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Abstract Estimating averages of Dirichlet convolutions 1 * x, for some real Dirichlet character x of fixed
modulus, over the sparse set of values of binary forms defined over Z has been the focus of extensive
investigations in recent years, with spectacular applications to Manin’s conjecture for Chatelet surfaces.
We introduce a far-reaching generalisation of this problem, in particular replacing x by Jacobi symbols
with both arguments having varying size, possibly tending to infinity. The main results of this paper
provide asymptotic estimates and lower bounds of the expected order of magnitude for the corresponding
averages. All of this is performed over arbitrary number fields by adapting a technique of Daniel specific
to 1% 1. This is the first time that divisor sums over values of binary forms are asymptotically evaluated
over any number field other than Q. Our work is a key step in the proof, given in subsequent work, of
the lower bound predicted by Manin’s conjecture for all del Pezzo surfaces over all number fields, under
mild assumptions on the Picard number.
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1. Introduction

Our aim in this paper is to study averages of arithmetic functions that generalise the
divisor function over values of binary forms, defined over arbitrary number fields.
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1.1. Divisor sums

Estimating averages of arithmetic functions is among the primary objects of analytic
number theory and its applications to surrounding areas. Owing to their connection with
L-functions, two of the most studied examples are the divisor and the representation
function of sums of two integer squares, respectively given by

t(n):= D1 and r(n):=4 ) (%)

deN deN
dln d odd
dln

where (=1) denotes the Jacobi symbol, see for example [30, Chapter XII]. It is possible to
obtain level of distribution results, a problem first studied by Hooley, Linnik and Selberg
(all in unpublished manuscripts, see the results and the references in [31] and [22] for
recent developments). Research on this problem is currently active due to advances in
estimating sums of trace functions over finite fields, see for example [13], where the
ternary divisor function is studied.

Asymptotically estimating the average of these functions over the sparse set of values
of general integer polynomials in a single variable is naturally harder. It is only the case
of degree 1 and 2 polynomials that has been settled, see the work of Hooley [20] and of
Duke et al. [5]. The closely related problem regarding integer binary forms was studied
later. Let us introduce some notation to help us describe previous work on this area. For
a positive integer n and each 1 <i < n, let F; € Z[s, t] be forms, coprime in pairs, and
for any constants ¢; € {1, —1} set € = {(F;,¢;),i =1,...,n} and

oo 2 M2 o
(s,0)e(Zn[—X,X])*i=1 dieN 7'

d; odd
F;(s,t)#0 i
() d|Fi(5.1)

where the restriction to odd d; is present only when ¢; = —1. The case of degree 3 was
first studied by Greaves [18], who obtained an asymptotic for D(€; X) when € = {(F, 1)}
and F is any irreducible form with deg(F) = 3 via the use of exponential sums.

Extending this result to higher degrees was considered intractable for a long time until
the highly influential work of Daniel [3], who employed geometry of numbers to treat the
case € = {(F, 1)} for any irreducible form F with deg(F) = 4. Developing this approach
to allow negative ¢;, Heath-Brown [19] later tackled the case where n = 4, each ¢; is —1
and all forms F; are linear.

It was subsequently realised that proving asymptotics whenever >, deg(F;) =4
would constitute a key step towards the resolution of Manin’s conjecture for Chatelet
surfaces over Q. This is a conjecture in arithmetic geometry and regards counting
rational points of bounded height on Fano varieties defined over arbitrary number fields;
it was introduced by Manin and his collaborators [14] in 1989 and has subsequently
given rise to a long-standing research programme that still continues. Thus, Browning
and de la Breteche reworked later the case € = {(L;, —1):1<i <4}, where each
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form L; is linear in [7], the case € = {(C, —1), (L, —1)}, where deg(C) = 3, deg(L) =1
n [10], and recently Destagnol settled the case € = {(Q, —1), (L1, —1), (L2, —1)} with
deg(Q) =2, deg(L;) =1 in [4]. In addition, Browning and de la Bretéche treated the
case € = {(Q, 1), (L1, 1), (L, 1)} with deg(Q) =2, deg(L;) = 1 in [8]; this investigation
formed a significant part in their proof of Manin’s conjecture for a smooth quartic del
Pezzo surface for the first time [9]. The remaining cases in the divisor sum problem
with D>}/, deg(F;) =4 require a further development of Daniel’s approach, one that
necessitates the use of a generalisation of Hooley’s delta function [21]. This was achieved
independently by Briidern [1] and de la Bretéeche with Tenenbaum [11], enabling the
settling of the cases € = {(Fi, —1)} and € = {(F2, —1), (F3, —1)}, where the forms satisfy
deg(F1) = 4 and deg(F>) = deg(F3) =2 in [12]. In these works, whenever ¢; = —1 then
F; was irreducible over Q(+/—1), since otherwise the corresponding term would be of the
form t(F(s,t)), this would decrease the difficulty of obtaining an asymptotic.

It should be remarked that each work following Daniel came into fruition only for
integer forms F; fulfilling a list of necessary assumptions regarding the small prime
divisors and the sign of the integers F;(s, t) as (s, t) ranges through certain regions in R?,
see for example the normalisation hypotheses (iii) and (iv) in [7, p. 1375], where ¢; = —1.
These conditions are related to quadratic reciprocity and analogues of these will appear
in our work, see §1.3.3, where 20 is to be thought of as the product of small primes.

It will be crucial for our work that Daniel’s approach is able of providing a polynomial
saving in the error term if >/, deg(F;) = 3 but not when Y '_, deg(F;) = 4, while it has
never been extended to any case with > | deg(F;) > 4. Lastly, the spectacular work
of Matthiesen [24-26], using tools from additive combinatorics, tackled all cases where
>, deg(F;) can be arbitrarily large under the restriction that each F; is linear. Naturally,
this approach does not yield an explicit error term.

1.2. Generalised divisor sums

In our forthcoming joint work [16] with Loughran, we study Manin’s conjecture in
dimension 2. As a special corollary we obtain the lower bound predicted by Manin for
all del Pezzo surfaces over all number fields, only under mild assumptions regarding
the Picard number. For del Pezzo surfaces of degree 1 in particular, tight lower bounds
were not known before, not even in special cases. The underlying strategy is to use
algebro-geometric arguments to translate the problem into one of estimating averages
that are a vast generalisation of the ones appearing in (1.1). The success of this strategy
therefore relies heavily on a very general conjecture concerning the growth order of our
divisor sums; its precise statement will be introduced in Conjecture 1. In this paper
we prove it in all cases that we need for our applications to Manin’s conjecture, see
Theorem 1.1. In the very special case that the base field is Q, dealing with a del Pezzo
surface of degree 1 < d < 5 gives birth to averages of the rough shape

> ﬁ h(F;(s. 1)) ( > (@)) (1.2)

(s.0)e(Zn[—Xx,x])? i=1 d;eN !
Fi(S,l);éO di odd
(s,t)=(o,7) mod ¢ di|Fi(s,1)
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where o, 7, g are positive integers, h is a ‘small’ arithmetic function, each F;, G; is an
integer binary form with deg(G;) divisible by 2, all forms F; irreducible and satisfying

an deg(F;) = 8—d,

i=1

which is an integer in the range {3, ..., 7}. Our assumption on # is that it can be written
as h = 1= f, where * denotes the Dirichlet convolution and f is a multiplicative function
on N that satisfies f(m) = O(s) for m € N. We shall call a sum as in (1.2) a generalised
divisor sum. This is because G; are not constants and hence the terms are no more a
product of multiplicative functions on N restricted at values of binary forms. A further
new trait lies in the fact that a level of distribution result is required with respect to
the modulus ¢, such a result has not appeared previously for divisor sums over values
of polynomials or forms. In particular, we shall be able to handle the case h(n) = 1 for
all n € N, thus our results are a true generalisation of previous work and not a different
problem.

A supplementary aspect of our work is that we estimate asymptotically, for the first
time, divisor sums over values of binary forms in arbitrary number fields, see Theorem 1.2.
Thus, one of the central innovations in our work lies in revealing how to extend Daniel’s
approach to this setting. We shall rely on a lattice point counting theorem of Barroero
and Widmer [2], based on the framework of o-minimal structures. It is important to
note here that the essence of Daniel’s approach lies in taking advantage of the, possibly
large on average, size of the first successive minima to produce a sufficiently small error
term. Directly adapting this approach to number fields yields an error term whose order
supersedes the main term; this would preclude the proof of both Theorems 1.1 and 1.2.
We shall introduce an artifice that overcomes this difficulty, namely we shall modify
Daniel’s method by taking into account not only the first, but also higher successive
minima of the lattice.

Let us finally state that it is not clear what is the expected growth order for generalised
divisor sums. We shall see that one role of Conjecture 1 is to provide an answer in terms
of various number fields generated by roots of F;(s, 1). It is important to note that our
conjecture will turn out to be in agreement with the growth order predicted by Manin’s
conjecture for surfaces; this will be revealed in [16].

1.3. Statement of our set-up

Throughout this paper, K will be a number field of degree m = [K : Q], whose ring of
integers is denoted by Ok. By p and p; we always denote non-zero prime ideals of Ok
and vy is the p-adic exponential evaluation.

1.3.1. Systems of binary forms. We consider finite sets of pairs of binary forms
5={(F,G),i=1,...,n},
where each Fi, G; € Ok /s, t] is such that F; is irreducible and does not divide G; in K s, t].

Moreover, we assume that all F; are coprime over K in pairs and that each deg(G;) is
even.
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We next define the rank of §, which will be an invariant of § that will characterise the
growth order in Conjecture 1. If F; is proportional to ¢, we denote 6; := (1, 0). Otherwise,
letting K be a fixed algebraic closure of K, we set 6; € K to be a fixed root of F;(x, 1),
and 0; := (6;,1). Let K(0;) be the subfield of K generated by K and the coordinates of
0;. We define the rank of § to be the cardinality

p(F) :=t{l <i<n:Gi(6;) e K(6;)"},
where, for any field k, we denote the set of its non-zero squares by k*2.
1.3.2. The group Zk. The terms involving the function % in (1.2) have the role of
insignificant modifications. We proceed to introduce them precisely. Letting .#x denote

the monoid of non-zero integral ideals of Ok, Da be the absolute norm of a € Yk and
g the Mobius function on Zx allows us to introduce the set of functions

f multiplicative,
Zx =X f: Ik > (=1,m0): f(p) <r D’ILp for all p,
F(@) = 0if g () = 0
For each f € Zk, we subsequently define another function 15 : .#x — (0, ) given by
Lp(a):= [ [(1+ £(9)) = (1% f)(a).
pla
This then allows us to form the following set of positive multiplicative functions on Yk,
Uk = {lf :fe g]{} (1.3)
The growth condition placed on f indicates that 1; behaves on average like a constant
function. Note that for all f € 2k and ¢ > 0 we have
17(a) <f¢ Na’, (1.4)

and moreover, that the set Zx forms a group under pointwise multiplication. This will
be used often with the aim of simplifying the exposition, for example via replacing terms
like 15,1y, or 1/1p,, where f; € Zk, by 1 for some f e Zx.

1.3.3. §-admissibility.  As usual, we shall identify all completions K, at archimedean
places v with R or C. We shall thus let Ko, := K QR = Hv\oo Ky, which we identify
with R” via C =~ R?. In addition, we shall denote by Z a set of the form 2 = HU|OO Dy,

where 2, € K 3 is a compact ball of positive radius. Fixing an integral ideal v € Sk, we
shall consider t-primitive points (s, t) € ﬁlz(v by which we mean that sOx +t0g = t. For
a nonzero ideal 20 of Ok divisible by 2t, and a € £k, we define the ideal

o = n pve(®), (1.5)

P10

and for a € Ok ~ {0}, we let a” := (a0k)". Keep in mind that this notion depends on
0. Let 0,1 € Ok be such that 0 Ok + 10k = ¢v. The symbol & will refer exclusively
throughout this paper to triplets of the form

P =(9,(0,1),2),
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where 2, (o, t), 2 are as above. Given any system of forms § as in §1.3.1, a triplet &2
and a parameter X > 1, we let

M*(P,X) = {(s.1)e®n x'mg. (s,t) = (0,7) mod 20, sOk + 10k =t}
and
M*(2,0) = | | M*(2, X).
X=1
We shall say that & is §-admissible if each of the following conditions (1.6)—(1.8) holds:

Fi(o,7)#0 foralll<i<n, (1.6)
and whenever (s, 1) € M* (£, ) we have
Fi(s,1) #0 forall 1 <i <n, (1.7)

as well as

G,‘ (S , 1 )

< Fi (S, t)b

In the last condition, we used the Jacobi symbol for K, which is defined as follows: for
a € Ok and a non-zero ideal b = p{'---p;", with distinct prime ideals p;, none of which

lies above 2, we let
a Lo ra\®
(5) =11 (;) ’

i=1
where (%) is the Legendre quadratic residue symbol for K.

)zl forall 1 <i <n. (1.8)

1.4. Lower bound conjecture for generalised divisor sums

For any § as in §1.3.1, any function f € Z% and any §-admissible triplet &, we define
the function r : M*(#, ) — [0, ) by

r(s.1) = r(§. f. Pis.t) = [ [14(Fi(s.1)) 3 (Gi(S, t))

i=1 ;| Fi(s,1) o
We are now in the position to introduce generalised divisor sums as averages of the form
D(F, f, #;X) := Z r(§, f, P;s,1).
(s,)eM*(Z.X)

The special case of the following claim corresponding to each G; being constant and
K = Q ought to be familiar, at least among experts, but has not yet appeared in text.

Conjecture 1 (Lower bound conjecture for divisor sums). Let K be a number field, fix
te Ik, let fe Zk, and let § be a system of forms as in §1.3.1. Then there exists a
finite set Spaq = Spad(F, f,t) of prime ideals in Ok, such that for all F-admissible triplets
P with WJ being divisible by each p € Spqaq, we have

D(gv f» f@» X) > XZ(IOgX)'O(S), as X — 0.

The implicit constant may depend on every parameter except X.
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It should be stated that the appearance of G;, f and & in Conjecture 1, as well as the
consideration of arbitrary number fields, are absolutely necessary for our applications to
Manin’s conjecture in [16]. The presence of the set of bad primes Spaq can be avoided; it
is only included here to minimise the technical details in the present work.

We next supply heuristical evidence supporting that Conjecture 1 does in fact provide
the true order of magnitude of D(F, f, #; X). Firstly, there are about X summands
and each term 1y (F;(s, t)b) behaves as a constant on average, since our conditions on §
suggest that the integral ideals F;(s, t)b behave randomly. Secondly, as we shall see in

Lemma 3.2, if the index i contributes towards the rank p(F) then the Jacobi symbols
(G,- (s,1)

0;
with equal probability. Consequently, in the former case the sum over ;| F;(s, t)b will
resemble the divisor function in fx, thus contributing a logarithm, while in the latter
case it will be approximated by a constant on average owing to the cancellation of the
Jacobi symbols. A subtle point here is that if one does not impose condition (1.8) then the
implied constant in the lower bound could vanish, so the restriction to admissible triplets
is necessary. Furthermore, each work referenced in § 1.1 is in agreement with Conjecture 1
when K = Q and G; = £1. Lastly, the work of de la Breteche and Browning [6] can be
used to provide a matching upper bound over Q whenever each G; is constant.

The main purpose of this paper is to prove Conjecture 1 under a condition regarding
only the complexity of §, which we define by

()= ), degh,
1<i<n
Gi(0:)¢K (8;)*2

) assume the value 1, while in the opposite case they take both values 1 and —1

but without a restriction on the value of }'_, deg(F;) or the factorisation type of [ [/_, F;.

Theorem 1.1. Conjecture 1 holds for all K, ¢, f and systems of forms § with ¢(F) < 3.

Theorem 1.1 will be reduced to Theorem 1.2, whose statement is given in §1.5.

Remark 1.1. As an immediate consequence of [16, Theorem 1.6], we see that Conjecture 1
implies Zariski density of rational points on conic bundle surfaces over number fields,
under the necessary assumption that there is a rational point on a smooth fibre. This

well-known problem is currently open in most cases, see the recent work of Kollar and
Mella [23].

1.5. Skeleton of the paper and further results

The preliminary parts, §§2.1 and 2.2, respectively, provide general counting results, that
are not limited to our applications, for points of certain lattices and averaging results
concerning coefficients of Artin L-functions.

The reduction of Theorem 1.1 to Theorem 1.2 below will take place in § 3, while the
proof of the latter theorem will be given in §4. It provides asymptotics in cases where
" deg F; <3 and G;(0;) ¢ K(0;)*? for all i, under some further assumptions.

It is worth following the strategy laid out in our proof of Theorem 1.2 to show that, for
any positive integers o, 7, d and fixed irreducible binary forms F; with Y7_, deg(F;) < 3,
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an asymptotic estimate with a power saving in terms of X and a polynomial dependence
on d in the error term holds for the analogue of the classical divisor sums

n
> I(z )
(s,1)e(Zn[—X,X])* i=1 d;eN
Fi(s,1)#0 d; | Fi (s.t)

(s,t)=(o,7) mod d
over any number field. We refrain from this task in the present work to shorten the
exposition.

We proceed by providing the statement of our second theorem. We say that an

§-admissible triplet &2 = (2, (o, 1), ) is strongly F-admissible, if, in addition, for all
1 <i<nand (s,1) e M*(&, o) one has

Fi(o,7) #0mod 20 and vy (Fi(s, 1)) = vp(Fi(o, 7)) forall p|20. (1.9)

Theorem 1.2. Let K be a number field, v € L and f € Zx. Let § be a system of forms
with p(F) =0 and ¢(§F) < 3. Then there is a non-zero ideal Wy of Ok and constants
B1, B2 > 0, such that the following statement holds.

For every strongly §-admissible triplet & = (9, (o, 1), 20) fulfilling Wy | 2, there are
Bo > 0 and a function fy € Zk, depending only on ¢, f,§, 2,20, such that for each 0 €
Jxk for which the triplet Py = (2, (0, t), 020) satisfies

HE(S,I)QIT+D =0k forall (s, t) € M* (P, ©), (1.10)
i=1
the asymptotic
14(
2 r@E, f. Pss,t) = ﬂo%xz + 0(x2> Pronf)
(s,0)EM*(P5,X) 0

holds with an implied constant independent of 0,0, t and X.

This is the first time that any divisor sum over values of binary forms is asymptotically
evaluated over any number field other than Q. Even over Q, both Theorems 1.1 and 1.2
are novel due to the appearance of the forms G;. Furthermore, the extra condition that
(s, 1) lies in a progression, whose modulus is explicitly recorded in the error term, gives
rise to a new level of distribution result, since an asymptotic holds when 910 < X?# for all
0<pB<pi/ba

The power saving in the error term of Theorem 1.2 is crucial for deducing Theorem 1.1
from it, and therefore for the application to Manin’s conjecture. Even in the simple case
K = Q, such a strong error term can presently only be obtained under the assumption
>, deg(F;) < 3, which is the reason for the restriction placed on the complexity c(F).

As a first step for the proof of Theorem 1.2, we use Dirichlet’s hyperbola trick and
partition the variables in the summation into a small number of lattices; this is exposed
in §4.1. The next part, residing in §4.2, consists of counting points on these lattices; it
is here that the main step towards the power saving in the error term in Theorem 1.2
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takes place. Finally, in §§4.3-4.6 we prove that the average of the contribution of each
lattice alluded to above gives the main term as stated in Theorem 1.2, this part contains
the treatment of volumes of slightly awkward regions introduced by the consideration of
arbitrary number fields.

Notation. The set of places of the number field K will be denoted Qk and for each
v € Qg we shall let m, := [K, : Qy], where w is the place of Q below v. For a € Ok, we
write N(a) 1= N(aOk) = [[,eq,, lal," for the absolute value of its norm. For s € Koo =
HUGQOO K, and v € Qq, we write s, € K, for the projection of s to K,. Furthermore, for
any prime ideal p the p-adic exponential valuation on ideals (and elements) of Ok will
be denoted by vp. As usual, the resultant of two binary forms F, G € Ok|s, t] will be
represented by Res(F, G) € Ok, while Euler’s totient function and the divisor function
for non-zero ideals of Ok will be denoted by ¢x and tg. Lastly, we shall choose a system
of integral representatives ¢ = {t, ..., tj} for the ideal class group of Ok and fix it once
and for all. Unless the contrary is explicitly stated, the implicit constants in Landau’s
O-notation and Vinogradov’s <-notation are allowed to depend on K, %, ¢, f, § and &
but no other parameters. The exact value of a small positive constant ¢ will be allowed
to vary from expression to expression throughout our work.

2. Preliminaries

2.1. Lattice point counting

For any lattice A Kgo = R?" we denote its ith successive minimum (with respect to
the unit ball) by A0 (A). We write ||-|| for the Euclidean norm on R?”. For a,0 € #x and
y € Ok, we define the lattice

Aa,0,y) :={(s,1) € a®:s = yr mod d}.

It has determinant proportional to 9(a20(a+0)~!), and we write A()(a,0,y):=
A (A(a,0,)) for its ith successive minimum. Recall that € = {r|,...,ts} is a fixed
system of integral representatives of the class group of K. Let us prove some facts about
the minima A()(a, 0, y).

Lemma 2.1. Let a,0€ S,y € Ok and 1 <i <2m.
(1) Whenever [a] = [t4] for 1 < g < h, we have
i)”tal/’")\(i)(tq, v o(a+0)"y) < 2D (a,0,y) < ‘Jlal/mk(i)(tq, t0(a+0)" y).
(2) For any non-zero ideal b of Ok, the following estimate holds,
2D (a,0,9) < A0 (a, b2, ) < N(06) /"2 (a,0, ).

(3) We have A(i)(a, 0,y) < ‘ﬁ(azb(aJrD)*l)l/@m*iH),

Proof. Let a € K \ {0} such that a = at,. Then the elements (s, t) € a? with s = y¢ mod d
are exactly those of the form (s, ) = a(s1, t1), with (s1, 1) € A(ry, tg0(a+0)71, y) = A",
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By Dirichlet’s unit theorem, we can choose our generator a to satisfy |a|, < Nal/m < lal,
for all v € Qq. Then, for any (s1, #) € A’ we have

Na' (| (s1. 1)l < lla(si, 1)l < Na'™ | (s1, 1),

which shows claim (1). The first inequality of (2) is clear. For the remaining one, let b € b
such that |b|, < Nb!/" < |b|, for all ve Qq and let (s, 1) € A(a, 9, y). This implies that
(bs,bt) € A(a, bd,y) and ||(bs, bt)| < mbl/’"H(s, t)|l. Assertion (3) flows directly from
Minkowski’s second theorem combined with the obvious fact that A(l)(a, 0,y)>1. O

We use the framework of [2], built on o-minimality, to count points of A(a,d,y) in
fairly general domains. For an introduction to o-minimality, we refer to [32] and the
introductory section of [2]. Assume we are given an o-minimal structure that extends the
semialgebraic structure. Let Z < R¥t2" be a definable family, such that for each T € R¥
the fibre

RHr = {(s,1) € R>™ | (T,s,t) e Z#}

is contained in a ball, not necessarily zero-centred, of radius < X IT/ ™ for some X7 = 1.
The first part of Lemma 2.1 makes the following lemma an immediate consequence of
[2, Theorem 1.3].

Lemma 2.2. Whenever [a] = [vy] and T € RX, the quantity $(A(a,0,y) N Zr) equals
cx Vol Zr 2m—1 XJT'/m
N(a2o(a+0)"1) o Z i/m T A0 -1
iZo MM T AW (v, eg0(a+0)~ 1 y)

with an explicit positive constant cx depending only on K. The implicit constant in the
error term may depend on K, %, but not on T, a,0,y.

Still keeping the notation from above, we now fix an ideal v € .#g and assume that t | a
and that a+0 = Ok. Let 0,1 € v such that 60k + 10k +a =t and define a discrete
subset of K2 = R>" by

(s,t) = (0, 7) mod a,

A¥(a,(0,7),0,y) =L (s.1) €t?: sOg +10k =, : (2.1)
s =yt mod 0
Moreover, we require now that each Z%r is contained in a zero-centred ball of radius
1/m
<x/".

Lemma 2.3. We have

% cg Vol Zr 1 -1 1\ !
o om0~z 11 () 11(05)

plar— plo
- 1+
) X" (log X7 )k (0)

< —.
s mins<g<p{A ) (tg, 1,0, y)m 2 (1,0, )/}

Here, ¢k is the Dedekind zeta function of K and tg is the divisor function on Sk . The
implicit constant in the error term depends on K, v, Z, but not on T, a,0, 7,0 or y.
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Proof. After Mobius inversion the quantity under consideration becomes equal to

Z 2 i (0){(s, 1) € (tb)*>  (Zr ~{0}): (s,1) = (0, 7) mod a, s = yr mod d}.
o bbfbﬂ:Ke
b+ar =0k

Writing b = b’e, we see that b’ +0 = Ok whenever u(b) # 0, thus the sum becomes

Suc® Y k() £ {0 € (867 0 (%~ (0]
ok b’+:t§ﬁl(:ﬁk

(s,t) = (0, 7) mod a, s = yt mod d}.

Since the set counted in the inner summand is contained in A (tb’e,?, ) N (%1 ~ {0}), the

summand is zero unless A(l)(tb’e, 0,y) < X;/m. Using Lemma 2.1, this condition implies
that

Xr
minj << {2 (tg, 1,0, ) "N’

Let 6, 7 € tb’e such that (6, T) = (o, ) mod a. We have (o, 7) = (0, 0) mod (tb’e +a) = t,
hence, such (¢, 7) exist. The Chinese remainder theorem allows us to transform our sum
to

ZMK(e) Z uk (6)8{(s,1) € (6, %) + (ab’e)?) n (Zr ~ {0}) :5 = yr mod d}.
o Ve
b/ +ar lo=0k

MNb’ <

(2.2)

Next, we replace (s, 1) by (s1,#1) := (s —&,t —T), so that the inner cardinality becomes
#{(s1.11) € (ab’e)® N ((Zr ~{0}) = (6,%)):51 +6 —y7 = yt; mod d}.

Since 6 —yT =0mod ¢ = ab’¢e +0, we can find 8 € ab’e with § =6 —y7 mod 2. The
replacement of 51 by sp := 51 +§ transforms the count to

#{(s2.11) € (ab’e)> N ((Zr ~{0}) — (6, %) + (8,0)) :50 = yr; mod d}
= #(A(ab’e, 0, ) N ((Zr ~{0}) = (6, 7) + (5,0))). (2.3)
Clearly, we can extend our family Z# to a definable family A= RE+2m)+2m whose fibre

%T’U!T), for (T, 0, ) € RKT2" s the translate Zr + (o, 7). Lemma 2.2 thus allows us to
approximate the quantity in (2.3) by

2m—1 j/m
cg Vol Zr X7

L7 L0 ' _ _ (2.4)
M(a?b"ed) ;0 N(abe)?/™ mini<g<n{] /) 21 (tg, tg0e 7", ¥)}

Summing the main term over ¢ and b’ gives

ck VOLZT < 1k (¢) Z i (b7
2 7 -
N(a?0) 0 Ne b sy Nb
b/ +aor =0k
(22)
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The desired main term is obtained by removing condition (2.2), present in the inner sum.
This introduces an error of size

7% (9) vol Zr minlgqgh{)»(]) (tg, g0, )" M
X0

| %
<P TZ‘ﬁt minh{k(l)(tq,tqb, Y <

Isg<

X7t (0)00

< )
mini<g<n{A() (v, 40, ¥) 1"

where the third part of Lemma 2.1 has been used to obtain the last inequality. Summing
the summand for j in the error term of (2.4) over ¢ and b’ gives a total error

i 1 1
< xi/m . - : (2.5)
’ QZ;‘ el /m minj<g<i{[[/_, A0 (g, v 001, y)} blél( Np'i/m
(22)

and

max{0,1—j/m}
) (log XT).

1 Xr
2. i

b'egk minlSqéh{)‘(l)(tq’tqb’ v
(22)

Observe, moreover, that ‘ﬁel/m)»(i)(tq, t,0e L y) > A(i)(tq, t40, y), by Lemma 2.1. Thus,
for j = m the expression in (2.5) is
XjT/m(log X71)7(0)

minlgqgh{)\,(l) (tg, T4, y)malm+1) (tg, T, ¥)I—m} '

<

which, upon replacing j by j —m, is covered by the lemma’s error term. For j < m, the
expression in (2.5) is at most < Xr(log XT)I(D)(min]gqgh{)n(l)(tq, t,0,y)" )L O

2.2. Averages of certain arithmetic functions related to Artin L-functions

We shall provide asymptotic estimates for averages of functions that will later appear in
the treatment of the main term in Theorem 1.2.

Lemma 2.4. Let a : N — C be an arithmetic function with associated Dirichlet series
A(s) = Y ena(n)n™. Let §,C > 0, » > 2 and assume that
la(n)| < Cn?, (2.6)
A(:) has an analytic continuation to R(s) > 1/2,
IA(s)] < C(1+|3(s))/2, for R(s) = 1—1/A.
Then
Z a(n) <CX171/(2A)+28’

n<X

for X =1, where the implicit constant may depend at most on A and 5.
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Proof. The Dirichlet series defining A(s) converges absolutely for R(s) > 1+ &, thanks
to (2.6). Let 0g := 1428 and T := X'/*. We shall make use of Perron’s formula (see for
example [29, Corollary 5.3]) to obtain

1 oo+iT X
>an) - — A(s) = ds
n<X 2mi oo—iT N
, X 490 + X% . |a(n)|
< Z a(n)nnn{l, T|X—n|}+ T Z o
X/2<n<2X neN

Replacing the minimum by its second term unless |X —n| < 1, the first error term
becomes

<Ccx? (1 +§ D l) <5 CX171/A+28,

I<m<2X

while the second error term is < CX!~V/A+2 %" n=1-0 <5 Cx'=1/4+2 Shifting the
line of integration to the left, we see that the main term equals

00—iT 1—1/A+iT oo+iT X9
—f +f +f A(s)— ds.
1—1/A—iT 1—1/A—iT 1—1/A+iT s
The first and third integral are bounded by
O
< CT‘I/zf 0 X' du < CT-12x% — Cx\=1/(20)+2
u=1—1/x
and the second integral attains a value
1 ¢ 1/2 T
< Ccx'- l/kf AHD T g oxt-1 (1 +J =12 dt>
_ o [1=1/x+it =1
< CX\TVAT12 ¢ ox1-1/(20) O

Lemma 2.5. Let p : Ix — C be a multiplicative function whose associated Dirichlet series
is Dp(5) = 2ges P(@)Na™. Let W e Ik, k> 2, and f € L. Assume that the following
conditions hold:

p(a) =0 unless a+20 = Ok, (2.9)

p(p*) <, 1 for all prime ideals p + 20 and all k = 0 (2.10)
D, (-) has an analytic continuation to R(s) > 1/2 (2.11)
D,(s) <,, (1+ \“( W2 for %i(s) = 1—1/a, (2.12)
0

Z Pl <= for all prime ideals p 120 and R(s) > 1/2, (2.13)

o e(ph)| 1
lf(p)kz::] Rl <3 for all prime ideals p + W and R(s) > 1/2. (2.14)
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Then there is B > 0 and y € 2%, such that, for any ¢ € Ik with ¢+ = Ok, we have

1¢(a)p(a
Z f(ggf( i Dy (1)1y(c) + O (Mce X~/ @)+,
Nas<X
a+cW=0k
for all e > 0. The implicit constant is allowed to depend on €, p, 20, f, A, but not on ¢, X.

Proof. For p {20 let ®,(s) := Y=, p(p*)9Mp %, which is bounded in absolute value by
1/2 whenever R(s) > 1/2, due to (2.13). Moreover, condition (2.10) implies that

Dp(s) <, Mp~*  for R(s) > 1/2. (2.15)

Define formally the Dirichlet series

PCESD Y LU ) NREPBENS))
acI pte20

a+cQ=0k
W (s) := H(l + lf(p)d>p(s))_1 and

ple

T L e £ () (s)
0= a0 };(” e
to obtain a factorisation
De(s) = Dp(s)@(s)Wc(s). (2.16)

By (2.15), the Euler products for D¢(s) and D,(s) converge absolutely and define
holomorphic functions for % (s) > 1, while (2.15) and (2.13) guarantee that ®(s) converges
absolutely and defines a holomorphic function on R(s) > 1/2. Moreover, (2.14) ensures
that all factors of the finite product W¢(s) are defined and holomorphic for R(s) > 1/2.
Consequently, the factorisation (2.16) holds for %i(s) > 1 and, using (2.11), provides an
analytic continuation of D¢(s) to R(s) > 1/2. For R(s) = 1—1/A, we obtain by (2.12)
and (2.13) that

IDe(s)] <o (L4 SN2 T2 |1@()] <epipon 9 (1+]3(s)]) 2.
ple

! ) k f( ) ( ) < ’".’ ks }/ Eppl’ LeIIlII]a, 2.4 tO Ob a- (0} any
£ > O’
Z f( ) ( ) <<8va,03)¥ Etc X /( ) 8.

Na<<X
a+cQW=0k

Partial summation reveals that the series defining D¢(s) converges for s = 1 and

D —lf(;if(“) = D,(1)D(1)W (1) + 0N x ™/ M)+ey,
Na<<X
a+cW=0k
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Conditions (2.13) and (2.14) show that B := ®(1) > 0. We finish our proof with the
= ly

observation W¢(1) (¢), where

v(p) i= (141 (p)@y(1)) "' =1 = (1(p)®p (1))

k=1

In particular, [y(p)| < 1 and y(p) < Mp~!, so y e Z%. O

In our proof of Theorem 1.2, we shall apply the above result for Dirichlet series D,(s)
of the following form. Let (F, G) be a pair of binary forms in Ok[s, ], such that F is
irreducible in K s, t], not proportional to ¢, and does not divide G in K[s, t]. We assume
furthermore that G is of even degree, and that G(6, 1) ¢ K (6)*?, where 6 € K is a root
of F(s, 1).

Fix 2 € Sk with 2 | 20. We define, for a € Fk, the multiplicative function p(r g)(a)

by
G(A, 1 .
p(F.G)(a) i= Z <(—)> if a4+20 = Ok,

A mod a a
F(*,1)=0mod a

and p(r g) (a) = 0 otherwise. We assume that 20 is divisible by enough small prime ideals
to ensure that 2 [p(r g (p)| < Mp!/2 for all prime ideals p.

Lemma 2.6. The Dirichlet series of P(F.G), given by

) /O(F,G)(a)
D(r.g)(s) == ), e

CIEJK

defines a holomorphic function in R(s) > % that does not vanish ats = 1. We furthermore
have |D(p,gy(s)| < (1+ \S(s)|)1/2 in the region R(s) > 1—1/A, where A = 1+2mdeg F.
Proof. Let a := F(1,0) € O ~ {0}. Then F(s,at) = aF(s,t), where F(s, 1) € Ok[s] is
monic and irreducible. Note that the constant 6 := a6 is a root of F(s, 1). Define the
number field H := K(6,4/G(6,a)) = K(6,+/G(6, 1)), which clearly fulfils [H : K (0)] =
2.
The non-trivial representation of Gal(H /K (0)) gives rise to the Artin L-function
L(s.x) = [ [(1 = x(B) k() 0B )"
B
with the product running over the non-zero prime ideals 9B of K(6). The character x (3)
is 0 if B is ramified in H/K(#) and 1 or —1 according to whether 9 is split or inert
in H/K(6). This L-function is entire and does not vanish at s = 1. The usual argument
about split primes shows that

[TO+x®)Mk@ B ™) =1+ D x(F) [N~ + 00>,

Blp Blp
F(B/p)=1

for every prime ideal p of Ok, where f(*P/p) is the inertia degree.

https://doi.org/10.1017/51474748017000469 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748017000469

152 C. Frei and E. Sofos

In the following considerations, we assume that p is relatively prime to a and to the
conductors of the orders Ok[#] in K (6) and ﬁK(g)[q/G(OA, a)] in H. Then the primes B

in K(6) above p with f(9/p) = 1 are parameterised by the roots A of F(s, 1) modulo p.
If B corresponds to the root A, then we have an isomorphism ﬁ’K(Q)/‘B — Ok /p given by

_(G.a)\  (G(ra)
Xm)_< T >_< b )
and in particular,

> oaw- % () 5 () sraw,

Blp R A mod p X mod p
F(B/p)=1 F(x.1)=0mod p F(x,1)=0 mod p

6 — A Consequently,

where we again relied on the fact that G is of even degree. Let 201 be the product of all
the prime ideals excluded above. We have shown that

) P(r.6)(P)
L(s.x) = go(s) [] <1+"(FL1> —51(5) ] <1+—S> — £2(5)D (.5 (5).
pla0, 20 M pln My e

where go, g1, g2 are holomorphic functions and have absolutely convergent FEuler
products on M(s) > 1/2 that do not vanish there. Hence, for R(s) > 1/2+¢. we have
1 < g2(s) <6 1.

Convexity bounds, for example [27, Theorem I11.14 A] with n = 1/(2m deg F), show that

L(s, x) < (1+[3())? in1—n <9%(s) <1+,

which extends to the region 1—n < R(s) by absolute convergence of L(s, x) in
9R(s) > 1. O

We shall need to handle averages of volumes of certain regions (see (4.11)). The next
version of Abel’s sum formula is optimally tailored for this task.

Lemma 2.7. Let g,w: N — C be functions, and write G(u) := 3,
A, B >0 with A+ B < 1, and assume that:

(1) w(n) =0 forn=X;
(2) there is Q = 0 such that |w(n) —w(n+1)| < Qn=8 holds for all n € N;
(3) there are hg € C, M =0, such that |G(n) —ro| < Mn—" holds for all n € N.

Then
XI—A—B
<M 1+ —].
0 +1—A—B

gn). Let X =1,

n<u

Y, g(ma(n) = how(1)

n<X
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Proof. Telescoping and using assumption (1), we see that

>, g(ma(n) = Y Gn)(w(n) —w(n+1))

n<X n<X
=20 ), (@) —w(n+1))+ > (G(r) = ro)(w(n) —w(n+1)).
n<X n<X

The first summand is equal to Apw(1), and, using assumptions (2) and (3), the last sum
has absolute value at most

_A_p X du XI—A—B

n<X

3. Proof of Theorem 1.1

In this section we assume the validity of Theorem 1.2 and we prove Theorem 1.1 from it.
The finite set Spaq will contain all prime ideals that we want to exclude at various steps
of our argument. It will grow during the proof, but it will never depend on anything but
K,t, 5 and f.In Theorems 1.1 and 1.2, we always assume that none of the forms F; (s, )
is proportional to ¢. This can be achieved by a unimodular transformation ¢, : K> — K2,
(s,t) — (s, as + 1), for suitable a € Ok. This map ¢, extends to K2 — K2 in an obvious
way, transforming 2 to ¢,(2). Clearly, all our hypotheses are still satisfied.

3.1. Simple reductions
Lemma 3.1. Let & = (2, (0, 1), 20) be an §F-admissible triplet, and k € N. Then

Pr = (2, (0, 1), W)

is also an §-admissible triplet and D(§, f, #; X) > D(F, f, Pk, X).

Proof. Since 20 and 20% have the same prime factors, the ideals ab, for ae S,
are the same for 20 and 20%. Moreover, M* (2%, X) € M*(, X). This shows that,
P* is admissible, and moreover r(&, f, Z;s,t) =r(3, [ Pk s, t). The lemma follows
immediately, since r(F, f, #;s,1) = 0. O

It is enough to prove Conjecture 1 for all strongly F-admissible triplets. Indeed,
given any §-admissible triplet & = (2, (o, 1), 20), we may assume it to be strongly
F-admissible. To this end, we may replace 20 by any positive power of itself, thanks to
Lemma 3.1. By (1.6), we can find k € N, such that &* satisfies (1.9).

By including in Sp,q enough small prime ideals and replacing 2J by a high enough
power, we can moreover assume that

2| [ Fi(1.0) | [Res(Fi, F;) | 20. (3.1)

i#j
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3.2. Eclipsing the trivial G;
Lemma 3.2. Wheneveri € {1,...,n} is such that G;(0;) € K(8;)*?, then for all s, t € Ok

with sOk +t0k =t we have
Gi(s,t
S () - wmsa).
;| Fi (s.1)P !

Proof. The isomorphism K[S]/Fi(S,1) — K(0;), S — 6;, sends G;(S, 1) to G;(0;). Hence,

Gi(S,1) = h(8)* +c(S)F; (S, 1),
with polynomials A(S), ¢(S) € K[S], such that F;(S, 1)1 a(S). Let d be the maximum of
the degrees of G;(S, 1), h(S)?, c¢(S)F;(S, 1). Rehomogenising, we obtain

G,’(S, T)Td—degGi — H(S, T)ZTd—ZdegH + C(S, T)Td—degC—degF,-Fi(S’ T),

with forms H, C € K[S, T]. Letting b € Ok such that bH(S,T) € O[S, T], we find that
Res(bH(S,T), F(S,T)) € Ok ~ {0}. After adding to Spaq all prime ideals that divide

bRes(bH(S,T), F(S,T)), and all modulo which the form C cannot be reduced, we obtain,
for all 5,7 € O and all p | F;(s, 1)°,

<Gi(s’t)td—degG> (H(s’t)th—ZdegH>
p - p '

Using sOk +t0k =t and pt F;(1,0), we see that if p |7 then p | s, which shows that
p || W, a contradiction. Hence, ¢ is invertible modulo p and using that deg G is even,

we derive (@) i <¥)2 (£>degc—2degH _ (#)2 -1

In the last equality, we were allowed to exclude the case H(s,#) =0 mod p due to the
condition p { Res(bH(S,T), Fi (S, T)). O

By possibly reordering the (F;, G;) € §, we may assume that

e K(0;)*% for1<i<p(F),
¢ K(0;)% for p(F)+1<i<n.

We define f/(p) :=0 if pe Spaq and f/(p) :=2f(p) otherwise. Note that choosing
Spad large enough ensures that f’ € Zk. All n factors in the definition of r(s, ) are
non-negative and for 1 <i < p(F) we see by Lemma 3.2 that

(R Y (u)= [T (14 F)p(Fils ) + 1)

0| Fi(s.1)° ' pIF; (s.0)?
> [[ G+a+2fm) = > uk@)1p().
p|F;i(s,t)° Db_,;_lgﬁ(s,g
i =0k

If p(F)<n, we let § := {(Fo3)+1-Gp(g)+1)s -+ (Fu, Gn)} comprise those pairs in
T with G;(8;) ¢ K(8;)*%. Then p(F') =0 and c(§') = ¢(§) < 3. Clearly, the strongly
S-admissible triplet & is also strongly §'-admissible.
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Lemma 3.3. Let p(§) < n. Then, for any ¢ € (0, 1), the sum D(F, f, Z; X) is >

(%)
> [ wk @)1y () > Y@L s

[P Dp(&)ejl( i=1 (U,‘,Ti) mod 0; Vi (S,Z)EM*(?},X)
N, <X¢ Vi 0,0 +10x+0;,=0Ck (s,t)z(ai,r,-)mod 0; Vi
0 +W=0k Vi F,'(O’,',‘[,‘)EO mod ; Vi

(3.2)
In these sums, the quantifiers Vi run over alli € {1, ..., p(F)}.

Proof. This stems upon reordering the sum with respect to the factors 9; | Fi(s, ) and
splitting into congruence classes modd;. Since r(s,t) =0, we are allowed to impose
additional restrictions on the 9;, such as 910; < X?. O

Lemma 3.4. Letv,a€ %k, t|a, and let (5,7) € v? such that 6Ok +TOk +a =t. Then
there is (o, T) € v satisfying (o, 7) = (6, %) mod a and 6 O + 10k = .

Proof. Let b e #x such that ba = w0k is a principal ideal, and such that any prime
ideal p dividing & divides b if and only if it does not divide 7t~!. We may then choose
o:=6and 1 :=7+w. O

We next deploy Theorem 1.2 to estimate the innermost sum in Lemma 3.3.

Lemma 3.5. Let p(§) < n. There is a function fo € Zx and Bo, B1, B2 > 0, such that the
following holds: for any i, ...,0,F) € Fk and (07, ;) mod 0;, satisfying the conditions
under the first two sums in (3.2), we have, with 0 := 10y -+ - 0,(3)s the asymptotic
140
i @ f D) = /BOXZLZ) + o(x* Prowh). (3.3)

(s,t)EM* (P X) o
(s,t)=(07,7;) mod 0; Vi

The implicit constant in the error term is independent of all 9;, (o7, T;).

Proof. The Chinese remainder theorem and the coprimality conditions on ?¢,...,0 ()’
20 allow us to express the congruences (s, ) = (o, 7) mod 20 and (s, t) = (o;, 7;) mod ?;
for all i as one congruence (s, t) = (&, ¥) mod 920. The pair (6, ) € 0% then necessarily
satisfies 6 0k + TOk + 020 = t. Using Lemma 3.4, we may thus assume that 60k +
‘Eﬁ[{ =T.

The triplet 2’ := (2, (6, %),20) is strongly §-admissible. Moreover d satisfies the
condition (1.10) in Theorem 1.2, since v[]; ; Res(F;, F;)|2, and since d; + 2 = Ok for
all i.

The sum in the lemma equals

2 r(S’, £, P s, 1),

(s.1)eM*(2},X)

so the lemma stems from Theorem 1.2, once we enlarge Sp,q and replace 20 by a
sufficiently high power to ensure that 2y | 20. O
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Using the bound [14/(0;)| < 9;, we see that the error terms arising from substituting
(3.3) into (3.2) are < X2~ A1+er(8)(F243) Finally, choosing & small enough makes the
exponent smaller than 2.

Let us consider the main term. For a form F € Ok|s, t], irreducible over K and not
divisible by ¢ and for 0 € #x we define

17(0) :=8{ne Ok/o: F(u,1) =0mod d}. (3.4)
Using (3.1), we obtain for all 0 € x with 0+ = Ok,
> 1=t (0)¢k(2).

(0,T) mod ®
F(o,7)=0 mod d
0Ok +10x+0=0k

Let us now introduce the function
o(3F)
LE):=1p0)1,@N0) "¢ (@) > []r@).

01 0,(5)=0 i=1
To finish the proof of Theorem 1.1 in the case p(§) < n, it remains to show that

L(d
S 5 s (og x)®.
No<X® 0
V+W=0k

This bound can be proved in a straightforward manner by alluding to the generalisation
of Wirsing’s theorem to all number fields as supplied in [17, Lemma 2.2]. The required
estimate
3 T B) 00 = log X + 0(1)
Np<X
follows from the prime ideal theorem for the number field K (9;).

Finally, if p(§) =n, we proceed as in Lemma 3.3 to obtain a lower bound for
D(3, f, P;s,t) as in (3.2), but with r(§', f, Z;s,t) replaced by 1. Arguing as in
Lemma 3.5 and using Mobius inversion as in the proof of Lemma 2.3, the innermost
sum then becomes

D 1= D 8(((0*, T%) + (avd2)?) A X" D),
(s,)EM*(Z},X) ae Ik
at+oe =0k
Na<kX

for some (0*, 7*) € 0%. By lattice point counting, the summand for a is
X2vol 2 X\ /m
W) A (= (0%, c¥) + XVmg)) = K2 02 L o (—) +1].
H(@x02)? o (— (0, 7%) ) = e o
Summing this over all a yields a positive constant By = Bo(t, 2, 20), such that
X2
> 1:,30W+0(X2—1/’" log X).
(s.1)eM*(2;,X) 0

We may use this asymptotic instead of Lemma 3.5 to proceed as in the case p(F) < n.
This completes our proof of Theorem 1.1.
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4. Proof of Theorem 1.2: asymptotics for divisor sums

Recall that we have shown that it is sufficient to consider the case when none of the
forms F; is proportional to ¢. The ideal 20y will be modified throughout the proof, but
it will only depend on K,t,§, f. We start by assuming that 2y satisfies (3.1). Let §
be a system of forms as in the theorem, and 20 be a strongly §-admissible triplet with
20, | 20. Moreover, let ? € Lk satisfy (1.10).

4.1. The Dirichlet hyperbola trick
Let us recall that the expression
Yo r@f Pist)
(s,t)eEM* (P, X)

can be recast as

Gi(s, 1)
RN 3 (c_) | (4.1)
(s.0)eM* (P, X) i=1 i |Fi(s.) '
Defining 2; := [ [,jon pve(Fi(2.7)) makes apparent, once (1.9) has been taken into account,
that Fi(s, 1)’ = F,-(s,t)Qﬂfl. Furthermore, for each (s,t) € M*(%, X) we have the
following inequalities,
‘ﬁFi(s,t)b _ fﬁm]fl H |Fi(s. )™ < 1_[ max{]s|, . ‘t|v}mvdegFi < xdegFi,
VEQp VEQp

thus for each index i there exists ¢; > 1, independent of X, such that whenever X > 1
and (s, 1) € M*(P,, X) then NF;(s,1)” < ¢;X%eFi We let ¥; := ¢; X% % Suppressing
the dependence on 2 in the notation, we define the arithmetic functions

ri(s,t) = Z (Gl (:’ I)> and (s, 1) := Z (Gf:t)) ,
| Fi(s.0) l F|Fy(s.1) ’
N6 <Y Nk <7
N /Y NW; <N(F; (s,1))

an action which, upon writing F; (s, t)b = ccf

obtain the validity of
Gi(s,t _
3 (%) = (s 0) 1 (s, 0).
i

Ci ‘F,‘ (S,t)b

and using assumption (1.8), allows us to

Let us introduce for every v € [0, 00)" and ¥ = (Y1, ..., ¥) € {0, 1}" the region

n

Zy(X:v) = [({(s.0) € XM D N(Fi(s.1)) = Yo /YW, } € K2, (4.2)
i=1

Here X is considered as fixed and the dependence on v is what we are interested in.
Define wy (X;v) : R" — R through

v — vol(Zy (X; V). (4.3)
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For ¢ = (c1,...,¢,) € F¢ we use the abbreviation ¢ := (Ney, ..., Nc,) € (0, 00)" and
arrive at the equality of the quantity in (4.1) with

S T (Fils o)) rils. )™ +ri(s. ) ™),

(s.0)EM* (P, X) i=1

which can be reshaped into

n
Gi(s,t
2, 2 > H( (c ))lf(F,'(s,t)b).
¥e{0,1}" ceIR (s.0)EM* (P X) i=1 !
Ne;</T; Vi (5.0)€Dy (X;¢)
le’l:l ¢ +020=0k Ci‘Fi(A‘,I) Vi
¢it+cj=0k Yi#j

Here we added the coprimality condition [];_; ¢; +920 = Ok due to (1.10) and the
assumptions ¢; +¢; = Ok for i # j due to (3.1). The identity

1(F(s.0))) = > f(b)
b,‘lF,'(S,l‘)
b; +W=0k

reveals that, with

Sy = 3 Tre) 1 (Gi(:,t))’

b,ces} i=1 (s,0)ePy (X;91c)  i=1
Nb; <Y, MNe;<+/Y; Vi (s,t)eEM* (P, X)
H:‘l:l bijci+0W=0k (biﬂci”Fl‘(s,t) Vi

cit+cj=bij+b;j=b;j+c;=0k Vi#j

one has

> r@3. f Pist) = > Sy (4.4)

(s.0)EM™* (P5.X) Yef0, 1}

For any a € Sg we let (a) c £k denote the monoid generated by the prime ideals dividing
a. We collect here some conditions on n-tuples a, b”, ¢, ¢ € #} for later reference:

Vi:aq; +00 = O and Cli-l-HClj:ﬁK, (4.5)
j<i
n
Vi:Na;b! <Y, b +0W [ [a;cf =6k and b +]]07 = Ok, (4.6)
Jj=1 j<i

n
Vi : ‘ﬂaic;/c;” <A\/Y; cﬁ' € {a;), C;”+DQIIH aj = Ok and C;//+ n c/]{' = Ok.
j=1 j<i
(4.7)

Recall the definition of A*(a, (o, 7), 0, y) in (2.1).
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Lemma 4.1. We have

. " (Gi(hin 1)
Sy = Z (n f(aib,,-”)> Z (n ( a c//lc/// >>
Evg///7£”a£///€<][? l:l )"i mod Di Vl l:l 1
(4.5),(4.6),(4.7) 0| Fi(2,1)
x |A*(020, (0, 7), 0", X) N Dy (X; (Neyc! )],

where the quantities 0;,9" and A are defined through a,b”, ", " as follows,

n
nm .n /// /,_
0, :=a;b; ¢, .—Hbi
i=1

and A is the, unique modulo ¥, solution of the system A = A; mod 0; for alli.

Proof. For each pair of ideals b;, ¢; in the definition of Sy we let a; := b; + ¢;. Therefore
b; = q; b’ and ¢; = q; c' for some coprime ideals b’ cf which batisfy b;neg =q; b’ ! We may
further decompose b} and ¢/ uniquely as b} = b”b’” and ¢/ = ¢'¢/, where b, b”’ e

14 l ? ’ z (e
Jk and for all non-zero prime ideals p we have
plb/c! = pla; and plb ! = pta;.
Since the function f is supported on square-free ideals, the only relevant value for b;’ in
Sy is b! = Ok. Taking into account the conditions (4.5)—(4.7) we have thus obtained the

following factorisation for the b;, ¢; in the sum Sy,

b = ;b and ¢ = a;c)c.

We are therefore led to the equality of Sy with
" L (Gi(s, 1)
> (H f(aibf-”)> > I1 (W) :
b/// // ///ejn i=1 (S,I)EM*(jD ) i=1 1

( )(4 6) (4. 7) (5.1)€Zy (X (Na;c "))
a; b ¢ <" |Fi (s, t) Vi

For any pair (s,7) in the inner sum we have t0g +0; = Ok, since if p | 1Ok +0; then
p 12 and hence p 1 F;(1,0). This implies that p | s and thus p | sOx +10x =t |20, a
contradiction. Hence, letting A; := st~! mod d; we obtain the congruence s = A;f mod ?;.
Note that each G; has even degree and therefore

Gi(s, 1) Gi(x, 1)
a c// c/// = . c// c/// ’

an equality which can be exploited to transform Sy into

a2, > (H f<a,-b,’-”>> )3 H( o 2) 3 .

i=1 A mod 0; Vii=1 (s.t)e M*(J’a X)
(4.5).(4. 6) @1 0i|Fi(%i.1) (s. )69 (X: (Mg ey,
=);t mod 0; Vi

Since the 9; are relatively prime in pairs, we may combine the congruences under the
innermost sum to a single congruence of the form s = Af mod o’ and our lemma is
furnished upon tautologically reformulating the innermost sum. O
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4.2. Application of lattice point counting

Let us define the multiplicative function on #x,

_ kk(a) 1!
n(a) := Ma H(l-l—m—p) )

which is supported on square-free ideals and satisfies |n(p)| < 1/9%p for all prime ideals p.
We use the symbols 9;, ?’, A with the same meaning as in Lemma 4.1. For any ¥ € {0, 1}",
let

n m " .n.m

. . ".m f(aibi )ln(aibi G¢ ) G; ()»i, 1)

My = Z wy (X: (Naig e )izy) H M b " Z a " .
E’Q/II’EN,E///ej[? l:1 1 l l l )\l m()d DI 1 l l
(4.5),(4.6),(4.7) 0| Fi (A1)

Lemma 4.2. For all ¢ > 0 we have

/ 1 —1
)y rﬁf@;wﬁﬁ 11 <1—m_pz) ST My + 0 (x37 Ve,
1

(s,0)EM*(P5,X) plo2ye— ye{0,1}"

Here, c/K s a positive constant depending only on K and the implied constant in the error
term depends only on K, v, 2,90, 5, f, €.

Proof. Recall that € = {r;,...,t;} is a fixed system of integral representatives of the
class group of K. By possibly modifying 2, we may assume that v -- -, | 20.

Since 9 < Kgo = R?" is a cartesian product of balls in K% = R?™ it is clear that
the sets Zy(X;v) SR>, for X >0 and veR" are fibres of a definable family with
parameters (X,v,¥) e R!*?" in the o-minimal structure Ralg of semialgebraic sets.
Moreover, Zy (X; V) < X!/m % which is contained in a zero-centred ball of radius < X/

Injecting the estimate of Lemma 2.3 into Lemma 4.1 yields the desired main term. The
sum over the error terms in Lemma 2.3 can be bounded by <€ Eg+---+ E,;—1, where,
for0<j<m—1,

E n 1 x1+j/m+e
J= H R Z . 1 / m—+1 / i’
b ey i=l Na;iby’, | ods, vi ming <, <p{A 1 (tg, v, 0, A)mAmHD (v, 0,07, 1)7
a, b <Y, 21 Fi(1i.1)

Na;c " <\/Vi
aib,{/’i,{/f,{llJFm:ﬁK
b/ +a;c =0k
Let us bound E;. The Chinese remainder theorem allows us to separate the sum
over A; mod d; into a sum over A; mod a;¢/c/” and a sum over A; mod b!. Write " :=
[T/—; aic’c!” and let A = &; mod a;c/ ¢! for all i. Since A(tg, tyd', 1) < Ay, tyd", 1), we
obtain

A(i)(tq, v,/ ) = A(i)(tq, v, 0", )))
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for all 1 <i < 2m. This allows us to sum over b”, obtaining the estimate

x1+ij/m+e
Ee Y [l .
3 1 " 1 n i
o e Pl 3 mod arel el i mlnlgqgh{)\,( )(tq,tqb , ALy (m+ )(tq,tqb you
‘ﬁa,c”c”’<\/ a;jcic /”\F( "1)
// //I+w ﬁK
(4.8)
Let

n
Y:=nYl-.

i=1

Each first successive minimum A(l)(tq, t,0”, 1) is attained by a point v = (vy, v2) in the
lattice A(ry, t,0", 1) < 6’12{ < K2, of euclidean norm bounded by

Iv]| < mD//l/(Zm) < Yl/(4m),

due to Lemma 2.1. Let

1
21 Z H ‘ﬁal Z ||V||mk(m+1)(tq’tqaﬂ’k/)j'

ac 7// egp i=1 Ai mod a;c/ ¢ Vi
c”cm<\/7 a; c”cw|F ()»,',1)
a; cl{lcl{”JrQﬁ:ﬁK VEA(tg,t40",2")

Ivli=2D (xg,v,0".27)
Sorting the expression in (4.8) by the first successive minimum, we see that
Ej < Z XlJrj/ersEj (V)

ve2 ~{0}
[[vl|<y /¢

For ve ﬁz to be an element of the lattice A(tq,t,0”, 1), it is necessary that vy =
Avy mod D so in particular v; = A;v2 mod a;¢/c/” and hence a;c/c/” | F;(v). This allows
us to conclude that .

[[i= MU(Fi(v))* X

E;(v) < - < .
j .
[[v|™+7 vl +7

whenever F;(v) # 0 holds for all 1 <i < n. The sum of E;(v) over all such v is

< x\*Hi/m+e 3 ;Jr < X Hi/mrey120=(m+))/m) ¢ x1+i/m+ey1/a—j/(4m).
m+j
veo2 {0} IVl
lIv]| <y 1/ ¢m)

Recalling our assumption that ¢(§) <3 and the fact that ¥ < X() we see that this
error term does not exceed

x2—1/4+/(4m)+e < x2—1/(4m)+e

It remains to bound the sum over those v for which F(v) = 0 for some 1 < k < n. Since
Fy (s, t) is irreducible, this necessarily implies that F(s, ) is linear and since the forms
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Fi(s, t) are pairwise coprime, we conclude that F;(v) # 0 for all i # k. This allows us to
bound the number of a;, ¢/, ¢/, A;, for i # k, as before by [, ., M(F;(v))* < X*. Writing
temporarily

Fi(s,t) = as — bt,

witha # 0 and a | 20 | 20, we see that the equality Fi(Ar, 1) = 0 mod axc] ¢}’ is equivalent

to Ax = a~'b mod axcy ¢l Moreover, A(ty, tgd", 1)) © A(ry, vyarc)c’, Ax). We may thus

bound
h x¢
E;(v) < .
/ .
2B PG e dd )
‘ﬁakc,’{’c,’{’%ﬁ
akc) ¢ +W=0x
Let ai,...,ay be Z-linearly independent elements of v, with [lo;|| = A(i)(tq) =1 and
let Bi,....Bn be Z-linearly independent in rgarc/c; with Bl xk(i)(tqakacZ’) =

N(agc?c”)!/™. To estimate the successive minima, we used Minkowski’s second theorem
and the fact that A(!) (a) > 9Na!/™ holds for any a € Fx (see, e.g. [28, Lemma 5] or [15,
Lemma 5.1]). This provides us with the linearly independent lattice points

boy bay, B1 B "om
<aa1>""’ (aam>’ (1 e | € A(ry, vgarcpey , Ak).
" //I)l/m

The first m of these have norm = 1, whereas the latter m ones have norm = 91(ayc;/c;
so the product of their norms is = N(axc)c)’) = det A(ry, tyarc/c, A). Using again
Minkowski’s second theorem, this shows that the successive minima of A (ty, tgarc ¢y, ix)

satisfy

7

A(l)(rq, ke S Ay s A(’")(tq, vaarcr ey Ag) = 1,

A(’"H)(tq, T akCL ey s Ak ), ...,A(zm)(tq, CakCL ey M) = m(akacZ’)l/’".

As a result, we obtain the bound

X¢
Ej(vy< )] —
J "_m
ag.cf eIk VI axcy )j/m

Nagc] o/ <VX

In addition, we observe that any v = (vy, v2) € 0% with Fi(v) = 0 is uniquely determined
by vy. Consequently,

. . 1 1
X1+J/m+“3E. V) < Xl+//m+e '
22 J( ) Z o2 ]|™ S~ m(akcﬂc”l)//m
veOx ~{0} 1€0K {0} ar,cf eIk kK
llvlj <y 1/¢m) lloall <!/ (4m) Nage)/ e’ <v/X
Fk(v)=0
< X1+j/m+£(10g Y)mXI/Z(lfj/m)Jra < x3/2+i/(2m)+e < x2—1/(@2m)+e 0
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4.3. Controlling the main term

Let pi(a) := p(F, ;) (@), as defined prior to Lemma 2.6 and moreover recall (3.4).

Lemma 4.3. The arithmetic factor in the definition of My decomposes as follows:

> (%) pi (aic] )t (6 pi (c]').

X; mod 0; aic; ¢
| Fi (3, 1)

Proof. Recall that we set d; = a;b;¢/¢/’, and that the ideals a;c/, b, ¢ are coprime in

pairs due to (4.5)—(4.7). The Chinese remainder theorem, JOlntly with multiplicativity
properties of the Jacobi symbol, yields

y (G) - 3 () s s (M)

A; mod 9; A{ mod a;c/ A mod b A" mod ¢/
2ilfihe.) i</ |Fi (3].1) O E () < FLGE)

Letting B := 00 [ [}_ a;c ] ' we define M(a, ¢”, ") as

2 1n(b’{’)f(b’{’)m(b’{’)Z ln(bg’)f(b’z”)tpz(bg’)m Z 1, (62) £ (62) e, (b)

mb/// mb/// mb/// ’
b/{,EﬂK 1 bg,EfK 2 b;”efk n
N6 <Y1 /MNay N6y <Y2/Nay NbY <Y, /Nay,
b+ B =0k 61 B b =y 60+ 1, b7 =0x

a definition that makes the succeeding equality valid,

My = Z ( ; (N :/ :”)1—1))M(9ﬂ E”aE/”) ﬁ f(al)ln(almal)/j; (;tl )Pz( ///).

a,c”, ”’6]" i=1 ll

(4.5),(47

(4.9)
Let us bring into play the multiplicative function y, supported on square-free ideals,
by letting y(p) := 0 for p | 2 and in the remaining case, p 1 20, we define

n —1
y(p) == —1+ (1 + W Z tF,-(p)) :

Including enough small prime ideals in the factorisation of 2y, we can ensure that 1, €

Uk -

Lemma 4.4. Let yo := [ [,on(1 +v(p)~" and suppose that Na; < Y; for all 1 <i <n.

Then
Na;
M , //’ /// — 1 1 /// +0 1 .
(a, %, ") =voly | [ 1,(ai)1 e (X7 max ==

i=1 !

The implied constant is independent of a, ¢”, <", 9, and X.
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Proof. The bound bestowed upon f by (1.3) shows that each sum over b in M(a, ", ¢")
forms an absolutely convergent series. We may complete the summation step by step for
i=n,n—1,...,1. The bounds

Nb? ;
Z L « Xs%

1 {// , m {// /// , ) /// < m /f/é‘ d
T](bl ) | bz f(bz )| TF; (bl ) <e bl an mb? Y;

‘ﬂh,«>Y,-/mu,«

reveal that the error introduced by this process is <, X® max{Mw;/Y; : i =1, ..., n}, thus
acquiring the main term

3 L, (07") £ (67) TR, (b7) 3 Ly (by) £ (b3) TR, (b))
I T I :

b eIk ‘ﬁb] b gk Nb,

b{”Jr%:ﬁK b:l”-i-% 1_[ b =0k

j<n“j

Grouping all n-tuples b” according to the value of b := [7_, b” and letting

g(b) :=1,(b) Z Hf b/” b///)

bmefn i=1
bib/// b”’
b”/er”/ Ok Vi)

the main term becomes

DAY =TT (1+52) = [Ta+ven

beﬂ;( ptB ptB
b+B=0k
—1
Here, we used the observation that 1+ y(p) = (l + %?) holds for all p { 20. O

We may now plant Lemma 4.4 into (4.9) to show that My equals

m f (o) Ly (e pi (aic?) pi ()1 () 1, (2
Yol () Z y (X: (Ma; e :”)zfl))l—[ f(ai) Ly (a;c;")pi(aic 2/:0/”( )y (a;)1y (")
g,g”,g’”e],’; i1 ‘ﬂa, l l
(4.5).(4.7)

up to an error of size

" /// | f (a; ‘1 a;c; )pz(az ))01(,”) Na;
<e X°© Z ( ; (Mag ,—1 (n Nac/ " /// 12%1 Tz .

Using the inequalities ¥; > X, max{1,(a), p;(a), f(a)Na} <, Na®,

max {Na;} < H‘ﬁai, and @y (X; (Na;c’”)'_ ) < vol(X'/" 7)) < X2,

]<<
IS i=1

we find that the sum in the error term is

1+ 1+
< X't ||% ,,,,,<8X ‘.
l

" /// n
N Mesg i=

a,
// //l
Na; ! ¢ <V/Y,;
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To analyse the main term further, we define on £x the multiplicative functions

gilc):= Y fla)y(aic])pi(aic])oi (] )1y (aic]"),
a;. ¢ eIk
aic/ ¢’ =c;
c/ela;)
aj+c"=0x

which satisfy, for prime ideals p and positive integers k,

g )= D> FONL )i (0P i (p7 )Ly (0 ).
o, B,y€L>q
a+p+y=k
B>0=a>0
ay=0

Since f is supported on square-free ideals the only candidate values for («, B,y) are
(0,0,k) and (1,k—1,0). Let us mention that the group structure of %% provides us

with a function 3 fulfilling 171, -1, = 15. We are therefore afforded with the equality
gi (1%) = pi (p¥)15(p*), which, upon introducing

"ogi(e 1 ife¢+c; =0k Vi+#j,
g(c) = g;icf) : TR (4.10)
ioy i 0 otherwise,

makes the ensuing estimate available,

My =voly,(d) Y wy(X:N)g(c) + 0.(X' 7).
eIR

Ne; </Yi
¢ +0W=0k

4.4. Excluding small conjugates

For X, Z = 1, w € Qq and a separable form F € Ky[s, 7], let

Brw(X: Z) = {(s,1) € K2 : |s],,. |t],, < X'/ and |F(s,1)], < Z'/™}.
Lemma 4.5. We have

(X Z)mw/m if 1 <degF <3,

vol Brw(X; Z) <F
w( ) Z2mu/(mdeg(F)) deg F = 3.

Proof. First, let deg F = 1. The bound claimed in the lemma is obvious if F is
proportional to ¢. If F is not proportional to ¢, then the linear transformation L : ng —
K2 given by L(s,t) = (F(s,t),t) is an isomorphism and thus

Vol B (X: Z) <p vol{(s, 1) € K2 : |s|, < Z'/™ |t|,, < X'/} < (xZ)"™/™.

Next, let us consider the case where F is a quadratic form equivalent to s2 — 12 over K.

Then we can find an invertible linear transformation L : K2 — K2 with F(L(s,t)) = st,
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and hence
vol Br.,(X; Z) <F vol{(s,1) € K2 :
<p X"/m o zme/m og(X) < (X Z)Me /™

Sl [ty < XM 2], < 2V

If F is a quadratic form equivalent to s2 +t2 over K,, = R, then we get
vol Br (X Z) <p vol{(s, 1) e R2: s> + 1> < Z'/"} < ZV/™ < (X Z)mw/m,
It remains to consider the case where deg F > 3. In this case, F is the product of at
least three non-proportional linear factors in C and therefore
V. i=vol{(s, 1) € K2 : |F(s,1)|, < 1} < 0.
We procure the validity of
vol Br.w(X; Z) < vol(z/(mdee(F)y, oy < z2mw/(mdea(F)), O

For any non-constant separable form F € Ky, [s, t], let
D w(X) = {(s5,1) € XY/ D1 |F (s, tu)],, < 1}
Using Lemma 4.5 validates the next estimate
vol 75, (X) <g X272M0/™ yol By (X, 1) <p X2 2mu/m . xmu/m

thus providing the proof of the next lemma.

Lemma 4.6. For X > 1 we have vol 75 (X) <9 X2—muw/m
For every w € Qg we choose a finite set 7, of forms in K, (s, f], whose absolute values
we want to prevent from becoming too small. For all w € Qq, the set 47, contains s, f,
and the forms F; for 1 <i < n. Additionally, for each form F; that is of degree 2 and
reducible over K,,, we choose a factorisation F; = G; H;,, and also include Gy, H;
in J7,.
Recall the definition of Zy (X;v) in (4.2). For ¥ € {0, 1}" and v e R", let
Dy (X5 v) = {(s,1) € Dy (X; V) |Hy (5w, tw)],, = 1 Yw € Qp, VHy € S}
and
@y (X5 V) 1= vol Zy (X; v). (4.11)
We obtain that
oy (X:v) —op(Xsv)| < D) D vol 2, (X)
weQs Hy, €I,
and thus
wy (X5 V) = 0} (X:v) + O(X>71/m),
We can now bring into play the entity

My = 0y (X:Ne)g(e), (4.12)
eI
Ne; <Y
C[-‘rUQU:ﬁK
something which instantly permits us to infer the asymptotic relationship
My = yoly(0)My + Oc(X>7V/m+e), (4.13)
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4.5. Volume computations

In this section we provide estimates of the correct order of magnitude regarding the
volumes wy (X; v) appearing in .#y. The assumption ¢(§) < 3 will not be used. Let us
write d; := deg F; for 1 <i < n and consider, for ¢ € N and T > 0, the real integral

1,(T) = Ll ..... fyor Ldi o dyg.
xpxg<T

One can show that in the range T > 1 the equality
q—j

q
1,(T) 2 T(logT)/~

holds via induction coupled with I, 41 (T S] (T /x) dx, thus furnishing the succeeding
result.

Lemma 4.7. There is a polynomial Py(T) € Q[T] of degree g —1 and with leading
coefficient 1/(q — 1)! such that for T =1 one has 1,(T) = T P;(logT) + (—1)4.

For Z =1 and 1 <i < n with deg F; (s, ) = 3 we let
D¥(Z) :={(s, 1) € Kgo: |Fi (Sw, tw)],, =1 for all w € Qo and N(F;(s, 1)) < Z}

and
DH(Z):={s€ Ky |swl|, =1forall we Qyp and N(s) < Z}.

Letting Q' € Qo be a set of real places, we write Q" := Qo \ Q' and subsequently define

.@S’-"Z/ o (Z) through

‘s5)+ti‘w > 1 for all we Q/,

"
(s tuuweers (suhwear) € [ K2 x [] Kt Iswhs > 1 for allw e,

we’ we” H ‘S +t 1_[ ‘Sw|mw <7
we’ eqQ”
Lemma 4.8. Let q := |Qu|. There are positive constants c;, cs, cqr v, such that

vol ‘@3*(2) = Cslq(z)1
vol Z7(Z) = ¢i1,(Z%/4),
vol .@*lygﬂ(z) = CQ’,Q”ILI(Z)'

Proof. Let C = [[,cq, (av, bu] < [0, 0)%0, Vi = vol{(s, 1) € K2, : |Fi(s, 1), <1} < ©
and consider the measurable functions

;i K2 = [0.50)%, (5.) > (|Fi(sue 1) 2 g,

CDS . KOO - [O, OO)QOO, § — (|Sw‘w )wEnga
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CDQ’,Q” : H ng' 1_[ Ky — [O’ OO)QOO9 ((SUM tw)w’ (sw)w)
we! weQ”
my

= (5% + 221 Jwears (s Jwear)-
By homogeneity we see that vol &, 1(C ) equals

[T vol{(sw.tw) € K2 :aw < [Fi(su. tu) 2™/ < by}

WER
= H Vw,i(bw _aw) = ( 1_[ Vw,i> -vol C.
WEQ WEQR

In like manner, letting V,, s 1= vol{s € Ky, : |s|,, < 1} < o0 and
V.24 i=vol{(s, 1) € K2 :|s? 412, <1},

we observe that V,, 2 is finite if w is a real place and

vol® 1(C) = ( I1 Vw> -vol C,

wERQy
vol b5/ o, (C) = (H Vs | ] Vw,s> -vol C.
weR! we

This shows that the pushforward measures ®; x(vol), @, «(vol), g g «(vol) are constant
multiples of the Lebesgue measure on [0, 00)%*. Let #(T) be given by

{(Xw)weﬂgo :xy =1 for all w and H Xy < T}.

WER

Then vol #(T) = 1,(T), Z(Z) = &; ' (H(2¥%)), 27(Z) = &7 (H(Z)), as well as

.@5/’9,,(2) = <I>§/],Q,,(j‘f (Z)), from which the lemma flows immediately. O

Forl<i<n 1<Zi<Zyand X > 1 let

Hy(sw, t > 1 VYw e Qo YH, €
%i(X;Zl,Zz) = {(S,I)EXI/’"@: w(Sw w)‘w w o0 w w}.

Z) < ‘Jt(F,-(s, t)) < Z>
Lemma 4.9. Denoting |Qs| by g we have

X(1,(22) —1,(Z1))  ifdi =1,

(
1,(ZY%) — 1,27 ifd =3,

VOL%’,'(X; Z1,7)) <

Ifd; =2, let Q' be the set of real w € Qoo for which F; is irreducible over Ky, and define
Q" := Qo Q. Then vol %;(X; Z1, Z3) is bounded by

<Jtu,el<w VweQ” (Iq (Zz H |tw|1;mw> 1 (Zl H tw|;mw>> n .

|[m‘w21 YweQ! we we weQ!
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Proof. We deploy Lemma 4.8 throughout the proof. Assume first that d; > 3. Then

VoL (X: Z1, Z2) < VOl D (Za) ~ DF(21)) = ci(1,(Z2 ™) — 1,(27/ ).

Next, assume that d; = 1. Since F; is not proportional to ¢, the linear transformation
L:K? — K?given by L(s,t) = (Fi(s, t),t) is invertible and provides us with the estimate

VOl (X Z1, Za) < vol{(s, 1) € K2 : |swly, = 1. |tw], < X"/ Yw and Z; < N(s) < Z»}
< XVOl(@S*(Zz) ~ @S*(Zl)) < X(Iq(Zz) — Iq(Zl)).

We are left with the case d; = 2. For each w € @', there is a linear transformation
Ly : K2 — K2 such that F;(Ly(s,t)) = s> +1t2 For we Q", we have F; = G, H;.,, for
linear forms G; .y, H; . € #;,. The linear map K2 — K2, (s,t) = (Giu(s, 1), Hw(s, 1))
has an inverse L, because F; is separable. We combine all these linear maps to an
invertible R-linear map L = (Ly)weq., K%O — Kgo, which we apply to obtain

‘si—i—ti’w >1 forallwe

"
vol Z;(X; Z1, Za) < vol{ (s,1) € K2, : [swly » [fwl, =1 forall we Q

2 2| m
zi<[] ‘sw—Hw’ [T Iswtult < 2,
weR’ w we

- theKu, YweQ” vol <@$’,Q” <22 H |tw|wmw> \@*’,Q” (Zl 1_[ |tw|wmw>> 1_[ dty.

ltw],, =1 YweR” wes weQ weQ
O
Lemma 4.10. For each ¥ € {0, 1}"* we have
Wy (X: (1., 1)) = X*vol(2) + 0p(X271/m 4 X3/2%8),
Proof. Let us begin by observing that
X*vol(2) - (X: (L., 1)< D> > vol 2, ,(X)+ ivol%i(X; 1,/Y;N0;)
weQey Hy€H,, i=1

n
< X2 Um oy Z vol Z; (X 1, 4/Y;N;).
i=1

We now use Lemmas 4.9 and 4.7 to estimate the vol %, (X; 1, /Y;N2;). If d; = 1, then
Vol % (X; 1, VYN;) < XY T8 < X3/2%¢ while, if d; > 3, we acquire

1/d,'+£

Vol Z;:(X; 1, /Y:N;) < ¥, < X't
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In the remaining case, d; = 2, we get

1+¢
Y;
\/> Wlu H dty < \/7 1+e

tw€Ky YweQ” t
1<tw], <Y YweQ” Mueer ltwhy” eqn

< X1+8.

vol ;(X; 1,/ YiM20;) <

O

For a function @ : R" —» R and 1 <i < n, we write A;o(v) := o(v+e¢;) —w(v), where
e; is the ith vector in the standard basis of R”.

Lemma 4.11. Let ¥ € {0,1}", 1 <i <n and ve R" be given such that vj € [0, c0) for all
j #i. Then wq,(X, v), conszder@d as a function of v;, is non-increasing and satisfies

X2 gfd =1,
i

i

Ao} (X;v) < X'He (4.14)

otherwise,

in the interval 1 < v; < +/Y;, with the implied constant independent of v and X.

Proof. Monotonicity is obvious. Let us prove the estimate (4.14). If ¥; = 0, then a):"; (X;v)
is constant in v;. Let ¢; = 1, then

|} (X v+ ) — w0} (X3 V)| < Zi(X; /YN, v;, /YN, (g + 1)),

Using Lemma 4.9 and the mean value theorem to bound the latter quantity, we obtain
in the case d; = 1 that, for some 9; € [v;, v; + 1],

Aiw} (X:V) 5 (XIq (VYW V) |y = < X\F VPq(log(«/Yi‘JtQﬂiV)))W:gi
< X3/2+8.
When d; > 3, we get
0
Ay (X5 V) < =g (VY20 V)4 |y s,
< Y‘/d' V24P (2 dglog (v YA, V) v
< X1+s~2/d

When d; = 2, the quantity A,-a):’l‘,(

< theKw YweQ" Iq (ﬁmwi(vi +1) n |tw;mw>

[tw], =1 VweQ” weQ

—1 <\/7,~an,-1),» 11 |zw|w'"w> [T dw.

we we

X;v)is
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The integrand is zero, unless [ [, con [fwly” < VYi"M2W;(v; + 1). In that case, the mean
value theorem allows us to find for any (#y), a number o; € (v;, v; + 1), such that the

integrand is

0 oy
v <1q (x/?,-mmv [T Il ))

weQ”

V=u;

d y )
v (x/?mmv [ Joli™ Py (l"g <\/7ifﬁm-v 11 Itwwmw>>>

weQ” weQ”

VXS]] Iwly™ < X0 T Itly™

we” weQ”

V=v;

This shows that Aiw:’!" (X;v) < X'*¢_ which concludes our proof. O

4.6. The ending moves towards Theorem 1.2

We are now ready to estimate the sum .#y that was introduced in (4.12).

Lemma 4.12. Let § := max|<;<,{4 +8mdeg F;}. For any 0 <i < n, there are functions
y(i), 8&1), ...,851) € Z%, and a positive constant /,L(i), such that
_ Pl(cl)la(z‘)(cl) Pi(ci)la_(i>(ci)
My = iL00) Y e Y
Ne <Y ! Ne; <Y '
| +0W=0k citcpci_100=0k

x @ (X: (Mer, .. Neg, 1., 1) + O, (M0F X271/0T), (4.15)

Proof. For i = n our lemma holds with vanishing error term by the definition of g in
(4.10). We proceed by backward induction from i to i — 1. Lemma 2.5 provides the
existence of ﬁ(i) > 0 and y’(i) € Z% such that, for all U > 1,

pi (€)1 (ci) _ Ui
2 m—' = ,B(l)ly/(i) (1 ¢i—10) + Oc(M(cy -+ ¢;—10)°U™ / )+6),
‘ﬁcigU cl
Citcpci 1 0W=0k

(4.16)
where A = 1 +2m deg F;. Indeed, the hypotheses of Lemma 2.5 are satisfied by Lemma 2.6
and Hensel’s lemma, once we ensure that 20g, and hence 27, is divisible by enough small
prime ideals.
We write w(0) := w:';,(X; (MNeq, ..., Nei—1,0,1,...,1)). Assume first that deg F; = 1. In
this case, the bounds (4.14) and (4.16) allow us to apply Lemma 2.7 with A = 1/(21),
B =0,

M < N(cr---i_10)°X° and Q <, X2+,
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thus leading to
pi(ei) 1o (ci) ,
> —re— () = By (c1 -+ cim10)e(1)
Ne; <Y !
¢itcpci 1 0=0k
+ 0, (N(er -+ 1) X2V )+e) (417)
If deg F; > 2, we use Lemma 2.7 with the same bounds for M, A and
0 <. X', B=1-2/(degF)

to obtain an estimate identical to (4.17). Injecting this in (4.15) proves our claim for
i—1. O

The case i =0 of the last lemma shows that .y :M(O)Iy(o) (0) vol 2X?% +

O(‘JIDSXz_l/‘HE). Conjuring up (4.13) and Lemma 4.2 completes the undertaking of
validating Theorem 1.2.

Acknowledgements. We are grateful to Tim Browning and Roger Heath-Brown for
helpful suggestions relating to the proof of Theorem 1.2. The authors would furthermore
like to thank Daniel Loughran for useful discussions concerning the presentation of our
results. A part of this work was completed while the second author was supported by
London’s Mathematical Society’s 150th Anniversary Postdoctoral Mobility Grant to visit
Gottingen University, the hospitality of which is gratefully acknowledged.

References

1. J. BRUDERN, Daniel’s twists of Hooley’s delta function, in Contributions in Analytic and
Algebraic Number Theory, Springer Proc. Math., Volume 9, pp. 31-82 (Springer, New
York, 2012).

2.  F. BARROERO AND M. WIDMER, Counting lattice points and o-minimal structures, Int.
Math. Res. Not. IMRN 2014(18) (2014), 4932-4957.

3. S. DANIEL, On the divisor-sum problem for binary forms, J. Reine Angew. Math. 507
(1999), 107-129.

4. K. DESTAGNOL, La conjecture de Manin pour certaines surfaces de Chatelet, Acta Arith.
174(1) (2016), 31-97.

5.  W. DUKE, J. B. FRIEDLANDER AND H. IWANIEC, A quadratic divisor problem, Invent.
Math. 115(2) (1994), 209-217.

6. R. DE LA BRETECHE AND T. D. BROWNING, Sums of arithmetic functions over values of
binary forms, Acta Arith. 125(3) (2006), 291-304.

7. R. DE LA BRETECHE AND T. D. BROWNING, Binary linear forms as sums of two squares,
Compos. Math. 144(6) (2008), 1375-1402.

8. R. DE LA BRETECHE AND T. D. BROWNING, Le probléme des diviseurs pour des formes
binaires de degré 4, J. Reine Angew. Math. 646 (2010), 1-44.

9. R. DE LA BRETECHE AND T. D. BROWNING, Manin’s conjecture for quartic del Pezzo
surfaces with a conic fibration, Duke Math. J. 160(1) (2011), 1-69.

10. R. DE LA BRETECHE AND T. D. BROWNING, Binary forms as sums of two squares and
Chatelet surfaces, Israel J. Math. 191(2) (2012), 973-1012.

11. R. DE LA BRETECHE AND G. TENENBAUM, Oscillations localisées sur les diviseurs, J. Lond.
Math. Soc. (2) 85(3) (2012), 669-693.

https://doi.org/10.1017/51474748017000469 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748017000469

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Generalised divisor sums over number fields 173

R. DE LA BRETECHE AND G. TENENBAUM, Sur la conjecture de Manin pour certaines
surfaces de Chatelet, J. Inst. Math. Jussieu 12(4) (2013), 759-819.

E. Fouvry, E. KOWALSKI AND P. MICHEL, On the exponent of distribution of the ternary
divisor function, Mathematika 61(1) (2015), 121-144.

J. FRANKE, Y. I. MANIN AND Y. TSCHINKEL, Rational points of bounded height on Fano
varieties, Invent. Math. 95(2) (1989), 421-435.

C. FrEl, Counting rational points over number fields on a singular cubic surface, Algebra
Number Theory 7(6) (2013), 1451-1479.

C. Fre1, D. LOUGHRAN AND E. Soros, Rational points of bounded height on general
conic bundle surfaces, preprint, 2016, arXiv:1609.04330.

C. FrREI AND E. Soros, Counting rational points on smooth cubic surfaces, Math. Res.
Lett. 23 (2016), 127-143.

G. GREAVES, On the divisor-sum problem for binary cubic forms, Acta Arith. 17 (1970),
1-28.

D. R. HEATH-BROWN, Linear relations amongst sums of two squares, in Number Theory
and Algebraic Geometry, London Mathematical Society Lecture Note Series, Volume 303,
pp. 133-176 (Cambridge University Press, Cambridge, 2003).

C. HOOLEY, On the number of divisors of a quadratic polynomial, Acta Math. 110 (1963),
97-114.

C. HooLEY, On a new technique and its applications to the theory of numbers, Proc.
Lond. Math. Soc. (8) 38(1) (1979), 115-151.

A. J. IrviNG, The divisor function in arithmetic progressions to smooth moduli, Int.
Math. Res. Not. IMRN (15) (2015), 6675—6698.

J KoLLAR AND M. MELLA, Quadratic families of elliptic curves and unirationality of
degree 1 conic bundles, Amer. J. Math. 139(4) (2017), 915-936.

L. MATTHIESEN, Correlations of the divisor function, Proc. Lond. Math. Soc. (3) 104(4)
(2012), 827-858.

L. MATTHIESEN, Linear correlations amongst numbers represented by positive definite
binary quadratic forms, Acta Arith. 154(3) (2012), 235-306.

L. MATTHIESEN, Correlations of representation functions of binary quadratic forms, Acta
Arith. 158(3) (2013), 245-252.

C. J. MORENO, Advanced analytic number theory: L-functions, in Mathematical Surveys
and Monographs, Volume 115 (American Mathematical Society, Providence, RI, 2005).
D. MASSER AND J. D. VAALER, Counting algebraic numbers with large height II, Trans.
Amer. Math. Soc. 359(1) (2007), 427-445 (electronic).

H. L. MONTGOMERY AND R. C. VAUGHAN, Multiplicative Number Theory. I. Classical
Theory, vol. 97 (Cambridge University Press, Cambridge, 2007).

E. C. TITCHMARSH, The Theory of the Riemann Zeta-Function, second ed (The Clarendon
Press, Oxford University Press, New York, 1986). Edited and with a preface by D. R.
Heath-Brown.

D. I. ToLEV, On the remainder term in the circle problem in an arithmetic progression,
Tr. Mat. Inst. Steklova 276 (2012), 266-279.

A. J. WILKIE, o-minimal structures, Astérisque 326 (2009), Exp. No. 985, vii, 131-142
(2010), Séminaire Bourbaki. Vol. 2007/2008.

https://doi.org/10.1017/51474748017000469 Published online by Cambridge University Press


http://www.arxiv.org/abs/1609.04330
http://www.arxiv.org/abs/1609.04330
http://www.arxiv.org/abs/1609.04330
http://www.arxiv.org/abs/1609.04330
http://www.arxiv.org/abs/1609.04330
http://www.arxiv.org/abs/1609.04330
http://www.arxiv.org/abs/1609.04330
http://www.arxiv.org/abs/1609.04330
http://www.arxiv.org/abs/1609.04330
http://www.arxiv.org/abs/1609.04330
http://www.arxiv.org/abs/1609.04330
http://www.arxiv.org/abs/1609.04330
http://www.arxiv.org/abs/1609.04330
http://www.arxiv.org/abs/1609.04330
http://www.arxiv.org/abs/1609.04330
http://www.arxiv.org/abs/1609.04330
https://doi.org/10.1017/S1474748017000469

	GENERALISED DIVISOR SUMS OF BINARY FORMS OVER NUMBER FIELDS
	Introduction
	Preliminaries
	Proof of Theorem 1.1
	Proof of Theorem 1.2: asymptotics for divisor sums
	References


