with the PDF of s* approaching a uniform distribution as £ is increased. Most
interestingly, the probability of observing the purely isotropic state increases significantly
as £y increases. Indeed, the peak of the PDF located near { = x =~ 0.19 for the smallest
filtering scale, shifts towards { = y = 0as £ is increased. In one sense then, this indicates
that the importance of the anisotropic contribution to the pressure Hessian relative to the
isotropic contribution reduces as the scale of the flow is increased. However, this is not the
whole story since the results also indicate that at all scales there is a significant probability
to be close to the purely anisotropic state near the edge x = 1. Invariant triangle results
for filtering scales larger than £ = 67.37n (not shown) did not reveal significant change in
preferential states with scale. Hence, the preferential states of the pressure Hessian changes
as we move from the viscous to inertial range and appears to be relatively constant in
the inertial range. This is reminiscent of the transition occurring at intermediate scales
between viscous and inertial range reported in previous works (Chertkov et al. 1999;
Cerutti, Meneveau & Knio 2000; Danish & Meneveau 2018).

The specific statistical behaviour of the pressure Hessian is challenging to capture
for most velocity gradient models. Indeed, as shown by Chevillard er al. (2008) in the
framework of RFD, even if the overall predictions of the gradient models are in good
qualitative agreement with the results from DNS, the details of the pressure Hessian
statistics can be quite unrealistic. For example, the probability current in the R, Q plane
generated by the anisotropic pressure Hessian and the alignment between the Hessian
and strain-rate eigenframe are not well predicted by the RFD closure (Chevillard et al.
2008). Despite this, the outcome of the model is still close to the results from DNS. It is
expected that detailed statistics of the pressure Hessian, such as its preferential state as
quantified by the generalized Lumley triangle shown in figure 12, can be predicted more
accurately by closures based on tensor representation of the pressure Hessian in terms of
a large number of basis elements (Pennisi & Trovato 1987; Leppin & Wilczek 2020). This
allows for more degrees of freedom to model the complexity of the Hessian but it also
requires more constraints on the coefficients and usually the Betchov relations (Betchov
1956) are employed (Johnson & Meneveau 2016; Leppin & Wilczek 2020). On the other
hand, closures for the pressure Hessian based on the deformation tensor alone (Chevillard
& Meneveau 2006) impose by construction that the Hessian and Cauchy—Green tensor
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FIGURE 12. Joint PDF of the dimensionless invariants ¢ and x of the pressure Hessian
(defined in (4.10a,b)) at filtering lengths (a) £r/n = 7.0, (b) £p/n = 14.8, (¢) £r/n = 31.6 and
(d) £r/n = 67.3. Square markers correspond to two-component axisymmetric configurations,
and diamond markers correspond to one-component configurations. The colours correspond to
the values of the PDF, and the lines are isocontours of PDF shown in increments of 0.05 between
0 and 2. Note that PDF values greater/smaller than the largest/smallest value in the colour bar
are clipped to the colour corresponding to largest/smallest value in the colour bar.

share the same eigenvectors and are in the same shape (quantified by s*). This has strong
dynamical impact on the energy and angular momentum balances of the fluid elements
(Vieillefosse 1984).

4.5. Characterization of the viscous stress

In figure 13(a,c,e) we show results for (H[”(j‘) I/l,-), the average of the diagonal components
of the viscous strain-rate term in the eigenframe, conditioned on the corresponding
eigenvalue. (Recall that in our notation, H;* = vv; - (V2S) - v; is the component of the
Laplacian of the strain-rate tensor and not the Laplacian of the strain-rate eigenvalue.)
The results show that this quantity has the opposite sign to 4;, for each i. This is in
agreement with the results for (Hl"(j‘)) in figure 1, that revealed a damping effect of the
viscous term on the eigenvalue evolution, and indicates a dependence of (Hi"(m/li) on
odd powers of A;. This is consistent with the idea that under time reversal r — —ft,
V?4 — —V?4 and A — —A, and therefore a representation of V24 in terms of 4 should
satisfy V2A(A,...) = —V?A(—A, ...). The results also indicate that (H}%|4;) depends
nonlinearly on A;, but approach a more linear dependence as £ is increased. This would
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FIGURE 13. (a,c,e) Average of the diagonal components of the filtered viscous stress in the
eigenframe conditioned on the corresponding eigenvalues (see (2.10b)), for various filtering
lengths £r/n. (b,d,f) Average of the anti-symmetric part of the viscous stress components in
the eigenframe conditioned on the corresponding vorticity component (see (2.12)).

seem to imply that the nonlinear dependence at small 5 is mainly due to intermittency of
the velocity gradient.

In figure 13(b.d,f) we show results for (.Ql."* |a);.“), the average of the Laplacian of
the vorticity conditioned on the corresponding component of vorticity. Similar to the
strain-rate case, we find that (-in* |a);"> has the opposite sign to w}, with the curves showing
a well-defined trend in terms of the first few odd powers of the vorticity components

(2"10]) = ao] + a0, (1D

This power-law trend partially corroborates linear closures of the form vV2A4 ~ —A4/T
(Martin, Dopazo & Vali no 1998; Wilczek & Meneveau 2014), where T is a certain time
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scale, but also shows that higher-order terms should be incorporated into the closure in
order for it to accurately capture the behaviour when Tw; is not small. The additional
model parameters that derive from including a cubic term may be fixed by homogeneity
constraints. The linear approximation of the gradient Laplacian with the gradient itself
can also be improved by introducing a proportionality coefficient that depends on the
(short-time) deformation tensor, thus allowing for realistic prediction of the viscous
Laplacian in the RFD model (Chevillard e al. 2008). The first-order term in (4.11) gives
a non-zero slope at w; = 0, while the higher-order terms cause departures from the linear
trend. As £ is increased, deviations of <.Qi"*|a)§‘) from the linear behaviour become less
evident, and the linear closure works quite well. The power-law trend in (4.11) is accurately
reproduced by the Lagrangian linear diffusion model (Jeong & Girimaji 2003).

The dependence of (Hl."(j.‘) |4;) on odd powers of 4; and the dependence of (£2*|w}) on odd
powers of w! is reflected by the correlation between the Laplacian of the strain/vorticity
and the strain/vorticity itself, which is shown in figure 14, as a function of the filtering
length. Here, the correlation coefficients are defined as

(H;"S;) (2" ey)

V(H",S) = ., YR, e) =
(H H) (S385) (2120 (wj o))

(4.12a,b)

Since §2/* decreases on average with o}, as observed above, the correlation coefficient is
always negative. Also, since §2/* has a relatively strong linear dependence on w; when
Tw] is not too large, the correlation coefficient is quite large (and negative), especially in
the inertial range, indicating strong negative proportionality between V2@ and ®. Most
striking is that the results show v (H", S) = ¥ (2", w), such that the correlation between
the symmetric and anti-symmetric parts of the velocity gradient and their Laplacian is the
same. Betchov (1956) proved the relation (S : S) = (w - @) /2 for an incompressible and
statistically homogeneous flow, and following the same approach it is easily derived that

(V2A;A;:) = (9;(V u;0;)) = 0. (4.13)

Therefore, splitting the velocity gradient into symmetric and anti-symmetric parts we have
(S;V2S;) = (W;V2W;) and finally

(S:VS)=(w-Vw)/2. (4.14)

Analogously, it can be derived that (V2 S : V2S) = (V@ - V2w) /2. As a consequence, the
correlations coefficients in (4.12a,b) are the same for incompressible, homogeneous flows.

4.6. Characterization of the sub-grid stress

Knowledge of the statistical behaviour of the sub-grid stress is required in order to develop
models for the filtered velocity gradient. Including this term in the spirit of modelling
approaches for pressure Hessian and viscous stresses naturally extends the existing models
to predict larger scale behaviour. To this end, the sub-grid stress is characterized by means
of the correlation between its components and the other dynamical terms which contribute
to the filtered gradient evolution equations. This can provide insight for closure models in
terms of how the sub-grid stress might be related to the filtered quantities in the flow.
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FIGURE 14. Correlation coefficient between the filtered strain rate and the symmetric part of
the viscous stress, and between the filtered vorticity and the anti-symmetric part of the viscous
stress. The correlation coefficient ¥ is shown as a function of the filtering length ££ /7.

We introduce the general correlation coefficient

Y(X,Y) = ) — X ) (4.15)

) = w2 () = )

where X, Y are scalar quantities. In figure 15(a) we show results for ¥ (X, Y) for the case
where X, Y are components of the pressure Hessian and symmetric part of the sub-grid
contribution in the eigenframe, both of which contribute to the strain-rate dynamics,
according to (2.10b). The results show that —H>* and —Hg * are negatively correlated (here
and throughout this discussion we include in front of the terms the sign with which they
appear in the dynamical equations), although the correlation is not that strong. A positive
correlation is observed only between —H4; and —H3; at the smallest scales, implying that
in the dissipation range they both tend to hinder the growth of A;. At larger scales where
the correlations are all negative, —H* and —Hg* have opposite effects on the eigenvalue
dynamics and on the angular velocity of the eigenframe.

The correlation coefficient between the viscous (Hi;’.*) and sub-grid (—Hij’.*) terms in
(2.10b) as a function of the filtering length is shown in figure 15(b). At the smallest
scales, the correlations between the diagonal components H;; and —H;; are positive and
the sub-grid stress tends to help the viscous damping effect on A;. At larger scales, the
correlation between H};" and —H] becomes negative so that they have opposite effects
on the dynamics of 4. The correlations between the off-diagonal components of H;* and
—H* that contribute to the eigenframe rotation rate are almost independent of £, and the
terms H) and —Hj;;" are almost entirely uncorrelated. In general, the scale dependence
of the correlations between the diagonal and off-diagonal components of H;* and —H}*

is quite different, in contrast to the behaviour of the correlations between —H:* and
—H;*, for which the diagonal and off-diagonal terms behave similarly. The transition of
the normalized correlation coefficient for vy (—H[", H}") reported in figure 15(b) from
the dissipation to inertial range is reminiscent of the transitions reported in Danish &
Meneveau (2018).

Figure 16 shows the correlation between —H;; A, and both the strain self-amplification

term (—A7) and Hj; A, terms which appear in the equation governing A? evolution.
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FIGURE 15. Correlation coefficient, ¥ (X, Y) between (a) the sub-grid stress and pressure
Hessian and between (b) the sub-grid stress and the symmetric part of the viscous stress, plotted
as a function of the filtering length ¢ /1.

Concerning the correlation between —H;; 1 and —A1;, the correlations are positive for
i = 2, and negative for i = 1, 3 at all scales (although the data may indicate that the i = 1
component becomes positive for £/n — 0). Therefore, the sub-grid stress tends to oppose
the growth of A, and positive A,, although the correlation is weak. The correlation is
strongest for i = 3, and the negativity of the correlation indicates that the sub-grid stress
acts to stabilize the dynamics by opposing the growth of |A3]. Interestingly, the correlations
between —H[; A and Hj;j A are similar in magnitude to those between —H;} A and
—A;. The correlation between —H[ A, and H}jj A, is positive for i = 3, indicating that
the sub-grid stress also acts to help the viscous stress in reducing |A3].

Figure 17 shows the correlation between —§2/*w(; and both /l,-a);ki)2 and £2*wy,, terms
which appear in the enstrophy equation (4.2). The correlations between —£2*wg, and

Aiw;‘i)z are negative for all i and at all scales, showing that the sub-grid stress acts on
average to counteract the amplification of w] and the reduction of wj, and also to hinder
vortex stretching along the direction v,. The correlation between —$2/*w(;) and 2" w(;
is positive for i = 2, showing that the sub-grid stress acts together with the viscous stress
to hinder the growth of w32, at all scales, though the correlation is weak. The correlation
is also positive for i = 1, showing that the sub-grid and viscous terms act together to
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FIGURE 17. Correlation coefficient, 1 (X, Y) between the sub-grid contribution —.Qi’*wz‘i) and

the vortex-stretching term /l(i)w;"z, and between the sub-grid contribution —£2/*w(, and the
viscous stress contribution —§2* (.

reduce w}?, and in this case, the correlation is quite strong, reaching values around 0.6
in the inertial range. In contrast to the behaviour for i = 1, 2, the sub-grid stress opposes
the viscous effect on w3* at all scales, just as it also opposes the vortex compression that
occurs for thei = 3 component

5. Summary and outlook

In this paper, we have explored the properties of the dynamical equations governing
the filtered velocity gradient tensor written in the eigenframe of the strain-rate
tensor. We now summarize the main results and for simplicity we refer to the most
extensional, intermediate and most compressional strain-rate eigenvalues as first, second
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and third eigenvalues respectively. The strain-rate eigendirections and vorticity principal
components are also labelled accordingly.

The velocity gradient dynamics is governed by local and non-local/unclosed terms.
The local part of the dynamics consists of strain self-amplification, which tends to
amplify the third eigenvalue, centrifugal forces due to spinning of the fluid element,
which counteracts amplification of the third eigenvalue, and vortex stretching, which
tends to shrink the vorticity component along the third eigendirection. When non-local
terms are neglected, the strain self-amplification dominates over the vorticity contribution,
resulting in a finite-time singularity for almost all initial conditions, driven mainly by
self-amplification of the third eigenvalue. Real turbulence does not display this singular
behaviour and therefore, it is crucial to characterize the effects non-local/unclosed terms,
which include anisotropic pressure Hessian, viscous and sub-grid stress. Our results show
that the pressure Hessian, viscous and sub-grid stress have an average stabilizing effect
on the third eigenvalue, at all scales. The mean contributions to the rate of change of
vorticity principal components are dominated by vortex stretching and vorticity tilting at
the smallest scales, while the sub-grid stress contribution makes an important contribution
at large scales. The vorticity tilting with respect to the strain eigenframe does not alter
the overall enstrophy balance, but it damps the first vorticity principal component and
amplifies the third, thus counteracting vortex stretching. This is similar to its behaviour
in the RE system. The average effect of viscous term is to reduce the magnitude
of all the components of enstrophy. Also, it is interesting that the average effects of
the sub-grid stress and vortex stretching terms are opposite for all components and at
all scales. Conditioning the strain-rate eigenvalues and vorticity principal components
on the principal invariants of the filtered velocity gradient reveals that the first, and
more importantly third, vorticity principal components tend to be small along the right
Vieillefosse tail, where the local part of the gradient dynamics tends to be singular.
This misalignment between vorticity and the third eigendirection supports ‘reduction of
nonlinearity’ models that assume that the vorticity is effective in stabilizing the gradient
dynamics.

The onset of singularity in the RE system is related to its multiple first integrals of
motion, which imply that the angular velocity goes rapidly to zero as the finite-time
singularity is approached. Our results show that this eigenframe angular velocity can
take on large values in turbulence and plays a major role in the vorticity dynamics.
These striking large values persist even at large filtering scales, a significant cause of
which is kinematic, being related to the large probability of having very small differences
between the eigenvalues. In particular, the differences in the eigenvalues act as a moment
of inertia in the eigenframe rotation-rate equation, and so small differences in the
eigenvalues allows for large rotation rates. The non-local anisotropic pressure Hessian
is the dominating contribution to the eigenframe rotation rate, being much larger than
the contribution from the local spinning of the fluid due to vorticity. The sub-grid stress
also makes an important contribution outside the dissipation range. Most importantly,
for large gradients, the local and non-local torques applied on the strain-rate eigenframe
grow faster than the eigenvalues differences, thus sustaining the eigenframe rotation
rate.

Models for the velocity gradient represent non-local/unclosed terms in terms of local
quantities, therefore we study the averages of unclosed contributions conditioned on local
gradients. The diagonal principal components of the anisotropic pressure Hessian exhibit
an almost linear trend when conditioned on the local velocity gradient, characterized
by the square of the strain-rate eigenvalues and vorticity principal components.
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This supports models such as the enhanced Gaussian closure and recent fluid deformation
approximation, in which the pressure Hessian is proportional to the square of the local
velocity gradient. However, the results also show highly nonlinear behaviour for relatively
small values (compared to the eddy turnover time scale based on the filtering scale) of the
strain eigenvalues and vorticity, a feature that is very challenging to replicate in models.
Concerning the viscous stresses, the conditional averages of the viscous Laplacian with
respect to the local gradient show that the symmetric part of the viscous stress behaves as
an odd function of strain eigenvalue. The anti-symmetric part of the viscous stress shows a
similar dependence on the vorticity principal components. While velocity gradient models,
such as the enhanced Gaussian closure and the recent fluid deformation approximation,
describe these odd functions with a linear behaviour, our results showed that cubic terms
should also be included. This is confirmed by the correlation coefficient between the
filtered velocity gradient and its Laplacian which is negative, but not very close to —1,
especially at small scales.

Knowledge of the sub-grid stress statistics is required in order to develop models for
the filtered velocity gradient. To this end, the sub-grid stress has been characterized by
means of its component-wise correlation with the other terms in the strain-rate eigenframe
equations for the filtered velocity gradient. The symmetric part of the sub-grid stress is
preferentially negatively correlated with the pressure Hessian and positively correlated
with the symmetric viscous stress (except the first diagonal component for sharp spectral
filtering). The sub-grid stress also tends to be negatively correlated with all principal
components of vortex stretching. These correlation coefficients are sensitive to the specific
choice of filtering kernel, as comparisons between sharp and Gaussian filtering show. For
the Gaussian filter, the correlation between pressure Hessian and sub-grid stress can take
relatively large values, which is promising for modelling, since the same reasoning and
modelling approaches used for the pressure Hessian can apply to the sub-grid stress as
well.

In order to characterize the state of the pressure Hessian, we developed a generalization
of the classical Lumley triangle that does not require positive definiteness of the tensor.
The results using this triangle revealed a preference for the intermediate eigenvalue
of the pressure Hessian to be positive, but the preference is much weaker than for
the strain rate. Moreover, the pressure Hessian filtered at small scales is rarely in the
isotropic configuration, while the most probable states are complete anisotropy and
two-dimensional axisymmetric expansion. Therefore, the pressure Hessian preferentially
exerts a two-dimensional axisymmetric compression on the fluid element along two of
its eigendirections. As the filtering scale is increased, the probability of two-dimensional
axisymmetric expansion reduces and the peak in probability that occurred there at small
scales shifts towards the isotropic state. However, there still exists a significant probability
for configurations where the non-local contribution dominates the pressure Hessian.
Finally, the generalized Lumley triangle results for pressure Hessian are not very sensitive
to the specific choice of the filtering kernel.

Taken together, the results presented provide a comprehensive statistical description of
the filtered velocity gradient dynamics from the perspective of the strain-rate eigenframe.
Lagrangian models for the velocity gradient tensor can be tested against the data, but
predicting the non-trivial behaviour of the non-local terms highlighted throughout the
paper represents a challenge for those models. The new results on the preferential state and
scale dependence of pressure Hessian, viscous and sub-grid stress constitute a reference for
modelling those unclosed parts of the equations and they can enhance our understanding
of the nonlinear and non-local evolution of the filtered velocity gradient in turbulence.
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Appendix A. Derivation of filtered Navier-Stokes equations in the
strain-rate eigenframe

In this appendix, we summarize the derivation of (2.6) and (2.8) in the filtered strain-rate
eigenframe. For notation simplicity the tilde denoting filtering quantities is suppressed in
the following. The eigenvectors of the filtered strain-rate tensor {v;}, which are orthogonal
and normalized to unit length, form a basis of the three-dimensional space. The basis {v;}
varies in space and time and will be referred to as the strain-rate eigenframe. The basis {v;}
and the standard basis {e;} are related by the rotation matrix Vj;, the ith column of which
contains the components of the ith strain-rate eigenvector with respect to the standard basis

Vi=el v, (A1)

and v; = Vj;e;. The matrix Vj; is orthonormal since V};Vy; = §;;, where §; is the Kronecker
delta. Only right-oriented orthonormal bases are considered, withdet V' = 1Vux, r.
The filtered strain rate in its principal basis is
S = Sjeie] = ViSiVinviv,, = S;, 00, (A2)

km m?

where repeated indices imply summation and S} is a diagonal matrix containing the
eigenvalues A; on its diagonal. The strain-rate eigenframe, formed by the principal basis,
undergoes a rigid body rotation, since the eigenvectors {v;} remain orthonormal and right
oriented for all times. Therefore, the angular velocity @ is the same for all the eigenvectors

D, =w X v;. (A3)

Furthermore, the angular velocity of the principal basis is associated with the
anti-symmetric tensor

T T
II = I'Il-je,»ej = EiijD'keiej , (A 4)

whose components in the principal basis are

The factor 1/2 is not in this definition because w is not a curl but the actual angular
velocity of the strain eigenframe. The dynamical equation for the strain-rate eigenvectors
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(A 3) in the eigenframe can be rewritten using (A 5)
Dyw; = Ty ViiViguv,, = 11,0, (A6)
The time derivative of the strain rate can be now expressed in the strain-rate eigenframe
DS =D, (Sjviv]) = D,S;vv| + S v + ShvdTlv/ (A7)
that is, adjusting the indices,
DS = (D,S; + IT;S;; — S;.I1;) v, (A8)

The term due to the rotation of the eigenframe is the commutator between the
anti-symmetric tensor associated with the rotation of the strain-rate eigenbasis and the
strain itself

(1.S]=1-S—S-1 = (IT;S;; — S; IT;) v (A9)

The equation for the filtered strain rate in its eigenframe is obtained by using (A 7) into
(2.6) and then projecting (2.6) along v,-va.

St =0, (A 10a)
D,S; + IS — STy = =838y + § (08 — wfw)) — Hy* + H* —Hi*, (A 10b)

ij

where Hi’;*, Hl.‘]f* and H;* defined in the main text (2.11a—c), are the components of
the pressure, viscous and sub-grid symmetric contributions in the strain-rate eigenbasis.
Equations (2.10) follows by splitting (A 10) into its diagonal and off-diagonal parts and
noting that the commutator (A 9) has zeros along its diagonal.

Similarly, the vorticity time derivative is expressed in the eigenframe using (A 6)
Diw = D, (w}v;) = (D} + Myw;) v;, (A11)

and the vorticity equation in the strain eigenframe (2.12) follows by projecting the vorticity
equation (2.8) along v; and using (A 11).

Appendix B. Preserving incompressibility and positive definiteness in
de-aliased computation of the pressure Hessian

In this appendix, we discuss an issue that arises when computing the pressure Hessian
HP, which, if not handled correctly, leads to a violation of the incompressibility constraint,
which, for the unfiltered fields, reads

Tr(H" +A4-A4) =0. B1)

This issue was is part discussed in Cheng & Cantwell (1996). However, there are additional
complications not discussed in that paper which, to the best of our knowledge, have
been overlooked in previous work. We discuss the issues in one spatial dimension for
simplicity; however, the conclusions are easily extended to three dimensions by separation
of variables.

In a spectral representation, aliasing errors arise when one attempts to represent a field
that has active Fourier modes with wavenumbers larger than the maximum wavenumber
that is resolved by the discrete numerical grid (Canuto er al. 1988). In the NSE, the
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nonlinear term naturally tends to violate this constraint, since even if the initial field
is resolved by the grid, the nonlinear term can excite Fourier modes with wavenumbers
larger than what the grid can resolve. The maximum wavenumber that can be represented
on the grid is the Nyquist wavenumber Ny,, = N/2 (here N is the number of grid
points and the grid resolution is Ax = 2w /N) and wavenumbers exceeding the Nyquist
wavenumber, |k| > Ny,,, are aliased to wavenumbers mod(k, N/2) € (—=N/2,N/2). The
convective nonlinear term requires the computation of products of the velocity field with
itself and, since the velocity field is represented as the superposition of N Fourier modes,
then the nonlinear convective term involves 2N active Fourier modes, which cannot be
represented on the grid. In order to remove the aliasing error, the Fourier transform of
the velocity field is set to zero at wavenumbers |k| > N/3 and it is easily shown that
the resulting nonlinear convective term is not aliased at wavenumbers |k| < N/3 (Orszag
1971). However, the nonlinear convective term still involves aliased wavenumbers in the
range N/3 < |k| < N/2, and these are removed once the convolution sum is transformed
back to Fourier space by setting to zero the amplitudes associated with |k| > N/3. The
algorithm sketched above, the 2/3 rule, is very well known, and is the basis of the majority
of pseudo-spectral codes.

Having summarized the de-aliasing procedure for the 2/3 rule, we may now present the
issue that arises when computing the pressure Hessian. Using the Fourier transform of the
velocity field, namely &; = F[u;], the de-aliased pressure Hessian is computed as

Cpg = F ' [i,B1/3) F " [2,B1)3] . (B 2a)
k,k,
HY = F [kikj%f (Co] Bm} , (B2b)

where F indicates the Fourier transform and B,,; is the box function, B,/;;(k) =1 for
|k| < N/3 and zero otherwise. The velocity gradient A; is constructed from ; as

Aif == f_l [kjl’/\tiB]/3] . (B 3)

However, computing Hg and A; in this way violates (B 1), and our data indicate that it
may be significantly violated. This issue was pointed out in Cheng & Cantwell (1996),
who noted that the violation arises because when computed in this way, 4 - A effectively
contains information at higher wavenumbers than does H”. They did not, however, provide
a method to address the issue, but simply noted that their results were affected by it.

One way to ensure that (B 1) is satisfied is to apply an additional truncation step when
computing 4 - A, namely

Ao = 7 [F[Ashu] B, B

with A; on the right-hand side constructed using (B 3). Using (B 2) and (B 4) satisfies
(B 1). However, (B 4) violates the fundamental constraint A;A; > 0. This is because the
additional truncation in Fourier space described by (B 4) corresponds to the convolution
of AA with the sinc function in physical space (Beylkin 1995), and this function takes on
negative values. Our data indicate that violations of A;A; > 0 through the use of (B 4) can
be significant, and therefore this method should be rejected.
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In order to satisfy A;A; > 0 and (B 1), we truncate the Fourier transform of the velocity
field at |k| < N/4 so that quadratic products such as A;A;, are resolved on the grid, and
no additional truncation or de-aliasing is required. Therefore, in our paper, the pressure
Hessian is computed using

Cog = F " [pB11a] 7~ [i14B1y4] (B 5a)
k,k,
= F [ki@%f [c,,q]} , (B 5h)
together with
AjAm = —F " [kiitiBy/a] F~" [knitiB1/a] , (B6)

where B, 4 is the box function, B, ,4(k) = 1 for |k| < N/4 and zero otherwise. Moreover,
for consistency, all quantities were computed from the N/4 truncated velocity field.
A consequence of this is that the smallest filtering scale that can be considered in our
analysis is £y = 21 /(N /4) ~ Tn.

Appendix C. Results using Gaussian filter

In this paper, we have used the sharp spectral filter for studying the multiscale dynamics
of the velocity gradients in turbulence from a strain-rate eigenframe perspective. It is
instructive and interesting to see how the results are affected by a different filtering
operator. To this end, we present in this appendix a few results computed by employing
a Gaussian filter. In particular, we choose the following form of the filtering kernel in
Fourier space:

G(k) = exp(—k*£}/12), (C1)

where k = ||k|| denotes wave vector magnitude and £; denotes the filter width. Filtering
consists of a multiplication in Fourier space, and the filtered field @(x, ¢) is computed as
(Pope 2000)

a(x,t) = F'[Gk)Flulk, D], (C2)

where F1-] denotes Fourier transformation. In physical space, this filtering corresponds
to convolution of the unfiltered field u with a Gaussian kernel. We set £; = £, where £,
is defined in § 3 as the physical space filtering scale corresponding to a spectral cutoff
wave number kx. For consistency with the method employed for the sharp spectral filter
described in appendix B, all quantities were computed from the N /4 truncated velocity
field.

Most of the low-order statistics depend weakly on the specific choice of the filtering,
while the statistics of the sub-grid stress can depend on the specific choice of the filtering,
since the filtering enters the definition of that term itself. The results for the average
contributions to the rate of change of the strain-rate eigenvalues with Gaussian filtering,
shown in figure 18, display a weak dependence on filtering for all quantities except the
sub-grid stress, as compared to figure 1. The average stabilizing effect of H3} is still
observed and also the tendency of Hj5 to hinder the growth of positive intermediate
eigenvalues, on average. However, the term H{;", which for the sharp filtering is on average
very small compared to the other terms in the equation, becomes comparable to H3}.

The results for the average contributions to the rate of change of the eigenframe vorticity
components squared computed with Gaussian filtering are shown in figure 19. Again, all
average contributions are only weakly sensitive to change from sharp spectral to Gaussian
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FIGURE 18. Gaussian filter results of (a) average and (b) variance of the terms in (2.10b),
normalized by the time scale 7, and plotted as a function of the filtering scale ¢ /1. Different
colours distinguish the various terms, while different line types and symbols refer to different
components of those terms.

(a) 020 — ' (0)
0.15/0- 9 9770-C-0-0-0. 5. 5-0-0 10" A pp
0.10 Bl =T A %
| § % o
S 005 =% 2= % §M§§ - g
) & LT e ST S ]
To0E o i
005 [ B75 |03 e
e S . T A
_0.10\87E --%—-- %—&—3— S EE-E o IRCS 1041} \*\‘:%é"t“a@
—0.15 b~ A 10-5 s RSO
10! 10? 10! 10?
Ef/n l /n
o o A wi? N o -Ifwref A -lfefe; e lfefo]
o 2ot A 2wl S 2P0} o~ w} A —Q2Fw} e —2Pw}

FIGURE 19. Gaussian filter results of (a) average and (b) variance of the terms in (4.2),
normalized by the time scale 7, and plotted as a function of the filtering scale £ /7. Different
colours distinguish the various terms, while different line types and symbols refer to different
components of those terms.

filtering, except sub-grid stress contributions. As an example, in contrast to the sharp
spectral filter results, the term $27*w3 becomes on average very small compared to other
27w, terms across all scales.

Since the sub-grid stress is expected to be the most sensitive to the properties of the
filtering kernel, we now analyse its correlations with pressure Hessian and viscous stress
for Gaussian filtering. The correlation between the symmetric part of the sub-grid stress
and filtered pressure Hessian for Gaussian filtering is shown in figure 20(a). Consistently
with the results for sharp filtering in figure 15(a), the two quantities are negatively
correlated, indicating that sub-grid stress and pressure Hessian tend to act on the strain
eigenframe components of the velocity gradient in opposite ways. Also, the intermediate
principal components H3; and H}; remain the most correlated. However, the correlation
coefficients are quantitatively affected by the shape of the kernel and, in particular, the
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FIGURE 20. Gaussian filter results of correlation coefficient, ¥ (X, Y) between (a) the sub-grid
stress and pressure Hessian and between (b) the sub-grid stress and the symmetric part of the
viscous stress, plotted as a function of the filtering length £7/1.

correlation between the principal components of H* and H” is larger for Gaussian filtering
than for sharp filtering. These relatively large correlations have positive implications for
modelling, since the same reasoning and modelling approach used for pressure Hessian
can apply to the sub-grid stress as well. A modelling strategy is, for example, in terms of
tensor function representation (Pennisi & Trovato 1987).

The correlation between sub-grid and filtered viscous stresses for Gaussian filtering is
shown in figure 20(b). While the qualitative trends are consistent with the results obtained
with sharp filtering in figure 15(b), the correlation between Hj;" and H,; is positive
for Gaussian filtering and slightly negative when a sharp filter is employed. This is in
agreement with the changes observed for the average of H|;" in figure 18 with respect to
the results obtained with sharp filtering, shown in figure 1. Moreover, the components
H3 and Hj}, which are almost uncorrelated for sharp filtering, are weakly correlated
when a Gaussian kernel is employed. Despite these differences, the broad qualitative
trends of the correlations across the scales with sharp and Gaussian filtering remain
similar.
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and plotted as a function of the filtering scale £ /n for Rey, = 224. Different colours distinguish
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terms.
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FIGURE 22. (a) Average and () variance of the terms in (4.2), normalized by the time scale 7,
and plotted as a function of the filtering scale £ /n for Re, = 224. Different colours distinguish
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terms.

Appendix D. Reynolds number effect for contributions to eigenvalue and
vorticity component dynamics

In this appendix, we present the results for contributions to eigenvalue and vorticity
component dynamics using a sharp spectral filter for a smaller Taylor Reynolds number of
Re, = 224. The simulation parameters can be found in Ireland et al. (2016a,b). Figures 21
and 22 are very similar to results presented in figures 1 and 2 respectively that correspond
to the higher Re,, indicating a weak dependence on the Reynolds number, at least for
the range considered. These results also show that the average contributions to the time
derivative of the ordered strain-rate eigenvalues and eigenframe vorticity components are
well converged and robust statistics, since the same trends and values are obtained for
those quantities from completely independent simulations.
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