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Abstract

Acceleration-driven fluid mixing is studied here from a theoretical point of view. Considerable progress has been
achieved in the understanding of mix. Theories of the authors are reviewed that allow prediction of the edge of the
mixing zone, in agreement with experimental data. Theories that describe the distribution of masses within the mixing
region are also reviewed. The theory we present describes a chunk mix regime, in which two phases are mixed ata chunk
level, but for which there is no atomic mixing. Thus the two phases are segregated into disjoint regions of space.
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1. INTRODUCTION 3. Determination of drag as a function of Atwood num-
ber, so that arbitrary accelerations can be studied;

Characterization of mixing rates for acceleration-driven 4. Analytic determination of leading and below leading

flows is important for the design of inertial confinement order large time asymptotics for the edge motion

(ICF) targets and the study of astrophysical flows modeling equations;

supernovae and geophysical flows involving thermal inver- 5. Mix model(subgrid modelequations;

sion or density inversiofe.g., a salt domdayers. Under- . Determination of an effective diffusion and Reynolds

prediction of mixing rates from many simulation codes stress term for use in reduced models.

relative to experiments and observational data adds to the

importance of a theoretical investigation. Remarkably, the

theoretically predicted mixing rates have been in agreemerd. BUBBLE MERGER MODELS

with experiment for some time. In this article we summarize . . .
. . L . “Bubble merger models predict the penetration rate of fingers
our main results for the theoretical determination of mixing . . : : .
. . . flightfluid (bubbleginto the heavy fluid. For acceleration-
rates, with an emphasis on recent improvements that a c(li

considerablv to the power and applicability of these meth. riven mixing, it is observed that the bubbles increase in
y b bp y sd'ze, through a process of bubble competition and merger.

ods. We use these mixing rates to parameterize a subgri . .

= . . In this process, advanced bubbles are accelerated relative
mixing model, also presented here. Detailed analytic solu- :
) ) . to the mean bubble motion, whereas retarded ones are held
tions to this model have been known for some time. W

present the weakly compressible asympiotic expar(hen “back. Thus the smaller bubblé&sso generally the retarded

incompressible limi. We comment on the relation of our ones become removed from the interface of advancing bub-

results to the direct simulation determination of mixing rates.bles’ whereas the larger, advanced ones expand to fill the

. . . resulting space. Sharp and WheéE361) proposed a model
The outline of our approach can be summarized as: to describe this process. The model was corrected by Glimm

1. Bubble merger models to predict bubble growth rate'and Shar1990, 1997 to include the hydrodynamical ac-

2. Characterization of the center of m&a€©M) motion celerations(positive and negatl\begwen to aqvanced and
. . . . . . . retarded bubbles due to their positions relative to the mean
to link bubble side mix predictions to spike side mix

redictions: bubble penetration height. Such models were extended to
P ' three dimensions by Oroet al. (2001) and independently
by Chenget al. (20022), with improved predictions. The
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Chenget al.is slightly highej, they also predict the bubble experimental results. The same formulas yield the bubble
height-to-width ratio. For this quantity, the two models areheight-to-width ratio, cited in Table 1. Sin¢®) depends on
distinctly different in their predictiontsee Table L Agree-  two parameters, it is important to checkas we do on two
ment of the Chengt al. model with experimental data is independent sets of data. Specificalhyis very sensitive to
very satisfactory. the bubble width whereaa,, can mask canceling errors

The bubble dynamic equations are formulated in scaledetweernw andhy,.
variables, from which thé\gt?> dynamic growth has been
removed. This being the case, the self-similar, late time
solution appears as a fixed point. In fact, itis a renormaliza3- COMPRESSIBLE MIXING ZONE DYNAMICS
tion group(RNG) fixed point.

For steady acceleration, that is, Rayleigh-TaylBi)
mixing, the bubble penetration heidhyjsatisfies the scaling
law h, = a, Agt?. Four directly measurable quantities deter-
mine the growth rate constaat, in this formula. The mea-
surements, the relation of these quantitiesxto and the

The bubble merger model is readily extended to compress-
ible flow. The single bubble velocity, in scaled variables,
must be determined for compressible flow. This quantity
affects the envelope velocity and thus the total bubble ve-
locity. The remainder of the analysis is unchanged. See Chen
et al. (1993. This same reference shows thatincreases

experimental validation of this relation are contained inwithincreasing values of the dimensionless compressibility
Chenget al. (2002a). We list the four quantitieq(1) Let t, Ag/cE. It was also shown that the bubble merger model

be the time to merger for a pair of interacting bubbles. Then

_ (1/t7), is the mean inverse time to merger, and thusthepredictionsforab, as corrected in this manner for compress-
w= ms . crger, L ibility, were in good to moderate agreement with simulation
mean merger rate. It is evaluated at the fixed paRjth;, is

the maximum height separation, that is, the height for in_results.

stantaneous mergéB) c, is the speed of a single bubble in

a periodic array, ant) k is a geometrical factor giving the 4. CENTER OF MASS MOTION

increase in radius for a single merger event, slightly less

thani. Each of the proceeding is expressed in scaled unitd-or steady acceleratiofRayleigh—Taylor incompressible

Then the fixed point formula fos, is mixing, the center of mas&-oy of the mixing zone satisfies
K 14k Zcom = acomAgt?, in accordance with the self-similar scal-
ap =~ (Cb + = h;nw>w. (1) ing of the flow.Z-om = 0 for Atwood number#\ < 0.8. For
4 2 general values &4, the scaling law oy = constAY fits the

As written, the equation has been verified by direct compardata. Here the constant is determined by the known value
ison to experimental dat€henget al, 2002). Toobtaina s = 1/2 for A= 1 (free fall) and an assumed value fap,
closed expression far,, the above quantities are evaluated Whereasy ~ 10 is insensitive to the data. ThZgom and
directly within a statistical model for the bubble dynamics. @com Very efficiently constrain the self-similar flow. The
Two quantities define this model: the bubble velocity andCOM relation introduces a new equation that establishes a
the bubble merger criteria. The bubble velocity is defined adink between the bubble and spike mixing growth rates.
the sum of a singléperiodic array bubble velocity and a Given a value forcom, we have determined that the ratio
bubble interaction term, the “envelope velocity.” The bub-as/ay is a solution of a quadratic equation. Thus spike data
ble velocity as a sum of these two terms has been testegfn be predicted from a knowledge of bubble data. See
against simulation data. The criteria for bubble merger iGlimm et al. (1999 and Chenget al. (1999, 2000. See
defined to be the time at which the retarded bubble starts tigure 1.

move backwards, using this two-term formula for the bub-

ble velocity. Note that the bubble interaction term can have

either sign, so that a zero total velocity is possible. Thed: BUOYANCY DRAG EQUATIONS

bubble merger criteria was shown to be an insensitive paa ,,mper of authors have considered buoyancy drag equa-
rameter in the mOd‘?'- ) tions to describe the dynamics of the edge of the mixing
From these two inputsy and hy, are determined. The ;0 These equations are fundamental for all models of
resultis the determinatiom, ~ 0.5-0.6, in agreement with - yjy 54 the data they supply is of such basic importance. Our
version of these equations has fewer parameters and greater

Table 1. Bubble height-to-width ratios in experiments predictive power than similar equations introduced by oth-

and models ers. See Chengt al. (2000. In addition, we have a finite
drag coefficientin the limiA =1, as is required on intuitive
Chenget al.(20023: Model 3 grounds. The equations have the form
Oronet al. (2001): Model 1-1.5

Smeeton and Young4987): Experiment 3.3 5
Dimonte and Schneid€i996: Experiment 2-4 dVi , C pi'Vi
(pi+kipi’)d_tl:(pi_pi’)g(t)_(_l) # (2
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Fig. 1. The ratioas/ayis determined by a COM assumption and compared to the experimental data of Dimonte and S¢k@e@dler
and to a power law fit. The power law is unphysical fo= 1, and thus this fit fails to reproduce the experimental data for largaur
values foras/ay agree with the experimental data for all valuesgtof

Note that the density;. in the drag term iri2) is the density  explicit dependence of these lower order terms on the initial
of the fluid being displaced. This form of drag is taken by conditions, in contrast to the leading order asymptotics, which
classical text books in fluid dynamics, but has been incoris independent of initial conditions. The result is
rectly replaced by, the density of the displacing fluid, by
a number of workers, leading to a divergent drag coefficient|z;(t)| = a; Ag(t — to)? + Bi\ai A Ziol (t — to) + ¥l Ziol, (3)
inthe limitA — 1.

Herek; = 1 is an added mass coefficie, is the pen-  whereZ;yis an initial amplitude, ant, 5 is an initial velocity.
etration distance of the mixing zone on side 1 (bubble We also definea; = 1/(24/a;) andfio = (1 — &|Vip|)/
andi = 1 (spike), V; is the edge velocity, an@; is the drag (1 + &;|Vip) as a transform of the scaled initial velocity

coefficient. Alsog(t) is the acceleration. Vi =V, /\/Ag|Zi |. Then with
There is only one undetermined parametginnamely,
C, (asC, is determined fronC, by the COM theory. C; _ 2(1+fio) — ai(1+ 3fip)
itself is determined from our bubble merger model, or sim- Y At a) @

ulations, or from experiment. Substituting the= «; Agt?
late time asymptotic solution for RT mixing, we can deter-a computation shows th#@ = 25; andy; = §2. Note the
mine «; uniquely in terms ofC; and conversely. Thus the explicit dependence on initial conditions in the lower rather
equation is completely determined by the RT data, and irthan leading order terms.
view of Section 4, it is uniquely determined in terms of  This analysis allows an improved fit and interpretation of
the RT bubble data alon@vith exceptions noted above for experimental data. For example, the data of Smeeton and
largeA). Youngs (1987 and of Read 1984 can be reliably distin-
Thus(2) can be used to predict Richtmyer—MeshkBW ) guished from the leading order asymptotics and the depen-
mixing rate exponent§ . The late time RM asymptotics are dence of this data or(t = 0) or V(t = 0) can be observed.
predicted for the first time from the; and usually fromn,  See Figure 3.
alone. We obtain a zero parameter agreement with experi- Speculations concerning the cause of discrepancy be-
ment and with knowrA = 1 spike limits. See Chengt al.  tween simulation and experiment have focused on three
(2000 and Figure 2. possible explanationga) numerical diffusion in the un-
For g(t) = g, a constan{steady RT mixing, the large tracked simulationgb) preasymptotic behavior in the sim-
time asymptotic solution of the buoyancy drag equaf®n ulations, andc) noise in the experiments of a specific spectral
is| Z;| = a; Agt2. The equation cannot be integrated in closedpower that generated modification to thet? experimental
form for generat, but a closed form approximate evaluation data. Issuéa) is in fact a sufficient explanatiofsee George
of the next two lower orderg&he term proportional tband et al, 2002. It is possible thatb) may be a contributing
the constant terjnwas obtained. The result exhibited an explanation. To explore this possibility, the preasymptotic
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Fig. 2. The exponends for RM mixing. The solid and dotted line
ap = 0.06, respectively. The solid dots are LEM experiments of

solutions(3) of (2) will be helpful. Issugc) is discussed in
Glimm et al. (2007).

6. MIX MODEL EQUATIONS
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s are the predictions of Chetngl. (2000 for a1, = 0.05 and for
Dimonte and Schri@@i6).

et al, 1998, 1999, and related papershe model has sev-
eral attractive features: it is mathematically stable, that is,
totally hyperbolic with real characteristics for time propa-
gation. The equations are thermodynamically determinate,
using equation of state models for each constituent in an

Two phase flow equations appropriate to a chunk mix reunmixed mode. Commonly used mix models fail one or

gime have been proposed and studied in désaié Glimm

1660.00

both of these properties. In fact, a thermodynamically de-
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Fig. 3. Dependence of the exact solution of Et) on variation of the initial datZy,o. The best fitting value for the data of Smeeton
and Youngg1987) is Zpo = 0.75 for their experiment number 101.
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terminate set of equations is often achieved by assumptiolihe important closure relations are those for the interface
of molecular mix, leading to models that possess a singlguantitiesp® and (pv)* andv*. The closure for(pv)* is
temperature. highly constrained in terms of the andp™ closures. These
The chunk mix equations have been analyzed in gredatvo are also constrained to be convex combinations of the
detail, with closed form solutions obtained for the incom- corresponding phase quantitieg,andpy, with convex co-
pressible limif{Glimmetal, 1998, 1999. Perturbationterms efficientsu},, X = v, p. We make the hypotheséasppropri-
in the weakly compressible limit have been computed inate for a chunk mix regimehat there are no internal length
closed form through second order in the Mach numbeiscales within the mixing layer, so that tjas must be func-
(Glimm & Jin, 2001; Jin, 2001 This is the order for which tions of dimensionless variables, such @&s Taking the
the incompressible pressure first appears. Results for thieinctional dependence to be fractional lineapin all but
volume fraction in this limit are displayed in Figure 4. one of the four parameters in the fractional linear depen-
Here we discuss new insight regarding closure that havedence is determined in an obvious manner by the boundary
emerged from a study of the weakly compressible theoryconditions atz = Z,, the edges of the mixing zone. In this
The equations resemble the Euler equations for each fluivay the closure is mainly driven by directly observable
considered separately. They are coupled through three intedata, a feature that the authors regard as highly desirable. In
face terms. Two of these are a tepivB,/dz added to the fact the edge&, are determined by the buoyancy equation
momentum equation for specikand a term{ pv)*dB,/dzis  (2). The closure relation fgu* is set in terms of the ratio of
added to the energy equation, also for spekidsereB,is  densitiegGlimmetal,, 1998; Glimm & Jin, 2001 We now
the volume fraction of specids We use the notatioK* to  discuss the* closure relation, that is, the equation for the
denote the quantiti averaged over the interface, aXgto  fractional linear definition ofi} in
denote a volume average Xfover the phase volume occu-
pied by specie&. Closure assumptions, such as neglect of
Reynolds stress terms within a single species phase average,
and an assumed identity of volume and mass weighted av-
erages within a single phase average are discussed in GlimAfter inserting obvious mixing zone boundary constraints,
et al. (1998 and earlier papers. The third interface termand our assumed formj,, we have
occurs in thenew) interface equation

v = pbvr + pivs. (6)

Bx
Bx ., P« pr=———"—", X=u,p. (7)
o +v P 0. 6) “7 Bt QDB
0.5 — .6‘ p—
. (0is)
. J— ﬁl
(Ls)
L . o Bl i
- ﬁl(o.s) At
./ .
0 "4 . —
0.5 ! ] 1
-1 0 1

A

Fig. 4. Volume fraction of the light fluid, showing the incompressible solution, a perturbation term, and the compressible solution
computed perturbatively through first order.
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¢y was interpreted as a ratio of the volumetric growth ratesThe formula(10) can now be expanded perturbatively in
for the mixing zone for the two phases,= | Vi /Vi|, inthe  powers of the Mach number, and the second-order term in
incompressible cag&limm et al,, 1998, 1999 HereV,=  this expansion includes the incompressible pressure. The
dZ,/dt. As is observed below, both the convex sum propertyresulting equation is the desired new equation for the incom-
(6) and the fractional linear forr(7) for the convex coeffi- pressible pressure. See &001) and Glimm & Jin(2001).
cients can be derived from the primitive equations, and are On the basis of the above analysis, we are able to link the
thus independent of closure assumptions. Closure thus isghenomenological drag coefficients in the buoyancy drag
specification ofcy. equation for the edge motion with fundamental laws of phys-
The volumetric mixing rate constraint determining ttie  ics. Newton’s law of acceleration, applied at the edge of the
closure has been extended to the fully compressible cagsmixing zone is equivalent to the momentum equation, eval-
(Glimm & Jin, 2001. Because of compressibility, new terms uated at this location. The equations can be highly simpli-
enter into the phase volume growth rates, including the comfied in this evaluationGlimm et al, 1999 and resemble
pressibility of the two phases. In dimensionless terms, thiduoyancy drag equatiori). In fact, they are different, due
influence enters as a ratio of the sound speeds for the twio the absence of phenomenological quantities. Thus the
fluids in the weakly compressible limit. We start with an added mass and the drag are replaced by exact quantities,
exact identity forcy, valid for the fully compressible two- which, however, are not convenient to evaluate. Specifically
fluid equations, derived in the absence of any closure asthey relate to the pressure difference between the phases and
sumptions at all. Note that the interface equation, the convethe gradient of the pressure difference. A closed form solu-
sum property for*, and the fractional linear form fatjare  tion for the pressure equation in the incompressible limit, to
all derivedin this equation independently of closure assump-be published, reveals terms that can be readily identified as
tions. We have inertial termgadded magsfundamentally exact drag terms
(depending on velocity differencesind pressure difference
terms(interpreted as phenomenological corrections to the

Iy 1 Dy pr .
-t = drag termg. Thus we see that the buoyancy drag equations

0z Pk’ Dt

cl = T (8) can be obtained via a closure relation that expresses the
D = ZxPx added mass and drag as pressure difference terms in the
9z p D exact momentum equation and relates these to quantities

known in the buoyancy drag equation, namely, lengths, ve-
is the ratio of logarithmic rates of volume creation for the locities, and accelerations.
two species, wherB, /Dt = 9/dt + v d/dt is the convective
derivative defined by the velocity.. Then the closuréab- 2 EEEECTIVE DIEEUSION AND
sence of internal length scajesan be interpreted as an ° REYNOLDS STRESS
equation forc, namely,
Reduced multiphase mixture models have fewer equations
and fewer variables. They are logically derived from more
=0. 9 complete models. Here we derive a single-velocity, single-
temperature model from the chunk mix model of Section 6,
following Chenget al. (2002h). For models with a single
It is of interest to analyze the® closure in the weakly yelocity, this velocity will express mean fluid flow, and
compressible perturbative analysis. There we find that th@annot drive the mixture process, which is then modeled as
incompressible pressures, the ratios of the compressiblg diffusion process. The point is to determine ttime and
sound speeds, the second order contribution to the phasgatially dependentnterspecies diffusivity, which governs
volume expansion ratip//Vi-|, and the second order per- the mixing rates diffusivity. Assuming this to be a function
turbation term in the expansion of are linked by a newly  of the volume fractiorB,, Alon and Shvart$1996 propose
derived equatiofGlimm & Jin, 2001; Jin, 200L Thisequa-  {iffusion proportional tg8(1 — Bx) = B18,. We find cor-
tion removes anindeterminancy in the incompressible equaections to this form that reflect the deviation of the volume
tions, previously not understood, and shows that the twqraction from being a linear function af
phase incompressible equations, in contrast to the single The key to the computation of the diffusivity is a deter-
phase case, remember the compressible fluids from whickination of entrainment time. For a given parcel of fliiat

acy
0z

they are derived. We first reformulat®) as a given space time location within the mixing zone, the
entrainment time is defined to lgthe earliey time at which
Z¢ /vy 1 Dy pe that parcel entered the mixing zone. Given the velocity his-
fzk (E e Dt >d tory of the twp_phases, av_ailable in closed fo(ﬁmterms of _
¢l = 2 o D . (10  the edgg positions,), one integrates backyvard in tlm_e until
f <_'< + = kpk>dz the moving edgé&y(s) is encountered. This motion is then
z \ 92 pc Dt interpreted as a diffusion process, and the exact value of
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Fig. 5. The diffusion coefficienD across the mixing layer in RT mixing. The dash-dotted line is&er 0.5,a, = 0.07 and the solid
line is forA=0.96,a, = 0.18.

diffusion that duplicates this motion is determined. For RTBoth mixing zone edges and the mixing zone interior flow
mixing, the diffusivity can be determined in closed form, variables have been modeled. The latter are described by a
whereas for RM mixing, the diffusivity is solved via an new set of averaged equations, with several pleasant prop-
approximate closed-form expression, and also by integraerties, including stability at a hyperbolic level of time prop-
tion of an ordinary differential equation. For the generalagation, and multispecies thermodynamics. Simpler models,
case, the solution is given up to a quadrature. For the RBuch as turbulent diffusive mixing, have been derived from
case, the closed-form expression for the diffusibtys these equations. Details of the weakly compressible limit
for our averaged equations have been solved in closed form.

Bia Bias
D= 2Azgzt3,81/32a12a22[—;31 + ==
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