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Suppose we have n objects of different weights. We randomly sample pairs of objects,
and for each sampled pair use a balance scale to determine which of the two objects is
heavier. It is assumed that the sequence of sampled pairs is iid, each selection uniformly
distributed on the set of n(n − 1)/2 pairs. We continue sampling until the first time that
we can definitively identify the heaviest of the n objects. The problem of interest is to
compute the expected number of selected pairs.

1. INTRODUCTION AND SUMMARY

Balance scale problems have generated considerable interest. Many are presented and dis-
cussed online and can be accessed through Google. The following problem was brought to
my attention by Professor Robert Blau of Baruch College, to whom I am most grateful.

A balance scale can determine which of the 2 objects is heavier. It does not provide
weights or differences in weight. Suppose we have n objects and we randomly sample pairs,
(i, j). The sequence of sampled pairs are assumed i.i.d., each uniformly distributed among
the

(
n
2

)
pairs. At each stage we may use the balance scale to determine which of the two

chosen objects is heavier, if we do not already know from previous comparisons. It is assumed
that all objects differ in weight and that the balance scale does a perfect job of comparisons.
The problem is to compute ETn, where Tn is the random number of selections made until
we determine which of the objects is the heaviest.

Our main result is that,

ETn(
n
2

)

is an inceasing sequence with limit c, where

1.254768 < c < 1.255575. (1)

The value of the constant c can be pinned down further by our methodology.
The above problem can be viewed as a coupon collecting problem. It can also be

interpreted in terms of exponential order statistics. If X1 . . . Xn are i.i.d. exponentially
distributed with mean 1, and Y1 < Y2 · · · < Yn are the corresponding order statistics, then
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we will derive,

ETn+1(
n+1

2

) = E

[
max

1≤j≤n
(Yj − Yj−1)

]
= E

[
max

1≤j≤n

Xj

j

]
, and

c = lim
n→∞E

[
max

1≤j≤n
(
Xj

j
)
]

.

Maximums of independent exponential random variables arise in reliability (Barlow and
Proschan [1], p. 83), in coupon collecting models (Ross [3], p. 314), and in relaxation times
for a class of time reversible Markov chains (Brown [2], p. 378).

The expected maximum can be expressed as a sum of 2n − 1 terms, but this is hardly
computationally useful for large n. Section (4.6) of Pekoz and Ross [4], points out and
addresses this problem, suggesting clever techniques for obtaining bounds. The approach
followed here is more accurate for this particular case, but involves more computation than
the Pekoz–Ross approach.

2. DERIVATION OF RESULTS

Suppose that item i1 is the heaviest, i2 the second heaviest, and so on until item in, the
lightest. Define,

Cr = {(i1, ir), (i2, ir) . . . , (ir−1, ir)}, r = 2, . . . , n.

We know which of the items are heaviest as soon as we have sampled at least one
member from each of C2, . . . , Cn. This is because any comparison in Cr tells us that item
ir is not the heaviest. We do not know which item is heaviest prior to sampling at least
one member from each of C2 . . . Cn. For example if we have no comparison in Cr, then even
with all the remaining comparison pairs we cannot conclude that i1 is heavier than ir.

Now, P (Cr) = (r − 1)/
(
n
2

)
, r = 2, . . . n.

The problem thus reduces to one of multinomial trials with, pr = P (Cr), r = 2, . . . , n,
in which we sample until we obtain one observation from each category. This is equivalent
to the coupon collecting problem with coupon probabilities, pr, r = 2, . . . , n.

Consider n − 1 independent Poisson processes with rates pr, r = 2, . . . n. The superim-
posed Poisson process has rate 1. Each time an event occurs in the superimposed process,
the probability that it arose in process r, equals pr, independently of all other events. Thus,
the discrete time coupon collecting problem is replaced by a continuous time process for
which the mean time between coupons equals one. The discrete and continuous time mean
waiting times (until at least one of each type) are identical.

Let {εi, i ≥ 1} denote i.i.d. exponential random variables with mean 1. Then,

ETn = E max
(

εj

pj
, j = 2, . . . , n

)
= E max

((
n

2

)
ε�

�
, � = 1, . . . , n − 1

)

=
(

n

2

)
E max(

ε�

�
, � = 1, . . . , n − 1). (2)
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Define Zn = max1≤j≤n( εj

j ), μn = EZn. Note that ETn+1 =
(
n+1

2

)
μn. Next,

μn − μn−1 = E
[
I εn

n >Zn−1

(εn

n
− Zn−1

)]

= Pr(
εn

n
> Zn−1)E

(εn

n
− Zn−1|εn

n
> Zn−1

)

=
1
n

Pr(
εn

n
> Zn−1) (lack of memory property). (3)

Defining, γj = Pr(εj/j > Zj−1) with γ1 = 1, then from (3),

μn =
n∑

j=1

γj

j
. (4)

Define, Aj = {(εj/j) > (εn/n)}, j = 1, . . . , n.
It follows that, γn = 1 − Pr(Un

1 Aj), By the inclusion–exclusion formula (Ross [3],
p. 584),

γn

n
=

∑
αεBn−1

(−1)|α| 1
n + sα

(5)

where Bn−1 is the collection of the 2n−1 subsets of {1, . . . , n − 1}, α is a subset of {1, . . . , n −
1}, with cardinality |α|, and Sα =

∑
jεα j. As,

Pr(Zn−1 ≤ t) =
n−1∏

1

(1 − e−jt) =
∑

Bn−1

(−1)|α|e−Sαt

it follows that,

L
(s)
n−1

s

def=
Ee−sZn−1

s
=

∑
Bn−1

(−1)|α| 1
Sα + s

. (6)

From (5) and (6),

γn

n
=

L
(n)
n−1

n
. (7)

Next,

Ln(s) = Ee−sZn =
∑
Bn

(−1)|α| 1
Sα + s

=
∑

Bn−1

(−1)|α| 1
Sα + s

−
∑

Bn−1

(−1)|α| 1
Sα + s + n

.

Thus,

Ln(s) =
L

(s)
n−1

s
− L

(s+n)
n−1

s + n
. (8)

From (7) and (8),

γn

n
=

L
(n)
n−1

n
=

L
(n)
n−2

n
− L

(2n−1)
n−2

2n − 1
. (9)

Now, L0(s)/s = 1
s , and a(s) def= �L1(s)/s = 1/s(s + 1). Then, E(Z2 − Z1) = γ2/2 =

L0(2)/2 − L0(3)/3 = a(2) = 1/6

E(Z3 − Z2) =
γ3

3
=

L1(3)
3

− L1(5)
5

= a(3) − a(5) =
1
20

. (10)
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TABLE 1. EZj , j = 1, 2 . . . 12

j EZj
1 1
2 7|6 = 1.166667
3 73|60 = 1.216667
4 89|72 = 1.236111
5 1.244902
6 1.249295
7 1.251653
8 1.252989
9 1.253780
10 1.254265
11 1.254571
12 1.254769

We continue in this manner. To go from γn/n to (γn+1)/(n + 1), we replace a term
a(k) appearing in γn/n by a(k + 1) − a(k + n). For example from (10) we replace a(3) by
a(4) − a(7) and a(5) by a(6) − a(9). This yields,

γ4

4
= a(4) − a(6) − a(7) + a(9) =

7
360

(11)

Applying this procedure to (11) we obtain,

γ5

5
= a5 − a7 − a8 − a9 + a10 + a11 + a12 − a14 =

4
455

.

For n even, the terms ak and a(
(
n+2

2

) − k − 2) have the same coefficients. For n odd,
their coefficients are of opposite sign with the same absolute values. The next term is,

γ6

6
= a(6) − a(8) − a(9) − a(10) + a(12) + 2(a(13))

+ a(14) − a(16) − a(17) − a(18) + a(20)

= 0.0043923182. (12)

Continuing in this manner we compute EZj for j = 1, 2, . . . , 12. The values in the table 1
are rounded off to 6 decimal places.

Thus, for example,

ET13 =
(

13
2

)
EZ12 ≈ 97.871954.

Remark. The order statistics interpretion for, ETn+1/
(
n+1

2

)
, follows because {Yj −

Yj−1, j = 1, . . . , n} are independent exponential random variables with parameters, {n −
j + 1, j = 1, . . . , n}, and thus max(Yj − Yj−1) is distributed as the maximum of n i.i.d.
exponentials with parameter 1. It follows that for Yule process with parameter 1 (Ross [3],
p. 377), the constant c can be interpreted as the mean of, T = maxn Tn, where Tn is the
waiting time to go from state n to state n + 1. I tried to compute c from the distribtion of
T , but had no success.

3. UPPER BOUND

For n ≥ 14 we know that ETn >
(
n
2

)
EZ12 but we do not yet have an upper bound. To

obtain an upper bound observed that for r < n,

γ(r, n) def= Pr
(εn

n
> Zr

)
≥ Pr

(εn

n
> Zn−1

)
= γn.
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Consequently for n ≥ m + 1 > r

E(Zn − Zm) =
n∑

j=m+1

γj

j
≤

n∑
j=m+1

γ(r, j)
j

.

For the choice r = 6 we compute, for j > 6,

γ(6, j)
j

=
L6(j)

j
=

1
j
− 1

j + 1
− 1

j + 2
+

1
j + 5

+
2

j + 7
− 1

j + 9
− 1

j + 10

− 1
j + 11

− 1
j + 12

+
2

j + 14
+

1
j + 16

− 1
j + 19

− 1
j + 20

+
1

j + 21
. (13)

For n ≥ 13,

E(Zn − Z12) =
n∑
13

γj

j
≤

n∑
13

γ(6, j)
j

.

Define, Hm =
∑m

1
1
j , then

∑n
j=13 [1/(j + k)] = Hn+k − H12+k. Applying the summation to

each term in (13), and collecting like terms we obtain,

n∑
13

γ(6, j)
j

= f(12) − f(n)

where

f(k) =
1

k + 1
−

(
1

k + 3
+

1
k + 4

+
1

k + 5

)
+ 2

(
1

k + 8
+

1
k + 9

)
+

1
k + 10

− 1
k + 12

− 2
(

1
k + 13

+
1

k + 14

)
+

(
1

k + 17
+

1
k + 18

+
1

k + 19

)
− 1

k + 21
,

with f positive and decreasing to 0 as k → ∞.

TABLE 2. Possible log convexity of da, and log concavity of en

n dn en

1 0.166667 1.800000
2 0.300000 1.296296
3 0.388889 1.162593
4 0.452119 1.105076
5 0.499626 1.074455
6 0.536826 1.056004
7 0.566890 1.043935
8 0.591797 1.035564
9 0.612844 1.029299
10 0.630799 1.025332

dn =
γn+1/n+1

γn/n
,

en =
dn+1

dn
. (14)
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Consequently, for n ≥ 13,

EZ12 < EZn < EZ12 + f(12) − f(n) < EZ12 + f(12).

As f(12) = 0.0008069041 and EZ12 = 1.254769 it follows that for n ≥ 13 that,

1.254769 < EZn < 1.255576

and that c = lim EZn falls in this same range. Thus, result (1) has been obtained.

Additional Remarks
Based on the calculation of γj/j, j = 1, . . . , 12, numerical calculations suggest the

possibility that,

dn
def=

γn+1/(n + 1)
γn/n

is increasing in n and thus that γn/n is a decreasing log convex sequence.
It also appears plausible that

en
def=

dn+1

dn

is decreasing in n, and thus that dn is an increasing log concave sequence.
I pose the problem of further investigating these possibilities. Perhaps the complete

monotonicity property of Laplace transforms is relevant to the solution. Table 2 provides
some numerical evidence.
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