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In this paper we develop the nonlinear motion equations in terms of the true anomaly varying
Tschauner–Hempel equations relative to a notional orbiting particle in a Keplerian orbit, rela-
tively close to an orbiting primary satellite to estimate the position of a spacecraft. A second
orbiting body in Earth orbit relatively close to the first is similarly modelled. The dynamic rela-
tive motion models of the satellite and the second orbiting body, both of which are modelled in
terms of independent relative motion equations, include several perturbing effects, such as the
asymmetry of the Earth gravitational field resulting in the Earth’s oblateness effect and the third
body accelerations due to the Moon and the Sun. Linear control laws are synthesised for the
primary satellite using the transition matrix so it can rendezvous with the second orbiting body.
The control laws are then implemented using the state estimates obtained earlier to validate
the feedback controller. Thus, we demonstrate the application of a Linear Quadratic Nonlinear
Gaussian (LQNG) design methodology to the satellite rendezvous control design problem and
validate it.
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1. INTRODUCTION. The control of a satellite approaching another or any other orbit-
ing body for purposes of engineering a smooth rendezvous is an important problem that
has received considerable attention in the literature. Rendezvous and docking requires
that the relative velocity and position of the chaser spacecraft be within stringent speci-
fied requirements for capture and berthing or docking with the help of a robotic arm as
noted by the National Aerospace and Space Agency’s (NASA’s) mission operations direc-
torate in NASA (2011), regarding several missions of the space shuttle. The linearized
relative motion dynamics were first developed by Hill (1878) who was the first to linearize
a set of equations to describe the motion of the moon relative to the Earth. Clohessy and
Wiltshire (1960) published one of the most frequently used equations for relative satellite
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motion for studying satellite rendezvous. Since the publication of the true anomaly-based
TH equations by Tschauner and Hempel (1965), for the motion of one spacecraft rela-
tive to another, there have been a number of applications of these dynamical equations to
spacecraft rendezvous and other related control problems. Coverstone-Carroll and Trussing
(1993) were among the first to use the linearized true anomaly varying Tschauner-Hempel
(TH) equations to design optimal rendezvous orbits. Yao et al. (2010) have considered the
problem of orbit design for autonomous rendezvous based on relative orbit elements. Cui
et al. (2011) have discussed the output feedback control of elliptical orbital rendezvous
using solutions of the state-dependent Riccati differential equations. They used a linearized
version of the TH equations for describing the relative motion of the approaching or chaser
spacecraft. They have also reviewed the literature on the application of the linearized TH
equations prior to the publication of their paper. Yazhong et al. (2014) have presented a sur-
vey of orbital dynamics and the control of space rendezvous. In his PhD, Felisiak (2015)
dealt with the problem of the control of a spacecraft for performing a rendezvous manoeu-
vre while in an elliptical orbit by the methodology of model predictive control. Hartley
et al. (2013), Leomanni et al. (2014) and Weiss et al. (2015) have applied model predictive
control synthesis techniques to satellite rendezvous and proximity control problems.

Capó-Lugo and Bainum (2007) have presented active control schemes based on the
linearized TH equations to maintain the separation distance constraints for a NASA bench-
mark tetrahedron satellite constellation. This a particular version of the formation control
problem that involves the proximity control of two or more satellites, albeit a collision
avoidance problem often involving the use of Artificial Potential Field (APF) to ensure
that the satellites do not run into each other. Cho and Udwadia (2010) have provided
an explicit solution to the full nonlinear problem for satellite formation-keeping. Capó-
Lugo and Bainum (2011) have discussed the implementation of formation flying control
for highly elliptical orbits. Condurache (2012) discusses spacecraft relative orbital motion,
particularly focussing on obtaining closed form solutions for the motion. These are use-
ful in synthesising analytic control laws to precisely control the relative motion. Nicholas
(2013) considered the twin problems of attitude and formation control design and system
simulation for a three-satellite CubeSat mission. Dwidar and Owis (2013) have adopted the
linearized true anomaly varying Tschauner-Hempel equations, augmented to include the
effect of J2, to study the optimal control of the relative motion of formation flying consist-
ing of two spacecraft. Palacios et al. (2013) have studied the synthesis of an autonomous
distributed Linear Quadratic Regulator (LQR) and APF-based control laws for swarms
of CubeSats manoeuvring in eccentric orbits. Perez (2017) has applied relative motion
dynamic models using curvilinear coordinate frames to derive and validate an angles-only
initial relative orbit determination algorithm using three line-of-sight observations or six
angle measurements.

In this paper we develop the nonlinear true anomaly varying TH equations relative to a
notional orbiting particle, in a Keplerian orbit, relatively close to an orbiting primary satel-
lite particularly in the presence of perturbing control accelerations. A second orbiting body
in Earth orbit relatively close to the first is also modelled in terms of the nonlinear true
anomaly varying TH equations. The linearized control laws are then synthesised based on
these equations. The control inputs are scaled by similar scale factors used to scale the posi-
tion coordinates in the original derivation by Tschauner and Hempel (1965). The dynamic
relative motion models of the satellite and the other orbiting body, both of which are mod-
elled in terms of independent relative motion equations, include several perturbing effects,
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such as the asymmetry of the Earth gravitational field resulting in the Earth’s oblateness
effect and the third body accelerations due to the Moon and the Sun. The non-autonomous,
nonlinear, true anomaly varying TH equations are used along with an Unscented Kalman
Filter (UKF) to estimate the position of the primary spacecraft relative to the secondary
orbiting body and the position of the secondary orbiting body relative to the notional body
in Keplerian orbit. The performance of the state estimator is evaluated using an example of
an Earth orbiting satellite at an altitude of over 1,200 km with debris in close proximity. It is
shown that, with an additional post-processing filter, the estimates of position and velocity
components of the primary satellite and the second orbiting body track the corresponding
simulated position and velocity components within acceptable error magnitudes. Control
laws are synthesised for the primary satellite using a finite horizon approach so it can come
arbitrarily close to and rendezvous with the second orbiting body. The control laws are then
implemented using the state estimates obtained earlier to validate the feedback controller
using the TH equations. Thus, we demonstrate the application of a Linear Quadratic Non-
linear Gaussian (LQNG) design methodology to the satellite rendezvous control design
problem and validate it.

2. RELATIVE MOTION DYNAMICS. In the primary satellite’s Local Vertical Local
Horizontal (LVLH) frame, the position vector ro of the secondary orbiting body is given
by the following,

ro = r + �ρ = (r + x) i + yi + zk, ro · ro = (r + x)2 + y2 + z2, (1)

where r is the position vector of the primary satellite, r is the magnitude of r and
�ρ = xi + yi + zk is the position vector of the secondary orbiting body relative to the pri-
mary satellite. The angular velocity and acceleration of the LVLH frame, which is moving
with the primary satellite, are given by ω = ḟ k =

(
h/hr2

)
k and α = f̈ k = − (2ṙ/r) ω =

− (2ṙ/r)
(
h/r2

)
k respectively, where f is the true anomaly and h = |r × ṙ| is the magni-

tude of the orbital angular momentum. Using Kepler’s two body equations of motion for the
primary satellite and for the secondary orbiting body both orbiting the Earth, r̈ = −μe/r2

and r̈o = −μero/r3
o respectively, the vector equations of relative motion dynamics defining

the temporal evolution of �ρ , under the influence of net perturbation acceleration vector
ap are,

d2 �ρ
dt2

= −μe

(
(r + �ρ)

3

|r + �ρ|3 − r
r3

)
+ ap , (2)

where ap = apo − aps, aps and apo are the perturbation accelerations due to the third body
effects and Earth oblateness acting on the primary satellite and on the secondary orbiting
body, which can be obtained from Vepa (2017). From kinematics, the equation of motion
for the secondary orbiting body in the primary satellite’s LVLH frame is given by the
following:

r̈o = r̈ + ρ̈ + 2ω × ρ̇ + ω × (ω × ρ) + α × ρ. (3)
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Thus, in component form we have,

ẍ − 2ḟ ẏ − ḟ 2x − f̈ y = apx +
(
μe/r2)− μe (r + x)/|r + �ρ|3, (4a)

ÿ + 2ẋḟ − ḟ 2y + f̈ x = apy − μey/|r + �ρ|3, (4b)

z̈ = apz − μez/|r + �ρ|3. (4c)

In matrix notion, after including the linear terms of the right-hand sides, in the left-hand
side of the equation,

⎡
⎣ẍ

ÿ
z̈

⎤
⎦ + ḟ

⎡
⎣0 −2 0

2 0 0
0 0 0

⎤
⎦
⎡
⎣ẋ

ẏ
ż

⎤
⎦ +

⎡
⎣−ḟ 2 − 2

(
μe/r3

) −f̈ 0
f̈ −ḟ 2 +

(
μe/r3

)
0

0 0
(
μe/r3

)
⎤
⎦
⎡
⎣x

y
z

⎤
⎦

=

⎡
⎢⎢⎢⎣

apx −
(
μe (r + x)/ |r + �ρ|3 − (

μe/r2
)
(1 − 2x/r)

)
apy −

(
μey/ |r + �ρ|3

)
+
(
μe/r2

)
(y/r)

apz −
(
μez/ |r + �ρ|3

)
+
(
μe/r2

)
(z/r)

⎤
⎥⎥⎥⎦ (5)

Ignoring the right-hand sides’ results in the equations which are called the Linearized
Equations of Relative Motion (LERM). Equations (5) are the Nonlinear Equations of
Relative Motion (NERM), which can be expressed as,

⎡
⎣ẍ

ÿ
z̈

⎤
⎦ + ḟ

⎡
⎣0 −2 0

2 0 0
0 0 0

⎤
⎦
⎡
⎣ẋ

ẏ
ż

⎤
⎦ +

⎡
⎣−ḟ 2 − 2

(
μe/r3

) −f̈ 0
f̈ −ḟ 2 +

(
μe/r3

)
0

0 0
(
μe/r3

)
⎤
⎦
⎡
⎣x

y
z

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

apx +
μer
r3

(
1 − 2

x
r

−
(

1 +
x
r

)(
1 + 2

x
r

+
x2 + y2 + z2

r2

)−3/2
)

apy +
μey
r3

(
1 −

(
1 + 2

x
r

+
x2 + y2 + z2

r2

)−3/2
)

apz +
μez
r3

(
1 −

(
1 + 2

x
r

+
x2 + y2 + z2

r2

)−3/2
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

To obtain the Hill Clohessy Wiltshire (HCW) equations, we let ḟ − n = f̈ = 0, ḟ 2 =
μe/r3 = n2, where n represents the mean rate of motion of the primary satellite or the mean
motion. The system can be described by the state vector x = [x y z ẋ ẏ ż]T. In state-space
form, the LERM are given by the equation, ẋ = A(t)x, where

A(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

ḟ 2 + 2μe/r3 f̈ 0 0 2ḟ 0
−f̈ ḟ 2 − μe/r3 0 −2ḟ 0 0
0 0 −μe/r3 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (7)
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The matrix A(t) is time varying as r, ḟ , f̈ vary with time. Thus A(t) is periodic with the
period equal to T = 2π/n. The NERM may be expressed compactly as,

d2

dt2

⎡
⎣x

y
z

⎤
⎦ = −ḟ 2Klerm

⎡
⎣x

y
z

⎤
⎦− ḟ Glerm

d
dt

⎡
⎣x

y
z

⎤
⎦ +

⎡
⎣ãnx

ãny
ãnz

⎤
⎦ , (8a)

where,

Klerm =
1

ḟ 2

⎡
⎢⎢⎢⎣

−ḟ 2 − 2
μe

r3 −f̈ 0

f̈ −ḟ 2 +
μe

r3 0

0 0
μe

r3

⎤
⎥⎥⎥⎦ , Glerm =

⎡
⎣0 −2 0

2 0 0
0 0 0

⎤
⎦ (8b)

and ⎡
⎣ãnx

ãny
ãnz

⎤
⎦ =

⎡
⎢⎢⎢⎣

apx −
(
μe (r + x) / |r + �ρ|3 − (

μe/r2
)
(1 − 2x/r)

)
apy −

(
μey/ |r + �ρ|3

)
+
(
μe/r2

)
(y/r)

apz −
(
μez/ |r + �ρ|3

)
+
(
μe/r2

)
(z/r)

⎤
⎥⎥⎥⎦ . (8c)

3. DERIVATION OF THE NONLINEAR CONTROLLED TH EQUATIONS. The TH
equations are obtained by using the true anomaly f as the independent variable. Moreover,
Tschauner and Hempel (1965) also apply a coordinate scaling prior to transforming the
equations. The scaled state variable x̃ is related to the original state by the relation, x̃ =
(1 + e cos f ) x. Further,

d/df = d/ḟ dt =
(
r2/h

)
d/dt, r = p/ (1 + e cos f ) , (9)

where p is the semi-latus rectum and h =
√

μp . It follows that,

dx̃
df

= −ex sin f + (1 + e cos f )
dx
df

,
dx
df

=
r2

h
dx
dt

=
p2

h (1 + e cos f )2

dx
dt

. (10)

Thus,
dx̃
df

= −ex sin f +
p2

h (1 + e cos f )

dx
dt

, (11)

It follows that,⎡
⎣x̃

ỹ
z̃

⎤
⎦ = (1 + e cos f )

⎡
⎣x

y
z

⎤
⎦ ,

d
df

⎡
⎣x̃

ỹ
z̃

⎤
⎦ = −e sin f

⎡
⎣x

y
z

⎤
⎦ +

p2

h (1 + e cos f )

d
dt

⎡
⎣x

y
z

⎤
⎦ . (12)

The inverse transformations are,⎡
⎣x

y
z

⎤
⎦ =

1
(1 + e cos f )

⎡
⎣x̃

ỹ
z̃

⎤
⎦ ,

d
df

⎡
⎣x

y
z

⎤
⎦ =

p2

h (1 + e cos f )2

d
dt

⎡
⎣x

y
z

⎤
⎦ . (13)
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Thus

(1 + e cos f )

ḟ
d
dt

⎡
⎣x

y
z

⎤
⎦ =

d
df

⎡
⎣x̃

ỹ
z̃

⎤
⎦ +

e sin f
(1 + e cos f )

⎡
⎣x̃

ỹ
z̃

⎤
⎦ . (14)

Consequently, we obtain,

d
df

⎡
⎣x

y
z

⎤
⎦ =

e sin f
(1 + e cos f )2

⎡
⎣x̃

ỹ
z̃

⎤
⎦ +

1
(1 + e cos f )

d
df

⎡
⎣x̃

ỹ
z̃

⎤
⎦ . (15)

Thus, the transformation relating the state vector takes the form, x̃ = Tx,

x̃ =
[
x̃ ỹ z̃ x̃′ ỹ ′ z̃′]T , x =

[
x y z ẋ ẏ ż

]T , (16)

T =

⎡
⎣(1 + e cos f ) I 0

− (e sin f ) I
p2

h (1 + e cos f )
I

⎤
⎦ , T−1 =

⎡
⎢⎣

1
(1 + e cos f )

I 0

h (e sin f )

p2 I
h (1 + e cos f )

p2 I

⎤
⎥⎦ .

(17)

Furthermore,

d2

df 2

⎡
⎣x̃

ỹ
z̃

⎤
⎦ = −e cos f

⎡
⎣x

y
z

⎤
⎦ +

p2

h (1 + e cos f )

d
dt

d
df

⎡
⎣x

y
z

⎤
⎦ . (18)

Hence,

d2

df 2

⎡
⎣x̃

ỹ
z̃

⎤
⎦ = −e cos f

⎡
⎣x

y
z

⎤
⎦ +

1 + e cos f
ḟ 2

d2

dt2

⎡
⎣x

y
z

⎤
⎦ . (19)

It follows that,

d2

df 2

⎡
⎣x̃

ỹ
z̃

⎤
⎦ = −

⎡
⎣x̃

ỹ
z̃

⎤
⎦ +

1
1 + e cos f

⎡
⎣x̃

ỹ
z̃

⎤
⎦ +

1 + e cos f
ḟ 2

d2

dt2

⎡
⎣x

y
z

⎤
⎦ . (20)

Noting that p/r = (1 + e cos f ), from Equation (8a) we have,

d2

df 2

⎡
⎣x̃

ỹ
z̃

⎤
⎦ = −

⎡
⎣x̃

ỹ
z̃

⎤
⎦ +

r
p

⎡
⎣x̃

ỹ
z̃

⎤
⎦− Klerm

⎡
⎣x̃

ỹ
z̃

⎤
⎦− Glerm

⎧⎨
⎩ d

df

⎡
⎣x̃

ỹ
z̃

⎤
⎦ +

re sin f
p

⎡
⎣x̃

ỹ
z̃

⎤
⎦
⎫⎬
⎭

+
r

pḟ 2

⎡
⎣ãnx

ãny
ãnz

⎤
⎦ . (21)
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Thus,

d2

df 2

⎡
⎣x̃

ỹ
z̃

⎤
⎦ = − (Klerm + I)

⎡
⎣x̃

ỹ
z̃

⎤
⎦− re sin f

p
Glerm

⎡
⎣x̃

ỹ
z̃

⎤
⎦ +

Ir
p

⎡
⎣x̃

ỹ
z̃

⎤
⎦− Glerm

d
df

⎡
⎣x̃

ỹ
z̃

⎤
⎦

+
r

pḟ 2

⎡
⎣ãnx

ãny
ãnz

⎤
⎦ . (22)

But,

Klerm + I +
r (e sin f )

p
Glerm − r

p
I

=
(

1
ḟ

− 1
)

2re sin f
p

⎡
⎣ 0 2 0

−2 0 0
0 0 0

⎤
⎦ +

r
p

⎡
⎣−2 − 1 0 0

0 1 − 1 0
0 0 1 + 1 + e cos f

⎤
⎦ . (23)

Hence,

Klerm + I +
(e sin f )

(1 + e cos f )
Glerm − 1

1 + e cos f
I

=
(

p2

h (1 + e cos f )2 − 1
)

2e sin f
(1 + e cos f )

⎡
⎣ 0 2 0

−2 0 0
0 0 0

⎤
⎦

+
1

(1 + e cos f )

⎡
⎣−3 0 0

0 0 0
0 0 2 + e cos f

⎤
⎦ . (24)

Hence if we let,

K̃lerm =
1

(1 + e cos f )

⎧⎨
⎩
⎡
⎣−3 0 0

0 0 0
0 0 2 + e cos f

⎤
⎦

+2e sin f
(

p2

h (1 + e cos f )2 − 1
)⎡⎣ 0 2 0

−2 0 0
0 0 0

⎤
⎦
⎫⎬
⎭ ,

G̃lerm =

⎡
⎣0 −2 0

2 0 0
0 0 0

⎤
⎦ , (25)

the nonlinear controlled TH equations with control inputs ũ
(
x̃
)

are given by,

d2

df 2

⎡
⎣x̃

ỹ
z̃

⎤
⎦ = −K̃lerm

⎡
⎣x̃

ỹ
z̃

⎤
⎦− G̃lerm

d
df

⎡
⎣x̃

ỹ
z̃

⎤
⎦

+
p4

h2 (1 + e cos f )3

⎡
⎣ãnx (x̃, ỹ, z̃)

ãny (x̃, ỹ, z̃)
ãnz (x̃, ỹ, z̃)

⎤
⎦ + ũ

(
x̃
)

, (26)
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where ãn∗ (x̃, ỹ, z̃) are the perturbation accelerations expressed in terms of the scaled
coordinates. Given a full state control input vector in the scaled TH frame as,

ũ
(
x̃
)

= −K̃f x̃ = −K̃f

[
x̃ ỹ z̃

dx̃
df

dỹ
df

dz̃
df

]T

, (27)

since,

x̃ = Tx, T =

⎡
⎣(1 + e cos f ) I 0

− (e sin f ) I
p2

h (1 + e cos f )
I

⎤
⎦ , (28)

the physical control input vector is,

u(x) =
h2 (1 + e cos f )3

p4 ũ (Tx) = −h2 (1 + e cos f )3

p4 K̃f Tx

= −h2 (1 + e cos f )3

p4 K̃f T
[

x y z
dx
df

dy
df

dz
df

]T

. (29)

Thus, in terms of the original state variables the physical control input vector is,

u(x) = −Kf x = −Kf

[
x y z

dx
df

dy
df

dz
df

]T

, (30)

with

Kf = −h2 (1 + e cos f )3

p4 K̃f T

= −h2 (1 + e cos f )3

p4 K̃f

⎡
⎣(1 + e cos f ) I 0

− (e sin f ) I
p2

h (1 + e cos f )
I

⎤
⎦ . (31)

4. LINEAR QUADRATIC NONLINEAR GAUSSIAN (LQNG) DESIGN. The strat-
egy adopted to design the controller is to adopt the methodology of the linear quadratic
regulator for the synthesis of the control laws. To apply the methodology of the linear
quadratic regulator, Equations (26) must first be linearized. To linearize Equations (26)
the control input vector is expressed as, ũ

(
x̃
)

= ũ0
(
x̃
)

+ ũ1
(
x̃
)
. The control input ũ0

(
x̃
)

is
chosen in terms of ˆ̃x, ˆ̃y and ˆ̃z which are estimates of x̃, ỹ and z̃ respectively as,

ũ0
(
x̃
)

= − p4

h2 (1 + e cos f )3

⎡
⎢⎢⎢⎣

ãnx

( ˆ̃x, ˆ̃y, ˆ̃z
)

ãny

( ˆ̃x, ˆ̃y, ˆ̃z
)

ãnz

( ˆ̃x, ˆ̃y, ˆ̃z
)
⎤
⎥⎥⎥⎦ , (32)
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Thus Equations (26) reduce to,

d2

df 2

⎡
⎣x̃

ỹ
z̃

⎤
⎦ = −K̃lerm

⎡
⎣x̃

ỹ
z̃

⎤
⎦− G̃lerm

d
df

⎡
⎣x̃

ỹ
z̃

⎤
⎦

+
p4

h2 (1 + e cos f )3

⎡
⎢⎢⎢⎣

ãnx (x̃, ỹ, z̃) − ãnx

( ˆ̃x, ˆ̃y, ˆ̃z
)

ãny (x̃, ỹ, z̃) − ãny

( ˆ̃x, ˆ̃y, ˆ̃z
)

ãnz (x̃, ỹ, z̃) − ãnz

( ˆ̃x, ˆ̃y, ˆ̃z
)
⎤
⎥⎥⎥⎦ + ũ1

(
x̃
)

. (33)

The estimates of the perturbation accelerations components ãn∗
( ˆ̃x, ˆ̃y, ˆ̃z

)
are evaluated

at the mid-point of the current integration step. Thus, the right-hand side of Equation (33)
represents the error in the actual and estimated perturbation accelerations, which can be
assumed to be a disturbance vector and ignored for purposes of designing the control input
ũ1
(
x̃
)
.

However, it is often not possible to measure all the states of the system, which is in
reality a nonlinear system. Moreover, the measurements are almost always noisy. For this
reason, we adopt a nonlinear estimation methodology to reconstruct all the states from the
measurements. The nonlinear estimation methodology is based on the unscented Kalman
filter. Because the equations of motion are nonlinear, the separation theorem, which is
often adopted to justify the independent design of the control laws and the solution of the
state estimation problem, is no longer valid. Nevertheless, we will design the control input
ũ1
(
x̃
)

based on the linearized true anomaly-dependent discretized equations for the relative
motion and implement these inputs by feeding back the estimates of the states rather than
the original states of the system.

5. THE LINEAR TH EQUATIONS AND THEIR DISCRETIZATION. The linearized
TH equations in the presence of control accelerations are given by,

d2

df 2

⎡
⎣x̃

ỹ
z̃

⎤
⎦ = −K̃lerm

⎡
⎣x̃

ỹ
z̃

⎤
⎦− G̃lerm

d
df

⎡
⎣x̃

ỹ
z̃

⎤
⎦ +

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦
⎡
⎣ũ1x

ũ1y
ũ1z

⎤
⎦ . (34)

Equations (33) may be expressed as a set of first order equations in matrix form with the
true anomaly as the independent variable,

d
df

x̃ = A(f ) x̃ +
[
0 I

]T ũ1, (35a)

with,

A(f ) ≡
[

0 I
−K̃lerm −G̃lerm

]
. (35b)

The coefficients of the equation are periodic with a period T = 2π . Thus, there exists
a non-singular matrix P (f ), periodic with period T = 2π with P (0) = I, such that the

https://doi.org/10.1017/S0373463317000364 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463317000364


NO. 1 SATELLITE RELATIVE POSITION ESTIMATION AND CONTROL 53

Table 1. Orbital elements defining the initial position of the Primary Satellite and orbiting body.

a e i � ω M

Satellite 7555·5km 0·0096 0·9575◦ 0◦ 90◦ 0◦
Orbiting body 7555·5km 0.0096 0·9575◦ 0·00001◦ 90◦ 0◦

change of the variables x̃ = P (f ) z, transforms the system into a linear system with con-
stant coefficients. The Floquet transition matrix which is also known as the monodromy
matrix �(f , 0) , which determines the stability of the system with f = T, satisfies,

d
df

�(f , 0) = A(f )�(f , 0) , �(0, 0) = I. (36)

The solution x̃(f ) then satisfies,

x̃(f ) = �(f , 0) x̃(0) +

f∫
0

�(f , ϕ)
[
0 I

]T ũ1dϕ, (37)

which can also be expressed as,

x̃ (f + 	f ) = �(f + 	f , f ) x̃(f ) +

	f∫
0

�(f + 	f , f + ϕ)
[
0 I

]T ũ1(f + ϕ) dϕ. (38)

Assuming that the control input could be approximated as a constant over each
integration interval and given by ū = ũ1, we have the discrete system,

x̃(f + 	f ) = �(f + 	f , f ) x̃(f ) + 
(f + 	f , f )ū(f ) , (39)

with,


(f + 	f , f ) =

	f∫
0

�(f + 	f , f + ϕ)
[
0 I

]T dϕ. (40)

The discrete system given by Equation (39) may be expressed as,

x̃(k + 1) = Ã(k)x̃(k) + B̃(k) ū(k) . (41)

Equation (41) may be used to synthesise an optimal control law.

6. LINEAR QUADRATIC REGULATOR DESIGN. The design process for the
discrete-time Linear Quadratic Regulator (LQR) with a finite final time when magnitude
constraints are imposed on the state and control variables is discussed in this section. A
finite final time quadratic performance index could be used, so the Q and R weighting
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Figure 1. The simulated and estimated [x y z] position coordinates of the primary satellite, relative to the
secondary orbiting body in the closed loop case with the optimal control law.

matrices will have to be chosen and an algebraic Riccati equation must be solved. In the
absence of terminal constraints, the performance index is of the form:

J =
1
2

N−1∑
k=0

(
x̃T

k Qx̃k + ūT
k Rūk

)
. (42)

When a spacecraft is actuated upon by thrusters, the thrusts generated are small. Typ-
ically, a thruster generates thrusts from 1-2 N. Thus, it is essential that in the design of
the control laws the elements of the matrix R are of the order of 101 or more. During a
controlled rendezvous the position coordinates are reduced from 10-100 m to less than a
millimetre. Thus, the elements of the matrix Q are of the order of 105 or less. An iterative
process is used to update the weighting matrices used in the performance index to meet the
terminal constraints. An alternate but equivalent approach is to use the Model Predictive
Control (MPC) approach. To briefly describe the synthesis of linear optimal control based

https://doi.org/10.1017/S0373463317000364 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463317000364


NO. 1 SATELLITE RELATIVE POSITION ESTIMATION AND CONTROL 55

Figure 2. The errors in the simulated and estimated [x y z] position coordinates of the primary satellite,
relative to the secondary orbiting body.

on the MPC approach, consider a linear discrete time system in the form,

x(k + 1) = A(k) x(k) + B(k) u(k) , y(k) = C(k) x(k) . (43)

Our aim is to find an optimal control input sequence defined over a control prediction
window, u(j ), j = 0, 1, 2 . . . N − 1 or the vector U =

[
uT (0) uT(1) · · · uT(N − 1)

]T

so as to minimise the performance index, which now includes a terminal weighting matrix
QN ,

J (x(0) , U) =
N−1∑
k=0

{
yT(k) qQy(k) + uT(k) rRu(k)

}
+ yT(N ) qQN y(N ), (44)

where q and r are scalar scaling parameters which are used to re-scale the relative contri-
butions of the states and the control inputs to the cost function. When the magnitude of
the control input is relatively large when compared with the magnitude of the state, r is
assumed to be a small number relative to q and vice-versa.

Defining the vector, X =
[
xT (1) xT (2) · · · xT (N − 1) xT (N )

]
, we may write,

J (x(0) , U) = qxT (0) CT (0) QC (0) x (0) + qXTQ̄X + r UTR̄U, (45)

where Q̄ is a block diagonal matrix with matrix CT (k) QC (k), k = 1, 2 . . . N − 1 along the
diagonal except the last element which is CT (N ) QN C (N ); R̄ is a block diagonal matrix
with matrix R along the diagonal. Using the state space model Equation (43) recursively,
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Figure 3. The simulated and estimated [x y z] velocity components of the primary satellite, relative to the
secondary orbiting body in the closed loop case.

we may construct a prediction model in the form,

X = SU + Tx(0) (46)

where

S =

⎡
⎢⎢⎢⎢⎣

B 0 0 0
A(1)B B 0 0

· · · · · · · · · · · ·(
1∏

k=N−1
A(k)

)
B

(
1∏

k=N−2
A(k)

)
B · · · B

⎤
⎥⎥⎥⎥⎦ , T =

⎡
⎢⎢⎢⎢⎣

A(0)

A(1) A(0)

· · ·
0∏

k=N−1
A(k)

⎤
⎥⎥⎥⎥⎦ . (47)

We have assumed for simplicity that B is constant but not A. The above formula could
be generalised for the case when B is not constant. Thus, the cost function may be expressed
as,

J (x(0) , U) =
1
2

x(0)T Gx(0) +
1
2

UTHU + xT (0) FU, (48)

with, G = 2q
(
TTQ̄T + CT (0) QC (0)

)
, H = 2rR̄ + 2qSTQ̄S and F = qTTQ̄S.
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Figure 4. The errors in the simulated and estimated [x y z] velocity components of the primary satellite,
relative to the secondary orbiting body.

The optimum control sequence is obtained by setting the gradient of J (x(0) , U) to zero.
Minimising the cost function results in,

dJ (x(0) , U) /dU = UTH + xT (0) F = 0 ⇒ HU + FTx (0) = 0 ⇒ U

= −H−1FTx (0) . (49)

The state x(0), at the start of the prediction window, is assumed to represent the state at
the next time instant, in real time. The control law based on the receding horizon is,

u(k) = − [1 0 · · · 0
]

H−1FTx(k) . (50)

The control sequence is recursively calculated over successive control prediction
windows. The product H−1FT may be expressed as

H−1FT =
q
2
(
rR̄ + qSTQ̄S

)−1
STQ̄T =

q2

2

(
r
q

R̄ + qSTQ̄S
)−1

STQ̄T. (51)

If we let q = 1, Equation (51) reduces to,

H−1FT =
1
2
(
rR̄ + STQ̄S

)−1
STQ̄T, (52)

where r is treated as a free parameter to be chosen.

7. THE UNSCENTED KALMAN FILTER. The basic unscented Kalman filter is iden-
tical to the filter implemented in Vepa and Amzhari (2011) and Vepa (2017) which is briefly
summarised in the following.
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Figure 5. The simulated and estimated [x y z] position coordinates of the secondary orbiting body relative
to the position of a notional particle in a Keplerian orbit.

Consider a random variable w with dimension L which is going through the nonlinear
transformation, y = f(w). The initial conditions are that w has a mean w̄ and a covariance
Pww. To calculate the statistics of y, a matrix χ of 2L + 1 sigma vectors is formed. We
have chosen to use the scaled unscented transformation proposed by Julier (2002), as this
transformation gives the added flexibility of scaling the sigma points to ensure that the
covariance matrices are always positive definite.

Given a general discrete-time nonlinear dynamic system in the form,

xk+1 = fk (xk, uk) + wk, yk = hk (xk) + vk (53)

where xk ∈ Rn is the state vector, uk ∈ Rr is the known input vector, yk ∈ Rm is the output
vector at time k. wk and vk are, respectively, the disturbance or process noise and sensor
noise vectors, which are assumed to be Gaussian white noise with zero mean. Furthermore
Qk and Rk are assumed to be the covariance matrices of the process noise sequence, wk
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Figure 6. The simulated and estimated [x y z] velocity components of the secondary orbiting body relative
to the position of a notional particle in a Keplerian orbit.

and the measurement noise sequence, vk respectively. The unscented transformations of
the states corresponding to the functions fk (xk, uk) and hk (xk) are denoted respectively as,

fUT
k = fUT

k (xk, uk) , hUT
k = hUT

k (xk) (54)

while the transformed covariance matrices and cross-covariance are respectively denoted
as,

Pff
k = Pff

k

(
x̂k, uk

)
, Phh−

k = Phh
k

(
x̂−

k

)
andPxh−

k = Pxh−
k

(
x̂−

k , uk
)

. (55)

The UKF estimator can then be expressed in a compact form. The state time-update
equation, the propagated covariance, the Kalman gain Kk, the state estimate x̂k and the
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Figure 7. Errors in the simulated and estimated [x y z] position coordinates of the secondary orbiting body
relative to the position of a notional particle in a Keplerian orbit.

updated covariance P̂k are respectively given by,

x̂−
k = fUT

k−1

(
x̂k−1

)
(56a)

P̂
−
k = Pff

k−1 + Qk−1 (56b)

Kk = P̂
xh−
k

(
P̂

hh−
k + Rk

)−1
(56c)

x̂k = x̂−
k + Kk

[
zk − hUT

k

(
x̂−

k

)]
(56d)

P̂k = P̂
−
k − Kk

(
P̂

hh−
k + Rk

)−1
KT

k . (56e)

Equations (56a)-(56e) are in the same form as the traditional Kalman filter and the
extended Kalman filter. Thus, higher order non-linear models capturing significant aspects
of the dynamics may be employed to ensure that the Kalman filter algorithm can be imple-
mented to effectively estimate the states in practice. The control input ũ1

(
x̃
)

is assumed to
be given by,

ũ1
(
x̃
)

= ū(k) = − [1 0 · · · 0
]

H−1FT ˆ̃x(k) , (57)

where the vector ˆ̃x is an estimate of the vector ˆ̃x obtained by the unscented Kalman filter.

8. TYPICAL SIMULATIONS AND RESULTS. The initial position and velocity of the
primary satellite are obtained from the initial classical orbital elements defined in Table 1.
From these orbital elements, the initial position and velocity vector of the satellite are
obtained. The actual initial location of the secondary orbiting body is defined by the orbital
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Figure 8. Errors in the simulated and estimated [x y z] velocity components of the secondary orbiting body
relative to the position of a notional particle in a Keplerian orbit.

elements set shown in Table 1 and converted to position and velocity vectors relative to
the satellite. The orbital elements defining the reference Keplerian orbit are identical to the
primary satellite’s initial orbital elements.

In all three cases the size and shape of the orbital ellipse and the inclination of the orbit
plane are assumed to be the same. Only the argument of the ascending node (�) is assumed
to be different by 0·00001◦. From the orbital elements, the initial position and velocity of
the secondary orbiting body are defined relative to the satellite. The numerical integra-
tion was performed using the Runge-Kutta Dormand-Prince 4(5) (Dormand and Prince,
1980). The overall prediction and estimation window is in excess of 2π radians which is
covered in 7,500 integration steps. The non-dimensionalising distance was chosen to be
rsc = 35,786 km, which is the radius of the geostationary orbit, and the unit of time was
tsc = 86,400 sec or a day. The position coordinates used for integration are the scaled TH
coordinates. All the results are plotted in SI units.

A total of 13 noisy measurements are made: a pair of angles that the satellite makes
with the Sun, and another pair with the Moon, the satellite’s distance vector from the Earth
which is assumed to be relatively very noisy or uncertain and the satellite’s relative position
and velocity vectors relative to the secondary orbiting body. The positions of the Sun and
Moon are assumed to be known from the relevant ephemeris and obtained in the same
manner as in Vepa (2017).

Figure 1 presents the simulated and estimated position coordinates of the primary satel-
lite, relative to the secondary orbiting body in the closed loop case, which are compared.
The errors in the relative position coordinate estimates, relative to the secondary orbiting
body are shown in Figure 2. Figure 3 presents the corresponding simulated and estimated
velocity components of the satellite relative to the secondary orbiting body in the closed
loop case, which are compared against each other. The errors in these relative velocity
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Figure 9. The simulated and estimated [x y z] position coordinates of the primary satellite, relative to the
secondary orbiting body with the additional integral term in the control law.

components are shown in Figure 4. The control laws were evaluated both by applying the
discrete linear quadratic regulator algorithm (with an infinite horizon) at every true anomaly
step as well as by the MPC algorithm over a finite control prediction horizon. The results in
both cases were quite similar and for this reason only the latter results are presented here.

Figures 5 and 6 show the estimates of the second body position and velocity in the TH
coordinates, relative to a particle in a notional Keplerian orbit. Figures 7 and 8 show the
corresponding errors in the estimates of the second body position and velocity. Although
these errors are an order of magnitude greater than the errors in the satellites’ relative
position and velocity estimates they are still less than 0·16% of the secondary orbit-
ing body’s absolute position and velocity component magnitudes relative to the Earth’s
centre.

Examining the results in Figure 1 closely it is clear that there is an accumulation of posi-
tion error in the radial direction which approaches 4 m and that the satellite is falling behind
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in its pursuit of the secondary orbiting object. Moreover, the response resembles the typical
response of a first order system to a step input as the error between the pursuer, the primary
satellite, and the secondary orbiting body approaches a steady state value, albeit slowly,
over one orbit. This is a classic case that demands from a practical standpoint the use of
integral control to drive the position error, due to the residual disturbance acceleration, to
zero. The control is now assumed to be,

ũ1
(
x̃
)

= ū(k) + KI

k−1∑
j =1

ū (j )	f , (58)

where the integral matrix gain KI is nominally chosen to be equal to,

KI =

⎡
⎣2 0 0

0 0.5 0
0 0 0

⎤
⎦ , (59)

	f is the integration step in terms of the true anomaly and ū(k) is the previously designed
optimal control law.

The results corresponding to Figure 1, with the additional term representing integral
control in the control law defined in Equation (58), are shown in Figure 9. There is now
a significant reduction in the position error of the pursuer, the primary satellite, relative to
the secondary orbiting body which approaches an almost steady state value after one orbit.
The position error components are well below 4 m and decreasing over one orbit. The
relative positions and relative velocities are within acceptable limits and rendezvous could
be established as soon as the error components are near zero and attitude synchronisation
is achieved.

9. CONCLUSIONS. One of the most significant features of this work is the fact that the
integration steps in terms of true anomaly needed to be much smaller than the equivalent
time domain integration in order to obtain state estimates with similar error bounds. On the
other hand, a significant benefit in using nonlinear true anomaly varying TH equations
was the ease with which the feedback controller was synthesised. Thus, the disadvan-
tages encountered in solving the estimation problem are more than compensated by the
advantages in solving the control problem.

In this paper, we have quite clearly demonstrated the application of the nonlinear true
anomaly-varying TH equations to the problem of state estimation and control of a satel-
lite chasing a secondary orbiting body and seeking to rendezvous with it without any
assistance from it. We have also demonstrated the application of the UKF to the prob-
lem of state estimation using the nonlinear TH equations as well as the use of integral
control to establish a practically feasible control law. We have also shown the systematic
derivation of the nonlinear, controlled TH equations in the presence of perturbing accel-
erations. Final rendezvous and docking or berthing can only be achieved following the
attitude synchronisation of the pursuer satellite with the target body. Estimation and con-
trol of the relative attitude is a problem that also needs to be addressed and it will be
published independently. There are several practical applications to this work, particularly
if one wishes to design autonomous space vehicles capable of catching up with a secondary
orbiting body.
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