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Abstract

Acceleration-driven fluid mixing is studied here from a theoretical point of view. Considerable progress has been
achieved in the understanding of mix. Theories of the authors are reviewed that allow prediction of the edge of the
mixing zone, in agreement with experimental data. Theories that describe the distribution of masses within the mixing
region are also reviewed. The theory we present describes a chunk mix regime, in which two phases are mixed at a chunk
level, but for which there is no atomic mixing. Thus the two phases are segregated into disjoint regions of space.
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1. INTRODUCTION

Characterization of mixing rates for acceleration-driven
flows is important for the design of inertial confinement
~ICF! targets and the study of astrophysical flows modeling
supernovae and geophysical flows involving thermal inver-
sion or density inversion~e.g., a salt dome! layers. Under-
prediction of mixing rates from many simulation codes
relative to experiments and observational data adds to the
importance of a theoretical investigation. Remarkably, the
theoretically predicted mixing rates have been in agreement
with experiment for some time. In this article we summarize
our main results for the theoretical determination of mixing
rates, with an emphasis on recent improvements that add
considerably to the power and applicability of these meth-
ods. We use these mixing rates to parameterize a subgrid
mixing model, also presented here. Detailed analytic solu-
tions to this model have been known for some time. We
present the weakly compressible asymptotic expansion~the
incompressible limit!. We comment on the relation of our
results to the direct simulation determination of mixing rates.

The outline of our approach can be summarized as:

1. Bubble merger models to predict bubble growth rate;
2. Characterization of the center of mass~COM! motion

to link bubble side mix predictions to spike side mix
predictions;

3. Determination of drag as a function of Atwood num-
ber, so that arbitrary accelerations can be studied;

4. Analytic determination of leading and below leading
order large time asymptotics for the edge motion
equations;

5. Mix model~subgrid model! equations;
6. Determination of an effective diffusion and Reynolds

stress term for use in reduced models.

2. BUBBLE MERGER MODELS

Bubble merger models predict the penetration rate of fingers
of light fluid ~bubbles! into the heavy fluid. For acceleration-
driven mixing, it is observed that the bubbles increase in
size, through a process of bubble competition and merger.

In this process, advanced bubbles are accelerated relative
to the mean bubble motion, whereas retarded ones are held
back. Thus the smaller bubbles~also generally the retarded
ones! become removed from the interface of advancing bub-
bles, whereas the larger, advanced ones expand to fill the
resulting space. Sharp and Wheeler~1961! proposed a model
to describe this process. The model was corrected by Glimm
and Sharp~1990, 1997! to include the hydrodynamical ac-
celerations~positive and negative! given to advanced and
retarded bubbles due to their positions relative to the mean
bubble penetration height. Such models were extended to
three dimensions by Oronet al. ~2001! and independently
by Chenget al. ~2002a!, with improved predictions. The
three-dimensional~3D! models predict not only the growth
rates for the bubble interface~both agree with experiment;
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Chenget al. is slightly higher!, they also predict the bubble
height-to-width ratio. For this quantity, the two models are
distinctly different in their predictions~see Table 1!. Agree-
ment of the Chenget al. model with experimental data is
very satisfactory.

The bubble dynamic equations are formulated in scaled
variables, from which theAgt2 dynamic growth has been
removed. This being the case, the self-similar, late time
solution appears as a fixed point. In fact, it is a renormaliza-
tion group~RNG! fixed point.

For steady acceleration, that is, Rayleigh–Taylor~RT!
mixing, the bubble penetration heighthb satisfies the scaling
law hb5 abAgt2. Four directly measurable quantities deter-
mine the growth rate constantab in this formula. The mea-
surements, the relation of these quantities toab, and the
experimental validation of this relation are contained in
Chenget al. ~2002a!. We list the four quantities:~1! Let tm

'

be the time to merger for a pair of interacting bubbles. Then
v 5 ^10tm' &* is the mean inverse time to merger, and thus the
mean merger rate. It is evaluated at the fixed point,~2! hm

' is
the maximum height separation, that is, the height for in-
stantaneous merger,~3! cb is the speed of a single bubble in
a periodic array, and~4! k is a geometrical factor giving the
increase in radius for a single merger event, slightly less
than 1

2
_. Each of the proceeding is expressed in scaled units.

Then the fixed point formula forab is

ab 5
k

4Scb 1
11 k

2
hm
' vDv. ~1!

As written, the equation has been verified by direct compar-
ison to experimental data~Chenget al., 2002a!. To obtain a
closed expression forab, the above quantities are evaluated
directly within a statistical model for the bubble dynamics.
Two quantities define this model: the bubble velocity and
the bubble merger criteria. The bubble velocity is defined as
the sum of a single~periodic array! bubble velocity and a
bubble interaction term, the “envelope velocity.” The bub-
ble velocity as a sum of these two terms has been tested
against simulation data. The criteria for bubble merger is
defined to be the time at which the retarded bubble starts to
move backwards, using this two-term formula for the bub-
ble velocity. Note that the bubble interaction term can have
either sign, so that a zero total velocity is possible. The
bubble merger criteria was shown to be an insensitive pa-
rameter in the model.

From these two inputs,v and hm
' are determined. The

result is the determinationab ' 0.5–0.6, in agreement with

experimental results. The same formulas yield the bubble
height-to-width ratio, cited in Table 1. Since~1! depends on
two parameters, it is important to check it~as we do! on two
independent sets of data. Specifically,v is very sensitive to
the bubble width whereasab can mask canceling errors
betweenv andhm

' .

3. COMPRESSIBLE MIXING ZONE DYNAMICS

The bubble merger model is readily extended to compress-
ible flow. The single bubble velocity,cb in scaled variables,
must be determined for compressible flow. This quantity
affects the envelope velocity and thus the total bubble ve-
locity. The remainder of the analysis is unchanged. See Chen
et al. ~1993!. This same reference shows thatab increases
with increasing values of the dimensionless compressibility
lg0ch

2. It was also shown that the bubble merger model
predictions forab, as corrected in this manner for compress-
ibility, were in good to moderate agreement with simulation
results.

4. CENTER OF MASS MOTION

For steady acceleration~Rayleigh–Taylor! incompressible
mixing, the center of massZCOM of the mixing zone satisfies
ZCOM5aCOMAgt2, in accordance with the self-similar scal-
ing of the flow.ZCOM ' 0 for Atwood numbersA , 0.8. For
general values ofA, the scaling lawaCOM5const.Ag fits the
data. Here the constant is determined by the known value
as 5 102 for A 5 1 ~free fall! and an assumed value forab,
whereasg ' 10 is insensitive to the data. ThusZCOM and
aCOM very efficiently constrain the self-similar flow. The
COM relation introduces a new equation that establishes a
link between the bubble and spike mixing growth rates.
Given a value foraCOM, we have determined that the ratio
as0ab is a solution of a quadratic equation. Thus spike data
can be predicted from a knowledge of bubble data. See
Glimm et al. ~1999! and Chenget al. ~1999, 2000!. See
Figure 1.

5. BUOYANCY DRAG EQUATIONS

A number of authors have considered buoyancy drag equa-
tions to describe the dynamics of the edge of the mixing
zone. These equations are fundamental for all models of
mix, as the data they supply is of such basic importance. Our
version of these equations has fewer parameters and greater
predictive power than similar equations introduced by oth-
ers. See Chenget al. ~2000!. In addition, we have a finite
drag coefficient in the limitA51, as is required on intuitive
grounds. The equations have the form

~ ri 1 ki ri ' !
dVi

dt
5 ~ ri 2 ri ' !g~t ! 2 ~21! i

Ci ri 'Vi
2

6Zi 6
. ~2!

Table 1. Bubble height-to-width ratios in experiments
and models

Chenget al. ~2002a!: Model 3
Oronet al. ~2001!: Model 1–1.5
Smeeton and Youngs~1987!: Experiment 3.3
Dimonte and Schneider~1996!: Experiment 2–4
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Note that the densityri ' in the drag term in~2! is the density
of the fluid being displaced. This form of drag is taken by
classical text books in fluid dynamics, but has been incor-
rectly replaced byri , the density of the displacing fluid, by
a number of workers, leading to a divergent drag coefficient
in the limit A r 1.

Hereki 5 1 is an added mass coefficient,Zi is the pen-
etration distance of the mixing zone on sidei 5 1 ~bubble!
andi 5 1 ~spike!, Vi is the edge velocity, andCi is the drag
coefficient. Alsog~t ! is the acceleration.

There is only one undetermined parameter in~2!, namely,
C1 ~asC2 is determined fromC1 by the COM theory!. Ci

itself is determined from our bubble merger model, or sim-
ulations, or from experiment. Substituting thehi 5 ai Agt2

late time asymptotic solution for RT mixing, we can deter-
mine ai uniquely in terms ofCi and conversely. Thus the
equation is completely determined by the RT data, and in
view of Section 4, it is uniquely determined in terms of
the RT bubble data alone~with exceptions noted above for
largeA!.

Thus~2! can be used to predict Richtmyer–Meshkov~RM!
mixing rate exponentsui . The late time RM asymptotics are
predicted for the first time from theai and usually fromab

alone. We obtain a zero parameter agreement with experi-
ment and with knownA 5 1 spike limits. See Chenget al.
~2000! and Figure 2.

For g~t ! 5 g, a constant~steady RT mixing!, the large
time asymptotic solution of the buoyancy drag equation~2!
is 6Zi 65ai Agt2. The equation cannot be integrated in closed
form for generalt, but a closed form approximate evaluation
of the next two lower orders~the term proportional tot and
the constant term! was obtained. The result exhibited an

explicit dependence of these lower order terms on the initial
conditions, in contrast to the leading order asymptotics, which
is independent of initial conditions. The result is

6Zi ~t !6 5 ai Ag~t 2 t0!2 1 biMai Ag6Zi 06~t 2 t0! 1 gi 6Zi 06, ~3!

whereZi 0 is an initial amplitude, andVi 0 is an initial velocity.
We also defineai 5 10~2!ai ! and fi 0 5 ~1 2 ai 6Vi 0

' 6!0
~1 1 ai 6Vi 0

' ! as a transform of the scaled initial velocity
Vi
'5 Vi 0!Ag6Zi 6. Then with

di 5
2~11 fi 0! 2 ai ~11 3fi 0!

~11 fi 0!~12 ai !
, ~4!

a computation shows thatbi 5 2di andgi 5 di
2. Note the

explicit dependence on initial conditions in the lower rather
than leading order terms.

This analysis allows an improved fit and interpretation of
experimental data. For example, the data of Smeeton and
Youngs~1987! and of Read~1984! can be reliably distin-
guished from the leading order asymptotics and the depen-
dence of this data onZ~t 5 0! or V~t 5 0! can be observed.
See Figure 3.

Speculations concerning the cause of discrepancy be-
tween simulation and experiment have focused on three
possible explanations:~a! numerical diffusion in the un-
tracked simulations,~b! preasymptotic behavior in the sim-
ulations, and~c! noise in the experiments of a specific spectral
power that generatest 2 modification to thet 2 experimental
data. Issue~a! is in fact a sufficient explanation~see George
et al., 2002!. It is possible that~b! may be a contributing
explanation. To explore this possibility, the preasymptotic

Fig. 1. The ratioas0ab is determined by a COM assumption and compared to the experimental data of Dimonte and Schneider~2000!
and to a power law fit. The power law is unphysical forA51, and thus this fit fails to reproduce the experimental data for largeA. Our
values foras0ab agree with the experimental data for all values ofA.
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solutions~3! of ~2! will be helpful. Issue~c! is discussed in
Glimm et al. ~2001!.

6. MIX MODEL EQUATIONS

Two phase flow equations appropriate to a chunk mix re-
gime have been proposed and studied in detail~see Glimm

et al., 1998, 1999, and related papers!. The model has sev-
eral attractive features: it is mathematically stable, that is,
totally hyperbolic with real characteristics for time propa-
gation. The equations are thermodynamically determinate,
using equation of state models for each constituent in an
unmixed mode. Commonly used mix models fail one or
both of these properties. In fact, a thermodynamically de-

Fig. 2. The exponentus for RM mixing. The solid and dotted lines are the predictions of Chenget al. ~2000! for ab 5 0.05 and for
ab 5 0.06, respectively. The solid dots are LEM experiments of Dimonte and Schneider~1996!.

Fig. 3. Dependence of the exact solution of Eq.~1! on variation of the initial dataZb0. The best fitting value for the data of Smeeton
and Youngs~1987! is Zb0 5 0.75 for their experiment number 101.
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terminate set of equations is often achieved by assumption
of molecular mix, leading to models that possess a single
temperature.

The chunk mix equations have been analyzed in great
detail, with closed form solutions obtained for the incom-
pressible limit~Glimmet al., 1998, 1999!. Perturbation terms
in the weakly compressible limit have been computed in
closed form through second order in the Mach number
~Glimm & Jin, 2001; Jin, 2001!. This is the order for which
the incompressible pressure first appears. Results for the
volume fraction in this limit are displayed in Figure 4.

Here we discuss new insight regarding closure that have
emerged from a study of the weakly compressible theory.
The equations resemble the Euler equations for each fluid
considered separately. They are coupled through three inter-
face terms. Two of these are a termp*]bk0]z added to the
momentum equation for speciesk and a term~ pv!*]bk0]z is
added to the energy equation, also for speciesk. Herebk is
the volume fraction of speciesk. We use the notationX* to
denote the quantityX averaged over the interface, andXk to
denote a volume average ofX over the phase volume occu-
pied by speciesk. Closure assumptions, such as neglect of
Reynolds stress terms within a single species phase average,
and an assumed identity of volume and mass weighted av-
erages within a single phase average are discussed in Glimm
et al. ~1998! and earlier papers. The third interface term
occurs in the~new! interface equation

]bk

]t
1 v*

]bk

]z
5 0. ~5!

The important closure relations are those for the interface
quantitiesp* and ~ pv! * and v*. The closure for~ pv! * is
highly constrained in terms of thev* andp* closures. These
two are also constrained to be convex combinations of the
corresponding phase quantities,vk andpk, with convex co-
efficientsmk'

x , x 5 v, p. We make the hypotheses~appropri-
ate for a chunk mix regime! that there are no internal length
scales within the mixing layer, so that thems must be func-
tions of dimensionless variables, such asbk. Taking the
functional dependence to be fractional linear inbk, all but
one of the four parameters in the fractional linear depen-
dence is determined in an obvious manner by the boundary
conditions atz5 Zk, the edges of the mixing zone. In this
way the closure is mainly driven by directly observable
data, a feature that the authors regard as highly desirable. In
fact the edgesZk are determined by the buoyancy equation
~2!. The closure relation forp* is set in terms of the ratio of
densities~Glimm et al., 1998; Glimm & Jin, 2001!. We now
discuss thev* closure relation, that is, the equation for the
fractional linear definition ofmk

v in

v* 5 m2
v v1 1 m1

v v2. ~6!

After inserting obvious mixing zone boundary constraints,
and our assumed formmk

v , we have

mk
x 5

bk

bk 1 ck
x~t !bk

, x 5 v, p. ~7!

Fig. 4. Volume fraction of the light fluid, showing the incompressible solution, a perturbation term, and the compressible solution
computed perturbatively through first order.
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ck
v was interpreted as a ratio of the volumetric growth rates

for the mixing zone for the two phases,ck
v5 6Vk' 0Vk6, in the

incompressible case~Glimm et al., 1998, 1999!. HereVk 5
]Zk0]t. As is observed below, both the convex sum property
~6! and the fractional linear form~7! for the convex coeffi-
cients can be derived from the primitive equations, and are
thus independent of closure assumptions. Closure thus is a
specification ofck

v.
The volumetric mixing rate constraint determining thev*

closure has been extended to the fully compressible case
~Glimm & Jin, 2001!. Because of compressibility, new terms
enter into the phase volume growth rates, including the com-
pressibility of the two phases. In dimensionless terms, this
influence enters as a ratio of the sound speeds for the two
fluids in the weakly compressible limit. We start with an
exact identity forck

v , valid for the fully compressible two-
fluid equations, derived in the absence of any closure as-
sumptions at all. Note that the interface equation, the convex
sum property forv*, and the fractional linear form formk

v are
all derivedin this equation independently of closure assump-
tions. We have

ck
v 5

]vk'

]z
1

1

rk'

Dk' rk'

Dt

]vk
]z

1
1

rk

Dk rk

Dt

~8!

is the ratio of logarithmic rates of volume creation for the
two species, whereDk0Dt 5 ]0]t 1 vk]0]t is the convective
derivative defined by the velocityvk. Then the closure~ab-
sence of internal length scales! can be interpreted as an
equation forck

v , namely,

]ck
v

]z
5 0. ~9!

It is of interest to analyze thev* closure in the weakly
compressible perturbative analysis. There we find that the
incompressible pressures, the ratios of the compressible
sound speeds, the second order contribution to the phase
volume expansion ratio6Vk0Vk' 6, and the second order per-
turbation term in the expansion ofck

v are linked by a newly
derived equation~Glimm & Jin, 2001; Jin, 2001!. This equa-
tion removes an indeterminancy in the incompressible equa-
tions, previously not understood, and shows that the two
phase incompressible equations, in contrast to the single
phase case, remember the compressible fluids from which
they are derived. We first reformulate~9! as

ck
v 5

E
Zk

Zk'S ]vk'

]z
1

1

rk'

Dk' rk'

Dt Ddz

E
Zk

Zk'S ]vk
]z

1
1

rk

Dk rk

Dt Ddz

. ~10!

The formula~10! can now be expanded perturbatively in
powers of the Mach number, and the second-order term in
this expansion includes the incompressible pressure. The
resulting equation is the desired new equation for the incom-
pressible pressure. See Jin~2001! and Glimm & Jin~2001!.

On the basis of the above analysis, we are able to link the
phenomenological drag coefficients in the buoyancy drag
equation for the edge motion with fundamental laws of phys-
ics. Newton’s law of acceleration, applied at the edge of the
mixing zone is equivalent to the momentum equation, eval-
uated at this location. The equations can be highly simpli-
fied in this evaluation~Glimm et al., 1999! and resemble
buoyancy drag equations~2!. In fact, they are different, due
to the absence of phenomenological quantities. Thus the
added mass and the drag are replaced by exact quantities,
which, however, are not convenient to evaluate. Specifically
they relate to the pressure difference between the phases and
the gradient of the pressure difference. A closed form solu-
tion for the pressure equation in the incompressible limit, to
be published, reveals terms that can be readily identified as
inertial terms~added mass!, fundamentally exact drag terms
~depending on velocity differences!, and pressure difference
terms~interpreted as phenomenological corrections to the
drag terms!. Thus we see that the buoyancy drag equations
can be obtained via a closure relation that expresses the
added mass and drag as pressure difference terms in the
exact momentum equation and relates these to quantities
known in the buoyancy drag equation, namely, lengths, ve-
locities, and accelerations.

7. EFFECTIVE DIFFUSION AND
REYNOLDS STRESS

Reduced multiphase mixture models have fewer equations
and fewer variables. They are logically derived from more
complete models. Here we derive a single-velocity, single-
temperature model from the chunk mix model of Section 6,
following Chenget al. ~2002b!. For models with a single
velocity, this velocity will express mean fluid flow, and
cannot drive the mixture process, which is then modeled as
a diffusion process. The point is to determine the~time and
spatially dependent! interspecies diffusivity, which governs
the mixing rates diffusivity. Assuming this to be a function
of the volume fractionbk, Alon and Shvarts~1996! propose
diffusion proportional tobk~1 2 bk! 5 b1b2. We find cor-
rections to this form that reflect the deviation of the volume
fraction from being a linear function ofz.

The key to the computation of the diffusivity is a deter-
mination of entrainment time. For a given parcel of fluidkat
a given space time location within the mixing zone, the
entrainment time is defined to be~the earlier! time at which
that parcel entered the mixing zone. Given the velocity his-
tory of the two phases, available in closed form~in terms of
the edge positionsZk!, one integrates backward in time until
the moving edgeZk'~s! is encountered. This motion is then
interpreted as a diffusion process, and the exact value of
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diffusion that duplicates this motion is determined. For RT
mixing, the diffusivity can be determined in closed form,
whereas for RM mixing, the diffusivity is solved via an
approximate closed-form expression, and also by integra-
tion of an ordinary differential equation. For the general
case, the solution is given up to a quadrature. For the RT
case, the closed-form expression for the diffusivityD is

D 5 2A2g2t 3b1b2a1
2a2

2Fb1
2a1

a3 1
b2

2a2

a3 G,

where

a 5 a1b1 1 a2 b2.

Note that the formula is not symmetric betweenb1 andb2

becausea1Þ a2 for A . 0. The factor in the square brackets
is the correction to the formula of Alon and Shvartz~1996!.
This factor reflects the lack of symmetry between the two
phases and is especially significant for Richtmyer–Meshkov
mixing ~see Fig. 5!.

The dominant componentRzzof the Reynolds stress ten-
sor is also determined in Chenget al. ~2002b!.

8. CONCLUSIONS

Theory has been shown to be remarkably successful for the
study of turbulent mix. Zero parameter models of the com-
pressible mixing zone have been derived from totally theo-
retical considerations, and match experiment quantitatively.

Both mixing zone edges and the mixing zone interior flow
variables have been modeled. The latter are described by a
new set of averaged equations, with several pleasant prop-
erties, including stability at a hyperbolic level of time prop-
agation, and multispecies thermodynamics. Simpler models,
such as turbulent diffusive mixing, have been derived from
these equations. Details of the weakly compressible limit
for our averaged equations have been solved in closed form.
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