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Abstract Estimating averages of Dirichlet convolutions 1˚χ , for some real Dirichlet character χ of fixed
modulus, over the sparse set of values of binary forms defined over Z has been the focus of extensive

investigations in recent years, with spectacular applications to Manin’s conjecture for Châtelet surfaces.

We introduce a far-reaching generalisation of this problem, in particular replacing χ by Jacobi symbols
with both arguments having varying size, possibly tending to infinity. The main results of this paper

provide asymptotic estimates and lower bounds of the expected order of magnitude for the corresponding

averages. All of this is performed over arbitrary number fields by adapting a technique of Daniel specific
to 1˚ 1. This is the first time that divisor sums over values of binary forms are asymptotically evaluated

over any number field other than Q. Our work is a key step in the proof, given in subsequent work, of

the lower bound predicted by Manin’s conjecture for all del Pezzo surfaces over all number fields, under
mild assumptions on the Picard number.
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1. Introduction

Our aim in this paper is to study averages of arithmetic functions that generalise the

divisor function over values of binary forms, defined over arbitrary number fields.
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138 C. Frei and E. Sofos

1.1. Divisor sums

Estimating averages of arithmetic functions is among the primary objects of analytic

number theory and its applications to surrounding areas. Owing to their connection with

L-functions, two of the most studied examples are the divisor and the representation

function of sums of two integer squares, respectively given by

τ pnq :“
ÿ

dPN
d|n

1 and rpnq :“ 4
ÿ

dPN
d odd

d|n

ˆ

´1
d

˙

,

where p´1
¨
q denotes the Jacobi symbol, see for example [30, Chapter XII]. It is possible to

obtain level of distribution results, a problem first studied by Hooley, Linnik and Selberg

(all in unpublished manuscripts, see the results and the references in [31] and [22] for

recent developments). Research on this problem is currently active due to advances in

estimating sums of trace functions over finite fields, see for example [13], where the

ternary divisor function is studied.

Asymptotically estimating the average of these functions over the sparse set of values

of general integer polynomials in a single variable is naturally harder. It is only the case

of degree 1 and 2 polynomials that has been settled, see the work of Hooley [20] and of

Duke et al. [5]. The closely related problem regarding integer binary forms was studied

later. Let us introduce some notation to help us describe previous work on this area. For

a positive integer n and each 1 ď i ď n, let Fi P Zrs, ts be forms, coprime in pairs, and

for any constants ci P t1,´1u set C “ tpFi , ci q, i “ 1, . . . , nu and

DpC; Xq :“
ÿ

ps,tqPpZXr´X,Xsq2

Fi ps,tq‰0

n
ź

i“1

ˆ

ÿ

diPN
di odd

di |Fi ps,tq

ˆ

ci

di

˙˙

, (1.1)

where the restriction to odd di is present only when ci “ ´1. The case of degree 3 was

first studied by Greaves [18], who obtained an asymptotic for DpC; Xq when C “ tpF, 1qu
and F is any irreducible form with degpFq “ 3 via the use of exponential sums.

Extending this result to higher degrees was considered intractable for a long time until
the highly influential work of Daniel [3], who employed geometry of numbers to treat the

case C “ tpF, 1qu for any irreducible form F with degpFq “ 4. Developing this approach

to allow negative ci , Heath-Brown [19] later tackled the case where n “ 4, each ci is ´1
and all forms Fi are linear.

It was subsequently realised that proving asymptotics whenever
řn

i“1 degpFi q “ 4
would constitute a key step towards the resolution of Manin’s conjecture for Châtelet

surfaces over Q. This is a conjecture in arithmetic geometry and regards counting

rational points of bounded height on Fano varieties defined over arbitrary number fields;

it was introduced by Manin and his collaborators [14] in 1989 and has subsequently

given rise to a long-standing research programme that still continues. Thus, Browning

and de la Bretèche reworked later the case C “ tpL i ,´1q : 1 ď i ď 4u, where each
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Generalised divisor sums over number fields 139

form L i is linear in [7], the case C “ tpC,´1q, pL ,´1qu, where degpCq “ 3, degpLq “ 1
in [10], and recently Destagnol settled the case C “ tpQ,´1q, pL1,´1q, pL2,´1qu with

degpQq “ 2, degpL i q “ 1 in [4]. In addition, Browning and de la Bretèche treated the

case C “ tpQ, 1q, pL1, 1q, pL2, 1qu with degpQq “ 2, degpL i q “ 1 in [8]; this investigation

formed a significant part in their proof of Manin’s conjecture for a smooth quartic del

Pezzo surface for the first time [9]. The remaining cases in the divisor sum problem

with
řn

i“1 degpFi q “ 4 require a further development of Daniel’s approach, one that

necessitates the use of a generalisation of Hooley’s delta function [21]. This was achieved

independently by Brüdern [1] and de la Bretèche with Tenenbaum [11], enabling the

settling of the cases C “ tpF1,´1qu and C “ tpF2,´1q, pF3,´1qu, where the forms satisfy

degpF1q “ 4 and degpF2q “ degpF3q “ 2 in [12]. In these works, whenever ci “ ´1 then

Fi was irreducible over Qp
?
´1q, since otherwise the corresponding term would be of the

form τ pFps, tqq, this would decrease the difficulty of obtaining an asymptotic.

It should be remarked that each work following Daniel came into fruition only for

integer forms Fi fulfilling a list of necessary assumptions regarding the small prime

divisors and the sign of the integers Fi ps, tq as ps, tq ranges through certain regions in R2,

see for example the normalisation hypotheses (iii) and (iv) in [7, p. 1375], where ci “ ´1.

These conditions are related to quadratic reciprocity and analogues of these will appear

in our work, see § 1.3.3, where W is to be thought of as the product of small primes.

It will be crucial for our work that Daniel’s approach is able of providing a polynomial

saving in the error term if
řn

i“1 degpFi q “ 3 but not when
řn

i“1 degpFi q “ 4, while it has

never been extended to any case with
řn

i“1 degpFi q ą 4. Lastly, the spectacular work

of Matthiesen [24–26], using tools from additive combinatorics, tackled all cases where
řn

i“1 degpFi q can be arbitrarily large under the restriction that each Fi is linear. Naturally,

this approach does not yield an explicit error term.

1.2. Generalised divisor sums

In our forthcoming joint work [16] with Loughran, we study Manin’s conjecture in

dimension 2. As a special corollary we obtain the lower bound predicted by Manin for

all del Pezzo surfaces over all number fields, only under mild assumptions regarding

the Picard number. For del Pezzo surfaces of degree 1 in particular, tight lower bounds

were not known before, not even in special cases. The underlying strategy is to use

algebro-geometric arguments to translate the problem into one of estimating averages

that are a vast generalisation of the ones appearing in (1.1). The success of this strategy

therefore relies heavily on a very general conjecture concerning the growth order of our

divisor sums; its precise statement will be introduced in Conjecture 1. In this paper

we prove it in all cases that we need for our applications to Manin’s conjecture, see

Theorem 1.1. In the very special case that the base field is Q, dealing with a del Pezzo

surface of degree 1 ď d ď 5 gives birth to averages of the rough shape

ÿ

ps,tqPpZXr´X,Xsq2

Fi ps,tq‰0
ps,tq”pσ,τq mod q

n
ź

i“1

hpFi ps, tqq
ˆ

ÿ

diPN
di odd

di |Fi ps,tq

ˆ

Gi ps, tq
di

˙˙

, (1.2)
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where σ, τ, q are positive integers, h is a ‘small’ arithmetic function, each Fi ,Gi is an

integer binary form with degpGi q divisible by 2, all forms Fi irreducible and satisfying

n
ÿ

i“1

degpFi q “ 8´ d,

which is an integer in the range t3, . . . , 7u. Our assumption on h is that it can be written

as h “ 1 ˚ f , where ˚ denotes the Dirichlet convolution and f is a multiplicative function

on N that satisfies f pmq “ Op 1
m q for m P N. We shall call a sum as in (1.2) a generalised

divisor sum. This is because Gi are not constants and hence the terms are no more a

product of multiplicative functions on N restricted at values of binary forms. A further

new trait lies in the fact that a level of distribution result is required with respect to

the modulus q, such a result has not appeared previously for divisor sums over values

of polynomials or forms. In particular, we shall be able to handle the case hpnq “ 1 for

all n P N, thus our results are a true generalisation of previous work and not a different

problem.

A supplementary aspect of our work is that we estimate asymptotically, for the first

time, divisor sums over values of binary forms in arbitrary number fields, see Theorem 1.2.

Thus, one of the central innovations in our work lies in revealing how to extend Daniel’s

approach to this setting. We shall rely on a lattice point counting theorem of Barroero

and Widmer [2], based on the framework of o-minimal structures. It is important to

note here that the essence of Daniel’s approach lies in taking advantage of the, possibly

large on average, size of the first successive minima to produce a sufficiently small error

term. Directly adapting this approach to number fields yields an error term whose order

supersedes the main term; this would preclude the proof of both Theorems 1.1 and 1.2.

We shall introduce an artifice that overcomes this difficulty, namely we shall modify

Daniel’s method by taking into account not only the first, but also higher successive

minima of the lattice.

Let us finally state that it is not clear what is the expected growth order for generalised

divisor sums. We shall see that one rôle of Conjecture 1 is to provide an answer in terms

of various number fields generated by roots of Fi ps, 1q. It is important to note that our

conjecture will turn out to be in agreement with the growth order predicted by Manin’s

conjecture for surfaces; this will be revealed in [16].

1.3. Statement of our set-up

Throughout this paper, K will be a number field of degree m “ rK : Qs, whose ring of

integers is denoted by OK . By p and pi we always denote non-zero prime ideals of OK
and vp is the p-adic exponential evaluation.

1.3.1. Systems of binary forms. We consider finite sets of pairs of binary forms

F “ tpFi ,Gi q, i “ 1, . . . , nu,

where each Fi ,Gi P OK rs, ts is such that Fi is irreducible and does not divide Gi in K rs, ts.
Moreover, we assume that all Fi are coprime over K in pairs and that each degpGi q is

even.

https://doi.org/10.1017/S1474748017000469 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000469


Generalised divisor sums over number fields 141

We next define the rank of F, which will be an invariant of F that will characterise the

growth order in Conjecture 1. If Fi is proportional to t , we denote θi :“ p1, 0q. Otherwise,

letting K be a fixed algebraic closure of K , we set θi P K to be a fixed root of Fi px, 1q,
and θi :“ pθi , 1q. Let K pθi q be the subfield of K generated by K and the coordinates of

θi . We define the rank of F to be the cardinality

ρpFq :“ 7t1 ď i ď n : Gi pθi q P K pθi q
ˆ2u,

where, for any field k, we denote the set of its non-zero squares by kˆ2.

1.3.2. The group UK . The terms involving the function h in (1.2) have the rôle of

insignificant modifications. We proceed to introduce them precisely. Letting IK denote

the monoid of non-zero integral ideals of OK , Na be the absolute norm of a P IK and

µK the Möbius function on IK allows us to introduce the set of functions

ZK :“

$

&

%

f : IK Ñ p´1,8q :
f multiplicative,

f ppq Î f
1

Np for all p,

f paq “ 0 if µK paq “ 0

,

.

-

.

For each f P ZK , we subsequently define another function 1 f : IK Ñ p0,8q given by

1 f paq :“
ź

p|a

p1` f ppqq “ p1 ˚ f qpaq.

This then allows us to form the following set of positive multiplicative functions on IK ,

UK :“ t1 f : f P ZK u. (1.3)

The growth condition placed on f indicates that 1 f behaves on average like a constant

function. Note that for all f P ZK and ε ą 0 we have

1 f paq Î f,ε Naε, (1.4)

and moreover, that the set UK forms a group under pointwise multiplication. This will

be used often with the aim of simplifying the exposition, for example via replacing terms

like 1 f11 f2 or 1{1 f3 , where fi P ZK , by 1 f for some f P ZK .

1.3.3. F-admissibility. As usual, we shall identify all completions Kv at archimedean

places v with R or C. We shall thus let K8 :“ K bQ R “
ś

v|8 Kv, which we identify

with Rm via C – R2. In addition, we shall denote by D a set of the form D “
ś

v|8Dv,

where Dv Ď K 2
v is a compact ball of positive radius. Fixing an integral ideal r P IK , we

shall consider r-primitive points ps, tq P O2
K , by which we mean that sOK ` tOK “ r. For

a nonzero ideal W of OK divisible by 2r, and a P IK , we define the ideal

a5 :“
ź

p-W
pvppaq, (1.5)

and for a P OK r t0u, we let a5 :“ paOK q
5. Keep in mind that this notion depends on

W. Let σ, τ P OK be such that σOK ` τOK “ r. The symbol P will refer exclusively

throughout this paper to triplets of the form

P “ pD, pσ, τ q,Wq,
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where D, pσ, τ q,W are as above. Given any system of forms F as in § 1.3.1, a triplet P
and a parameter X ě 1, we let

M˚pP, Xq :“ tps, tq P r2X X1{mD : ps, tq ” pσ, τ q mod W, sOK ` tOK “ ru

and

M˚pP,8q :“
ď

Xě1

M˚pP, Xq.

We shall say that P is F-admissible if each of the following conditions (1.6)–(1.8) holds:

Fi pσ, τ q ‰ 0 for all 1 ď i ď n, (1.6)

and whenever ps, tq P M˚pP,8q we have

Fi ps, tq ‰ 0 for all 1 ď i ď n, (1.7)

as well as
ˆ

Gi ps, tq

Fi ps, tq5

˙

“ 1 for all 1 ď i ď n. (1.8)

In the last condition, we used the Jacobi symbol for K , which is defined as follows: for

a P OK and a non-zero ideal b “ pe1
1 ¨ ¨ ¨ p

el
l , with distinct prime ideals pi , none of which

lies above 2, we let
´a
b

¯

:“

l
ź

i“1

ˆ

a
pi

˙ei

,

where p a
p q is the Legendre quadratic residue symbol for K .

1.4. Lower bound conjecture for generalised divisor sums

For any F as in § 1.3.1, any function f P ZK and any F-admissible triplet P, we define

the function r : M˚pP,8q Ñ r0,8q by

rps, tq “ rpF, f,P; s, tq :“
n
ź

i“1

1 f pFi ps, tq5q

¨

˝

ÿ

di |Fi ps,tq5

ˆ

Gi ps, tq
di

˙

˛

‚.

We are now in the position to introduce generalised divisor sums as averages of the form

DpF, f,P; Xq :“
ÿ

ps,tqPM˚pP,Xq

rpF, f,P; s, tq.

The special case of the following claim corresponding to each Gi being constant and

K “ Q ought to be familiar, at least among experts, but has not yet appeared in text.

Conjecture 1 (Lower bound conjecture for divisor sums). Let K be a number field, fix

r P IK , let f P ZK , and let F be a system of forms as in § 1.3.1. Then there exists a

finite set Sbad “ SbadpF, f, rq of prime ideals in OK , such that for all F-admissible triplets

P with W being divisible by each p P Sbad, we have

DpF, f,P; Xq Ï X2plog XqρpFq, as X Ñ8.

The implicit constant may depend on every parameter except X .
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It should be stated that the appearance of Gi , f and P in Conjecture 1, as well as the

consideration of arbitrary number fields, are absolutely necessary for our applications to

Manin’s conjecture in [16]. The presence of the set of bad primes Sbad can be avoided; it

is only included here to minimise the technical details in the present work.

We next supply heuristical evidence supporting that Conjecture 1 does in fact provide

the true order of magnitude of DpF, f,P; Xq. Firstly, there are about X2 summands

and each term 1 f pFi ps, tq5q behaves as a constant on average, since our conditions on F

suggest that the integral ideals Fi ps, tq5 behave randomly. Secondly, as we shall see in

Lemma 3.2, if the index i contributes towards the rank ρpFq then the Jacobi symbols
`Gi ps,tq

di

˘

assume the value 1, while in the opposite case they take both values 1 and ´1

with equal probability. Consequently, in the former case the sum over di |Fi ps, tq5 will

resemble the divisor function in IK , thus contributing a logarithm, while in the latter

case it will be approximated by a constant on average owing to the cancellation of the

Jacobi symbols. A subtle point here is that if one does not impose condition (1.8) then the

implied constant in the lower bound could vanish, so the restriction to admissible triplets

is necessary. Furthermore, each work referenced in § 1.1 is in agreement with Conjecture 1

when K “ Q and Gi “ ˘1. Lastly, the work of de la Bretèche and Browning [6] can be

used to provide a matching upper bound over Q whenever each Gi is constant.

The main purpose of this paper is to prove Conjecture 1 under a condition regarding

only the complexity of F, which we define by

cpFq :“
ÿ

1ďiďn
Gi pθi qRK pθi q

ˆ2

deg Fi ,

but without a restriction on the value of
řn

i“1 degpFi q or the factorisation type of
śn

i“1 Fi .

Theorem 1.1. Conjecture 1 holds for all K , r, f and systems of forms F with cpFq ď 3.

Theorem 1.1 will be reduced to Theorem 1.2, whose statement is given in § 1.5.

Remark 1.1. As an immediate consequence of [16, Theorem 1.6], we see that Conjecture 1

implies Zariski density of rational points on conic bundle surfaces over number fields,

under the necessary assumption that there is a rational point on a smooth fibre. This

well-known problem is currently open in most cases, see the recent work of Kollár and

Mella [23].

1.5. Skeleton of the paper and further results

The preliminary parts, §§ 2.1 and 2.2, respectively, provide general counting results, that

are not limited to our applications, for points of certain lattices and averaging results

concerning coefficients of Artin L-functions.

The reduction of Theorem 1.1 to Theorem 1.2 below will take place in § 3, while the

proof of the latter theorem will be given in § 4. It provides asymptotics in cases where
řn

i“1 deg Fi ď 3 and Gi pθi q R K pθi q
ˆ2 for all i , under some further assumptions.

It is worth following the strategy laid out in our proof of Theorem 1.2 to show that, for

any positive integers σ, τ, d and fixed irreducible binary forms Fi with
řn

i“1 degpFi q ď 3,
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an asymptotic estimate with a power saving in terms of X and a polynomial dependence

on d in the error term holds for the analogue of the classical divisor sums

ÿ

ps,tqPpZXr´X,Xsq2

Fi ps,tq‰0
ps,tq”pσ,τq mod d

n
ź

i“1

ˆ

ÿ

diPN
di |Fi ps,tq

1
˙

over any number field. We refrain from this task in the present work to shorten the

exposition.

We proceed by providing the statement of our second theorem. We say that an

F-admissible triplet P “ pD, pσ, τ q,Wq is strongly F-admissible, if, in addition, for all

1 ď i ď n and ps, tq P M˚pP,8q one has

Fi pσ, τ q ı 0 mod W and vppFi ps, tqq “ vppFi pσ, τ qq for all p |W. (1.9)

Theorem 1.2. Let K be a number field, r P IK and f P ZK . Let F be a system of forms

with ρpFq “ 0 and cpFq ď 3. Then there is a non-zero ideal W0 of OK and constants

β1, β2 ą 0, such that the following statement holds.

For every strongly F-admissible triplet P “ pD, pσ, τ q,Wq fulfilling W0 |W, there are

β0 ą 0 and a function f0 P ZK , depending only on r, f,F,D,W, such that for each d P

IK for which the triplet Pd :“ pD, pσ, τ q, dWq satisfies

n
ź

i“1

Fi ps, tqW` d “ OK for all ps, tq P M˚pPd,8q, (1.10)

the asymptotic

ÿ

ps,tqPM˚pPd,Xq

rpF, f,P; s, tq “ β0
1 f0pdq

Nd2 X2` OpX2´β1Ndβ2q

holds with an implied constant independent of d, σ, τ and X .

This is the first time that any divisor sum over values of binary forms is asymptotically

evaluated over any number field other than Q. Even over Q, both Theorems 1.1 and 1.2

are novel due to the appearance of the forms Gi . Furthermore, the extra condition that

ps, tq lies in a progression, whose modulus is explicitly recorded in the error term, gives

rise to a new level of distribution result, since an asymptotic holds when Nd ď Xβ for all

0 ă β ă β1{β2.

The power saving in the error term of Theorem 1.2 is crucial for deducing Theorem 1.1

from it, and therefore for the application to Manin’s conjecture. Even in the simple case

K “ Q, such a strong error term can presently only be obtained under the assumption
řn

i“1 degpFi q ď 3, which is the reason for the restriction placed on the complexity cpFq.
As a first step for the proof of Theorem 1.2, we use Dirichlet’s hyperbola trick and

partition the variables in the summation into a small number of lattices; this is exposed

in § 4.1. The next part, residing in § 4.2, consists of counting points on these lattices; it

is here that the main step towards the power saving in the error term in Theorem 1.2
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takes place. Finally, in §§ 4.3–4.6 we prove that the average of the contribution of each

lattice alluded to above gives the main term as stated in Theorem 1.2, this part contains

the treatment of volumes of slightly awkward regions introduced by the consideration of

arbitrary number fields.

Notation. The set of places of the number field K will be denoted �K and for each

v P �K we shall let mv :“ rKv : Qws, where w is the place of Q below v. For a P OK , we

write Npaq :“ NpaOK q “
ś

vP�8
|a|mv

v for the absolute value of its norm. For s P K8 “
ś

vP�8
Kv and v P �8, we write sv P Kv for the projection of s to Kv. Furthermore, for

any prime ideal p the p-adic exponential valuation on ideals (and elements) of OK will

be denoted by vp. As usual, the resultant of two binary forms F,G P OK rs, ts will be

represented by RespF,Gq P OK , while Euler’s totient function and the divisor function

for non-zero ideals of OK will be denoted by φK and τK . Lastly, we shall choose a system

of integral representatives C “ tr1, . . . , rhu for the ideal class group of OK and fix it once

and for all. Unless the contrary is explicitly stated, the implicit constants in Landau’s

O-notation and Vinogradov’s Î-notation are allowed to depend on K ,C , r, f,F and P
but no other parameters. The exact value of a small positive constant ε will be allowed

to vary from expression to expression throughout our work.

2. Preliminaries

2.1. Lattice point counting

For any lattice 3 Ă K 2
8 “ R2m , we denote its ith successive minimum (with respect to

the unit ball) by λpiqp3q. We write ‖¨‖ for the Euclidean norm on R2m . For a, d P IK and

γ P OK , we define the lattice

3pa, d, γ q :“ tps, tq P a2
: s ” γ t mod du.

It has determinant proportional to Npa2dpa` dq´1q, and we write λpiqpa, d, γ q :“

λpiqp3pa, d, γ qq for its ith successive minimum. Recall that C “ tr1, . . . , rhu is a fixed

system of integral representatives of the class group of K . Let us prove some facts about

the minima λpiqpa, d, γ q.

Lemma 2.1. Let a, d P IK , γ P OK and 1 ď i ď 2m.

p1q Whenever ras “ rrq s for 1 ď q ď h, we have

Na1{mλpiqprq , rqdpa` dq´1, γ q Î λpiqpa, d, γ q Î Na1{mλpiqprq , rqdpa` dq´1, γ q.

p2q For any non-zero ideal b of OK , the following estimate holds,

λpiqpa, d, γ q Î λpiqpa, bd, γ q Î Npbq1{mλpiqpa, d, γ q.

p3q We have λpiqpa, d, γ q Î Npa2dpa` dq´1q1{p2m´i`1q.

Proof. Let a P K r t0u such that a “ arq . Then the elements ps, tq P a2 with s ” γ t mod d

are exactly those of the form ps, tq “ aps1, t1q, with ps1, t1q P 3prq , rqdpa` dq´1, γ q “: 31.
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By Dirichlet’s unit theorem, we can choose our generator a to satisfy |a|v Î Na1{m Î |a|v
for all v P �8. Then, for any ps1, t1q P 31 we have

Na1{m
‖ps1, t1q‖ Î ‖aps1, t1q‖ Î Na1{m

‖ps1, t1q‖,

which shows claim p1q. The first inequality of (2) is clear. For the remaining one, let b P b
such that |b|v Î Nb1{m Î |b|v for all v P �8 and let ps, tq P 3pa, d, γ q. This implies that

pbs, btq P 3pa, bd, γ q and ‖pbs, btq‖ Î Nb1{m
‖ps, tq‖. Assertion (3) flows directly from

Minkowski’s second theorem combined with the obvious fact that λp1qpa, d, γ q Ï 1.

We use the framework of [2], built on o-minimality, to count points of 3pa, d, γ q in

fairly general domains. For an introduction to o-minimality, we refer to [32] and the

introductory section of [2]. Assume we are given an o-minimal structure that extends the

semialgebraic structure. Let R Ă Rk`2m be a definable family, such that for each T P Rk

the fibre

RT :“ tps, tq P R2m | pT, s, tq P Ru

is contained in a ball, not necessarily zero-centred, of radius Î X1{m
T for some XT ě 1.

The first part of Lemma 2.1 makes the following lemma an immediate consequence of

[2, Theorem 1.3].

Lemma 2.2. Whenever ras “ rrq s and T P Rk , the quantity 7p3pa, d, γ qXRT q equals

cK vol RT

Npa2dpa` dq´1q
` O

¨

˝

2m´1
ÿ

j“0

X j{m
T

Na j{m ś j
i“1 λ

piqprq , rqdpa` dq´1, γ q

˛

‚,

with an explicit positive constant cK depending only on K . The implicit constant in the

error term may depend on K ,R, but not on T, a, d, γ .

Still keeping the notation from above, we now fix an ideal r P IK and assume that r | a

and that a` d “ OK . Let σ, τ P r such that σOK ` τOK ` a “ r and define a discrete

subset of K 2
8 “ R2m by

3˚pa, pσ, τ q, d, γ q :“

$

&

%

ps, tq P r2
:

ps, tq ” pσ, τ q mod a,

sOK ` tOK “ r,

s ” γ t mod d

,

.

-

. (2.1)

Moreover, we require now that each RT is contained in a zero-centred ball of radius

Î X1{m
T .

Lemma 2.3. We have

7p3˚pa, pσ, τ q, d, γ qXRT q´
cK vol RT

ζK p2qNpda2q

ź

p|ar´1

ˆ

1´
1

Np2

˙´1
ź

p|d

ˆ

1`
1
Np

˙´1

Î

m´1
ÿ

j“0

X1` j{m
T plog XT qτK pdq

min1ďqďhtλ
p1qprq , rqd, γ qmλpm`1qprq , rqd, γ q ju

.

Here, ζK is the Dedekind zeta function of K and τK is the divisor function on IK . The

implicit constant in the error term depends on K , r,R, but not on T, a, σ, τ, d or γ .
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Proof. After Möbius inversion the quantity under consideration becomes equal to
ÿ

e|d

ÿ

bPIK
b`d“e

b`ar´1“OK

µK pbq7tps, tq P prbq2XpRT r t0uq : ps, tq ” pσ, τ q mod a, s ” γ t mod du.

Writing b “ b1e, we see that b1` d “ OK whenever µpbq ‰ 0, thus the sum becomes
ÿ

e|d

µK peq
ÿ

b1PIK
b1`ar´1d“OK

µK pb
1q 7 tps, tq P prb1eq2XpRT r t0uq :

ps, tq ” pσ, τ q mod a, s ” γ t mod du.

Since the set counted in the inner summand is contained in 3prb1e, d, γ qX pRT r t0uq, the

summand is zero unless λp1qprb1e, d, γ q Î X1{m
T . Using Lemma 2.1, this condition implies

that

Nb1 Î
XT

min1ďqďhtλ
p1qprq , rqd, γ qumNr

. (2.2)

Let σ̃ , τ̃ P rb1e such that pσ̃ , τ̃ q ” pσ, τ q mod a. We have pσ, τ q ” p0, 0q mod prb1e` aq “ r,

hence, such pσ̃ , τ̃ q exist. The Chinese remainder theorem allows us to transform our sum

to
ÿ

e|d

µK peq
ÿ

p2.2q
b1PIK

b1`ar´1d“OK

µK pb
1q7tps, tq P ppσ̃ , τ̃ q` pab1eq2qX pRT r t0uq : s ” γ t mod du.

Next, we replace ps, tq by ps1, t1q :“ ps´ σ̃ , t ´ τ̃ q, so that the inner cardinality becomes

7tps1, t1q P pab1eq2XppRT r t0uq´ pσ̃ , τ̃ qq : s1` σ̃ ´ γ τ̃ ” γ t1 mod du.

Since σ̃ ´ γ τ̃ ” 0 mod e “ ab1e` d, we can find δ P ab1e with δ ” σ̃ ´ γ τ̃ mod d. The

replacement of s1 by s2 :“ s1` δ transforms the count to

7tps2, t1q P pab1eq2XppRT r t0uq´ pσ̃ , τ̃ q` pδ, 0qq : s2 ” γ t1 mod du

“ 7p3pab1e, d, γ qX ppRT r t0uq´ pσ̃ , τ̃ q` pδ, 0qqq. (2.3)

Clearly, we can extend our family R to a definable family ĂR Ď Rpk`2mq`2m , whose fibre
ĂRpT,σ,τq, for pT, σ, τ q P Rk`2m , is the translate RT `pσ, τ q. Lemma 2.2 thus allows us to

approximate the quantity in (2.3) by

cK vol RT

Npa2b12edq
` O

¨

˝

2m´1
ÿ

j“0

X j{m
T

Npab1eq j{m min1ďqďht
ś j

i“1 λ
piqprq , rqde´1, γ qu

˛

‚. (2.4)

Summing the main term over e and b1 gives

cK vol RT

Npa2dq

ÿ

e|d

µK peq

Ne

ÿ

b1PIK
b1`adr´1“OK

p2.2q

µK pb
1q

Nb12
.
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The desired main term is obtained by removing condition (2.2), present in the inner sum.

This introduces an error of size

Î
vol RT

XTNd

ÿ

e|d

Nr min
1ďqďh

tλp1qprq , rqd, γ qu
m Î

τK pdq vol RT min1ďqďhtλ
p1qprq , rqd, γ qu

mNr

XTNd

Î
XT τK pdqNr

min1ďqďhtλ
p1qprq , rqd, γ qum

,

where the third part of Lemma 2.1 has been used to obtain the last inequality. Summing

the summand for j in the error term of (2.4) over e and b1 gives a total error

Î X j{m
T

ÿ

e|d

1

Ne j{m min1ďqďht
ś j

i“1 λ
piqprq , rqde´1, γ qu

ÿ

b1PIK
p2.2q

1

Nb1 j{m
(2.5)

and

ÿ

b1PIK
p2.2q

1

Nb1 j{m
Î

˜

XT

min1ďqďhtλ
p1qprq , rqd, γ qum

¸maxt0,1´ j{mu

plog XT q.

Observe, moreover, that Ne1{mλpiqprq , rqde
´1, γ q Ï λpiqprq , rqd, γ q, by Lemma 2.1. Thus,

for j ě m the expression in (2.5) is

Î
X j{m

T plog XT qτ pdq

min1ďqďhtλ
p1qprq , rqd, γ qmλpm`1qprq , rqd, γ q j´mu

,

which, upon replacing j by j ´m, is covered by the lemma’s error term. For j ă m, the

expression in (2.5) is at most Î XT plog XT qτ pdqpmin1ďqďhtλ
p1qprq , rqd, γ q

muq´1.

2.2. Averages of certain arithmetic functions related to Artin L-functions

We shall provide asymptotic estimates for averages of functions that will later appear in

the treatment of the main term in Theorem 1.2.

Lemma 2.4. Let a : NÑ C be an arithmetic function with associated Dirichlet series

Apsq “
ř

nPN apnqn´s . Let δ,C ą 0, λ ą 2 and assume that

|apnq| ď Cnδ, (2.6)

Ap¨q has an analytic continuation to <psq ą 1{2, (2.7)

|Apsq| ď Cp1` |=psq|q1{2, for <psq ě 1´ 1{λ. (2.8)

Then
ÿ

nďX

apnq Î C X1´1{p2λq`2δ,

for X ě 1, where the implicit constant may depend at most on λ and δ.
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Proof. The Dirichlet series defining Apsq converges absolutely for <psq ą 1` δ, thanks

to (2.6). Let σ0 :“ 1` 2δ and T :“ X1{λ. We shall make use of Perron’s formula (see for

example [29, Corollary 5.3]) to obtain

ÿ

nďX

apnq´
1

2π i

ż σ0`iT

σ0´iT
Apsq

X s

s
ds

Î
ÿ

X{2ănă2X

|apnq|min
"

1,
X

T |X ´ n|

*

`
4σ0 ` Xσ0

T

ÿ

nPN

|apnq|
nσ0

.

Replacing the minimum by its second term unless |X ´ n| ă 1, the first error term

becomes

Î C X δ
˜

1`
X
T

ÿ

1ďmď2X

1
m

¸

Îδ C X1´1{λ`2δ,

while the second error term is Î C X1´1{λ`2δř
nPN n´1´δ Îδ C X1´1{λ`2δ. Shifting the

line of integration to the left, we see that the main term equals
˜

´

ż σ0´iT

1´1{λ´iT
`

ż 1´1{λ`iT

1´1{λ´iT
`

ż σ0`iT

1´1{λ`iT

¸

Apsq
X s

s
ds.

The first and third integral are bounded by

Î CT´1{2
ż σ0

u“1´1{λ
Xu du Î CT´1{2 Xσ0 “ C X1´1{p2λq`2δ

and the second integral attains a value

Î C X1´1{λ
ż T

t“´T

p1` |t |q1{2

|1´ 1{λ` i t |
dT Î C X1´1{λ

ˆ

1`
ż T

t“1
t´1{2 dt

˙

Î C X1´1{λT 1{2 Î C X1´1{p2λq.

Lemma 2.5. Let ρ : IK Ñ C be a multiplicative function whose associated Dirichlet series

is Dρpsq “
ř

aPIK
ρpaqNa´s . Let W P IK , λ ą 2, and f P ZK . Assume that the following

conditions hold:

ρpaq “ 0 unless a`W “ OK , (2.9)

ρppkq Îρ 1 for all prime ideals p - W and all k ě 0, (2.10)

Dρp¨q has an analytic continuation to <psq ą 1{2, (2.11)

Dρpsq Îρ p1` |=psq|q1{2 for <psq ě 1´ 1{λ, (2.12)
ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“1

ρppkq

Npks

ˇ

ˇ

ˇ

ˇ

ˇ

ă
1
2

for all prime ideals p - W and <psq ą 1{2, (2.13)

ˇ

ˇ

ˇ

ˇ

ˇ

1 f ppq
8
ÿ

k“1

ρppkq

Npks

ˇ

ˇ

ˇ

ˇ

ˇ

ă
1
2

for all prime ideals p - W and <psq ą 1{2. (2.14)
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Then there is β ą 0 and γ P ZK , such that, for any c P IK with c`W “ OK , we have

ÿ

NaďX
a`cW“OK

1 f paqρpaq

Na
“ Dρp1qβ1γpcq` OpNcεX´1{p2λq`εq,

for all ε ą 0. The implicit constant is allowed to depend on ε, ρ,W, f, λ, but not on c, X .

Proof. For p - W let 8ppsq :“
ř8

k“1 ρpp
kqNp´ks , which is bounded in absolute value by

1{2 whenever <psq ą 1{2, due to (2.13). Moreover, condition (2.10) implies that

8ppsq Îρ Np´s for <psq ą 1{2. (2.15)

Define formally the Dirichlet series

Dcpsq :“
ÿ

aPIK
a`cW“OK

1 f paqρpaq

Nas “
ź

p-cW
p1` 1 f ppq8ppsqq,

9cpsq :“
ź

p|c

p1` 1 f ppq8ppsqq´1 and

8psq :“
ź

p-W

1` 1 f ppq8ppsq
1`8ppsq

“
ź

p-W

ˆ

1`
f ppq8ppsq
1`8ppsq

˙

,

to obtain a factorisation

Dcpsq “ Dρpsq8psq9cpsq. (2.16)

By (2.15), the Euler products for Dcpsq and Dρpsq converge absolutely and define

holomorphic functions for <psq ą 1, while (2.15) and (2.13) guarantee that8psq converges

absolutely and defines a holomorphic function on <psq ą 1{2. Moreover, (2.14) ensures

that all factors of the finite product 9cpsq are defined and holomorphic for <psq ą 1{2.

Consequently, the factorisation (2.16) holds for <psq ą 1 and, using (2.11), provides an

analytic continuation of Dcpsq to <psq ą 1{2. For <psq ě 1´ 1{λ, we obtain by (2.12)

and (2.13) that

|Dcpsq| Îρ p1` |=psq|q1{2

¨

˝

ź

p|c

2

˛

‚|8psq| Îε, f,ρ,λ Ncεp1` |=psq|q1{2.

Since moreover
ř

Na“k 1 f paqρpaq Îε, f,ρ kε, we may apply Lemma 2.4 to obtain for any

ε ą 0,
ÿ

NaďX
a`cW“OK

1 f paqρpaq Îε, f,ρ,λ NcεX1´1{p2λq`ε.

Partial summation reveals that the series defining Dcpsq converges for s “ 1 and

ÿ

NaďX
a`cW“OK

1 f paqρpaq

Na
“ Dρp1q8p1q9cp1q` OpNcεX´1{p2λq`εq.
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Conditions (2.13) and (2.14) show that β :“ 8p1q ą 0. We finish our proof with the

observation 9cp1q “ 1γpcq, where

γppq :“ p1` 1 f ppq8pp1qq´1´ 1 “
8
ÿ

k“1

p1 f ppq8pp1qqk .

In particular, |γppq| ă 1 and γppq Î Np´1, so γ P ZK .

In our proof of Theorem 1.2, we shall apply the above result for Dirichlet series Dρpsq
of the following form. Let pF,Gq be a pair of binary forms in OK rs, ts, such that F is

irreducible in K rs, ts, not proportional to t , and does not divide G in K rs, ts. We assume

furthermore that G is of even degree, and that Gpθ, 1q R K pθqˆ2, where θ P K is a root

of Fps, 1q.
Fix W P IK with 2 |W. We define, for a P IK , the multiplicative function ρpF,Gqpaq

by

ρpF,Gqpaq :“
ÿ

λ mod a
Fpλ,1q”0 mod a

ˆ

Gpλ, 1q
a

˙

if a`W “ OK ,

and ρpF,Gqpaq “ 0 otherwise. We assume that W is divisible by enough small prime ideals

to ensure that 2 ¨ |ρpF,Gqppq| ă Np1{2 for all prime ideals p.

Lemma 2.6. The Dirichlet series of ρpF,Gq, given by

DpF,Gqpsq :“
ÿ

aPIK

ρpF,Gqpaq

Nas ,

defines a holomorphic function in <psq ą 1
2 that does not vanish at s “ 1. We furthermore

have |DpF,Gqpsq| Î p1` |=psq|q
1{2 in the region <psq ą 1´ 1{λ, where λ “ 1` 2m deg F.

Proof. Let a :“ Fp1, 0q P OK r t0u. Then Fps, atq “ a pFps, tq, where pFps, 1q P OK rss is

monic and irreducible. Note that the constant pθ :“ aθ is a root of pFps, 1q. Define the

number field H :“ K pθ,
b

Gppθ, aqq “ K pθ,
a

Gpθ, 1qq, which clearly fulfils rH : K pθqs “
2.

The non-trivial representation of GalpH{K pθqq gives rise to the Artin L-function

Lps, χq “
ź

P

p1´χpPqNK pθq{QP
´sq´1,

with the product running over the non-zero prime ideals P of K pθq. The character χpPq

is 0 if P is ramified in H{K pθq and 1 or ´1 according to whether P is split or inert

in H{K pθq. This L-function is entire and does not vanish at s “ 1. The usual argument

about split primes shows that

ź

P|p

p1`χpPqNK pθq{QP
´sq “ 1`

¨

˚

˚

˚

˝

ÿ

P|p
f pP{pq“1

χpPq

˛

‹

‹

‹

‚

Np´s ` OpNp´2sq,

for every prime ideal p of OK , where f pP{pq is the inertia degree.
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In the following considerations, we assume that p is relatively prime to a and to the

conductors of the orders OK rpθs in K pθq and OK pθqr

b

Gppθ, aqs in H . Then the primes P

in K pθq above p with f pP{pq “ 1 are parameterised by the roots λ of pFps, 1q modulo p.

If P corresponds to the root λ, then we have an isomorphism OK pθq{PÑ OK {p given by

pθ ÞÑ λ. Consequently,

χpPq “

˜

Gppθ, aq
P

¸

“

ˆ

Gpλ, aq
p

˙

and in particular,

ÿ

P|p
f pP{pq“1

χpPq “
ÿ

λ mod p
pFpλ,1q”0 mod p

ˆ

Gpλ, aq
p

˙

“
ÿ

λ mod p
Fpλ,1q”0 mod p

ˆ

Gpaλ, aq
p

˙

“ ρpF,Gqppq,

where we again relied on the fact that G is of even degree. Let W1 be the product of all

the prime ideals excluded above. We have shown that

Lps, χq “ g0psq
ź

p-W1W

˜

1`
ρpF,Gqppq

Nps

¸

“ g1psq
ź

p-W

˜

1`
ρpF,Gqppq

Nps

¸

“ g2psqDpF,Gqpsq,

where g0, g1, g2 are holomorphic functions and have absolutely convergent Euler

products on <psq ą 1{2 that do not vanish there. Hence, for <psq ą 1{2` ε. we have

1 Îε g2psq Îε 1.

Convexity bounds, for example [27, Theorem III.14 A] with η “ 1{p2m deg Fq, show that

Lps, χq Î p1` |=psq|q1{2 in 1´ η ď <psq ď 1` η,

which extends to the region 1´ η ď <psq by absolute convergence of Lps, χq in

<psq ą 1.

We shall need to handle averages of volumes of certain regions (see (4.11)). The next

version of Abel’s sum formula is optimally tailored for this task.

Lemma 2.7. Let g, ω : NÑ C be functions, and write Gpuq :“
ř

nďu gpnq. Let X ě 1,

A, B ě 0 with A` B ă 1, and assume that:

(1) ωpnq “ 0 for n ě X ;

(2) there is Q ě 0 such that |ωpnq´ωpn` 1q| ď Qn´B holds for all n P N;

(3) there are λ0 P C, M ě 0, such that |Gpnq´ λ0| ď Mn´A holds for all n P N.

Then
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

nďX

gpnqωpnq´ λ0ωp1q

ˇ

ˇ

ˇ

ˇ

ˇ

ď M Q

˜

1`
X1´A´B

1´ A´ B

¸

.
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Proof. Telescoping and using assumption (1), we see that

ÿ

nďX

gpnqωpnq “
ÿ

nďX

Gpnqpωpnq´ωpn` 1qq

“ λ0
ÿ

nďX

pωpnq´ωpn` 1qq`
ÿ

nďX

pGpnq´ λ0qpωpnq´ωpn` 1qq.

The first summand is equal to λ0ωp1q, and, using assumptions (2) and (3), the last sum

has absolute value at most

M Q
ÿ

nďX

n´A´B ď M Q
ˆ

1`
ż X

1

du
u A`B

˙

ď M Q

˜

1`
X1´A´B

1´ A´ B

¸

.

3. Proof of Theorem 1.1

In this section we assume the validity of Theorem 1.2 and we prove Theorem 1.1 from it.

The finite set Sbad will contain all prime ideals that we want to exclude at various steps

of our argument. It will grow during the proof, but it will never depend on anything but

K , r, F and f . In Theorems 1.1 and 1.2, we always assume that none of the forms Fi ps, tq
is proportional to t . This can be achieved by a unimodular transformation φa : K 2 Ñ K 2,

ps, tq ÞÑ ps, as` tq, for suitable a P OK . This map φa extends to K 2
8 Ñ K 2

8 in an obvious

way, transforming D to φapDq. Clearly, all our hypotheses are still satisfied.

3.1. Simple reductions

Lemma 3.1. Let P “ pD, pσ, τ q,Wq be an F-admissible triplet, and k P N. Then

Pk
:“ pD, pσ, τ q,Wkq

is also an F-admissible triplet and DpF, f,P; Xq Ïk DpF, f,Pk
; Xq.

Proof. Since W and Wk have the same prime factors, the ideals a5, for a P IK ,

are the same for W and Wk . Moreover, M˚pPk, Xq Ď M˚pP, Xq. This shows that,

Pk is admissible, and moreover rpF, f,P; s, tq “ rpF, f,Pk
; s, tq. The lemma follows

immediately, since rpF, f,P; s, tq ě 0.

It is enough to prove Conjecture 1 for all strongly F-admissible triplets. Indeed,

given any F-admissible triplet P “ pD, pσ, τ q,Wq, we may assume it to be strongly

F-admissible. To this end, we may replace W by any positive power of itself, thanks to

Lemma 3.1. By (1.6), we can find k P N, such that Pk satisfies (1.9).

By including in Sbad enough small prime ideals and replacing W by a high enough

power, we can moreover assume that

2r
ź

i

Fi p1, 0q
ź

i‰ j

RespFi , F j q |W. (3.1)
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3.2. Eclipsing the trivial Gi

Lemma 3.2. Whenever i P t1, . . . , nu is such that Gi pθi q P K pθi q
ˆ2, then for all s, t P OK

with sOK ` tOK “ r we have
ÿ

di |Fi ps,tq5

ˆ

Gi ps, tq
di

˙

“ τK pFi ps, tq5q.

Proof. The isomorphism K rSs{Fi pS, 1q Ñ K pθi q, S ÞÑ θi , sends Gi pS, 1q to Gi pθi q. Hence,

Gi pS, 1q “ hpSq2` cpSqFi pS, 1q,

with polynomials hpSq, cpSq P K rSs, such that Fi pS, 1q - hpSq. Let d be the maximum of

the degrees of Gi pS, 1q, hpSq2, cpSqFi pS, 1q. Rehomogenising, we obtain

Gi pS, T qT d´deg Gi “ HpS, T q2T d´2 deg H `CpS, T qT d´deg C´deg Fi Fi pS, T q,

with forms H,C P K rS, T s. Letting b P OK such that bHpS, T q P OK rS, T s, we find that

RespbHpS, T q, FpS, T qq P OK r t0u. After adding to Sbad all prime ideals that divide

b RespbHpS, T q, FpS, T qq, and all modulo which the form C cannot be reduced, we obtain,

for all s, t P OK and all p | Fi ps, tq5,
˜

Gi ps, tqtd´deg G

p

¸

“

˜

Hps, tq2td´2 deg H

p

¸

.

Using sOK ` tOK “ r and p - Fi p1, 0q, we see that if p | t then p | s, which shows that

p | r |W, a contradiction. Hence, t is invertible modulo p and using that deg G is even,

we derive
ˆ

Gi ps, tq
p

˙

“

ˆ

Hps, tq
p

˙2 ˆ t
p

˙deg G´2 deg H

“

ˆ

Hps, tq
p

˙2

“ 1.

In the last equality, we were allowed to exclude the case Hps, tq ” 0 mod p due to the

condition p - RespbHpS, T q, Fi pS, T qq.

By possibly reordering the pFi ,Gi q P F, we may assume that

Gi pθi q

$

&

%

P K pθi q
ˆ2 for 1 ď i ď ρpFq,

R K pθi q
ˆ2 for ρpFq` 1 ď i ď n.

We define f 1ppq :“ 0 if p P Sbad and f 1ppq :“ 2 f ppq otherwise. Note that choosing

Sbad large enough ensures that f 1 P ZK . All n factors in the definition of rps, tq are

non-negative and for 1 ď i ď ρpFq we see by Lemma 3.2 that

1 f pFi ps, tq5q
ÿ

di |Fi ps,tq5

ˆ

Gi ps, tq
di

˙

“
ź

p|Fi ps,tq5
p1` f ppqqpvppFi ps, tqq` 1q

ě
ź

p|Fi ps,tq5
p1`p1` 2 f ppqqq “

ÿ

di |Fi ps,tq
di`W“OK

µ2
K pdi q1 f 1pdi q.

If ρpFq ă n, we let F1 :“ tpFρpFq`1,GρpFq`1q, . . . , pFn,Gnqu comprise those pairs in

F with Gi pθi q R K pθi q
ˆ2. Then ρpF1q “ 0 and cpF1q “ cpFq ď 3. Clearly, the strongly

F-admissible triplet P is also strongly F1-admissible.
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Lemma 3.3. Let ρpFq ă n. Then, for any ε P p0, 1q, the sum DpF, f,P; Xq is Ï

ÿ

d1,...,dρpFqPIK
NdiďXε @i

di`W“OK @i
di`d j“OK @i‰ j

¨

˝

ρpFq
ź

i“1

µ2
K pdi q1 f 1pdi q

˛

‚

ÿ

pσi ,τi q mod di @i
σi OK`τi OK`di“OK
Fi pσi ,τi q”0 mod di @i

ÿ

ps,tqPM˚pP,Xq
ps,tq”pσi ,τi q mod di @i

rpF1, f,P; s, tq.

(3.2)

In these sums, the quantifiers @i run over all i P t1, . . . , ρpFqu.

Proof. This stems upon reordering the sum with respect to the factors di | Fi ps, tq and

splitting into congruence classes moddi . Since rps, tq ě 0, we are allowed to impose

additional restrictions on the di , such as Ndi ď Xε.

Lemma 3.4. Let r, a P IK , r | a, and let pσ̃ , τ̃ q P r2 such that σ̃OK ` τ̃OK ` a “ r. Then

there is pσ, τ q P r2 satisfying pσ, τ q ” pσ̃ , τ̃ q mod a and σOK ` τOK “ r.

Proof. Let b P IK such that ba “ wOK is a principal ideal, and such that any prime

ideal p dividing σ̃ divides b if and only if it does not divide τ̃ r´1. We may then choose

σ :“ σ̃ and τ :“ τ̃ `w.

We next deploy Theorem 1.2 to estimate the innermost sum in Lemma 3.3.

Lemma 3.5. Let ρpFq ă n. There is a function f0 P ZK and β0, β1, β2 ą 0, such that the

following holds: for any d1, . . . , dρpFq P IK and pσi , τi q mod di , satisfying the conditions

under the first two sums in (3.2), we have, with d :“ d1 ¨ ¨ ¨ dρpFq, the asymptotic

ÿ

ps,tqPM˚pP,Xq
ps,tq”pσi ,τi q mod di @i

rpF1, f,P; s, tq “ β0 X2 1 f0pdq

Nd2 ` OpX2´β1Ndβ2q. (3.3)

The implicit constant in the error term is independent of all di , pσi , τi q.

Proof. The Chinese remainder theorem and the coprimality conditions on d1, . . . , dρpFq,

W allow us to express the congruences ps, tq ” pσ, τ q mod W and ps, tq ” pσi , τi q mod di
for all i as one congruence ps, tq ” pσ̃ , τ̃ q mod dW. The pair pσ̃ , τ̃ q P O2

K then necessarily
satisfies σ̃OK ` τ̃OK ` dW “ r. Using Lemma 3.4, we may thus assume that σ̃OK `

τ̃OK “ r.

The triplet P 1
:“ pD, pσ̃ , τ̃ q,Wq is strongly F1-admissible. Moreover d satisfies the

condition (1.10) in Theorem 1.2, since r
ś

i, j RespFi , F j q|W, and since di `W “ OK for

all i .
The sum in the lemma equals

ÿ

ps,tqPM˚pP 1
d,Xq

rpF1, f,P 1
; s, tq,

so the lemma stems from Theorem 1.2, once we enlarge Sbad and replace W by a

sufficiently high power to ensure that W0 |W.
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Using the bound |1 f 1pdi q| Î Ndi , we see that the error terms arising from substituting

(3.3) into (3.2) are Î X2´β1`ερpFqpβ2`3q. Finally, choosing ε small enough makes the

exponent smaller than 2.

Let us consider the main term. For a form F P OK rs, ts, irreducible over K and not

divisible by t and for d P IK we define

τF pdq :“ 7tµ P OK {d : Fpµ, 1q ” 0 mod du. (3.4)

Using (3.1), we obtain for all d P IK with d`W “ OK ,
ÿ

pσ,τq mod d
Fpσ,τq”0 mod d

σOK`τOK`d“OK

1 “ τF pdqφK pdq.

Let us now introduce the function

Lpdq :“ 1 f 1pdq1 f0pdqNpdq
´1φK pdq

ÿ

d1¨¨¨dρpFq“d

ρpFq
ź

i“1

τFi pdi q.

To finish the proof of Theorem 1.1 in the case ρpFq ă n, it remains to show that
ÿ

NdďXε
d`W“OK

µ2
K pdq

Lpdq
Nd

Ï plog XqρpFq.

This bound can be proved in a straightforward manner by alluding to the generalisation

of Wirsing’s theorem to all number fields as supplied in [17, Lemma 2.2]. The required

estimate
ÿ

NpďX

τFi ppq

Np
logNp “ log X ` Op1q

follows from the prime ideal theorem for the number field K pθi q.

Finally, if ρpFq “ n, we proceed as in Lemma 3.3 to obtain a lower bound for

DpF, f,P; s, tq as in (3.2), but with rpF1, f,P; s, tq replaced by 1. Arguing as in

Lemma 3.5 and using Möbius inversion as in the proof of Lemma 2.3, the innermost

sum then becomes
ÿ

ps,tqPM˚pP 1
d,Xq

1 “
ÿ

aPIK
a`dWr´1“OK

NaÎX

7pppσ˚, τ˚q` pardWq2qX X1{mDq,

for some pσ˚, τ˚q P O2
K . By lattice point counting, the summand for a is

7ppardWq2Xp´pσ˚, τ˚q` X1{mDqq “
cK X2 vol D
NpardWq2

` O

˜

ˆ

X
Na

˙2´1{m

` 1

¸

.

Summing this over all a yields a positive constant β0 “ β0pr,D,Wq, such that

ÿ

ps,tqPM˚pP 1
d,Xq

1 “ β0
X2

Nd2 ` OpX2´1{m log Xq.

We may use this asymptotic instead of Lemma 3.5 to proceed as in the case ρpFq ă n.

This completes our proof of Theorem 1.1.
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4. Proof of Theorem 1.2: asymptotics for divisor sums

Recall that we have shown that it is sufficient to consider the case when none of the

forms Fi is proportional to t . The ideal W0 will be modified throughout the proof, but

it will only depend on K , r,F, f . We start by assuming that W0 satisfies (3.1). Let F

be a system of forms as in the theorem, and W be a strongly F-admissible triplet with

W0 |W. Moreover, let d P IK satisfy (1.10).

4.1. The Dirichlet hyperbola trick

Let us recall that the expression
ÿ

ps,tqPM˚pPd,Xq

rpF, f,P; s, tq

can be recast as

ÿ

ps,tqPM˚pPd,Xq

n
ź

i“1

1 f pFi ps, tq5q

¨

˝

ÿ

ci |Fi ps,tq5

ˆ

Gi ps, tq
ci

˙

˛

‚. (4.1)

Defining Wi :“
ś

p|W pvppFi pσ,τqq makes apparent, once (1.9) has been taken into account,

that Fi ps, tq5 “ Fi ps, tqW´1
i . Furthermore, for each ps, tq P M˚pPd, Xq we have the

following inequalities,

NFi ps, tq5 “ NW´1
i

ź

vP�8

|Fi ps, tq|mv
v Î

ź

vP�8

maxt|s|v , |t |vu
mv deg Fi Î Xdeg Fi ,

thus for each index i there exists ci ą 1, independent of X , such that whenever X ą 1
and ps, tq P M˚pPd, Xq then NFi ps, tq5 ă ci Xdeg Fi . We let Yi :“ ci Xdeg Fi . Suppressing

the dependence on W in the notation, we define the arithmetic functions

r´i ps, tq :“
ÿ

ci |Fi ps,tq5

Nciă
?

Yi

ˆ

Gi ps, tq
ci

˙

and r`i ps, tq :“
ÿ

c˚i |Fi ps,tq5

Nc˚i ă
?

Yi

Nc˚i
?

YiNWiďNpFi ps,tqq

ˆ

Gi ps, tq
c˚i

˙

,

an action which, upon writing Fi ps, tq5 “ ci c
˚
i and using assumption (1.8), allows us to

obtain the validity of

ÿ

ci |Fi ps,tq5

ˆ

Gi ps, tq
ci

˙

“ r´i ps, tq` r`i ps, tq.

Let us introduce for every v P r0,8qn and ψ “ pψ1, . . . , ψnq P t0, 1un the region

DψpX; vq :“
n
č

i“1

tps, tq P X1{mD :NpFi ps, tqq ě ψivi
a

YiNWiu Ď K 2
8. (4.2)

Here X is considered as fixed and the dependence on v is what we are interested in.

Define ωψpX; vq : Rn Ñ R through

v ÞÑ volpDψpX; vqq. (4.3)
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For c “ pc1, . . . , cnq P I n
K we use the abbreviation Nc :“ pNc1, . . . ,Ncnq P p0,8qn and

arrive at the equality of the quantity in (4.1) with

ÿ

ps,tqPM˚pPd,Xq

n
ź

i“1

1 f pFi ps, tq5qpri ps, tq´` ri ps, tq`q,

which can be reshaped into

ÿ

ψPt0,1un

ÿ

cPI n
K

Nciă
?

Yi @i
śn

i“1 ci`dW“OK
ci`c j“OK @i‰ j

ÿ

ps,tqPM˚pPd,Xq
ps,tqPDψpX;Ncq

ci |Fi ps,tq @i

n
ź

i“1

ˆ

Gi ps, tq
ci

˙

1 f pFi ps, tq5q.

Here we added the coprimality condition
śn

i“1 ci ` dW “ OK due to (1.10) and the

assumptions ci ` c j “ OK for i ‰ j due to (3.1). The identity

1 f pFi ps, tq5q “
ÿ

bi |Fi ps,tq
bi`W“OK

f pbi q

reveals that, with

Sψ :“
ÿ

b,cPI n
K

NbiăYi ,Nciă
?

Yi @i
śn

i“1 bici`dW“OK
ci`c j“bi`b j“bi`c j“OK @i‰ j

n
ź

i“1

f pbi q
ÿ

ps,tqPDψpX;Ncq

ps,tqPM˚pPd,Xq
pbiXci q|Fi ps,tq @i

n
ź

i“1

ˆ

Gi ps, tq
ci

˙

,

one has
ÿ

ps,tqPM˚pPd,Xq

rpF, f,P; s, tq “
ÿ

ψPt0,1un

Sψ. (4.4)

For any a P IK we let xay Ă IK denote the monoid generated by the prime ideals dividing

a. We collect here some conditions on n-tuples a, b3, c2, c3 P I n
K for later reference:

@i : ai ` dW “ OK and ai `
ź

jăi

a j “ OK , (4.5)

@i : Naib
3
i ă Yi , b3i ` dW

n
ź

j“1

a j c
3
j “ OK and b3i `

ź

jăi

b3j “ OK , (4.6)

@i : Nai c
2
i c
3
i ă

a

Yi , c2i P xaiy, c3i ` dW
n
ź

j“1

a j “ OK and c3i `
ź

jăi

c3j “ OK .

(4.7)

Recall the definition of 3˚pa, pσ, τ q, d, γ q in (2.1).
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Lemma 4.1. We have

Sψ “
ÿ

a,b3,c2,c3PI n
K

p4.5q,p4.6q,p4.7q

˜

n
ź

i“1

f paib
3
i q

¸

ÿ

λi mod di @i
di |Fi pλi ,1q

˜

n
ź

i“1

ˆ

Gi pλi , 1q
ai c
2
i c
3
i

˙

¸

ˆ |3˚pdW, pσ, τ q, d1, λqXDψpX; pNai c
2
i c
3
i q

n
i“1q|,

where the quantities di , d
1 and λ are defined through a, b3, c2, c3 as follows,

di :“ aib
3
i c
2
i c
3
i , d

1
:“

n
ź

i“1

di

and λ is the, unique modulo d1, solution of the system λ ” λi mod di for all i .

Proof. For each pair of ideals bi , ci in the definition of Sψ we let ai :“ bi ` ci . Therefore

bi “ aib
1
i and ci “ ai c

1
i for some coprime ideals b1i , c

1
i which satisfy bi X ci “ aib

1
i c
1
i . We may

further decompose b1i and c1i uniquely as b1i “ b2i b
3
i and c1i “ c2i c

3
i , where b2i , b

3
i , c

2
i , c

3
i P

IK and for all non-zero prime ideals p we have

p|b2i c
2
i ñ p|ai and p|b3i c

3
i ñ p - ai .

Since the function f is supported on square-free ideals, the only relevant value for b2i in

Sψ is b2i “ OK . Taking into account the conditions (4.5)–(4.7) we have thus obtained the

following factorisation for the bi , ci in the sum Sψ,

bi “ aib
3
i and ci “ ai c

2
i c
3
i .

We are therefore led to the equality of Sψ with

ÿ

a,b3,c2,c3PI n
K

p4.5q,p4.6q,p4.7q

˜

n
ź

i“1

f paib
3
i q

¸

ÿ

ps,tqPM˚pPd,Xq
ps,tqPDψpX;pNaic

2
i c
3
i q

n
i“1q

aib
3
i c2i c

3
i |Fi ps,tq @i

n
ź

i“1

ˆ

Gi ps, tq
ai c
2
i c
3
i

˙

.

For any pair ps, tq in the inner sum we have tOK ` di “ OK , since if p | tOK ` di then

p - W and hence p - Fi p1, 0q. This implies that p | s and thus p | sOK ` tOK “ r |W, a

contradiction. Hence, letting λi :“ st´1 mod di we obtain the congruence s ” λi t mod di .

Note that each Gi has even degree and therefore
ˆ

Gi ps, tq
ai c
2
i c
3
i

˙

“

ˆ

Gi pλi , 1q
ai c
2
i c
3
i

˙

,

an equality which can be exploited to transform Sψ into

ÿ

a,b3,c2,c3PI n
K

p4.5q,p4.6q,p4.7q

˜

n
ź

i“1

f paib
3
i q

¸

ÿ

λi mod di @i
di |Fi pλi ,1q

n
ź

i“1

ˆ

Gi pλi , 1q
ai c
2
i c
3
i

˙

ÿ

ps,tqPM˚pPd,Xq
ps,tqPDψpX;pNaic

2
i c
3
i q

n
i“1q

s”λi t mod di @i

1.

Since the di are relatively prime in pairs, we may combine the congruences under the

innermost sum to a single congruence of the form s ” λt mod d1 and our lemma is

furnished upon tautologically reformulating the innermost sum.
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4.2. Application of lattice point counting

Let us define the multiplicative function on IK ,

ηpaq :“
µK paq

Na

ź

p|a

ˆ

1`
1
Np

˙´1

,

which is supported on square-free ideals and satisfies |ηppq| ă 1{Np for all prime ideals p.

We use the symbols di , d
1, λ with the same meaning as in Lemma 4.1. For any ψ P t0, 1un ,

let

Mψ :“
ÿ

a,b3,c2,c3PI n
K

p4.5q,p4.6q,p4.7q

ωψpX; pNai c
2
i c
3
i q

n
i“1q

n
ź

i“1

¨

˚

˚

˝

f paib
3
i q1ηpaib

3
i c
2
i c
3
i q

Naib
3
i c
2
i c
3
i

ÿ

λi mod di
di |Fi pλi ,1q

ˆ

Gi pλi , 1q
ai c
2
i c
3
i

˙

˛

‹

‹

‚

.

Lemma 4.2. For all ε ą 0 we have

ÿ

ps,tqPM˚pPd,Xq

rpF, f,P; s, tq “
c1K

NpdWq2

ź

p|dWr´1

ˆ

1´
1

Np2

˙´1
ÿ

ψPt0,1un

Mψ ` OεpX2´1{p4mq`εq.

Here, c1K is a positive constant depending only on K and the implied constant in the error

term depends only on K , r,D,W,F, f, ε.

Proof. Recall that C “ tr1, . . . , rhu is a fixed system of integral representatives of the

class group of K . By possibly modifying W0, we may assume that r1 ¨ ¨ ¨ rh |W.

Since D Ď K 2
8 “ R2m is a cartesian product of balls in K 2

v “ R2mv , it is clear that

the sets DψpX; vq Ď R2m , for X ą 0 and v P Rn are fibres of a definable family with

parameters pX, v,ψq P R1`2n in the o-minimal structure Ralg of semialgebraic sets.

Moreover, DψpX; vq Ď X1{mD , which is contained in a zero-centred ball of radius Î X1{m .

Injecting the estimate of Lemma 2.3 into Lemma 4.1 yields the desired main term. The

sum over the error terms in Lemma 2.3 can be bounded by Î E0` ¨ ¨ ¨` Em´1, where,

for 0 ď j ď m´ 1,

E j :“
ÿ

a,b3,c2,c3PI n
K

Naib
3
i ďYi

Naic
2
i c
3
i ď
?

Yi
aib

3
i c2i c

3
i `W“OK

b3i `aic
2
i c
3
i “OK

n
ź

i“1

1
Naib

3
i

ÿ

λi mod di @i
di |Fi pλi ,1q

X1` j{m`ε

min1ďqďhtλ
p1qprq , rqd1, λqmλpm`1qprq , rqd1, λq ju

.

Let us bound E j . The Chinese remainder theorem allows us to separate the sum

over λi mod di into a sum over λi mod ai c
2
i c
3
i and a sum over λi mod b3i . Write d2 :“

śn
i“1 ai c

2
i c
3
i and let λ1 ” λi mod ai c

2
i c
3
i for all i . Since 3prq , rqd

1, λq Ă 3prq , rqd
2, λ1q, we

obtain

λpiqprq , rqd
1, λq ě λpiqprq , rqd

2, λ1q
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for all 1 ď i ď 2m. This allows us to sum over b3, obtaining the estimate

E j Î
ÿ

a,c2,c3PI n
K

Naic
2
i c
3
i ď
?

Yi
aic
2
i c
3
i `W“OK

n
ź

i“1

1
Nai

ÿ

λi mod aic
2
i c
3
i @i

aicic
3
i |Fi pλi ,1q

X1` j{m`ε

min1ďqďhtλ
p1qprq , rqd2, λ1qmλpm`1qprq , rqd2, λ1q ju

.

(4.8)

Let

Y :“
n
ź

i“1

Yi .

Each first successive minimum λp1qprq , rqd
2, λ1q is attained by a point v “ pv1, v2q in the

lattice 3prq , rqd
2, λ1q Ď O2

K Ă K 2
8, of euclidean norm bounded by

‖v‖ Î Nd21{p2mq Î Y 1{p4mq,

due to Lemma 2.1. Let

E j pvq :“
h
ÿ

q“1

ÿ

a,c2,c3PI n
K

Naic
2
i c
3
i ď
?

Yi
aic
2
i c
3
i `W“OK

n
ź

i“1

1
Nai

ÿ

λi mod aic
2
i c
3
i @i

aic
2
i c
3
i |Fi pλi ,1q

vP3prq ,rqd
2,λ1q

‖v‖“λp1qprq ,rqd
2,λ1q

1

‖v‖mλpm`1qprq , rqd2, λ1q j
.

Sorting the expression in (4.8) by the first successive minimum, we see that

E j Î
ÿ

vPO2
Krt0u

‖v‖ÎY 1{p4mq

X1` j{m`εE j pvq.

For v P O2
K to be an element of the lattice 3prq , rqd

2, λ1q, it is necessary that v1 ”

λ1v2 mod d2, so in particular v1 ” λiv2 mod ai c
2
i c
3
i and hence ai c

2
i c
3
i | Fi pvq. This allows

us to conclude that

E j pvq Î
śn

i“1 NpFi pvqqε

‖v‖m` j Î
Xε

‖v‖m` j ,

whenever Fi pvq ‰ 0 holds for all 1 ď i ď n. The sum of E j pvq over all such v is

Î X1` j{m`ε
ÿ

vPO2
Krt0u

‖v‖ÎY 1{p4mq

1
‖v‖m` j Î X1` j{m`εY 1{2p1´pm` jq{p2mqq Î X1` j{m`εY 1{4´ j{p4mq.

Recalling our assumption that cpFq ď 3 and the fact that Y Î X cpFq, we see that this

error term does not exceed

X2´1{4` j{p4mq`ε ď X2´1{p4mq`ε.

It remains to bound the sum over those v for which Fkpvq “ 0 for some 1 ď k ď n. Since

Fkps, tq is irreducible, this necessarily implies that Fkps, tq is linear and since the forms
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Fi ps, tq are pairwise coprime, we conclude that Fi pvq ‰ 0 for all i ‰ k. This allows us to

bound the number of ai , c
2
i , c

3
i , λi , for i ‰ k, as before by

ś

i‰k NpFi pvqqε Î Xε. Writing

temporarily

Fkps, tq “ as´ bt,

with a ‰ 0 and a |W0 |W, we see that the equality Fkpλk, 1q ” 0 mod akc
2
k c
3
k is equivalent

to λk “ a´1b mod akc
2
k c
3
k . Moreover, 3prq , rqd

2, λ1q Ď 3prq , rqakc
2
k c
3
k , λkq. We may thus

bound

E j pvq Î
h
ÿ

q“1

ÿ

ak ,c
2
k ,c
3
k PIK

Nakc
2
k c
3
k Î
?

X
akc

2
k c
3
k `W“OK

Xε

‖v‖mλpm`1qprq , rqakc
2
k c
3
k , λkq j

.

Let α1, . . . , αm be Z-linearly independent elements of rq with ‖αi‖ — λ
piqprqq — 1 and

let β1, . . . , βm be Z-linearly independent in rqakc
2
k c
3
k with ‖βi‖ — λ

piqprqakc
2
k c
3
k q —

Npakc
2
k c
3
k q

1{m . To estimate the successive minima, we used Minkowski’s second theorem

and the fact that λp1qpaq Ï Na1{m holds for any a P IK (see, e.g. [28, Lemma 5] or [15,

Lemma 5.1]). This provides us with the linearly independent lattice points

ˆ

bα1
aα1

˙

, . . . ,

ˆ

bαm
aαm

˙

,

ˆ

β1
1

˙

, . . . ,

ˆ

βm
1

˙

P 3prq , rqakc
2
k c
3
k , λkq.

The first m of these have norm — 1, whereas the latter m ones have norm — Npakc
2
k c
3
k q

1{m ,

so the product of their norms is — Npakc
2
k c
3
k q — det3prq , rqakc

2
k c
3
k , λkq. Using again

Minkowski’s second theorem, this shows that the successive minima of 3prq , rqakc
2
k c
3
k , λkq

satisfy

λp1qprq , rqakc
2
k c
3
k , λkq, . . . , λ

pmqprq , rqakc
2
k c
3
k , λkq — 1,

λpm`1qprq , rqakc
2
k c
3
k , λkq, . . . , λ

p2mqprq , rqakc
2
k c
3
k , λkq — Npakc

2
k c
3
k q

1{m .

As a result, we obtain the bound

E j pvq Î
ÿ

ak ,c
2
k ,c
3
k PIK

Nakc
2
k c
3
k Î
?

X

Xε

‖v‖mNpakc
2
k c
3
k q

j{m
.

In addition, we observe that any v “ pv1, v2q P O2
K with Fkpvq “ 0 is uniquely determined

by v2. Consequently,

ÿ

vPO2
Krt0u

‖v‖ÎY 1{p4mq

Fkpvq“0

X1` j{m`εE j pvq Î X1` j{m`ε
ÿ

v2POKrt0u
‖v2‖ÎY 1{p4mq

1
‖v2‖m

ÿ

ak ,c
2
k ,c
3
k PIK

Nakc
2
k c
3
k Î
?

X

1

Npakc
2
k c
3
k q

j{m

Î X1` j{m`εplog Y qm X1{2p1´ j{mq`ε Î X3{2` j{p2mq`ε Î X2´1{p2mq`ε.
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4.3. Controlling the main term

Let ρi paq :“ ρpFi ,Gi qpaq, as defined prior to Lemma 2.6 and moreover recall (3.4).

Lemma 4.3. The arithmetic factor in the definition of Mψ decomposes as follows:

ÿ

λi mod di
di |Fi pλi ,1q

ˆ

Gi pλi , 1q
ai c
2
i c
3
i

˙

“ ρi pai c
2
i qτFi pb

3
i qρi pc

3
i q.

Proof. Recall that we set di “ aibi c
2
i c
3
i , and that the ideals ai c

2
i , b

3
i , c

3
i are coprime in

pairs due to (4.5)–(4.7). The Chinese remainder theorem, jointly with multiplicativity

properties of the Jacobi symbol, yields

ÿ

λi mod di
di |Fi pλi ,1q

ˆ

Gi pλi , 1q
ai c
2
i c
3
i

˙

“
ÿ

λ1i mod aic
2
i

aic
2
i |Fi pλ

1
i ,1q

ˆ

Gi pλ
1
i , 1q

ai c
2
i

˙

ÿ

λ2i mod b3i
b3i |Fi pλ

2
i ,1q

1
ÿ

λ3i mod c3i
c3i |Fi pλ

3
i ,1q

ˆ

Gi pλ
3
i , 1q

c3i

˙

.

Letting B :“ dW
śn

j“1 a j c
3
j , we define Mpa, c2, c3q as

ÿ

b31 PIK
Nb31 ăY1{Na1
b31 `B“OK

1ηpb
3
1 q f pb31 qτF1pb

3
1 q

Nb31

ÿ

b32 PIK
Nb32 ăY2{Na2
b32 `Bb31 “OK

1ηpb
3
2 q f pb32 qτF2pb

3
2 q

Nb32
. . .

ÿ

b3n PIK
Nb3n ăYn{Nan

b3n `B
ś

jăn b
3
j “OK

1ηpb
3
n q f pb3n qτFn pb

3
n q

Nb3n
,

a definition that makes the succeeding equality valid,

Mψ “
ÿ

a,c2,c3PI n
K

p4.5q,p4.7q

ωψpX; pNai c
2
i c
3
i q

n
i“1qqMpa, c

2, c3q
n
ź

i“1

f pai q1ηpai c
3
i qρi pai c

2
i qρi pc

3
i q

Nai c
2
i c
3
i

.

(4.9)

Let us bring into play the multiplicative function γ, supported on square-free ideals,

by letting γppq :“ 0 for p |W and in the remaining case, p - W, we define

γppq :“ ´1`

˜

1`
p1`ηppqq f ppq

Np

n
ÿ

i“1

τFi ppq

¸´1

.

Including enough small prime ideals in the factorisation of W0, we can ensure that 1γ P

UK .

Lemma 4.4. Let γ0 :“
ś

p-Wp1` γppqq´1 and suppose that Nai ď Yi for all 1 ď i ď n.

Then

Mpa, c2, c3q “ γ01γpdq
n
ź

i“1

1γpai q1γpc
3
i q` Oε

ˆ

Xε max
i“1,...,n

"

Nai

Yi

*˙

.

The implied constant is independent of a, c2, c3, d, and X .
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Proof. The bound bestowed upon f by (1.3) shows that each sum over b3i in Mpa, c2, c3q
forms an absolutely convergent series. We may complete the summation step by step for

i “ n, n´ 1, . . . , 1. The bounds

1ηpb
3
i q, |Nb3i f pb3i q|, τFi pb

3
i q Îε Nb3εi and

ÿ

NbiąYi {Nai

Nbεi

Nb2
i
Î Xε

Nai

Yi

reveal that the error introduced by this process is Îε Xε maxtNai{Yi : i “ 1, . . . , nu, thus

acquiring the main term

ÿ

b31 PIK
b31 `B“OK

1ηpb
3
1 q f pb31 qτF1pb

3
1 q

Nb31
¨ ¨ ¨

ÿ

b3n PIK
b3n `B

ś

jăn b
3
j “OK

1ηpb
3
n q f pb3n qτFn pb

3
n q

Nb3n
.

Grouping all n-tuples b3 according to the value of b :“
śn

i“1 b
3
i and letting

gpbq :“ 1ηpbq
ÿ

b3PI n
K

b“b31 ...b
3
n

b3i `b3j “OK @i‰ j

n
ź

i“1

f pb3i qτFi pb
3
i q,

the main term becomes
ÿ

bPIK
b`B“OK

gpbq
Nb

“
ź

p-B

ˆ

1`
gppq
Np

˙

“
ź

p-B
p1` γppqq´1.

Here, we used the observation that 1` γppq “
´

1` gppq
Np

¯´1
holds for all p - W.

We may now plant Lemma 4.4 into (4.9) to show that Mψ equals

γ01γpdq
ÿ

a,c2,c3PI n
K

p4.5q,p4.7q

ωψpX; pNai c
2
i c
3
i q

n
i“1qq

n
ź

i“1

f pai q1ηpai c
3
i qρi pai c

2
i qρi pc

3
i q1γpai q1γpc

3
i q

Nai c
2
i c
3
i

up to an error of size

Îε Xε
ÿ

a,c2,c3PI n
K

p4.5q,p4.7q

ωψpX; pNai c
2
i c
3
i q

n
i“1qq

˜

n
ź

i“1

| f pai q|1ηpai c
3
i qρi pai c

2
i qρi pc

3
i q

Nai c
2
i c
3
i

¸

max
1ďiďn

"

Nai

Yi

*

.

Using the inequalities Yi Ï X , maxt1ηpaq, ρi paq, f paqNau Îε Naε,

max
1ďiďn

tNaiu ď

n
ź

i“1

Nai , and ωψpX; pNai c
2
i c
3
i q

n
i“1qq ď volpX1{mDq Î X2,

we find that the sum in the error term is

Îε X1`ε
ÿ

a,c2,c3PI n
K

Naic
2
i c
3
i ď
?

Yi

n
ź

i“1

1
Nai c

2
i c
3
i
Îε X1`ε.

https://doi.org/10.1017/S1474748017000469 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000469


Generalised divisor sums over number fields 165

To analyse the main term further, we define on IK the multiplicative functions

gi pci q :“
ÿ

ai ,c
2
i ,c
3
i PIK

aic
2
i c
3
i “ci

c2i Pxai y

ai`c3i “OK

f pai q1ηpai c
3
i qρi pai c

2
i qρi pc

3
i q1γpai c

3
i q,

which satisfy, for prime ideals p and positive integers k,

gi pp
kq “

ÿ

α,β,γPZě0
α`β`γ“k
βą0ñαą0
αγ“0

f ppαq1ηpp
α`γ qρi pp

α`βqρi pp
γ q1γpp

α`γ q.

Since f is supported on square-free ideals the only candidate values for pα, β, γ q are

p0, 0, kq and p1, k´ 1, 0q. Let us mention that the group structure of UK provides us

with a function δ fulfilling 1 f ¨ 1η ¨ 1γ “ 1δ. We are therefore afforded with the equality

gi pp
kq “ ρi pp

kq1δpp
kq, which, upon introducing

gpcq :“
n
ź

i“1

gi pci q

Nci
¨

$

&

%

1 if ci ` c j “ OK @i ‰ j,

0 otherwise,
(4.10)

makes the ensuing estimate available,

Mψ “ γ01γpdq
ÿ

cPI n
K

Nciă
?

Yi
ci`dW“OK

ωψpX;Ncqgpcq` OεpX1`εq.

4.4. Excluding small conjugates

For X, Z ě 1, w P �8 and a separable form F P Kwrs, ts, let

BF,wpX; Zq :“ tps, tq P K 2
w : |s|w, |t |w ď X1{m and |Fps, tq|w ď Z1{mu.

Lemma 4.5. We have

vol BF,wpX; Zq ÎF

$

&

%

pX Zqmw{m if 1 ď deg F ă 3,

Z2mw{pm degpFqq if deg F ě 3.

Proof. First, let deg F “ 1. The bound claimed in the lemma is obvious if F is

proportional to t . If F is not proportional to t , then the linear transformation L : K 2
w Ñ

K 2
w given by Lps, tq “ pFps, tq, tq is an isomorphism and thus

vol BF,wpX; Zq ÎF voltps, tq P K 2
w : |s|w ď Z1{m, |t |w Î X1{mu Î pX Zqmw{m .

Next, let us consider the case where F is a quadratic form equivalent to s2´ t2 over Kw.

Then we can find an invertible linear transformation L : K 2
w Ñ K 2

w with FpLps, tqq “ st ,
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and hence

vol BF,wpX; Zq ÎF voltps, tq P K 2
w : |s|w, |t |w ÎF X1{m, |st |w ď Z1{mu

ÎF Xmw{m ` Zmw{m logpXq Î pX Zqmw{m .

If F is a quadratic form equivalent to s2` t2 over Kw “ R, then we get

vol BF,wpX; Zq ÎF voltps, tq P R2
: s2` t2 ď Z1{mu Î Z1{m Î pX Zqmw{m .

It remains to consider the case where deg F ě 3. In this case, F is the product of at

least three non-proportional linear factors in C and therefore

Vw,F :“ voltps, tq P K 2
w : |Fps, tq|w ď 1u ă 8.

We procure the validity of

vol BF,wpX; Zq Î volpZ1{pm degpFqqVw,F q ÎF Z2mw{pm degpFqq.

For any non-constant separable form F P Kwrs, ts, let

DăF,wpXq :“ tps, tq P X1{mD : |Fpsw, twq|w ă 1u.

Using Lemma 4.5 validates the next estimate

vol DăF,wpXq ÎD X2´2mw{m ¨ vol BF,wpX, 1q ÎF X2´2mw{m ¨ Xmw{m,

thus providing the proof of the next lemma.

Lemma 4.6. For X ě 1 we have vol DăF,wpXq ÎD,F X2´mw{m .

For every w P �8 we choose a finite set Hw of forms in Kwrs, ts, whose absolute values

we want to prevent from becoming too small. For all w P �8, the set Hw contains s, t ,
and the forms Fi for 1 ď i ď n. Additionally, for each form Fi that is of degree 2 and

reducible over Kw, we choose a factorisation Fi “ Gi,wHi,w and also include Gi,w, Hi,w
in Hw.

Recall the definition of DψpX; vq in (4.2). For ψ P t0, 1un and v P Rn , let

D˚ψpX; vq :“ tps, tq P DψpX; vq : |Hwpsw, twq|w ě 1 @w P �8, @Hw P Hwu

and

ω˚ψpX; vq :“ vol D˚ψpX; vq. (4.11)

We obtain that

|ωψpX; vq´ω˚ψpX; vq| ď
ÿ

wP�8

ÿ

HwPHw

vol DăHw,wpXq

and thus

ωψpX; vq “ ω˚ψpX; vq` OpX2´1{mq.

We can now bring into play the entity

Mψ :“
ÿ

cPI n
K

Nciă
?

Yi
ci`dW“OK

ω˚ψpX;Ncqgpcq, (4.12)

something which instantly permits us to infer the asymptotic relationship

Mψ “ γ01γpdqMψ ` OεpX2´1{m`εq. (4.13)
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4.5. Volume computations

In this section we provide estimates of the correct order of magnitude regarding the

volumes ω˚ψpX; vq appearing in Mψ. The assumption cpFq ď 3 will not be used. Let us

write di :“ deg Fi for 1 ď i ď n and consider, for q P N and T ą 0, the real integral

IqpT q :“
ż

x1,...,xqě1
x1¨¨¨xqăT

1 dx1 ¨ ¨ ¨ dxq .

One can show that in the range T ě 1 the equality

IqpT q “ p´1qq `
q
ÿ

j“1

p´1qq´ j

p j ´ 1q!
T plog T q j´1

holds via induction coupled with Iq`1pT q “
şT

1 IqpT {xq dx , thus furnishing the succeeding

result.

Lemma 4.7. There is a polynomial PqpT q P QrT s of degree q ´ 1 and with leading

coefficient 1{pq ´ 1q! such that for T ě 1 one has IqpT q “ T Pqplog T q` p´1qq .

For Z ě 1 and 1 ď i ď n with deg Fi ps, tq ě 3 we let

D˚i pZq :“ tps, tq P K 2
8 : |Fi psw, twq|w ě 1 for all w P �8 and NpFi ps, tqq ă Zu

and

D˚s pZq :“ ts P K8 : |sw|w ě 1 for all w P �8 and Npsq ă Zu.

Letting �1 Ď �8 be a set of real places, we write �2 :“ �8r�1 and subsequently define

D˚
�1,�2

pZq through

$

’

’

’

’

&

’

’

’

’

%

ppsw, twqwP�1 , pswqwP�2q P
ź

wP�1

K 2
w ˆ

ź

wP�2

Kw :

ˇ

ˇ

ˇ
s2
w ` t2

w

ˇ

ˇ

ˇ

w
ě 1 for all w P �1,

|sw|w ě 1 for all w P �2,
ź

wP�1

ˇ

ˇ

ˇ
s2
w ` t2

w

ˇ

ˇ

ˇ

mw

w
¨
ź

wP�2

|sw|
mw ă Z

,

/

/

/

/

.

/

/

/

/

-

.

Lemma 4.8. Let q :“ |�8|. There are positive constants ci , cs, c�1,�2 , such that

vol D˚s pZq “ cs IqpZq,

vol D˚i pZq “ ci IqpZ2{di q,

vol D˚�1,�2pZq “ c�1,�2 IqpZq.

Proof. Let C “
ś

vP�8
pav, bvs Ď r0,8q�8, Vw,i :“ voltps, tq P K 2

w : |Fi ps, tq|w ď 1u ă 8
and consider the measurable functions

8i : K 2
8 Ñ r0,8q�8 , ps, tq ÞÑ p|Fi psw, twq|

2mw{di
w qwP�8 ,

8s : K8 Ñ r0,8q�8 , s ÞÑ p|sw|
mw
w qwP�8 ,
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8�1,�2 :
ź

wP�1

K 2
w ¨

ź

wP�2

Kw Ñ r0,8q�8 , ppsw, twqw, pswqwq

ÞÑ pp|s2` t2|
mw

w qwP�1 , p|s|
mw
w qwP�2q.

By homogeneity we see that vol8´1
i pCq equals

ź

wP�8

voltpsw, twq P K 2
w : aw ă |Fi psw, twq|

2mw{di
v ď bwu

“
ź

wP�8

Vw,i pbw ´ awq “

˜

ź

wP�8

Vw,i

¸

¨ vol C.

In like manner, letting Vw,s :“ volts P Kw : |s|w ď 1u ă 8 and

Vw,s2`t2 :“ voltps, tq P K 2
w : |s

2` t2|w ď 1u,

we observe that Vw,s2`t2 is finite if w is a real place and

vol8´1
s pCq “

˜

ź

wP�8

Vw,s

¸

¨ vol C,

vol8´1
�1,�2

pCq “

˜

ź

wP�1

Vw,s2`t2 ¨
ź

wP�2

Vw,s

¸

¨ vol C.

This shows that the pushforward measures8i,˚pvolq,8s,˚pvolq,8�1,�2,˚pvolq are constant

multiples of the Lebesgue measure on r0,8q�8 . Let H pT q be given by
#

pxwqwP�8 : xw ě 1 for all w and
ź

wP�8

xw ă T

+

.

Then vol H pT q “ IqpT q, D˚i pZq “ 8
´1
i pH pZ2{di qq, D˚s pZq “ 8

´1
s pH pZqq, as well as

D˚
�1,�2

pZq “ 8´1
�1,�2

pH pZqq, from which the lemma flows immediately.

For 1 ď i ď n, 1 ď Z1 ď Z2 and X ě 1 let

Ri pX; Z1, Z2q :“

#

ps, tq P X1{mD :
|Hwpsw, twq|w ě 1 @w P �8 @Hw P Hw

Z1 ď NpFi ps, tqq ă Z2

+

.

Lemma 4.9. Denoting |�8| by q we have

vol Ri pX; Z1, Z2q Î

$

&

%

XpIqpZ2q´ IqpZ1qq if di “ 1,

IqpZ
2{di
2 q´ IqpZ

2{di
1 q if di ě 3.

If di “ 2, let �1 be the set of real w P �8 for which Fi is irreducible over Kw and define

�2 :“ �8r�1. Then vol Ri pX; Z1, Z2q is bounded by

Î

ż

twPKw @wP�2
|tw|wě1 @wP�2

˜

Iq

˜

Z2
ź

wP�2

|tw|
´mw
w

¸

´ Iq

˜

Z1
ź

wP�2

|tw|
´mw
w

¸¸

ź

wP�2

dtw.
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Proof. We deploy Lemma 4.8 throughout the proof. Assume first that di ě 3. Then

vol Ri pX; Z1, Z2q Î volpD˚i pZ2qrD˚i pZ1qq “ ci pIqpZ
2{di
2 q´ IqpZ

2{di
1 qq.

Next, assume that di “ 1. Since Fi is not proportional to t , the linear transformation

L : K 2 Ñ K 2 given by Lps, tq “ pFi ps, tq, tq is invertible and provides us with the estimate

vol Ri pX; Z1, Z2q Î voltps, tq P K 2
8 : |sw|w ě 1, |tw|w Î X1{m @w and Z1 ă Npsq ď Z2u

Î X volpD˚s pZ2qrD˚s pZ1qq Î XpIqpZ2q´ IqpZ1qq.

We are left with the case di “ 2. For each w P �1, there is a linear transformation

Lw : K 2
w Ñ K 2

w such that Fi pLwps, tqq “ s2` t2. For w P �2, we have Fi “ Gi,wHi,w for

linear forms Gi,w, Hi,w P Hw. The linear map K 2
w Ñ K 2

w, ps, tq ÞÑ pGi,wps, tq, Hi,wps, tqq
has an inverse Lw because Fi is separable. We combine all these linear maps to an

invertible R-linear map L “ pLwqwP�8 : K 2
8 Ñ K 2

8, which we apply to obtain

vol Ri pX; Z1, Z2q Î vol

$

’

’

’

’

&

’

’

’

’

%

ps, tq P K 2
8 :

ˇ

ˇ

ˇ
s2
w ` t2

w

ˇ

ˇ

ˇ

w
ě 1 for all w P �1

|sw|w , |tw|w ě 1 for all w P �2

Z1 ă
ź

wP�1

ˇ

ˇ

ˇ
s2
w ` t2

w

ˇ

ˇ

ˇ

mw

w

ź

wP�2

|swtw|
mw
w ď Z2

,

/

/

/

/

.

/

/

/

/

-

“

ż

twPKw @wP�2
|tw|wě1 @wP�2

vol

˜

D˚�1,�2

˜

Z2
ź

wP�2

|tw|
´mw
w

¸

rD˚�1,�2

˜

Z1
ź

wP�2

|tw|
´mw
w

¸̧

ź

wP�2

dtw.

Lemma 4.10. For each ψ P t0, 1un we have

ω˚ψpX; p1, . . . , 1qq “ X2 volpDq` OεpX2´1{m ` X3{2`εq.

Proof. Let us begin by observing that

|X2 volpDq´ω˚ψpX; p1, . . . , 1qq| Î
ÿ

wP�8

ÿ

HwPHw

vol DăHw,wpXq`
n
ÿ

i“1

vol Ri pX; 1,
a

YiNWi q

Î X2´1{m `

n
ÿ

i“1

vol Ri pX; 1,
a

YiNWi q.

We now use Lemmas 4.9 and 4.7 to estimate the vol Ri pX; 1,
?

YiNWi q. If di “ 1, then

vol Ri pX; 1,
?

YiNWi q Î X
?

Yi
1`ε

Î X3{2`ε, while, if di ě 3, we acquire

vol Ri pX; 1,
a

YiNWi q Î Y 1{di`ε
i Î X1`ε.
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In the remaining case, di “ 2, we get

vol Ri pX; 1,
a

YiNWi q Î

ż

twPKw @wP�2

1ď|tw|wÎ
?

Yi @wP�
2

?
Yi

1`ε

ś

wP�2 |tw|
mw
w

ź

wP�2

dtw Î
a

Yi
1`ε

Î X1`ε.

For a function ω : Rn Ñ R and 1 ď i ď n, we write 1iωpvq :“ ωpv` ei q´ωpvq, where

ei is the ith vector in the standard basis of Rn .

Lemma 4.11. Let ψ P t0, 1un, 1 ď i ď n and v P Rn be given such that v j P r0,8q for all

j ‰ i . Then ω˚ψpX; vq, considered as a function of vi , is non-increasing and satisfies

1iω
˚
ψpX; vq Î X1`ε

$

&

%

X1{2 if di “ 1,

v
2{di´1
i otherwise,

(4.14)

in the interval 1 ď vi ď
?

Yi , with the implied constant independent of v and X .

Proof. Monotonicity is obvious. Let us prove the estimate (4.14). If ψi “ 0, then ω˚ψpX; vq
is constant in vi . Let ψi “ 1, then

|ω˚ψpX; v` ei q´ω
˚
ψpX; vq| Î Ri pX;

a

YiNWivi ,
a

YiNWi pvi ` 1qq.

Using Lemma 4.9 and the mean value theorem to bound the latter quantity, we obtain

in the case di “ 1 that, for some ṽi P rvi , vi ` 1s,

1iω
˚
ψpX; vq Î

B

BV
pX Iqp

a

YiNWi V qq|V“ṽi Î X
a

Yi
B

BV
pV Pqplogp

a

YiNWi V qqq|V“ṽi

Î X3{2`ε.

When di ě 3, we get

1iω
˚
ψpX; vq Î

B

BV
Iqpp

a

YiNWi V q2{di q|V“ṽi

Î Y 1{di
i

B

BV
V 2{di Pqp2{di logp

a

YiNWi V qq|V“ṽi

Î X1`ε
i ṽ

2{di´1
i .

When di “ 2, the quantity 1iω
˚
ψpX; vq is

Î

ż

twPKw @wP�2
|tw|wě1 @wP�2

Iq

˜

a

YiNWi pvi ` 1q
ź

wP�2

|tw|
´mw
w

¸

´ Iq

˜

a

YiNWivi
ź

wP�2

|tw|
´mw
w

¸

ź

wP�2

dtw.
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The integrand is zero, unless
ś

wP�2 |tw|
mw
w ď

?
YiNWi pvi ` 1q. In that case, the mean

value theorem allows us to find for any ptwqw a number ṽi P pvi , vi ` 1q, such that the

integrand is

B

BV

˜

Iq

˜

a

YiNWi V
ź

wP�2

|tw|
´mw
w

¸¸
ˇ

ˇ

ˇ

ˇ

ˇ

V“ṽi

“
B

BV

˜

a

YiNWi V
ź

wP�2

|tw|
´mw
w Pq

˜

log

˜

a

YiNWi V
ź

wP�2

|tw|
´mw
w

¸¸¸
ˇ

ˇ

ˇ

ˇ

ˇ

V“ṽi

Î
a

Yi Xε
ź

wP�2

|tw|
´mw
w Î X1`ε

ź

wP�2

|tw|
´mw
w .

This shows that 1iω
˚
ψpX; vq Î X1`ε, which concludes our proof.

4.6. The ending moves towards Theorem 1.2

We are now ready to estimate the sum Mψ that was introduced in (4.12).

Lemma 4.12. Let δ :“ max1ďiďnt4` 8m deg Fiu. For any 0 ď i ď n, there are functions

γpiq, δ
piq
1 , . . . , δ

piq
i P ZK , and a positive constant µpiq, such that

Mψ “ µpiq1γpiqpdq
ÿ

Nc1ď
?

Y1
c1`dW“OK

ρ1pc1q1
δ
piq
1
pc1q

Nc1
¨ ¨ ¨

ÿ

Nciď
?

Yi
ci`c1¨¨¨ci´1dW“OK

ρi pci q1
δ
piq
i
pci q

Nci

ˆω˚ψpX; pNc1, . . . ,Nci , 1, . . . , 1qq` OεpNdεX2´1{δ`εq. (4.15)

Proof. For i “ n our lemma holds with vanishing error term by the definition of g in

(4.10). We proceed by backward induction from i to i ´ 1. Lemma 2.5 provides the

existence of βpiq ą 0 and γ1piq P ZK such that, for all U ě 1,

ÿ

NciďU
ci`c1¨¨¨ci´1dW“OK

ρi pci q1
δ
piq
i
pci q

Nci
“ βpiq1γ1piqpc1 ¨ ¨ ¨ ci´1dq` OεpNpc1 ¨ ¨ ¨ ci´1dq

εU´1{p2λq`εq,

(4.16)

where λ “ 1` 2m deg Fi . Indeed, the hypotheses of Lemma 2.5 are satisfied by Lemma 2.6

and Hensel’s lemma, once we ensure that W0, and hence W, is divisible by enough small

prime ideals.

We write ωpθq :“ ω˚ψpX; pNc1, . . . ,Nci´1, θ, 1, . . . , 1qq. Assume first that deg Fi “ 1. In

this case, the bounds (4.14) and (4.16) allow us to apply Lemma 2.7 with A “ 1{p2λq,
B “ 0,

M Îε Npc1 ¨ ¨ ¨ ci´1dq
εXε and Q Îε X3{2`ε,
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thus leading to

ÿ

Nciď
?

Yi
ci`c1¨¨¨ci´1dW“OK

ρi pci q1
δ
piq
i
pci q

Nci
ωpNci q “ βpiq1

γpiq
1 pc1 ¨ ¨ ¨ ci´1dqωp1q

` OεpNpc1 ¨ ¨ ¨ ci´1dq
εX2´1{p4λq`εq. (4.17)

If deg Fi ě 2, we use Lemma 2.7 with the same bounds for M, A and

Q Îε X1`ε, B “ 1´ 2{pdeg Fi q

to obtain an estimate identical to (4.17). Injecting this in (4.15) proves our claim for

i ´ 1.

The case i “ 0 of the last lemma shows that Mψ “ µ
p0q1γ p0qpdq vol D X2`

OpNdεX2´1{δ`εq. Conjuring up (4.13) and Lemma 4.2 completes the undertaking of

validating Theorem 1.2.
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